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Abstract.

Many papers concerned with the Brownian sheet contain a statement to the effect that
this process satisfies the sharp Markov property with respect to almost no curve in the
plane, and thus is not Markovian in a natural way. The objective of this paper is to show
quite the opposite: the Brownian sheet satisfies the sharp Markov property with respect to
almost every Jordan curve in the plane. The "almost every " can be interpreted both in the
sense of Baire category and with respect to appropriate reference measures. These results
follow from simple geometric conditions on the curve which are necessary and sufficient for
the sharp Markov property to hold. These conditions turn out to be sufficient not only
for the Brownian sheet but also for a large class of processes with independent increments.
For processes in this class, we give the miniimal splitting field for an arbitrary open set, and
sufficient conditions on the boundary of an open set for it to have the sharp Markov property.
In particular, many sets with a fractal boundary have this property.
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0. Introduction.
The Brownian sheet (Wt, t E R+) has long been known to satisfy Paul Levy's sharp

Markov property with respect to all finite unions F of rectangles (see [Wl], [Ru]), meaning
that

(0.1) X-(F) and 7H(Fc) are conditionally independent given 7(OF),

where X-(F) = a(Wt, t E F) represents the information one can obtain about the sheet by
observing it only in the set F. However, (0.1) fails when F is the triangle {(t1, t2) E R2:
t1 + t2 < 1}, leaving the impression that the sharp Markov property is valid only for a very
restricted class of sets. In contrast, the weaker germ-field Markov property, in which one
replaces 7H(OF) by the germ-field W*(OF) = nH(O) (where the intersection is over all open
sets containing aF), is valid for all open sets in the plane ([Ro], [Nu]).

One natural explanation for this is the following: in the one-parameter setting, the Markov
property of the solution of a stochastic differential equation is closely connected with unique-
ness for the initial value problem. Something similar should be true in the plane. Now the
Brownian sheet is the solution of a certain hyperbolic partial differential equation [W3], and
its Markov property is closely connected to the uniqueness problem for the hyperbolic partial
differential equation O2u/OxO9y = 0. It is well-known that the boundary data needed to pose
the Cauchy problem for this equation are the values of the function on the boundary together
with the normal derivative at non-characteristic points. For a smooth curve r, the normal
derivative of the Brownian sheet has been defined by Piterbarg [Pi; Theorem 2], and he has
shown that 7-(OF) and the normal derivative together generate the germ-field. Hence, one
can expect the germ-field Markov property.

Of course, for curves which are not smooth, the concept of normal derivative no longer
makes sense, but one can still think of the generalized partial derivatives aW/Ox and OW/Oy.
It can be shown that these generalized partial derivatives correspond to the white noise
measures of certain sets, which can be given explicitly. This more down-to-earth description
of the minimal a-field S (termed minimal splitting field) such that X(F) and 7t(Fc) are
conditionally independent given S was given in [Wl; W4, Theorem 3.12] for domains with
smooth boundaries and in [WZ; Proposition 2] for domains whose boundary consists of
piecewise monotone curves.

In this paper, we extend this description of the minimal splitting field to all open sets in
the plane, not only for the Brownian sheet but for a wide class of (not necessarily Gaussian)
processes with independent planar increments (see Assumption 1.1). The connection with
the Cauchy problem and generalized normal derivative is not explored here, though our
results suggest a natural definition of characteristic points for non-smooth curves which will
be examined in a future paper. Our main objective is to determine which sets F have the
sharp Markov property (0.1). For the class of processes satisfying Assumption 1.1 below,
sufficient conditions are given for a general open set. For Jordan domains, the sufficient
condition turns out to be necessary for the Brownian sheet, yielding a complete answer in
this case.

Our approach is as follows: once the minimal splitting field is determined, it is clear that
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the sharp Markov property will hold if and only if this a-field is contained in 7-((OF). One
can then determine conditions on the boundary of F for this to be the case. It turns out
that there are essentially two ways in which this can happen:

(a) OF is essentially horizontal or vertical at most points. This is the case for instance if
OF is a singular separation line ([DR; Theorem 3.12]; the result of Dalang and Russo was
the first instance where the sharp Markov property was shown to hold for a curve containing
no vertical or horizontal segment). Here, this result is extended to all singular curves of
bounded variation (see Corollary 6.3).

(b) aF is rather "thick", e.g. it could have positive two-dimensional Lebesgue measure,
or it could be a fractal such as the Sierpinski gasket, or the sample path of a linear Brownian
motion.

The necessary and sufficient conditions for a domain bounded by a Jordan curve to satisfy
(0.1) are of geometric character, making use of an apparently new condition on planar curves:
the Maltese cross condition (see Definition 1.2). In various special cases, this condition
reduces to known conditions. For example, if the boundary curve is rectifiable, the Maltese
cross condition can be expressed in terms of a parameterization of the curve. This is the
natural generalization of the result of Dalang and Russo. If the curve is the graph of a
continuous function y = f(x), the Maltese cross condition can be expressed in terms of the
Dini-derivatives of f.

From our main result, we can obtain a variety of statements to the effect that the Brownian
sheet has the sharp Markov property with respect to almost all Jordan curves, altering the
impression mentioned above. The "almost all" can be interpreted both in the sense of Baire
category and with respect to various reference measures.

The paper is structured as follows. In Section 1, we present the main assumptions and
results. In Section 2, we prove several results concerning sharp field measurability of various
random variables. Section 3 gives an explicit description of the minimal splitting field of an
arbitrary open set (Theorem 3.3). Section 4 contains sufficient conditions for an open set to
have the sharp Markov property (Theorem 4.1), with application to some fractal sets. The
proof that the Maltese cross condition implies (0.1) for Jordan domains is given in Section 5
(Theorem 5.6). This condition is proved to be necessary for the Brownian sheet in Section
6 (Theorem 6.1), and the case of rectifiable curves and some extensions are also examined
there. Finally, Section 7 contains several theorems to the effect that "the Brownian sheet
has the sharp Markov property with respect to almost all Jordan curves".
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1. The main results.
For the convenience of the reader, the main definitions and results are presented in this

section. Throughout this paper, T = R+ will denote the nonnegative quadrant in the plane.
The horizontal and vertical axes will be respectively called the x- and y-axes. Two natural
orders on T are < and A, defined by

s= (sl7s2) < t=(t1,t2) s=-s< ti ands2 < t2
S= (Sl,S2) A t =(tl7t2) s=s.< t and s2 >t2.

A continuous curve which is totally ordered for < (resp. L) is termed increasing (resp.
decreasing). If t = (tl, t2) E T, we let pri(t) = ti, i = 1, 2, denote the 1- and 2-projections of
t and we put Rt = {s E T: s < t}.

Lebesgue measure on T will will be denoted by m or dt, whereas Lebesgue measure on
R will be denoted by A. "Measurable sets" will refer to Lebesgue measure, unless indicated
otherwise. B(T) denotes the Borel a-algebra on T, and Bb(T) the bounded elements of B(T).

Let (Q, F, P) be a complete probability space. If 5 E F is a a-field, we will write Y E a
to indicate that the random variable Y is G-measurable. A two-parameter process is a family
X = (Xt, t E T) of random variables indexed by T. Given F C T, the sharp field X(F) of
F is the a-field X(F) = u{Xt, t E F} v K(, where K( is the a-field generated by the P-null
sets, and the germ-field W(F) is defined by

H*(F) = nx(O),

where the intersection is over all open sets 0 containing F. If R =]s,1 t1] x ]s2, t2] is a rectangle
(by "rectangle" we will always mean "rectangles with sides parallel to the axes"), the planar
increment ARX of X over R is

A\RX =Xt1 - X1t2-Xtl ,82 + X81 ,82'

The process X has independent planar increments provided the variables ARR1X,... ,ARnX
are independent, for all n and for all choices of disjoint rectangles R1, ... Rn. The process X
is right-continuous if for almost all w E Q and for all t E T,

limX.<(w) = X£(w)

If in addition, the process X is square-integrable (i.e. E(Xt2) < +oo, Vt E T), then t
E(Xt2) is a right-continuous planar distribution function, corresponding to a measure 11x on
B(T).

IfF = RI.. .URn where the Rk are disjoint rectangles, set X(F) = AR1X+.* *+AR.,X
This defines an additive measure on the set of all finite unions of rectangles, taking values
in L2(Q,F,P). Suppose E(Xt) = 0, for all t E T. Then E(X(F)2) = vx(F), so X(.) is
vx-continuous [DU; Definition I.2.3], and thus has a unique u-additive extension to Bb(T)
[DU; Theorem I.5.2], which we again denote X(.), so X becomes an L2-valued measure.
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In the more modern language of martingale theory, X is a two-parameter martingale and
(VXO([, t1] X [O, t2]), (tl t2) E T) is its expected quadratic variation (see [CW], [I]).

In what follows, we will assume X satisfies the following assumption.

1.1 Assumption. The process X = (Xe, t E T) is right-continuous and square-integrable
with mean zero. It has independent planar increments, and vx is absolutely continuous with
respect to Lebesgue measure.

The Brownian sheet and the Poisson sheet are typical processes which satisfy this assump-
tion. Recall that a Broumnian sheet is a mean-zero, continuous Gaussian process (Wt, t E R+),
with covariance function

E(W.VWt) = min(si, tl) min(S2, t2)
(see [W4; Chap. 3] for many results about this process). The definition and several properties
of the Poisson sheet are given in [Cl; §3], [Y]. Assumption 1.1 is also satisfied by many stable
sheets, that is two-parameter processes with independent planar increments whose increments
are stable random variables (see [L; Sec. 24.4]).

Assumption 1.1 implies in particular that X(R) = X(R) if R is an open rectangle (as
usual, R denotes the closure of R). It also allows us to work with Lebesgue measure, rather
than with vx. Indeed, under this assumption, X(-) can be extended to all bounded Lebesgue
measurable sets, by setting X(F U N) = X(F), for F E Bb(T) and m(N) = 0.
We now turn to the subject of this paper, namely the Markov property of processes

satisfying Assumption 1.1. We begin by recalling some classical terminology.
A a-field S such that XY(F) and 7.(Fc) are conditionally independent given S is termed a

splitting field for F. Vhen X is a Brownian sheet W = (Wt, t E T), the following properties
are well-known.

(1.1) Any splitting field for F contains X(F) n 7(Fc) ([Mc; Sect. 6], [Wi]).

(1.2) If F is open, W*(o9F) is a splitting field for F (see [Ro; Chap. 3 §5] for bounded open
sets, [Nu; Th. 3.1] in the general case).

(1.3) X-(i9F) is a splitting field for F when F is a finite union of rectangles [Ru; Th. 7.5].

(1.4) R(.(F) is not a splitting field when F is the triangular region {s E T : sl + S2 < 1}
([W1; W4; p. 399]).

Property (1.2) is known as the germ-field Markov property of the Brownian sheet. We say
that the process X has the sharp Markov property (also known as Le'vy's Markov property)
with respect to F C T provided 7-((OF) is a splitting field for F (see [W2]). As mentioned
in the introduction, because of (1.4), it has widely been assumed in the literature that
the Brownian sheet has the sharp Markov property only with respect to a very restricted
class of sets (e.g. those in (1.3)). Note that (1.4) is also valid for many other continuous
two-parameter processes. The situation of the Poisson sheet is different: the sharp Markov
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property was shown by Carnal [C] to hold for all bounded relatively convex open sets, and
he conjectured that this was also the case for all bounded open sets.

Carnal's conjecture is not addressed here (see however [DW]). Rather, we are interested
in showing that the Brownian sheet (and processes which satisfy Assumption 1.1) actually
do satisfy the sharp Markov property for a wide class of sets. This is achieved by giving
an explicit description of the minimal splitting field for an arbitrary open set (see Theorem
3.3). This provides a powerful tool for determining sufficient conditions on an open set for
it to have the sharp Markov property (Theorem 4.1). These conditions are easily seen to be
satisfied by many sets with a "thick" fractal boundary, and we have in particular

Corollary 4.3. Let D be an open set whose boundary is either the Sierpinsi gasket or the
Sierpinski carpet. -Then D has the sharp Markov property.

There are also many sets with a "thin" boundary which satisfy the sharp Markov property.
We investigate this question in detail for Jordan domains D1, that is domains D1 for which
aD1 = r is a Jordan curve. Recall that a Jordan curve is a subset of T U {oo} which is
homeomorphic to the unit circle C. This is equivalent to the existence of a continuous one-
to-one parameterization p : C -- r. Indeed, the fact that W-1 is continuous follows from
compactness of C and continuity of y (the image of a closed set under y is compact).

Let J be the set of all bounded Jordan curves equipped with the uniform metrtic d defined
by

(1.5) d(r,r) = infllp -=11= infsup jIW(x) - 3(x)II,
xEC

where the infimum is over all parameterizations y and y of r and r, respectively. This is
indeed a metric. To get the triangle inequality, suppose rl, r2, r3 E 3, e > 0 and p', W2,42 and V)3 are respectively parameterizations of ri, r2, r2 and F3 such that

-p21kx < d(rF,r2) + eand 1kb2 -4311 < d(r2, r3) +

Then p3 =3 o (42)-1 o W2 is another parameterization of F3 such that

11k2 - s31I = 1kb2 0 (,2).4 0 W2 - 43 0 ( l2)-1 0 21= 114,2 - o3io,
and thus

d(r, r3) < Ilpl-_p3kloo < d(rI , r2) + d(r2, r3) + 2e.
Recall that a Jordan curve r splits R2 into two open connected domains Di (r) and D2(r),

and it is the boundary of both [N; Theorem 10.2].

Theorem 7.3. "Almost every" Jordan domain has the sharp Markov property, where
"almost every" can be interpreted in the following sense. Let 5 be the set of all F E 3 such
that 7-(Di(r)) and 7i(D2(r)) are not conditionally independent given i(r). Then C has
first Baire category.
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Figure 1.1 A Maltese cross (a small indentation at the end of each branch of the cross is
indicated for historical accuracy!).

It is also possible to obtain a similar statement where the "almost every" refers to a
probability measure on the set of Jordan curves. A natural choice of this measure is defined by
Burdzy and Lawler [BL] as follows. Let (Ba, u E [0, 1]) be a planar Brownian motion, starting
at the origin, defined on an auxiliary probability space (Pi, F' P'), and let Zu = Bu- uB1 be
the associated Brownian bridge with endpoints at the ongin. Let D(w') be the unbounded
connected component of the complement of the curve u -+ Zu(w'), 0 < u < 1. According to
[BL; Theorem 1.5(ii)], the boundary r(w') of D(w') is a Jordan curve P'-a.s. This induces a
probability measure Q' on 3, for which we have the following result.

Theorem 7.6. For Q'-ahnost all P E 3, 7(Di(r)) and 7-(D2(r)) are conditionally inde-
pendent given x(r).

It turns out that we can give sufficient conditions on a Jordan curve for its two comple-
mentary domains to have the sharp Markov property; these are necessary when X is the
Brownian sheet. To state them we need a few definitions and properties of Maltese crosses.

1.2 Definition. (a) Let t E R2. The Maltese cross of slope a > 0, radius h > 0 and centered
at t is the set Ma,(t, h) defined by

Ma(t,h) = {s ER2 : 1s2-t21< cIsl-tll < ah or 1S1-tlI < aIS2-t21 < ah},

and for a = 0, we set
Mo(t, h) = nf>oM<(t, h).
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Figure 1.2 A cross.

(b) The Maltese cross condition is satisfied at t E r if

rnFM,,(t,h)$54, Vh>O, Va>0.

The cross condition is satisfied if

rn Mo(th)#+, Vh>o.

(c) M(r) is the set of t E r for which the Maltese cross condition is not satisfied, and
Mo(r) is the set of t E r for which the cross condition is not satisfied. For a > 0 and h > 0.
put

Ma(r, h) = {t ErF Fnl,M(t, h) =

For a > 0, Ma(t, h) is open and does not contain t. The set has, roughly, the shape of a
Maltese cross (see Figure 1.1).

For a = 0, Mo(t, h) is shaped like a conventional cross: two crossed lines centered at t
with t itself removed (see Figure 1.2). Clearly M(r) c Mo(r) and

Mo(r) = U Mo(r, h).
h>O

The interest of this definition lies in Theorems 5.5 and 6.1 below. Some explanation
concerning this condition is in order. Notice that the Maltese cross condition holds at
to = p(uo) if and only if

(1.6) liminfmin.(. (u) -wi(uo)I 192(U) - p2(Uo) 0.
u-_uo k1902(U) - p2(uo)I' I1(u)- Pl(uo) l
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Now when y is differentiable at t, this means that the tangent to r at t is either horizontal
or vertical. The Maltese cross condition is thus analogous to a condition on the tangent to
r, but it doesn't require that the tangent exist.

If r is the graph of a continuous function W2 and if y(t)= (tl, W2(tl)), then the Maltese
cross condition is essentially a condition on the Dini derivatives of W2 (see [Saks; Chap. IV
§2]):

liminf 1so2(tl + h)- P2(tl)I=I or lim sup IP2(tl+h)( - (2(t+i)I
h-+O h h-_O h

Theorem 5.6. Let (Xt, t E T) satisfy Assumption 1.1, and let D be a Jordan domain with
boundary r. Assume

(1.7) A{pri(M(r))} = O, i= 1 or 2.

Then D has the sharp Markov property.

The fact that one can choose either i = 1 or i = 2 in (1.7) is due to the property that

A{pr1(M(r))} > o A{Pr2(M(r))} > o,

which is a straightforward consequence of Lemma 5.4(b).
In many cases, condition (1.7) is easy to check. For instance, if r is rectifiable, with a one-

to-one parameterization so = (l, s2): [0,1] -+ T, then so and s2 have bounded variation
[S; Chap. 4. (8.2)], and so si is canonically associated with a signed measure dpi on [0, 1],
i = 1, 2. We will show in Corollary 6.3 that

A{pri(M(r))} =0 4- dso and ds2 are mutually singular.

The above theorem shows for instance that there are many unbounded domains for which
the Poisson sheet has the sharp Markov property: it suffices that (1.7) hold and that r pass
through the point at infinity.
We know by Carnal's theorem [C; Theorem 3.1] that the Poisson sheet has the sharp

Markov property with respect to many Jordan domains which do not satisfy (1.7). For the
Brownian sheet, the situation is very different.

Theorem 6.1. Let D c T U {oo} be a Jordan domain with boundary r, and let (Xt, t E T)
be a Brownian sheet. Then D has the sharp Markov property if and only if A{pri(M(r))}
O,i = 1 or2.

Even for the Brownian sheet, the condition A{pri(M(OD))} = 0 is not necessary for
general domains D, though we conjecture that a slight modification of it is (see Remark
6.2).
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2. Sharp field measurability and Vitali covering.
In this section, we prove several statements concerning the sharp field of certain sets.

Most of these are proved using the Vitali Covering Theorem (see 2.2). They will be useful
in the following sections, but their proofs can be skipped until the reader is convinced they
are really useful.

2.1 Lemma. (a) Let F and Fn, n E N, be measurable subsets of T, all contained in some
fixed compact set. If the Fn are disjoi'nt and m(F A Un-ENFf) = 0 (where A denotes the
symmetric difference), then EnEV X(Fn) converges in L2(Q, F, P), and is equal to X(F) a.s.

(b) For any set F, 7H(F) = X(F).

Proof Set Gm = Ul<n<mFn. Then m(F A Gm) 0 as m -4 oo. By Assumption 1.1 and
the dominated convergence theorem, v(F A Gm) 0 as m -+ oo, so

m

lim E((X(F)- X(F ))2) =0,
n=1

proving (a).
As for (b), since F C F, we only need to show that Xt is X(F)-measurable for each

t E F \ F. Now for each such t, there is a sequence (tn, n EN) of elements of F converging
to t. But then m(Rt A Rtn) -O 0 as n o-+ o by (a), so

Xt X(Rt) = lim X(Rn)=li=m Xtn

in L2 (f, F, P). This completes the proof. 0

Note that the conclusions of this lemma are not valid in general without Assumption 1.1.
Indeed, if X is a Poisson point process on the lineS2 = 1 (i.e. Xt is the number of random
points in the set Rt n {s E T : S2 = 1}) and if F = [0, 1[2, then X(F) is trivial but Xi(F) is
not.

The following theorem is drawn from [S; Chap.IV.§3]. The special case that we will be
using is stated here for the convenience of the reader. Let B(t, r) denote the open ball
centered at t of radius r. A family £ of sets covers a set F in the sense of Vitali provided
for each t E F and r > 0, there is E E £ with t E E c B(t, r).

2.2 Vitali Covering Theorem. Let F be a Lebesgue measurable set in R (resp. RI2),
and let £ be a family of closed non-degenerate intervals ofR (resp. squares of R2) that
covers F in the sense of Vitali. Fix E > 0. Then there is a finite or countable sequence (En)
of disjoint elements of £ such that A(F \ Un-ENEn) = 0 (resp. m(F \ UnENEn) = 0) and
A(F A UnENEEn) < e (resp. m(F A UnENEEn) < e)

Most texts only give the first statement in 2.2. However the second statement follows
from the first: it suffices to consider only sets in £ which are contained in a fixed open set
O D F with A(O \ F) <e (resp. m(O \ F) < e).
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For F C T, and i = 1,2 set

S'(F) =1{(t,t2) E T: 3(s1,82) E F with si = ti, 83.i > t3_i}-

For i = 1, this set is the "vertical shadow" of F, and for i = 2 it is the "horizontal shadow".
An example is shown in Figure 2.1. Observe that if F is open (resp. compact), then S'(F)
is open (resp. compact).

Figure 2.1. The vertical shadow of F.

2.3 Proposition. Let F be a bounded Bore) subset of T which is totally ordered for <
(respectively ). Then X(S1(F))+X(S2(F)) (respectively X(S'(F))-X(S2(F))) is H(F)-
measurable.

Proof. We assume that F is totally ordered for < (modifications for the other case will be
indicated below). Then the intersection of F with any line of the form tl + t2= c is either
empty or contains exactly one point. Let L(F) be the union of the x-axis and the set

{s E T: 3t E F such that tAs}.

According to [W3; Theorem 2.7], the boundary of L(F) is a continuous curve C with a
parameterization
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P

B
Figure 2.2. Note that Proposition 2.4 is obvious for smooth sets F.

Z = (Z',Z2): 1R -+ R2 such that Z(0) = (0,0), u -+ Z(u) is increasing for <, and
Z1(u) + Z2(u) = u. It is easily seen that any open interval I cR+ has the property

(2.1) A{pr1(Z(I))} + A{Pr2(Z(I))} = A(I).

By a standard monotone class argument, we see that (2.1) holds for all Borel subsets of C.
Now set B = {(u,0) : u = si + s2, (S1,S2) E F} (this is the 45 degree projection of F

onto the x-axis: see Figure 2.2). By (2.1), A(B) = A(pr1(F)) + A(pr2(F)). Observe that the
set I of all intervals [a, b], a < b, such that a and b are both in B is a Vitali covering of the
set of points of density of B (see [S; Chap IV. (10.2)]). Fix e > 0 and let (In, n E IN) be a
sequence of disjoint intervals of I with the properties guaranteed by Theorem 2.2. Then

A(B\ U In) = 0 and A( U In) < A(B) +.
nENEnVN

Assume In = [an, bn] and an = sn' + sn, bn= tn + tin, where (sin, sn) E F, (tn, tin) E F, and
define

hi(x) = inf{Z3'-(u): Z'(u) > x}, x E BR+, i = 1, 2.

Since F is bounded, there is M such that h'(x) < M when x < sup pri(Z(B)), i 1,2, and
we have

E{[ (Xtn- X.n) - (X(S1(F)) + X(52(F)))]2}
nEN

12



Jpr1(Z( U In)\F) (x dx + pr2(Z( U In)\F) h2(x)dx

nEN nEN

< MA(U In \ B)
nIEN

< Me.

Since e is arbitrary, we can conclude that X(Sl(F)) + X(S2(F)) E X(F).
If F had been totally ordered for A, we would have worked with lines tl - t2 = c, and

replaced s1 + s2 by s1-s2 in the definition of B. The remainder of the argument is similar. 0

2.4 Proposition. Let F be a bounded Borel subset of T. Then X(F) is X-(F)-measurable.

In principle, the X-measure of F is obtained by covering F with small squares, so it is
clear that X(F) is H*(F)-measurable. The trick to showing X(F) E X-(F) is to arrange the
cover so that the corners of the squares belong to F. For this we need two lemmas. The first
is a straightforward extension of Lusin's Theorem to functions with values in a separable
Hilbert-space.

2.5 Lemma. Let g(x), 0 < x < N, be a measurable function with values in a separable
Hilbert space L, and fix e > 0. Then there is a compact subset K C [0, N] such that
A(K) > N - e and 91K is continuous.

Proof. Let (,n n E IV) be an increasing sequence of finite-dimensional subspaces which
span L, and let g,(x) be the projection of g(x) on 4n. With the obvious identification, we may
consider gn as a function with values in some Rk (with k = dim En). By Lusin's Theorem
[S; Chap.III.(7.1)], there is a compact set Kn C [0,N] such that A(IKn) > N -2-n-1
and gnlKn is continuous. Let K' = nnErINfn and note that A(K') > N - E/2. Next let
fn(x) = IIg(x) - gn(x)I. The sequence (fn,nnE -N) is real-valued and converges pointwise
to zero. By Egoroff's Theorem [S; I.(9.6)], there is a compact set K" C [0,N] such that
A(K") > N -E/2 and (fnIK", n E NV) converges uniformly to zero. Put K = K' n K". Then
A(K) > N - e and 9IK is the uniform limit of continuous functions. O

2.6 Lemma. Let F C [0, N]2 be Borel. Then there is a measurable subset F' C F, with
m(F \ F') = 0, for which there is a Vitali covering that consists ofsquares with sides parallel
to the axes and having all four corners in F.

Proof. It is sufficient to show that for each e > 0, there is a measurable subset K of [0, N]
with K C pri(F), A(pr1(F) \ K) < E, such that the statement of the lemma is valid with
F replaced by F, = F n (K x [0,N]). So fix e > 0 and apply Lemma 2.5 to g(x) given
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by g(x,y) = IF,(x,y) considered as a function with values in L2([O,N],dA). Let K be the
resulting compact set consisting of points of continuity of g, with A(K) > N - E. Let F(s1)
denote the vertical section of F at si, i.e. F(s1) ={82 : (S1, S2) E F}, and for B C [0,N],
set B + h ={x E [h, N]: x-h E B}. Define

F(si, h) = F(si) n F(s, + h) n (F(s1) + h) n (F(s, + h) + h).

The lemma will be proved if we show that

(2.2) lim A(F(si) \ F(s1, h)) = 0, V s1 E K.
h\O, hEK-ai,

Indeed, we can then set F' =nh>oGh, where

Gh = {s E F,: 3h' < h such that (si + h', S2) E F,
(SI,82 -h') E F, (s, + h',s2- h') E F}

(observe that Gh is the projection of a Borel subset of R3, and thus is analytic [DM; II.13],
hence measurable [DM; III.33]), and by (2.2) and Fubini's theorem, m(F' \ F) = 0.

So we now prove (2.2). Note that for any sl,
,N

(2.3) A(F(s1) A (F(si) + h)) = J IIF(Sl,Y) - IF(S1,Y- h)Idy - 0

as h 4 0, since IF(si, ) E L'([O, N]); this is a standard property of translates of Ll-functions.
In addition,

N
A(F(si) A F(s, + h)) = J (IF(S1, Y) - IF(Si + h, y))dy

(2.4) = IIF(S1, -IF(S1 + h, *)IIL2([O,n])
0

for si E K when h l 0 is such a way that si + h E K (by choice of K). Finally, for si E K,
we have
(2.5)

A(F(s1) A(F(si + h) + h)) = j IIF(S1,Y) - IF(S1 + h,y - h)Idy
N TN

< jNIF(S1Y) - IF(Si,Y - h)Idy + j IIF(si,y - h) - IF(s1 + h,y - h)|dy
IN-h

< A(F(si) A (F(si) + h)) + IIF(sl,y) - IF(Si + hiy)Idy
K A(F(si) A (F(s1) + h)) + A(F(si) A F(s, + h))
- 0
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as h I 0 in such a way that s1+ h E K (by (2.3) and (2.4)). But (2.3), (2.4) and (2.5) clearly
imply (2.2), completing the proof 0

Proof of Proposition 2.4. Let F' be the subset of F given by Lemma 2.6, and E the
Vitali covering of F' by squares with corners in F. Fix r7 > 0, and let e > 0 be such that
vx(A) <,7 whenever m(A) <e (e exists by Assumption 1.1). Applying Theorem 2.2, we get
a sequence (F, n E 1NV) of disjoint elements of £ such that

m(FA U Fn)< e.
nEN

Thus
E((X(F) - X( U Fn))2) = vx(F A ( U Fn)) < 7.

nEV nE
Now since X(.) is a-additive, we get

X( U Fn) = E X(Fn) = AFnX E X(F),
nIEN nEN nuEN

since all four corners of Fn belong to F. Since 77 is arbitrary, X(F) E 'i(F). 0

2.7 Approximation Lemma. Let f: [a, b] -I R+ be measurable and bounded byM > 0,
and let A be a measurable subset of [a, b]. Set

A= {t E T:t1 E A,O <.t2 < f(t1)}.

Fix e > 0. Suppose that I is a Vitali covering ofA by non-degenerate closed intervals I with
at least one extremity aI E A, and that for each x E A and e > 0, there is I E I with length
< e and aj = x. Then there is a sequence of disjoint intervals 1, I2, ... in I such that

(2.6) E (X(A)-ZX(In x [0,f(ai)])) } < .

Proof. By Assumption 1.1, there is 6 > 0 such that m(G) < 6 implies vx(G) < e/2.
Now by Lusin's Theorem [S; Chap.III.(7.1)], there is a compact set K C [a,b] such that
A(K) > b - a - 6/M and f K is continuous. Set B = A n K. Then by Fubini's Theorem,
m(B A A) < 6, so vx(B A A) < e/2. It is thus sufficient to show that there is a sequence
I', I2, ... of disjoint intervals in I such that

m{B A U (I fx [O,f(aIn)])} <6/2
nEN

where aln is the extremity of In which lies in A.
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Since f is uniformly continuous on K, let 77 > 0 be such that

Isl - tlI < 77, si,ti E K = If(si) - f(tl)j < 6/(2(b- a)).

Set
16 = {I= [a, b] E l: aI E B, lb- al < r}.

Then 1,6 is a Vitali covering of B, so by Theorem 2.2, there is a sequence (In, n E IV) of
intervals in 16 such that A(B \ UnENIn) 0 and A(B A UnENIn) <6/(2M). Thus

m{B A (U (In x [0, f(ain)]))} = j f(s)IB(s) - E f(ain)Iin(s)Ids
nEIV ~~~~~~~nENV

< , (niB f(s) - f(ain)lds + MA(In \ B))
< 6/2 +6/2

This completes the proof. 0

The following is an easy consequence of Lemma 2.8.

2.8 Proposition. Using the notation of Lemma 2.7, let r be a set containing the graph of
fIA, i.e. {(tl t2) E T: ti E At2 = f(tl)} C r. Assume that

(2.7) for A-almost all x E A, (x, f(x)) is an accumulation point of (JR+ x {f(x)}) n r.

Then X(A) is 'K(r)-measurable.

Proof. Set

I= {[S, t,]: (si E A and (t1, f(si)) E r) or (t1 E A and (si, f(t1)) E r)},

and for I - [s1,ti] E I, set Ok(I) = f(si) if Si E A, 4(I) = f(t1) otherwise. Note that
I x [0, O(I)] is a rectangle whose two upper corners belong to r. Thus X(I x [0, /(I)]) is
XH(r)-measurable. Now by (2.7), I is a Vitali covering of a subset A' of A with A(A \ A') = 0,
which also satisfies the assumption of Lemma 2.7. So by this Lemma, X(A) = X(A') is
arbitrarily close in L2-norm to random variables which are K(r)-measurable. This completes
the proof 0
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3. Characterization of the minimal splitting field for an open set.
In this section, we shall describe the generators of the minimal splitting field for an

arbitrary open set.
In the study of sets with complicated boundaries, we will need the following "hitting

times". For G C T, define maps TG and LG by

TG(t) ={inf{v > t2: (ti, v) E G} if{}II ,
+oo otherwise ,

LG(t) {sup{v< t2: (t, v) E G} if{}I$ ,
o otherwise .

Note that TG corresponds to the first entrance time of G along the half-line {ti} x [t2, +oo),
whereas LG corresponds to the last exit of G along the segment {tI} x [0, t2]. We have the
following lemma.

3.1 Lemma.
(a) Assume G is open. Then TG is upper-semicontinuous (u.s.c.) and LG is lower-

semicontinuous (l.s.c.).
(b) Assume G is closed. Then TG is l.s.c. and LG iS U.S.C.

Proof. Observe that

{t E T : TG(t) < y} = S'(G n (R+ x [O,y[))
which is an open subset of T. This proves the first statement in (a). The other three
statements of the lemma can be proved similarly. Details are left to the reader. 0

Throughout this section, we work with a fixed non-empty open set D1 (not necessarily
bounded). We are going to determine the generators of the minimal splitting field for D1. Set

= (D)c, Ir =rD19Dn aD2. In order to avoid trivialities, we assume that the open set D2
is not empty. Note that r = D1 D2 =D2, and that by Lemma 2.1, 1(Di) = (Di),
i = 1, 2. We let D, denote the interior of D, (in general, JJ may be distinct from D1 but it
always turns out that Dz D2). Then aDi = aDi= r.

Define two open sets Si and S2 by

S1=ADns1(D), S2= D2ns1(A),
and define maps p and r with domain SI U S2 by

p(t) _ T,T(t) if t E Si,(\TJ5(t) iftE Si,

and r(t) = (t1, p(t)). Note that p never takes the value +oo and that r projects Si U S2 onto
r. Taking A) instead of D1 in the definition of p makes a significant difference (consider,
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for instance, the case D1 = ([O, 1[x[0, 2[) \ (A x [1,2[), where A is a Cantor set such that
A(A) > 0). The following technical properties of the map r wiUl be important.

3.2 Lemma. (a) r is Borel.
(b) For any open set F c SI U S2, r(F) is Borel.
(c) r(SI) nf (S2) =

Proof. (a) This is clear since r(t) = (t1,p(t)) and p is u.s.c. by Lemma 3.1.
(b) Since any open set is a countable union of closed rectangles, it is sufficient to prove

(b) in the case F [a, b] x [c, d] C SI. Then

r(F) = {t E T: a < t < b, t2=p(t=,d)j
which is the graph of the u.s.c. map p(., d), and (b) is proved.

(c) Assume a E Si, t E S2, and r(s) = r(t). Then si = ti, so we can assume for instance
that S2 < t2. But then the definition of r implies p(s) < t2 < p(t), contradicting equalty of
p(s) and p(t). 0

V(A"')

A 8
Figure 3.1.

For any subset B ofR+ and d > 0, we set B(d) = B x {d}. If B(d) C Si, i 1, 2, we set

V(B(d)) = {(t1,t2) E T: ti E B, 0 < t2 < p(ti,d)}
(see Figure 3.1). With these notations, we can describe the minimal splitting field for DI
and D2. Set

M(D1) = 7i(r) V a{X(V(B(d))) : B(d) C Si, B = [a,b],a < b,d > 0,i = 1, 2}.
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3.3 Theorem. Let (Xe, t E T) satisfy Assumption 2.1, and let D1 be any open subset of T,
D2= D. Then

M(Di) = XH(Di) n XH(D2),
and this is the minimal splitting field for 7(D1) and 7(D2)

3.4 Remarks (a) In the case of the Brownian sheet and for domains with smooth boundary,
this result is contained in [W1; Theorem 3.11], and for domains whose boundary is a piecewise
monotone curve, in [WZ; Proposition 2]. It may be advantageous to the reader to compare
our statement with these references, in which the variables X(V(B(d))) are replaced by the
X-measure of vertical and horizontal shadows of portions of r. This description is not valid
in general: Example 3.5 below illustrates exactly what difference there is between the shadow
description and ours.

(b) The proofs in [W3; WZ] are rather short. Here, we use similar ideas, but much
technical effort is needed to handle, for instance, the case where m(r) > 0. The results of
the previous section will be handy here.

(c) We now have a powerful tool for proving that i(r) is a splitting field: it suffices to
show that X(V(B(d))) E x(r), when B(d) C Si, i = 1,2. Since V(B(O)) is the region below
the graph of an u.s.c. function, it is possible to do this in many cases, as the following
sections illustrate.

(d) One must take care when comparing Theorem 3.3 to other results in the literature.
For the Brownian sheet, Rozanov [Ro; Chap.3 §5.3] gives a characterization of the minimal
splitting field of a bounded open set. However, his definition of a splitting field S is

(3.1) W*(b1) is conditionally independent of W*(Dc) given S,

and the minimal splitting field is then w*(r) (note that if H*(r) is a splitting field in this
sense, it is necessarily minimal by (1.1), since xH*(r) C 7i*(Di) n l.*(Dc)). Now H*(r)
7H*(Dl) n X*(D2) is in general distinct from M(r) = 7(D1) n 7(D2) = h(D1) n 7(D2).
This is the case for instance in Example 3.5.

3.5 Example. Let A be a Cantor set in [0, 1] such that A(A) > 0, and let I,, I2, ... be the
disjoint open intervals whose union is Ac. Set

Di = U (In x In) U([0,1]X [O,1])C,
nEN

D2= Dc.

Note that D2 C [0, 1] x [0, 1], and in particular, this set is bounded. The common boundary
r of D1 and D2 is the union of the boundary of [0, 1]2, the boundaries of the In x In, and a
subset of the diagonal whose projection on the x-axis is A.

Let E be the portion of D2 below the diagonal. Then E is exactly the vertical shadow of
a portion of r, but it will be a consequence of Proposition 6.7 below that X(E) ¢ W(DI),
and thus is not an element of M(D1) = M(D2). On the other hand, X(E) is easily seen to
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belong to H*(r). It will be clear from Theorem 4.1 that w(r) is the minimal splitting field
in this case, since if B C R+ and B(d) C E, then V(B(dO) is the domain below the graph of
an u.s.c. function which takes the value 1 on B n A and is constant on each B n In, for each
n E -RV. 0

The proof of Theorem 3.3 relies on several preliminary statements.

3.6 Proposition (a) For i = 1, 2, for all measurable subsets B of [a, b], and for all d > 0
such that [a, b] x {d} C Si, V(B(d)) is bounded and X(V(B(d))) is M(D1)-measurable.

(b) M(D1) C '7(D1) n 7-(D2).

Proof. The map x '-÷ p(x, d) is u.s.c., so it is bounded on the closed interval [a, b], hence
V(B(d)) is bounded. Note that B -+ V(B(d)) preserves unions and intersections. Since X(.)
is countably additive, a standard monotone class argument [DM; I.19] yields (a) for Borel
sets B. But then Assumption 1.1 yields (a) for any measurable B.

To show (b), it is sufficient by Proposition 2.4 and Lemma 2.1 (b) to show that X(V(A(d)))
E 'K(D1) n Hi(D2), for each d > 0 and each closed interval A for which A(d) is in either Si or
S2.

If A(d) is in S, let us show that X(V(A(d))) E 7-t(D34i). Let (Dn, n E iV) be an increasing
sequence of finite unions of open rectangles such that UnENDn D3-. Setf(x)=TDn(x, d),
and

An= {x ER+ fn(x) < +°o}
Since fn is u.s.c., An is open. Now A C UnENAn and A is compact, so there is no E IV
such that Ano D A. Since fn+l < fn and sup{fno(x) : x E A} is finite, the fn are uniformly
bounded on A for n > no. Define

Vn= {t E T: ti E An, 0 < t2 < fn(tl)}.
It is easy to see that fn I p(.,d), so that by the above m(Vn A V(A(d))) 0. Thus
E([X(Vn) - X(V(A(d)))]2) -+ 0, and it suffices to check that X(Vn) E 2i(D3-i). Since Dn is
a finite union of rectangles, fn is a step function, so Vn is a finite union of rectangles Rn Of
the form Rn = In x [0, bn], where the In are disjoint intervals and bn is the constant value
of fn on In. Since both upper corners of Rn belong to D3-i, X(Rn) E 7(D3-i), and so we
have shown that X(V(A(d))) E 7X(D34i).

The proof that X(V(A(d))) E 7t(Di) uses similar ideas but is simpler because we do not
need the compactness argument. Set

q(t) = Tr(t) = inf{v > t2: (t1, v) E r}.

By Lemma 3.1, q(., d) is l.s.c. on A, so we can find an increasing sequence of step functions
Sfn which increase to q(., d); we can even require that the graph of each fn is in D,. Set

F = UENFln where
Fn {t E T: t1 E A, 0 < t2 < fn(tl)}.
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Since f,, is a step function, F,, is a finite union of rectangles with upper corners in D1, so
X(Fn) E 7H(Ai) = W(Di). Since X(Fn) -- X(F) in L2, X(F) E 7H(Di). Now

X(V(A(da)) = X(V(A(d)) \ F) + X(F), and V(A(d)) \ F C Di U r1 Di,
so by Proposition 2.4 and Lemma 2.1(b), X(V(A(cO)) E 7(D,). This completes the proof. 0

Let us define a map U by U(t) r-r(r(t)). U maps a point in Si onto a countable union
of open segments, all contained in the vertical line through t (when Di has smooth boundary,
U(t) is usually a single segment). Note that U(s) and U(t) are either identical or disjoint,
and in particular, if s1 # t1, then U(s) and U(t) are disjoint. One consequence of this is that
if L is any horizontal line segment contained in D, and if we restrict ourselves to subsets
F c L, then F '-4.U(F) preserves set operations.

3.7 Lemma. Fixi E {1,2} and let L beahorizontal line segment of the formL = [a,b]x{d}.
Suppose L C Si. IfF is a measurable subset of L, then U(F(d)) is measurable and bounded
and X(U(F(d))) is M(D1)-measurable.

Proof. Since F '-+ U(F) preserves set operations, it is sufficient to prove the lemma when
F is a subinterval of L. So in fact, we only need to show that X(U(L)) E M(D1) (note that
U(L) is Borel by Lemma 3.2). Define

: (u) =LA_ (u, d).
Then U(L) = (Fl \ F2) \ F3, where

F1 =V(L),
F2 = {tET:a<ti<b, 0 < t2 < (t1)},
F3 = (F1 \ F2) n r.

Note that F1 is bounded, and all of these sets are Borel. Now X(F1) E M(D1) by definition,
and X(F3) E xH(r) C M(Di), by Proposition 2.4, so it only remains to show that.X(F2) E
M(D).

The proof of this is somewhat similar to part (b) of Proposition 3.6. Let (Dn, n E IV)
be an increasing sequence of finite unions of rectangles such that UnENDn = D3i,. Set
/n(u) = LDn(u, d) and

F= {t E T: a < t, < b, 0 < t2 < /3n(U)}.
Then Fn T F2, and each Fn is a finite union of rectangles of the form Ik x [0, bn], where
I{', I2n,... are disjoint intervals. Set

Gn U V(IkxX{bn}),
kEN

Gn"- U{tET:tlEI*,3 (u) < t2 < p(u,bn)}.
kEN
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Then G" and G" are increasing sequences which increase to G and G, respectively, and we
have G = F2UG, Gn F2 = 4. Thus X(F2) = X(G)-X(G). Since G c r, X(G) E w(r) by
Proposition 2.4, so the proof will be complete provided we show that X(G) E M(D1). But
X(G) is the P-limit of

X(Gn) = E X(V(Ikn x {bn)),
kEN

which is M(DO)-measurable by definition. 0

3.8 Proposition. Let U be the family of Bore) subsets F ofT with the property F = U(F).
IfF E U is bounded, then X(F) E M(D1).

Note that for -domains D1 with smooth boundaries, the statement that F = U(F) is
essentially "F is a domain bounded on each side by vertical lines and above and below by
portions of the boundary": see Figure 3.2.

Figure 3.2. Three sets Fi with Fi = U(Fi), i = 1, 2,3.

Proof of Proposition 3.8. Let M > 0 be such that F c [0, M]2. Fix e > 0, and let D be
a finite union of rectangles contained in S n [0, M]2 such that m((Si n [0, M]2) \ D) < e. Set
F' = F nfD. Then U(F') C F and m(F \ U(F')) < e. Since e is arbitrary, it is sufficient to
prove that X(U(F')) E M(D1). It is clear that we may assume that

n

= [u,v] x U I,
1=1

where u < v and It = [at, be], with a, < b, < a2 < . . . < a, < b,. Let Gt be intersection of
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F with [u, v] x {be}. Then GI is measurable. Now define

A= {x E Gt: p(x,be) <ae+i}, 1 . e < n.

By Lemma 3.7, X(U(At x {bt})) E M(D1). Now since F = U(F), we have

(Gt \ At) x It c U(Gt+1 x I+1

from which it follows that n
U(F') U U(At x {bt}).

t=1

Since the union is disjoint, the conclusion follows. 0

3.9 Proposition. Fix t E r. Then X(Rt nlA) E M(D1) , i = 1, 2.

Proof. Set B = pri(r n ([O,tl] x {t2})). Then B is closed, so [O,t1] \ B Un= N
where the In =]an, bn[ are disjoint open intervals. Fix n E IV. We begin by showing that
X(Fn n Di) E M(D1), where Fn = In x [O,t2]. There are two cases to distinguish.

Case 1. In x {t2} C Ibi. In this case,

Fn nlD-i cS3-i and Fn n A-i E U.

Now

X(Fn n Ai) Xbn,t2- Xan,t2 - X(Fn n -i)-X(Fn n r)
e M(D1)

by Proposition 2.4 and 3.8 (since (bn, t2) and (an, t2) belong to F; this is where we use the
fact that t E r).

Case 2. In x {t2} C D3-i. Then

Fn n DiC Si and Fn n Di E U,

so X(Fn n Ai) E M(D1) by Proposition 3.8.

Now set F = B x [0, t2]. The proposition will be proved provided we show that X(Fnbi) E
M(D1). Set

M(u)= LA(u,t2), i =1,2,
B1 = {v E B: /2(V) </1(V)}
B2 = {v E B: #,(v) < 02(V)},
Ri = Bi x [O,t2], i =1,2.
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We are going to write F n Di as disjoint union and difference of sets, each of which will have
the property that its X-measure belongs to M(Di). Observe that

FnDi = (RlnDi)u(R2nD )

(3.2) = (R3&i n DA) u [R, \ ((R, n A.i) u (R, n r))].

Now by definition, R3.. nli, E U, i = 1, 2, and this is a bounded Borel set, so by Proposition
3.8, X(R3_inb,) E M(D1), and, equivalently, X(R,fnlA-i) E M(D1), i = 1, 2. Furthermore,
by Proposition 2.4, X(Ri nr) e M(D1). Finally, to see that X(Ri) E U(r), we apply
Proposition 2.8 to the function f(u)= t2 IB,(U). If u is a point of density of Bi, (u, f(u)) is
an accumulation point of {(sl, S2) Er S2 = f(u)}, so this proposition implies in particular
that X(Ri) E lP(r). Now since

X(F n DA) = X(R3-i U Ai) + (X(Ri) - X(Ri n i5-i) - X(Ri n r))

by (3.2), the proof is complete. 0

3.10 Lemma. Set

=i jX(O), 0 C i, 0 open}
= ({x(Rt n i), t Eruu{X(F), F E U, Fc Si}u{X(Rt nr), tET}).

Then gi and g3-i are independent and IY(Di) = gi V *-i, i = 1, 2.

Proof. We only carry out the proof for i = 1, since the case i = 2 is similar. It follows from
Propositions 2.4, 3.9, 3.8 and 3.6(b) that g, V Q* C 7-(D1), and from Assumption 1.1 that
g1 and Q* are independent.

To see that 7H(D1) C Q1 V 9*, we show that Xt e Q1 V Q* for each fixed t E D1. Set

Si = inf{u> 0: [u,tl] x {t2} C A}.

Then (sl,t2) E r, and
Xt =Zl +Z2 +y1 +Y2 +Y,

where
Zi =X(Ral, 2 nAi), Yi = X((Rt \ Rs1, 2) nAi), Y = X(Rtn r).

Now by definition, Z1,Y1 E C1 and Z2, Y E *2, and since t E D1, we have

(Rt \ Rs,42)nA2EU, (Rt\Rsl 42)nDA

so Y2 E 52. Thus Xt E Q1 V *, and the proof is complete. 0

Before proving Theorem 3.3, we recall an elementary fact about conditional expectations.
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3.11 Let Z be an integrable random variable with values in Rn defined on some probability
space (Q, F, P), and let X1l and X2 be two a-algebras such that a(Z) V X2 is independent
of'i1. Then E(Z X1 V X2) =E(ZI|i2).

Proof of Theorem 3.3. Fix t', ... , t" E D2, and let h: Rn -IR be bounded and Borel.
Since M(Di) C 7i(D,) by Proposition 3.6(b), M(D,) will be a splitting field for 7(D,) and
7H(D2) provided we show that

E(h(Xtil... ,Xtn) =(Di)) E(h(X1, ...,Xtn) M.(Di))
(see [DM; II.45]). It is even enough to show that

E(h(Xt.... Xtn) (D1)) E M(Di).
We are only going to write out the proof for n = 1, but it will be obvious that the same
proof is valid for all n E 1N. Set t' - t, and let s =(S1, S2) be defined by

s= inf{u < t1: [u,tl] x {t2} E 2}, =2 t2
Then s E r, and we have

Xt =Zl + Z2 + Y, + Y2 +y3,
where

Zi = X(R. nAi), Yi = X((Rt \ R.) nAj), i = 1, 2, Y3= X(Rt nr).
So

(3.3) E(h(Xt) li(D,)) = E(g(Zi, Z2, Y,, Y2,Y3) H(Di))I
where g : R- - R is defined by

g(zl, Z2, Yl, Y2,y3) = h(zl+ Z2 + Yl + Y2 + Y3).
Thus we only need to show that the right-hand side of (3.3) is M(D,)-measurable whenever
g is a bounded Borel function on R5. By a standard monotone class argument (see [DM;
I.21] it is sufficient to do this when g has the special form

g1 (Z1)g2(z2)93(Y1)g4(Y2)95(Y3),
where gi : RR-+ is bounded Borel, i =1,... , 5. By Proposition 2.4, Z, and Y, belong to
7(D,) and Y3 E x(r) C K(D,) = 7(D,), so using Lemma 3.10 we have

E(g(Z,, Z2, Y,, Y2, Y3) 'H(D,)) = gl(Zl)g3(Y,)g5(Y3)E(g2(Z2)94(Y2) 1 Vv Q).
Applying 3.11, we see this is

=g1(Zl)g2(Y,)g5(Y3)E(g2(Z2)g4(Y2) I G*).
Now Z, E M(Dj) by Proposition 3.9, Y, E M(DI) since (Rt\R4R)nA E U, and Y3 E M(Di)
by the definition of M(D,). Since G* C M(D,) by Propositions 3.9, 3.8 and 2.4, the proof
of (a) is complete. The proof of (b) is now immediate from (1.1) and Proposition 3.6(b). 0
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4. The sharp Markov property for domains with thick boundary.
In this section, we show that there are many interesting examples of open sets which

satisfy the sharp Markov property.

4.1 Theorem. Let D be an open set, r = OD, and suppose that for i = 1,2 and [a, b] x {d} C
Si,

(4.1) A({u E [a, b] : p(u, d) is an isolated point of (R+ x {p(u, d)}) n r}) = o.

Then D has the sharp Markov property.

Proof. According to Theorem 3.3, it is sufficient to show that X(V(Bd)) E xi(r), for each
B = [a, b] and d E 1R+ such that BdC Si, i = 1 or 2. Define f: B R-+1 by f(u) =p(u,d).
By (4.1) and Proposition 2.8, X(V(Bd)) = X(B) E (r), and the theorem is proved. 0

A very simple application of Theorem 4.1 yields the sharp Markov property for finite
unions of rectangles. Of course, since the boundary of a finite union of rectangles consists
of finitely many vertical and horizontal segments, most of the results of Section 2 are not
needed, and only part of Assumption 2.1 comes into play. This gives us a new proof of the
following corollary, due to Russo [Ru; Theorem 7.5] in the bounded case.

4.2 Corollary. Assume (Xe, t E T) is a process with independent planar increments, and D
is a finite union of (not necessarily bounded) rectangles with sides parallel to the coordinate
axes. Then D has the sharp Markov property.

Proof. If [a, b] x {d} C S', i = 1 or 2, then p(u, d) wiUl always lie on one of the horizontal
segments of AD, and thus will not be an isolated point of (R+ x {p(u, d)}) n aD1. So the
statement follows from Theorem 4.1. 0

There are many other interesting cases where condition (4.1) is satisfied. In particular,
many open sets whose boundary is a fractal satisfy (4.1). We only consider two:

the Sierpinski gasket ri (see [M; p.142]). The only horizontal section of ri which contains
isolated points is the section through the apex, which is a singleton;

the Sierpinski carpet r2 (see [M; p.144]). In this case, no horizontal section of r2 contains
isolated points.

Condition (4.1) is thus clearly satisfied by both r, and r2, so that by Theorem 4.1, we
have

4.3 Corollary. Let D be an open set whose boundary is either the Sierpinski carpet or the
Sierpinski gasket. Then D has the sharp Markov property.

Note that there are many open sets such that OD 17=ri, i = 1 or 2. Indeed, let S1, S2...
be the open triangles (respectively squares) which one removes to get the Sierpinski gasket
(resp. carpet). Let Y1, Y2,... be i.i.d. Bernouilli random variables with P{Yk O} -
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P{Yk = 1} = 1/2. Set D = US&, where the union is over those k for which Yt = 1. Clearly,
rI= OLD (resp. r2=aD), for almost all realisations of Yi, Y2, .. ..

It is tempting to conjecture that if the boundary of D has Hausdorff dimension strictly
greater than 1, then D satisfies the sharp Markov property. However, this is false since some
portion of the boundary might be, say, a diagonal line segment. We might suppose that D
satisfies the following stronger condition.

(4.2) Every open set that contains one point in AD also contains a subset of AD with
Hausdorff dimension > 1.

Does (4.2) imply that D has the sharp Markov property? The answer is no, as the example
below shows.

4.4 Example. Let A be an unbounded Cantor set in R+ with positive measure, and let
hi, I2,... be the disjoint open intervals whose union is Ac (since A is unbounded, each In is
bounded). In each square In x I, build a Sierpinski carpet whose "outer rim" is I,, x I,,
(its Hausdorff dimension is 1.89 [M; Plate 145 p.144]). Now let D1 be an open set which
consists of the union of

{s E T: si > S2} \ U (In x In)
neN

and "half" the squares which one removes to build each of the Sierpinski carpets (choose
them at random, as above). Set D2 = Dc. ThenrI = f,= a = D2 is the union of the
carpets and the subset of the diagonal whose projection on the x-axis is A. This set clearly
satisfies (4.2), and yet the sharp Markov property can be shown to fail (use Proposition 6.7).

If D1 is an open set whose boundary is a separation line (see [DR; §2]), the horizontal
sections of aD1 may each contain exactly one point, and yet the sharp Markov property may
hold [DR; Theorem 3.12]. This corresponds to the case of "thin" boundaries. In the next
section, we investigate the case where r is a Jordan curve.
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5. Sufficient conditions for Jordan domains: the Maltese cross condition.
Throughout the rest of this paper, we will assume that D1 is a Jordan domain, that

is aD1 = r is a Jordan curve in R2 U {oo}. It will be convenient to assume that r is
parameterized by a function p defined on [0, 2ir] instead of on the unit circle, that is

r {=9(u) u E [0, 2ir]},

where -p = ((, W2) [0, 2X] - R2 U {1X0} is continuous, one-to-one on [0, 2r[ and p(0) =
p(2ir). In the terminology of [N], which we shall use below, r is a directed loop.

The two complementary open domains D1 and D2 of r may both be unbounded if r
passes through oo, and r may have positive measure (see [D; XIII. 21, Problem 2 p.221] or
[Ha; §36 p.233]).
A standard property of Jordan domains is that Di = 1Di and c9Di= r [N, Theorem 10.2].

If D1 is bounded, then Si = D1. In Section 3, the maps defined on Si U S2 by

p(t) = TA(t), r(t) = (ti,p(t))

were of primary importance. For Jordan domains, it turns out that it is more convenient to
work with the closely related maps

q(t) = Tr(t) and p(t) = (ti,q(t)) on Si u S2.

The relationship between p and q is made precise below. In fact, it will turn out that for
Jordan domains, p(t) and q(t) are equal for most t (see Lemma 5.3; however, this is not
necessarily true for general domains. See Example 3.4, for instance).

5.1 Lemma. The lower semicontinuous regularization of p is q and

q(t) liminf q(s).
s t
s 54 t

Proof. Lower semicontinuity of q follows from Lemma 3.1, and q < p by definition. Fix
t = (tl, t2) E Sl U S2. Then (ti, q(t)) E r = 8D2, so there is a sequence (sf, n El) of points
in D2 which converge to t. We have

q(t) < liminfq(s)
a-.+t, sA$t

< liminf q(s,nt2)

< liminf p(sn,t2)
< limrinf snn-+noo2
- q(t).

This completes the proof. O
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The above lemma implies in particular that p and q coincide at points of continuity of p,
which are also points of continuity of q. In fact, much more is true. To prove this, we need
a property of Jordan curves.

5.2 Monotonicity Lemma. Let r1 and r2 be two disjoint Jordan curves in IR2, with
continuous parameterizations ,': [O, 1] --+ ri, which are one-to-one on [0, 1[ and such that
(pi(O) = p'(l), i = 1,2. Fix F C ri, and assume that for each t E F, there is tk(t) E1r2 and
a simple arc K(t) with extremities t and +(t) such that

r' nlK(t) = {t} and r2 n K(t) =

and
s,tE F, s t = Pc(s)fnl(t)=q.

If b1(0) E F and tp(W(0)) = p2(0), then g = (sV2)-l o 0 WI is monotone on (W')-'(F).

tr°re~~~~~~~~~~rr2'
Figure 5.1.

Proof. rl u 172 has three complementary domains D', D2 and D3, two of them, say D'
and D2, are Jordan domains with boundary r1 and r2 respectively, and aD3_ r1 u r2 (see
[N; Theorem V.11.3] and Figure 5.1).

Observe that for t E F, K(t) lies entirely in D3. For otherwise, 8(t) would connect a point
in Di to a point in Di, i ¢ j, without meeting r1 u r2, and this is impossible.

Now fix 0 < a < b < 1, and set i = yl(a), t = pl(b). We may assume without loss of
generality that g(a) < g(b). We will show that

(5.1) a < u < b .,g(a) < g(u) < g(b).

This will complete the proof, for if u < v, we use (5.1) to compare g(u) with g(a) and g(b),
and then (5.1) with u, v and either a or b to get g(u) < g(v).

Given the symmetry of the problem, we only need to prove the "ur part of (5.1).
By [N; Chap. V.11 Ex.3], D3\(K(g)U#C(f)) consists of two complementary Jordan domains

El and E2, one of which, say El, satisfies 9E' = p1([a, b]) U xc(s) u x() u r2, where r1 is a
subarc of r2 with extremities ?k(&) and ?k(o).
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Observe that
t E p'([a, b]) x8(t) c P1 - +(t) E rl.

For otherwise, ic(t) would connect points in Pl to points in E2 without meeting K(S) U rc(D),
and this is impossible since ic(t) C D3. The second implication is clear.

Similarly, we have
t t yo'([a,b]) = (t) C P2.

But then, since pl(O) i py([a,b]), 4(p'(O)) = p2(0) o rF2. Thus r]2 = y2([g(a),g(b)]),
proving

a < u < v g(a) < g(u) < g(b)
and completing the proof. 0

The full force of Lemma 5.2 will only be used in Section 7, but it is already helpful in the
proof of the following lemma.

5.3 Lemma. Fix i = 1 or 2 and suppose [a,b] x {d} c Si. Define g(u) = p1(p(u,d)),
u E [a, b]. Let r' be the sub-arc of r with extremities p(a, d) and p(b,d) which contais
p((a + b)/2,d). If y(O) 0 IF, then

(a) g is monotone;
(b) g(.), p(., d) and q(-, d) have the same points of continuity;
(c) p and q coincide at these points of continuity;
(d) p(., d) and q(., d) have both left and right limits at each x E ]a, b[.

if'~~~~~~~~r2 0_ft ~~~~~~~~~~~~~~~~~~~~~~I 8)2-
Q 6 a b

Figure 5.2.

Proof. Fix c < d such that R = [a, b] x [c, d] c Si. Then AR is a Jordan curve such
that OF nr = q. Set F = [a, b] x {d}, and for t E F, let rc(t) be the vertical segment
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with extremities t and p(t). Since y(O) ¢ r, we can apply Lemma 5.2 to the Jordan curves
rF =R,Ir2 = r, to get (a). Let D3 be as in the proof of Lemma 5.2.

For the rest of the proof we will assume without loss of generality that g is increasing.
Since y is one-to-one and continuous, and y(O) o rF, it is clear that g and q(., d) have the
same points of continuity. We must show the same is true of g and p(., d).

Define h(.) by
h(x) = p'(r(x,d)), a < x < b.

We claim for x E ]a, b[ that

(5.2) g(x-) < h(x) < g(x+).
This will complete the proof Indeed, (5.2) implies that h is monotone, and that p(x, d)
q(x,d) and p(.,d) is continuous at x whenever q(.,d) is. From Lemma 5.1, we get (b) and
(c), and (d) follows from monotonicity of g and h. It remains to prove (5.2).

Let r,, be the subarc of rF with extremities p(x - - , d) and p(x + -, d). Let us write
a = x - b = x + -. Fix n E IV. Without loss of generality, we can assume rn = F.
Let L be the vertical segment from (x, d) to r(x, d). As in the proof of Lemma 5.2, let
El and E2 be the two complementary open domains of D3 \ (r(a, d) U rc(b, d)), and assume
that El is the one that satisfies aEl = F U K(a, d) U ,c(b, d) U r. By the definition of r,
L c £1 u E2 c Di U r. The initial part of L, namely the open line from (X, d) to p(x, d), is
in El, as we have seen in the proof of 5.2. Suppose r(x,d) EF - rF c 2. Then let

z=inf{y>d: (x,y) E 2}.
Evidently z > d and (x, z) E .' n P2. But this is a contradiction since E' nf2 C K(a, d) U
ic(b, d) and L does not intersect this set. It follows that Tr(X, d) E r', and hence that g(x - ) <
h(x) < g(x + -). Let n -+ oo to get (5.2). The proof is complete. 0

Recall Definition 1.2, which defines the Maltese cross condition and the related sets M(r)
and Mo(r).

5.4 Lemma. M(r) and Mo(r) are Borel.

Proof. M(r) is Borel since
M(r) U M,(r, h)

h,ckEQ+

and MQ,(r, h) is easily seen to be closed.
To see that Mo(r) is Borel, we only need to show that Mo(r, h) is Borel, since

Mo(r) U Mo(r, h).
hEQ+

Now
mo(r,h) - U {t Er: rn (t +O)= }.

O open
ODMo ((O,O),h)
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Since R2 is a separable metric space, the above union can be made countable. Since each
set appearing in the right-hand side of the union is closed, this completes the proof. 0

We shall say that a curve rl dominates a curve F2 provided F2 c s'(rF).

5.5 Fundamental Lemma.
(a) Suppose A{pr,(Mo(r))} > 0. Then there is a simple subarc rF of r with extremities

s and T, say, and two continuous monotone curves rL and ru, both with extremities and
t, such that

(5.3) ru dominates r' and r' dominates rL;

(5.4) s'(ru) \ s'(rL) is a disjoint union of rectangles whose boundaries are contained in
rUurL;

(5.5) A(prl(rlnrunfrL)) > 0

(see Figure 5.3).
(b) Suppose that A{pr,(M(r))} > 0. Then in addition to (5.3)-(5.5), there is an a > 0

and a closed set F c r' n ru nrL such that A(pr,(F)) > 0 and

(5.6) if s E F, t E rl, then a < M2-21 < 1;

(5.7) rF has a tangent at each s E F.

L~~~~~~~~~~~~~

Figure 5.3. Two possibilities for rF.

Proof. We first localize. Since Mo(r) = UhEQ+ Mo(r, h), there is h > 0 such that
A{pr,(Mo(rF h))} > 0. Moreover, it is clear that there exists an open square R of side less
than h whose intersection with Mo(r, h) has a 1-projection with positive measure. Fix such
an R and let I C [0, 1[ be a closed interval such that y(I) C R and A(pri(Fo)) > 0, where
Fo = w(I) nMo(r h).

The proof is based on one simple remark.
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(5.8) Let , t E Fo and suppose that s = p(u), t =-(v) with u < v in I. Let J be the open
interval ]u, v[. Then if Rm is the open rectangle having two opposite corners at s and
t, we have y(J) c R,ri.

Indeed, Mo(s, h) consists of four branches, each having length greater than the side of R,
so that it divides R into four disjoint rectangles. By the same token, Mo(s, h) U Mo(t, h)
divides R into nine disjoint rectangles, and the middle one, Rm, has s and t at opposing
corners (see Figure 5.4). Now W(J) is a continuous curve with extremities s and t. It does
not intersect AR since J c I, and it does not intersect Mo(s, h) U Mo(t, h) since s and t are
in Mo(r, h). A moments thought now shows that it must be contained in R, as we claimed.

S

Figure 5.4.

If we now take three points in Fo, say r = W(u), s = W(v), t = y(w) with u < v < w in I,
then (5.8) implies that s is contained in the rectangle having two opposite corners at r and
t. Thus the three points can be totally ordered by one of the orders < or A. It follows that
the whole set Fo can be totally ordered by the same order.
We will assume for the rest of this proof that the order is < (the argument above shows

that the restriction of p to B = y-1(F) is monotone: for we either have r < t or t < r.
In the first case we have p(u) < y(v) C y(w), which implies that WI B iS increasing, and in
the second, y(w) S y(v) < p(u), which implies ol B is decreasing). By reparameterizing r if
necessary, we may then suppose that PlI is increasing with respect to <.

Let us shrink things slightly. There is a closed subset F1 of Fo whose 1-projection still has
positive measure. Let B1 = p-1 (F1), let -= inf{u : u E B1), and let u-= sup{u : u E B1}.
Set K = [IL, ui], and let rF =(K). Then r' has extremities s y(u.) and t =y().

To construct rL and ru, first let

AL ={t E T: 3s E F1 such that sAt},
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Au ={t E T: 3s E Fi such that tAs},

and then let rL and ru be the upper left boundary of AL and the lower right boundary of
Au respectively. According to [W3; Thm. 2.7] these are monotone non-decreasing curves.
An alternate description is the following: K\ B1 is open, and hence is a disjoint union of
open intervals: K1 - B1 = U. ]un, vn[. Let Rn be the closed rectangle whose lower left corner
is W(un) and whose upper right corner is p(vn). Then

rFCFUURn
n

and ru consists of F together with the left and top boundaries of each of the R, and rL
consists of F together with the bottom and right boundaries of each of the Rn. Now (5.3)
and (5.4) are clear, and (5.5) follows since rL nru n' = F1.

Next, if A{pr1(M(r))} > 0, we use the same reduction as before to find a > 0 and h > 0
for which A{pri(M,(r, h))} > 0. Since Ma(r, h) c Mo(r, h), we get (5.3)-(5.5). But now,
by the definition of the Maltese cross Ma(t, h), (5.6) clearly holds for each t E F1 nf Mca(r, h)
since F nl Ma(t, h) = q.

Finally, note that after removing from rL (resp. ru) at most countably many vertical
segments, one is left with the graph of a monotone function O/L (resp. 4u), with the property
that OL < ?U. So at points x where kL(X) = 4u(x) and where both these functions are
differentiable, their derivatives must coincide. Since L(X) = u(x), Vx E pr1(F), we
conclude that r' has a tangent at A-almost all OL(X), x E pr1 (F). If we take a slightly
smaller set F, we can satisfy (5.7). 0

We now state the main result of this section.

5.6 Theorem. Let (Xt, t E T) satisfy Assumption 2.1, and let r be a Jordan curve with
complementary open domains D1 and D2. Assume

(5.9) A{pri(M(r))} = O, i = 1 or 2.

Then 1-((D1) and 7-(D2) are conditionally independent given x(r).

5.7 Remarks. (a) We are not assuming that r is bounded, nor that r C R2. Of course,
(We, t ER+) can be extended to all of R2 by setting Wt = 0, if t ER2 \IR+, and thus the
behavior of rin R2 \R2 is irrelevant.

(b) A straightforward extension of Theorem 5.6 can be made by considering a domain
D1 whose boundary consists of countably many disjoint Jordan curves (rn, n E iV). In this
case, (5.9) becomes

A{pri( U M(rn))} = 0, i = 1 or 2.
nEN

Proof of Theorem 5.6. By Theorem 3.3, it suffices to show that if B is an interval,
d > 0, and if B(d) is in either D1 n S1(152) or D2 n SI(A), then X(V(B(d))) Ex(r).
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By Lemma 5.3(a), (b) and (c), the maps p(., d) and q(', d) coincide except on a countable
set, so we may replace p by q in the definition of V(B(d)). Let f(x) = q(x, d) and, to simplify
notation, if A C B let

A = V(A(d))
= {tET: t1EB,B O< t2 < f(ti)}.

We will decompose B into a number of disjoint sets Bn and show that X(Bn) E x(r) for
each n. This will imply the theorem since X(B)-=n X(B).

Let B1 be the set of u E B such that f is either discontinuous or has a strict local
extremum at u. Let B2 be the set of u E B \ B1 such that (u, f(u)) is an accumulation
point of r n (R x {f(u)}), and let B3 be the set of u in B \ (B1 U B2) at which f is strictly
monotone.

Recall that f is strictly monotone at u if there exists h > 0 such that either

(5.10) u-h < v < u <w < u + h -Kf(v) < f(u) < f(w)

or

(5.11) u-h < v < u < w < u + h = f(v) > f(u) > f(w).

Note that the Bn are measurable, being the projections of Borel sets. Since f can have at
most countably many local extrema or discontinuities by Lemma 5.3, B1 is countable. Thus
X(B1) vanishes a.s., and is trivially in 7(r). Furthermore, X(B2) E H(r) by Proposition
2.8.

Leaving aside for the moment the question of whether X(B3) E x(r), let us show B-
B1 U B2 U B3. Suppose t1 E B \ B3, and show t1 E B1 U B2. Now f is not strictly monotone
at tl, and we must have one of the following:

(5.12a) f has a strict local extremum at ti;
(5.12b) (t4, f(t1)) is an accumulation point of the intersection of R x {f(t1)} with the graph

of f .

(5.12c) There exists a monotone sequence (Un, n E IN) converging to t1 such that for all n,
f(u2n) > f(tl) > f(U2n+l )

If (5.12a) holds, then t E B1, and if (5.12b) holds, t e B2. Thus suppose (5.12c) holds.
Now if f is not continuous at tl, we have t1 E B1. If f is continuous at t1, then (un, f(un))

converges to t = (ti, f(ti)). Let vO, vl1... be such that t = p(vo), and (Un f(un)) = p(vn).
As W is continuous and one-to-one, Vn must converge to vo. Now (u0) is monotone, and we
may assume without loss of generality that it is decreasing.

By Lemma 5.3, (vn) is also monotone, and we may suppose it is decreasing as well. Let
rn be the arc {9(v) : vO < v < v2n}. The segment B(11 lies entirely inside D1 or D2, and
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hence does not intersect r. By the definition of q(., d), r cannot intersect the open vertical
segment from (u, d) to (u, f(u)) for any u E B. Thus r,, can intersect the polygonal path
from t to (t1, d) to (u2n, d) to (u2n, f(u2n)) only at the two endpoints. (This path is the solid
curve in Figure 5.5.)

t4 ll2IA '2 ^

Figure 5.5.

On the other hand, rn is a continuous curve starting at t, then passing through
(u2n+1 f(u 2n+l)) and (u2n, f(u2n)). Thus it must pass at least once through the open hor-
izontal segment ]t,, u2n[ x {t2} (the dotted line in Figure 5.5). This is true for all n, hence
(5.12b) must hold, and t1 E B2. In all cases, we have shown t1 E B1 U B2, and thus
B=B1 u B2u B3.

So it only remains to show that X(B3) E x(r). By hypothesis, the Maltese cross condition
is satisfied at (u, f(u)) for almost every u E B3, so by Assumption 1.1, we can replace B3
by a smaller set with the same measure, which we again denote B3, so that for each u E B3
there is h > 0 such that

(5.13a) r satisfies the Maltese cross condition at (u, f(u));

(5.13b) either (5.10) or (5.11) holds at u;

(5.13c) r n (]u - h, u + h[x {f(u)}) = {(u, f(u))}.

Fix h > 0 and let B+ (resp. B-) be the set of u E B3 for which (5.10), (5.13a) and (5.13c)
(resp. (5.11), (5.13a) and (5.13c)) hold. It is then enough to show that X(BA ) and X(B)
are in 7(r). Let us omit the subscript h and consider

A= In B:,
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where I is a fixed interval of length less than h. (Indeed, Bh is a finite union of such sets
and Bh+ U B T B3.)

The two sets AA are handled the same way, so we will only deal with A+ here. The
restriction to an interval of length less than h means that (5.10) applies to any pair of points
in A+. Thus

(5.14) fIA+ is strictly increasing.

Let A+ = A+ n {u : (u,f(u)) ¢ Mo(r)}, i.e., the subset of A+ such that r satisfies
the cross condition at (u, f(u)). Since u V B2, (u, f(u)) must be an accumulation point of
r n {t: t= U, t2 > f(u)}. The graph G of fIA+ is totally ordered for <, and it is also the
graph of f- If(A+)) so we can apply Proposition 2.8 to the horizontal shadow S2(G) of G to

see that X(S2(G)) E (r). Now S'(G) = AO, so by Proposition 2.3, X(A+) E U(I).
Now let A+ = A+ \ A+. We have reduced the proof to the problem of showing that

X(A+) E 7(r). If u E A+, then (5.13) and (5.14) hold and in addition, for some 6 > 0,

(5.15) 1r n ({u} x]f(u) - 6, f(u) +6[) = {(u, f(u))}.

Let At6 be the set of u E A+ which satisfy (5.15) for some fixed 6. By taking h and/or 6
smaller if necessary, we may assume that h = 6. Let

c=AfA+ln {u: f(u) E J}

where J is a given interval of length less than h. It is enough to show that X(C) E 7(r).
Let G be the graph of f Ic. By construction, G c Mo(r, h), which puts us in the situation

of Lemma 5.5. Let ro = {(u) : u E L}, where L c]O, 1[ is the smallest interval such that
G c ro. Then ro must look like the first picture in Figure 5.3. In particular, from (5.8), if
r,tE G, s E are such that ri < si < t1, then r < s < t.

The salient points we have established can be expressed succintly in terms of G.

(5.16a) G is the graph of a function and G c M(r);

(5.16b) if r, t E G and s Elro are such that ri < si < t1, then r2 < 82 < t2.

These are the only facts we will use about r in what follows.

If t E G, then for any a and h > 0, Ma(t, h) intersects r. That means at least one of
its four branches does. We will handle them separately, starting with the two horizontal
branches. Let

C1 {u E C : liminf t=-u_
tEr',tl>u ti-U

37



Fix e > 0 and let Z, be the class of intervals [a, b] with a E C1, 0 < b - a < h, for which
there eNists v such that

(5.17) (b,v) Er and Iv-f(a)l < elb-al.

Then 'e is a Vitali cover of C1 and Lemma 2.7 applies: there is a sequence of intervals [an, bn]
in 2, such that E((X(C1) - Y)2) < f, where Y = EnN X([an, bn] x [0, f(an)]). For each n,
choose v = vn to satisfy (5.17) with b = bn. Set

Z =
E (Xbn -

n Xan,f(an))
nEN

Z is clearly 2(r) measurable. By (5.16b), if am < an, then f(am) < vm < f(an) < vn, so
that the intervals [f(an), vn] are disjoint. Let Rn = [0, bn] x [f(an), vn] and notice that

z-y= Z X(Rn),
nEIN

-J
fl/f

I t I I

V/

Figure 5.6.

and that the rectangles Rn are disjoint (see Figure 5.6. This is the key observation; most of
the work in this proof was to set it up). Thus

E((Z - Y)2) = E E(X(Rn)2).
nEN

Now the area of Un<V Rn is bounded by

Z bn(vn- f(an)) < e E bn(b, - a,)
nEIV nEN
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by (5.17). The diameter of C1 is less than h, so if b = sup C1, this is

< Ebh.

Now let e -+ 0. This goes to zero, hence by Assumption 1.1, E((Z y)2) -- 0, so

Z - Y -+ 0 in L2, hence Z -- X(C1) E 7(r).
Next let

C2={uEC\Cl: liminf f(U)-t2 0
tEr, tl<u U - t

We proceed exactly as above except that we derive I, using intervals whose right, rather
than left, endpoint is in C2. Once again the rectangles Rn are disjoint and we conclude that
x(c2) E 1(r). (The reason for handling C1 and C2 separately is simply that the rectangles
defined in case 2 may not be disjoint from those in case 1.)

This takes care of the horizontal branches of the Maltese cross. The other two cases
correspond to the vertical branches, and they follow by symmetry. If we interchange the
horizontal and vertical coordinates, this interchanges horizontal and vertical branches of the
crosses, while (5.16) remains true. If C3 and C4 are the corresponding sets for the vertical
branches, and if G3 and G4 are the subsets of G over C3 and C4 respectively, the arguments
above establish that X(S2(G3)) and X(S2(G4)) are in 7(r). Then Proposition 2.3 implies
that X(C3) and X(C4) are also 1-(r)-measurable, since C, = Sl(G0). This finishes the
proof. 0
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6. Necessary conditions for the Brownian sheet.
In the previous section, we showed that, for any process satisfying Assumption 1.1, the

Maltese cross condition is sufficient to insure that a Jordan domain has the sharp Markov
property. However, this condition is not always necessary. For instance, if X is the Poisson
sheet, then the sharp Markov property is known to hold for a large class of domains whose
boundaries do not satisfy the Maltese cross condition (see [C; Theorem 3.1]). The same is
true of many pure jump processes, since in this case the Markov property is related to global
properties concerning the way discontinuities of the process propagate: see [DW]. However,
if we restrict ourself to the Brownian sheet, it turns out that for Jordan domains, the Maltese
cross condition is indeed necessary as well as sufficient. The main result of this section is
the following theorem.

6.1 Theorem. Let r C T u {oo} be a Jordan curve with complementary open domains D1
and D2, and let (Xt, t E T) be a Brownian sheet. Then 7-(D1) and '7(D2) are conditionally
independent given x(r) if and only if A{prl (M(r))} = O.

6.2 Remarks. (a) If D1 C T is an open set, and r = aD1, then D1 can satisfy the sharp
Markov property even though A{pri(M(r))} > 0. This is the case in Example 3.5, where
M(r) is the subset of the diagonal whose projection on the x-axis is the Cantor set A.

(b) We conjecture that in general, the necessary and sufficient condition for the sharp
Markov property to hold in the case of the Brownian sheet is A{pri(M(r(Sl)Ur(S2)))}l- 0.

Before beginning the proof of Theorem 6.1, we give a few corollaries which provide easily
verifiable criteria in various special cases. For instance, in the case where r is rectifiable [S;
Chap. IV. §8], the Maltese cross condition can be expressed in terms of the (one-to-one)
parameterization p = (pl, V2) of r. Recal that r is rectifiable if and only if both 9o and 02
have bounded variation [S; Chap 4 (8.2)]. So in this case, w, is canonically associated with a
signed measure on [0, 1], denoted dVi, i = 1, 2. We let Id i denote the total variation measure
associated with dpi. Recall that two signed measures p1 and A2 are mutually singular if and
only if IbMl and I,21 are mutualy singular [H; Chap.6.§30]: we denote this 1L11112.

6.3 Corollary. Let (Xt, t E T) be a Brownian sheet, and let r be a rectifiable Jordan curve,
with continuous one-to-one parameterization -=(P, Y02): [0, 1] -+ T U {fc}. Let D1 and
D2 be the two complementary open domains bounded by r. Then 1-(D1) and 7-(D2) are
conditiona1ly independent given xi(r) if and only if the signed measures dpl and dV2 are
mutually singular.

Proof. By Theorem 6.1, all we have to show is that

(6.1) A{pr1(M(r))} = O 4==- dplIdy92.
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For this, we recall that if W1 and 02 have bounded variation, then

(6.2) ?bi(x) = limO3i(x + h) - (3-i(X)

exists and is finite for Idyil-almost all x, i = 1, 2, and

(6.3) d(1IdV2 >=- 4'1(x) = 0 jdyjI - a.e. 4== - 2(x) = 0 Idy221-a.e.
Both (a) and (b) are well-known if d&i is Lebesgue-measure [S; Chap. IV. (7.1)]. Since

we have found no reference to the general case, we give a sketch of the proof.
Let A' (resp. Ai) be the set of points of increase (resp. decrease) of (Yi, and set A' =

[0, 1] \ (Ai U A'). Since As consists of local extrema of Yi and points x such that the set
{y : Vi(y) = (i(x)} is infinite, A' is a IdyiI-nul set [S; Chap. IX. (6.4)]. Now on A' and
A' one can first prove a result similar to that of [S; Chap. IV. (5.1)], and then repeat the
proof of [S; Chap. IV. (5.4)], in each case using the Vitali covering theorem 2.4 for the
non-negative measure Idpi + Idp21, instead of for Lebesgue-measure (this more general form
of the Vitali covering theorem can be found in [DS; III. 12.3]). This proves (6.2); details are
left to the reader.

The proof of (6.3) involves the same decomposition of [0,1]. Each AX, j = 1,2,3, is
handled as in [S; Chap. IV (7.1)]. Again details are left to the reader.

In order to prove (6.1), first assume that A{pri(M(r))} = 0. Define A {x E [0,1]:
o < 4Il(x)l < +oo}. Looking back to (1.6), we see that A C M(r), and so AQWy(x):
x E A}) = 0. By [S; Chap.IX. (6.4)], this implies that A hias IdWpl-measure zero. Thus
14I(x)l E {0, +oo}, for jd1lI-almost all x. By (6.2), we get 'll(x) = 0 IdpiI-a.e. so dy1Id02
by (6.3).

Now assume that A{pri(m(r))} > 0, and let us show that dSoj and dV2 are not mutually
singular. Indeed, let rF = p([XO xl]), F and a > 0 be given by Lemma 5.5. By (5.6) and
(5.7), we have 0 < 41(x) < +oo, for x E (-'(F). So by (6.3), we only need to show that
p1-(F) has positive Idpjjl-measure. Define

L(x) = max 1(u).
XO <u<

By Lemma 5.5, L(x) = pl(x) when x E V-'(F), so

>({L(x) : x E W-'(F)}) > O.

By [S; Chap.IX. (6.4)], this is equivalent to saying that 1(F) has positive dL-measure. But
since L is absolutely continuous with respect to Idy1 l, ' (F) also has positive IdV I-measure.
This proves the corollary. 0

If W, or V2 does not have bounded variation, the measures dpi may not be defined.
However, for curves which are not too irregular, there are two measures naturally associated
with r which allow one to extend Corollary 6.3. Indeed, consider the following regularity
assumption on r.
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6.4 Assumption. For A-almost all r E R+, the intersections of r with the horizontal line
R+ x {r} and with the vertical line {r} x R+ are finite.

Since r is a Jordan curve, this is equivalent to requiring that 9o and 902 satisfy Banach's
condition (T1) [S; Chap. IX. §6]. It is satisfied by functions of bounded variation [S; Chap.
IX. (6.2)], but the converse is false.

Let ql, Pi be the maps denoted q and p at the beginning of Section 5, and let q2, P2 be
the horizontal counterparts, that is

q2(t) = inf{u > t : (u, t2) E r}, P2(t) = (q2(t), t2)

Now let ,ui be the image on r of two-dimensional Lebesgue measure m under the map pi, i.e.

pi(F) = m(p['(F)), F E B(r).

Null sets of pi are identified by the following lemma (whose conclusion is false without
Assumption 6.4).

6.5 Lemma. Suppose r satisfies Assumption 6.4. Then for i = 1, 2 and F E B(r),

Aji(F) > 0 o=- A(pr,(F)) > 0.

Proof. For s =(S1, S2) E T, define

e (s) = inf{s3-i - t3-i : (t1, t2) E r, Si = ti, t3_i < S3_i} if { } 5 0,S3-1 otherwise.

Now the set Ai = {x E R+: r n ({x} x R+) is infinite} has Lebesgue measure zero by
Assumption 6.4, and so

ii(F) - m(p, (F))

= JI dtiF dt3i Ip-1 (F)

= Jp|,(F)\Aj dti k(ti),

where k(ti) ei(s) and the summation is over all s E F with si = ti. Since k(ti) > 0 for
ti E pri(F) \ Ai, the conclusion of the lemma follows. 0

Corollary 6.6. Let (Xt, t E T) be a Brownian sheet, and let r be a Jordan curve satisfying
Assumption 6.4, with complementary open domains D1 and D2. Then 7-(D1) and 7-(D2)
are conditionally independent given 'x(r) if and only if p1 and A2 are mutually singular.
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Proof. Set to = p(O). For s,t E r \ {to}, let r[s,t] denote the simple arc in r with
extremities s and t which does not contain to. Define a: [0, 1] -+ R by ac(x) = j(f(([O, x])),
i.e. ai is the inverse image of t, under W. By (6.2), applied to a1 and a2,

hmC2(x + h) - a>2(X)
lh--O Cfl(x + h) - ce(x)

exists da1-a.s., and thus
b(0) = limA2(r[s, t])/s(r[s, t])

t-s8

exists and is finite for ,u1-almost all s E r.
Now suppose that at s = (Si, S2) E r, r admits a tangent vector (di, d2) which is not

vertical, that is dl 0 0. It is easily seen (see Figure 6.1) that ?1b(s) = s1d2/(s2d1). The proof
of this fact, which uses only elementary calculus, is omitted.

Figure 6.1.

The corollary is now easily proved. Indeed, if A{pr1(M(r))} > 0, then by Lemma 5.5(b).
F has a tangent, which is not vertical or horizontal, on a subset F for which IuL (F) > 0 (by
Lemma 6.5). By the above, ts1 and i2 are not mutually singular (note that this implication
does not use Assumption 6.4).

Now assume that IL1 and 0 are not mutually singular. Observe that ,u,{r\pi(Si(r))} = 0,
and according to Assumption 6.4 and Lemma 6.5,

Ai{t E F: {(Sl,S2) Er F: i = ti} is infinite } = 0.

But since Al and A2 are not mutuaUy singular, we have +;(s) > 0 on a set G c r with
Ai1(G) > 0, or, equivalently by Lemma 6.5, with A(pr1(G)) > 0. By the above, we may
assume that

G C pi(s1(r)) n p2(S2(r)) n {t EF : {(SI,S2) :Si -= t,} is finite, i = 1,2}.
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Thus G C Mo(r), so by Lemma 5.5(a), there is a subarc rF of r and monotone curves rL and
ru satisfying (5.3)-(5.5). Since / > 0 on G, the slope of r at each point of r' l G is finite
and non-zero. So G c M(r), and thus A{pr,(M(r))} > 0. This completes the proof. O

Note that it is not difficult to provide counterexamples which show that Corollary 6.6 is
false without Assumption 6.4.
We now turn to the proof of Theorem 6.1. To begin with, by Theorem 5.6, we only need

to prove necessity of the condition A{pri(M(r))} = O. We will show that this reduces to the
following statement concerning monotone curves.

6.7 Proposition. Let (Xt, t E T) be a Brownian sheet. Fix a, b > 0 and set R = [0, a] x [0, b].
Let rL and ru be two continuous increasing (resp. decreasing) curves in R such that
(6.4) ru dominates rL and (rL U ru) n AR = {(O, 0), (a, b)} (resp. = {(0, b), (a, O)});

(6.5) s'(ru) \ s'(rL) is a (countable) disjoint union of rectangles whose boundaries are
contained inrL U ru;

(6.6) A(pri(rL n ru)) > 0 and at A-almost all x E pr(lL Ln ru), the (common) tangent of
rL and ru has slope +k(x) :$ 0.

Set AL = s'(rL). Then X(AL) f 7(rL U ru U OR).

Proof of Theorem 6.1. As indicated above, we need only prove the "only if" part.
Assume A{pr,(M(r))} > 0. By Lemma 5.5, we obtain the existence of a subarc rF of r and
two monotone curves rL and ru satisfying (5.3)-(5.5), a set F and ca > 0 such that (5.6) and
(5.7) hold, and a sequence (Rn, n E NV) of rectangles with boundary contained in ru U rL
whose union is s'(ru) \ S'(rL).

Let A = pri (F). Since F is totally ordered (for < orA ), we can write F = {d(x)): x E Al,
for some monotone function d. Let A' be the set of points of density of A, and fix xo E A'.
Since r is non-self-intersecting, there is 6 > 0 such that the distance between O(xo) and
r \ ri is at least 26. Choose xi E A' such that l/(xi) - O(xo)l < 6, and let Ro be the
rectangle with sides parallel to the axes and with two opposing corners at /(xo) and /(x1).
By our choice of Ro, A(pri (F)) > 0, where Fo = F n Ro. Moreover, r n Ro = r' n Ro, and
rL n R0Ro= ru n aRoR ={(xo), /(xl)}. In particular, aRo nfORn = ¢, Vn E V (this follows
from the fact that a point of density of A is necessarily a limit from both sides of points of
A). There are two possible cases, as in Figure 6.2.

Let ro = rL n Ro. By Lemma 5.3 and Theorem 3.3, x(s'(ro)) E 7(D,) n 7(D2), which
is the minimal splitting field for DI and D2. But we are going to deduce from Proposition
6.7 that X(S'(ro)) o w(r), which will complete the proof.

Let us play the Devil's advocate and suppose that X(S,(ro)) E 7t(r). Then

E(X(Sl(ro)) 7(r) V 7(aRo)) = X(S'(ro))
= X(S'(ro) n Ro) + x(s'(ro) n Rc)
= Y1 + Y2
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Figure 6.2.

Now Y2 E X(9Ro), so Y2 = E(Y2 N7(r) v 7-(oR0)), which implies that Y1 = E(Y1
H(r) V 7(ORo)) as well.

Define a new Brownian sheet W = (Wt, t E Ro) by

wt= I dXs, t E Rol

and set
1Vt I R dX8Y, t e T.

Let
g =a{Wt,tE (FnRo)uaRo};
5 =ca{Wt,tE (r -RO) uaRo}.

It follows from the properties of white noise that W and W are independent. Then Q and
g are independent as well, and in fact, a(Y1) V Q is independent of 5, so by 3.11,

Y, = E(Yj N(r) v R(aRo))
(6.7) = E(Y1I vQ)

= E(YuIQ).

Set Q(E) =a{Wt, t E E}. Since W is a Brownian sheet, it satisfies the sharp Markov
property with respect to finite unions of rectangles (see Corollary 4.2). Note that 8(Un I Rk) =
Un 1 ORk, so by the Markov property,

n n n

Q(U Rk) 1 5((U Rk)C) IQ(U aRk)
k=1 k=1 k=1
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where we write A ± B C as shorthand for "A and B are conditionally independent given
C". Passing to the limit, we see that

00 00 0

Q( U Rk) I Q(( U Rk)c) Q( U 9Rk).
k=1 k=1 k=1

Since Q(&Ro) V Q(Fo) C 5((Uw 1 Rk)c), we can enlarge the conditioning field (see [C; Lemma
1.2]) to see that

00 00 0

(6.8) Q( U Rk) I (( U Rk)C) Q( U aRk) V 5(Fo) V Q(0Ro).
k=1 k=1 k=1

Observe that Y1 E Q((Uk=1 Rk)c), and that by (6.7), Y1 = E(Y1IA), for any a-field A D .
Thus

Y, = E Yl I 5(U Rk)v (U aRk)v 5(Fo) vQ(ORo))
k=1 k=l1

= E Y 1Q5( U aRk) V Q(Fo) V Q(9Ro))
k= 1

by (6.8). It follows that

(6.9) Y, = E (Y1 g(rL) v g(ru) v Q(9Ro)).
Notice that Y1 is Q(Ro)-measurable, so (6.9) only involves TV, which is a Brownian sheet,
hence we can reduce to the case Ro = [0, a] x [0, b]. But now Proposition 6.7 implies that
(6.9) is not true. This is the desired contradiction. C

We will now head toward a proof of Proposition 6.7. The proof relies specifically on the
fact that the Brownian sheet is a Gaussian process, and 'Ises ideas similar to those developed
by Dalang and Russo [DR] in a simpler setting. Though we could refer to [DR] from time
to time, we prefer for the convenience of the reader to give full details here.

In order to stress that we are working with a Brownian sheet, we write (Wt, t E T) instead
of (Xt, t E T), throughout the remainder of this section.

Fix a > 0, b > 0 and let R = [0, a] x [0, b] be a rectangle. rL and ru are the monotone
curves of Proposition 6.7, Rn denotes the rectangles bounded by the two curves, and A =
rL U ru. These are all subsets of R. Let AL = Sl'(rL) be the part of R below rL and let Au
be the part of R above ru. We let Pi and P2 denote the vertical and horizontal projections,
respectively, on A (rather than on r, as before). There are two different cases, that in which
the curves are increasing, and that in which they are decreasing (see Figure 6.2). We will
treat them together as much as possible, but we will have to consider them separately from
time to time.

Our first step is to derive representations of the sharp fields of certain sets. For each
h E L2(R, A) let us denote

W(h) = J h(t)dWt.
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Let C(F) be the closed linear subspace of L2(Q, F, P) which is generated by {Wt, t E F}.
Since we are dealing with the Brownian sheet, which is a Gaussian process, we can deal with
the linear spaces C(F) instead of the 'X(F). Now it is well known that C(R) is isomorphic
to L2(R, dt) under the isometry

h ~-4 W(h).
Let us look at some different linear spaces. Consider C(OR). This is isomorphic to a

closed subspace of L2(R, dt). To see which one, let a+R = [0, a] x {b} U {a} x [0, b] be the
upper-right boundary of R and let A+ be Lebesgue measure on &+R normalized on each of
the two segments so that A+([0, a] x {b}) = ab = A+({a} x [0, b]). Let g be defined on 9+R.
Then we define 4 by

(6.10) N(u, v) = g(u, b) - g(a, v).

6.8 Proposition. Let L2(&R) be the class of functions g E L2(a+R, A+) which satisfy
ra

(6.11) Jg(u, b)du = 0.

Then the map g 4 W(g) is an isometry between L2(OR) and C((8R).
Proof. If t E 3+R, set gt(u, v) = 1 if (u, v) E O+R, u < t1 and v > t2, and set it equal to
zero otherwise. Then 4t = IRs,WOW(h) = Wt. Note that the class of functions {gt, t E &+R}
generates the Borel functions on O+R.

Let g E L2(a+R,A+). Note that we can add or subtract a constant from 9 without
changing 4, so that by replacing g by g - (1/a) fo' g(u, b)du if necessary, we may assume that
g satisfies (6.11). In that case,

g(u, b)g(, v)du d (j (u,b)du)(bg(a,v)dv) = 0,

which implies that

E(W(g)2) = IIII2(R)
= 'JIR(g(u b) - g(a, v)) 2du dv

= JJ|(g2(U, b) + g2(a, v))du dv

= IIgI.L2

The map g '-* W(g) is linear and preserves norms, so it extends to an isometry of the Hilbert
spaces generated by the Wt on one side and the gt on the other. 0

Consider the representation of C(A). There are two cases: Case 1, in which rL is in-
creasing, and Case 2, in which rL is decreasing. In each case we can represent an element
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of L(A) by a function defined on A, but the form is different in the two cases. Given h on
A, let us define a function h on R. In Case 1, we define

h(pi(t)) if t E AL
(6.12) h(t) = h(p2(t)) if t E Au

1 h(pi(t)) + h(p2(t)) if t E Rn, n = 1,2, ...

In Case 2, we define

hh(t) h(P2(t)) if t E Si(A)
h(t) = h(1t)otherwise .

Let pi, i = 1,2, be the image of Lebesgue measure under pi, i.e. pi(F) =m(p-(F)),
F E B(A).

6.9 Proposition. (a) Assume Case 1 obtains. Let L2(A) be the class of h E L2(A, 1 + u2)
such that

(6.13) h(pi(t))dt=O, VnE .

Then L(A) is isomorphic to Li(A) and the map h '-4 W(h) is an isometry.
(b) Assume Case 2 obtains. Let Q = Rto for some t° erL. Let L2(A) be the class of

h E L2(A, p1 + ,U2) which satisfy (6.13) and which also satisfy

(6.14) h(pi(t))dt = 0.

Then L(A) is isomorphic to L2(A) and there exists a constant K > 0 such that the map
h ~-+ W(h) satisfies

(6.15) KIllhII2 < IIW(h)112 < 21jh 12

Before proving this, we need the following real variable lemma (which could be deduced
from [DR; Theorem 3.3]).

6.10 Lemma. Let a > 0, b > 0, and let A be a domain in [0,a] x [0, b] which is bounded
by the coordinate axes and by a continuous decreasing curve rO. Let 0 < c < a. Then there
exists a constant K, depending only on a, b, c, and ro, such that for any pair h and g of
square-integrable functions defined on [0, oo) satisfying

h(u)du = 0
(no such condition is required of g), we have
(6.16)
K J (h(u)2 + g(v)2) dudv < |I (h(u) + g(v))2dudv < 2 Jj (h(u)2 + g(v)2) du dv.
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Figure 6.3. P1, P2, and Q.

In the special case rO= +R, this statement remains valid with c = a.

Proof. Fix d such that (c,d) E rO and let Q = [O,c] x [O,d]. Because ro is decreasing,
Q c A. Let P1 = An ([o, c] x [d, b]), and P2 = A n (]c,a] x [O,d]), so A = Q U P1 U P2 (see
Figure 6.3).

Note that

JJh(u)g(v)dudv h(u)du) (jd) = 0,

so that

(6.17) JJ (h(u) + g(v)) du dv= JJ (h(u)2+ g(v)2) du dv.

Moreover,
11 h(u)2du dv < (b - d) j h(u)2du,

and a similar equation holds for the integral of g2 over P2, so

(6.18) JJ h(u)2du dv < (b/d - 1) J h(u)2du dv,

(6.19) JJ g(v)2du dv < (a/c - 1)J g(V)2du dv.

To handle the integral of g2 over P1, write g = (h + g) -h:

JJ g(v)2dudv < 2 J (h + g)2du dv + 2ff h(u)2du dv.
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Apply (6.18) to the last term, and treat the integral of h2 over P2 analogously to see that

(6.20) JJ g(v)2du dv < 2 JJ (h + g)2du dv + 2(b/d - 1) JJ h(u)2du dv;

(6.21) JJ h(u)2du dv <2J (h + g)2du dv + 2(a/c - 1) g(v)2du dv.

By (6.17),

hA (h(u)2 + g(v)2) du dv = JJ(h + g)2du dv + JJ (h(u)2 + g(v)2) du dv

The last integral on the right is dominated by the sum of the right-hand sides of (6.18)-(6.21),
so this is

< JJ(h + g)2du dv + 3ff ((bid - 1)h(u)2 + (a/c - 1)g(v)2) du dv

It is clear from (6.17) that ffQ h2 < ffA(h + g)2, so this is

< (3b/d + 3a/c- 5) JJ(h + g)2du dv.

This proves (6.16). In the special case ro = O+R and c = a, (6.16) follows directly from
(6.17). C

Proof of Proposition 6.9. In both Case 1 and Case 2, if t E A, there exists a function
ht on /X such that h = IR,* In Case 2, for example, ht is given by ht(s) = -1 if s E A and
tAs and ht(s) = 0 otherwise. We leave Case 1 to the reader. It is not difficult to see that
the smallest class of functions which is closed under addition. scalar multiplication, and a.e.
convergence and which contains the ht is the class of Borel functions on A.

In Case 1, if g9 equals 1 on the upper boundary segment of Rn, -1 on the right boundary
segment and is 0 elsewhere, then 9 0, sO that, as the map h _ h is linear, one can
subtract a multiple of gn from h in order to satisfy (6.13). Suppose then that h E. L2(A).
Notice that

m(Rn) f h(pi(t))h(P2(t))dt = (f h(pi(t))dt) (fR h(P2(t))dt) = 0.

Thus

AIW(h)2 f (t)2

=A h(t)2dt + A h(t)2dt + AJ h(t)2dt

= 'AL hh(p(pt))2dt + h(p2 (t) )2dt +hEJ (h(p1(t))2 + h(p2 (t))2) dt

|h2d(=l+ P2)
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The map h ~-* W(h) is linear and preserves norms, so it extends to an isometry of the Hilbert
spaces generated by the Wt on one side and the ht on the other. This proves (a).
Now suppose Case 2 obtains. Let go equal one on rL, zero elsewhere, and let gn equal

1 on the upper-right boundary of R, and 0 elsewhere. Then go- n = 0 so that we can
subtract multiples of go and gn from h without changing h. Thus we may assume without
loss of generality that h satisfies (6.13) and (6.14).

Suppose h E L2(A). Then

E(W(h)2) = 1lh112
(6.22) h

J (pi(t)) - h(p2(t)))2dt + > (h(pi(t)) - h(P2(t))) dt.

Apply Lemma 6.10 to the first term to see that this is

> K ' (h(p1(t))2 + h(p2(t))2) dt + Z J (h(p1(t))2 + h(p2(t))2) dt-

We can rewrite this in terms of the measures iii and p2:

> min(1, K) J h2d(l + p2) = min(1, K)IIh 112.

It also follows from (6.22) that IIh112 < 211h 112, which proves (6.15).
But now, we have seen that h ~-4 W(h) is a linear map between {Wt, t E A} and a subset

of L2(A). By (6.15), this map is bi-continuous, so it extends to the closed Hilbert spaces
generated by the two sets. Since the subset {ht, t E A} generates the Borel functions on A,
we conclude that the closure of their span is L2(A) itself O

6.11 Corollary. IfX E £(A U AR), there exist Borel functions ho on A and go on 9+R such
that

X = W(ho+go).

Proof. We know X = W(g) for some g E L2(R,dt). Random variables of the form
Y + Z, where Y E C(A) and Z E C(OR), are dense in C(A U AR) so there exist sequences
(Yin) C L(A) and (Zm) C C(aR) such that X = lmm-(Ym + Zm). Thus there are
hm E L2(A) (respectively L2(A)) and gm E L2(OR) such that Ym + Zm = W(hm + 4m).
Consequently,

hlm (hm + 9m),
where the limit is in L2(R, dt).
We claim that g is of the form g = ho + go for some ho on A and gO on 9+R. Note that

(6.23) lim J(hI-hm +3t-9m) dt=O.
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To simplify notation, let h = he - hm and g = t-g9. In Case 1, refer to (6.10) and
(6.12) to see that we can rewrite the integral in (6.23) as

J(h +g)2dt = (h(P2(U,v)) + g(u, b) - g(a,v))dudv
(6.24) + J (h(pi (u, v)) + g(u, b) - g(a, v) )du dv

+ 7 (h(pi (u, v)) + h(P2(uU,v)) + g(u, b) - g(a, v))du dv .

Observe that h(Pp2(u, v)) is a function of v alone on Au (equal to h(p2(0, v))), and h(pi (u, v))
is a function of u alone on AL. We are going to apply Lemma 6.10 to the first two integrals
in (6.24). This is possible since rotating Au and AL by ±90 degrees transforms them into
regions to which the lemma applies. In order to satisfy the hypothesis of Lemma 6.10, fix
0 < c < min(a, b) and set a = al-am, d _f-fOm, where

=m Jg9(u,b)du, Om= gm(a,v)dv, m ENV

Then by Lemma 6.10, there are constants KU > 0 and KL > 0 such that (6.24) is

> Ku J/ [(g(u, b) - a)2 + (h(p2(0, V)) - g(a, v) + a)2]du dv
u

+ KL A [(g(a, v) _p)2 + (h(pi (u,0)) + g(u, b) -) 2]du dv

+ zJJ [h(pi(u,v))+ h(p2(u,v))a-fl+ (g(u,b) - a) - (g(a,v)-_3)]2dudv

In particular,

.(gm(u -b)_am)2du dv and JJ (gm(a, v) - m)2du dv

converge to zero. This implies that the one-variable functions gm(., b) - am and gm(a, O-13m
converge to zero in measure and in L2 for the measures v, and vw2 respectively, where

dvi (u) = (b - rI(u))du, dv2(v) = (a - r2(v))dv,

and

r1(u) = sup{t2: (u,t2) E ru} r2(u) = sup{tl: (ti,v) E rL}

Making use of the second part of (6.4), we see that vi (resp. V2) is equivalent to Lebesgue
measure on [0, a] (resp. [0, b]). Thus (gm(., b)) (resp. (gm(a, ))) is a Cauchy sequence in the
topology of convergence in Lebesgue measure on [0, a] (resp. [0, b]), and it is also a Cauchy
sequence in L2([0, a -e], dA) (resp. L2([0, b - e], dA), for each e > 0.
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It follows that there is a Borel function go on &+R such that g,a, b) - am -+ go(., b) in
measure on [0, a] x {b}, and gm(a,.) - /3m E.-- go(a, ) in measure on {a} x [0, b].
Now look at the other terms. We see from these that hm(p2(0, v)) + am - 1nm converges in

measure on Au, and hm(pi(u, 0)) + am-/3m converges in measure on AL, which implies the
existence of a Borel function ho on p2(Au) U pi(AL) such that hm(.) + a°m -/m converges to
ho in (p' + P2)-measure on p2(Au) U pl(AL).

Finally, looking at the integrals over Rn, we see that hm(p,(u v)) + hm(p2(U,V)) +am,-
/3m converges in L2(Rn,dt). By (6.13) and Lemma 6.10, it follows that hm(pj(u,v)) and
hm(P2(U,V)) + am - /3m converge in L2(Rn,dt), so there is a Borel function ho on pi(Rn)
i = 1, 2, such that hm(*) -- hl(.) in pi-measure on pl(Rn), and hm(.) + am,-,, m hg(.) in
i2-measure on P2(Rn). Now define ho on A by

ho(t) = ho(t)Ipi(AL)Up2(Au)(t) + ho Io1(Rn,)(t) + h2 IP2(RF4)(t), t E A.

It now only remains to check that g = ho + §o. Note that on Au, ho + 4o is the limit in
measure of

hm(P2(U, 0)) +am - Om + gm(u, b) -am -(g(a, v) -a/m) = hm(u, v) + -m(U,v)
((U' V),

so ho + go and ( coincide on AU. In the same way, these two functions also coincide on AL
and on Rn, n ELV.

The proof in Case 2 is similar, except that (6.24) becomes

R(h+ )dt = ILL (g(u, b) - g(a, v)) du dv

+ (h(pl(u,v))-+ g(u,b)-h(P2(u,v))-g(a,v))dudvJJLUUnlRn

since the support of h is in AL. Apply Lemma 6.10 as before to construct the functions ho
and go. Details are left to the reader. c

This brings us to the proof of Proposition 6.7.

Proof of Proposition 6.7. Suppose W(AL) EAC(z U AR). By Corollary 6.11 there exist
functions h on A and g on o3+R such that IA, = h +4 a.e. on R. Consider Case 1. 'AL = 0
in Au, so

h(p2(u, v)) + g(u, b) - g(a, v) = 0
or

g(u, b) = g(a, v) - h(p2(u, v))
for a.e. (u, v) E Au. The left-hand side depends on u, the right-hand side on v (for u '-4
p2(u, v) is constant). Therefore both sides are equal to a constant, say a:

(6.25) g(, b) = a a.e.
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h(p2(u, v)) = g(a, v) - a a.e.

On the other hand, IAL= 1 on AL, so for a.e. (u, v) E AL,

h(pi(u,v)) + g(u,b) -g(a,v) 1,

or, using (6.25),
g(a, v) = h(pi(u, v)) + a -1.

As before, both sides are equal to a constant, say 13, hence

(6.27) h(pl(u, v)) = 1 + ,B-a

for a.e. u. From (6.26), then, if (u, v) E AU, we have h(p2(u, v)) =l3-a for a.e. v. Note
that if (u,v) E AL, then pi(u,v) E rL, and if (u, v) E Au, then P2(U,v) E ru. Thus, in terms
of the measures Ml and j2, we have

(6.28) h = 1 + c3-a il1-a.e. onlrL;

h = d-a 112-a.e. on ru.
But by (6.6) and (6.3), 1ll and /A2 are not orthogonal on ru n rL, so this is a contradiction.
This finishes the proof in Case 1.

In case 2, note that h and IAL vanish in AU, so

g(u, b) -g(a, v) = 0,

hence g(u, b) and g(a, v) are equal to the same constant, say a. In AL, IAL = 1, SO

h(pi(u,v)) - h(p2(u,v)) + a- a = 1.

As before, both functions must be constant a.e., which means that there are distinct constants
cl and C2 such that h =c1cll-a.e. and h = C2 112-a.e. Since Ml and 1i2 are not orthogonal,
we must have cl = c2, which is a contradiction. O
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7. The sharp Markov property of most Jordan curves.
We are now in a position to show that curves which satisfy the sharp Markov property

are the rule rather than the exception. We will prove several precise statements to the
effect that "almost every" curve has the sharp Markov property. The "almost every" can be
interpreted both in the sense of Baire category or with respect to certain reference measures.
We shall consider two cases: the case of curves of the form y = f(x), where f :R+ -* R+ is
continuous, and bounded Jordan curves.

Equip C(JR+,R+) with the metric of uniform convergence on compact sets. For f E
C(?+,I?+), set

Di(f) =t E R2 : t1 < 0 or (t1 > 0 and t2 < f(t1))},
D2(f) = {t E R2 : t1 > 0 and t2 > f(tl)},
r(f) = aDi(f) =D2(f)

7.1 Theorem. Let F be the set of all f E C(JR+,lR+) such that 7H(Dl(f)) and 7(D2(f))
are not conditionally independent given ?-(r(f)). Then F is a meager set (or set of first
Baire category), i.e. "almost all" f E C(R+,R+) determine domains with the sharp Markov
property.

Proof. To begin with, C(JR+,R+) with the above metric is a complete space, and is
thus of second Baire category by the Baire Category Theorem [R; Chap.7. Sec.7.16]. Now
the domain Di (f) is a Jordan domain in the sense of Section 5, the Jordan curve being the
union of the graph of f and {(0, y) : y > f(0)}, and passing through the point at infinity (see
Figure 7.1). It is thus sufficient by Theorem 5.6 to show that the set of all f E C(R+,R+)
for which (5.9) fails is meager. Now each f for which (5.9) fails has a finite upper-right Dini
derivative at at least one point x E 1R+ (in fact, on a set of positive measure). But the set
of all such f is meager (see e.g. [Royden, Chap.7. Sec.7. Problem 30.c]). 0

Natural measures on C(JR+,R+) can be obtained from reflecting linear Brownian motion,
or from the measure induced on C(1R+,R+) by the positive part (B+, t > 0) of a linear
Brownian motion. Let Q denote either of these two measures.

7.2 Theorem. Let F be as in Theorem 6.1. Then F is a Q-null set.

Proof. By [DEK; Theorem 1], no points of a Brownian sample path are points of increase
or decrease. Since f has only countably many local extrema, r(f) satisfies (4.1) for Q-almost
all f. By Theorem 4.1, this gives the conclusion. 0

Similar theorems can be given for Jordan curves. Recall that we equip the set 3 of
bounded Jordan curves with the uniform metric d defined in (1.5). For r E J, let Di(r)
and D2((r) be the two complementary open domains of r.
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Figure 7.1.

7.3 Theorem. Let a be the set of all r E J such that 1"(D(1(r)) and 7(D2(r)) are not
conditionally independent given x(r). Then Q is a meager set.

Let £ be the set of all r E a which define a Jordan curve consisting of finitely many
vertical and horizontal segments. Most of the work for the proof of Theorem 7.3 is contained
in the following lemma.

7.4 Lemma. £ is dense in 3.

This statement is quite intuitive (the same is true of the Jordan Curve Theorem), but it
is not trivial to prove that any Jordan curve, for instance one with positive measure, can
be approximated by elements of E in the uniform metric, so a proof is given below. Let us
assume the lemma for the moment.

Proof of Theorem 7.3. It is sufficient to show that Q is contained in a countable union
of closed sets whose complements are dense in J. Set

Ca,h = {r E : 3t E r such that rn M0,(t, h)

By Theorem 5.6, C is contaied in the union of the Cth, , h E 4. To see that the Ca,h
are closed, let (rk, k E IV) be a sequence of elements of a,h converging to r E 3, and let
us show that r E Q.,h. Indeed, if tk E rk satisfies rk n M0"(tk, h) - X, then the sequence
(tk, k E IV) is bounded, so there is a subsequence converging to t E r. We again denote this
subsequence (tk, k EIV), and show that r n M0(t, h) =

Suppose not. Then there is s E r such that

(7.1) 182 - t21 < acls - ti1 < ah or 181- t1l < ala2 - t2I < ah.

Let Sk E rk satisfy Sk -+ s as k -_ o. Then for large enough k, (7.1) is satisfied with Sk and
tk instead of s and t, respectively, implying sk E rkn M,(tk, h), a contradiction.
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Finally, 9',h is dense in J by Lemma 7.4, since & C 9h for each a, h E Q ;. This
completes the proof. 0

Proof of Lemma 7.4. Fix r E J and construct a sequence (rn, n E NRV) of elements of E
with hmn ioo d(rn, r) = 0 as follows. Let Di (r) be the bounded component of R2 \ r (recall
that r is bounded), and fix to E D(I(r). Let Dn be the union of all squares in the dyadic
grid of order n which are contained in D(J(r), and let Fn be the connected component of Dn
containing to.

By definition, if t E 9F, then t is contained in a horizontal or vertical segment of length
2-n, which is the common boundary of two squares from the grid. One of these squares is
contained in Fn, and the other necessarily contains one point of r.

Set rn = 8Fn. Then rn is a Jordan curve. Indeed, rc consists of two connected com-
ponents (if it had more than two such components, one would be Fn, and the others would
each contain at least one point of r by the above. Since r is connected, it would intersect
rn, a contradiction). As rn is piecewise smooth, Theorem VI. 16.1 of [N] implies that rn is
a Jordan curve.

The sets Fn increase to Di(r). Indeed, Di(r) is arc-wise connected, thus if t E Di(r),
there is a simple arc y from to to t, so we can fit an open "tube" around fy which is contained
in Di(r). For large enough n, we can fit into this tube a sequence of squares R1, .. . , Rm
with dyadic corners of order n, such that to E R1, t E Rm, and Ri and R,-+ have an edge in
common, i = 0, .. . ,m - 1. For such n, we clearly have t E Fn. This implies in particular
that diam(rn) T diam(r), where diam(r) is the least upper bound of distances between pairs
of points of r.
We are going to show that lin,, . d(rn, r) = 0. For this we will find parameterizations

4n and 4 of rn and r, respectively, such that limn-,,. jljn - 41'i1 = 0.
Fix Ti > 0 such that Ti < diam(r). Let C be the unit circle in the complex plane. Let
C -:CR2 be any continuous one-to-one parameterization of r. There is e = e(Ti) > 0 such

that

(7.2) x, y E C and lix-yli <e i ll-(x)-(Y))I < 77,

and there is 6 =(p, e) > 0 such that

(7.3) IlI(x) - p(Y)ll < ==R lix - Yll < .

Choose n ENV with diam(rn) > diam(r)/2 and

(7.4) 2-n <
1

min(b,,q).

Now let 4'n: C -_ R2 be a parameterization of rn, and assume both 4',n and p have counter-
clockwise orientation [N; p. 194].

As mentioned above, each horizontal or vertical segment in rn of length 2- is the edge of
two squares with sides of length 1/n, one of which is in Fn and the other of which necessarily
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contains a point of r. Each of these last squares is called an outer square. As we describe
P,r, according to the parameterization p,,, we encounter successively a sequence of simple
subarcs Ao, .. ., Ak of rI', each of which consists of consecutive segments of the same outer
square. Let R'k be the outer square whose boundary contains Ak. There are essentially
three possible cases for Ak and R', represented in Figure 7.2. Note that the R' need not
be distinct, since in Case 1 of this Figure, the segment opposite Ak may also be in rI, even
though the neighboring segments are not.

Let tk be the midpoint-of Ak (as indicated in the Figure), and assume Ak = Q([ak, ak+]),
where ak = eiGk, 0 = O0 < 91 < 02 < ... < ko,+1 = 2r, and i = V/7. We assume for
convenience that p(0) E Ro and put uo = 0. Then set

ul = inf{0> 0: (e'e) E R'}
Uk+1 = inf{0 > Uk: p(e'O) E RI+,}, 1 < k < ko,
uk0+l = 2r.

We first verify that {0 > Uk: (eie) E R'k+l}1 X, for 0 < k < ko. Let Sk be one of the points
of F which is closest to tk, and let Gk be the segment with extremities sk and tk. Note that
Gk connects the curves r and r,.

Claim 1. The segments Gk , k = 0, ..., ko, are disjoint.

Indeed, tk is necessarily contained in R', and if k falls into Case 2 or 3 of Figure 7.2, then
R'k is disjoint from all R', e # k. So the only case to check is when k and e are distinct, both
fall into Case 1, and R'R= . In this case, Ak and Al are opposite sides of R'. Let wl, w2,
W3 and W4 be the four corners of R'k enumerated in counterclockwise order. We can assume
without loss of generality that Ak has extremities wl and w2, and Al has extremities w3 and
W4 (see Figure 7.3).

If Rk is the small rectangle in Figure 7.3, and w- is the corner of Rk nearest to wi, then
the segments from w3 to wtiJ are disjoint, j = 1,... ,4. By Lemma 5.2, as we describe r,
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according to k,, we encounter successively w1,1 W2,3 and W4, in that order. So rT consists
of the segment from w1 to w2, followed by a simple arc with extremities w2 and W3, the
segment from w3 to W4, and a simple arc with extremities W4 and wl.

The segments from W2 to W3 and from w1 to W4 are thus cross-cuts of r,. Together
they divide Fc into three connected components [N; Theorem 11.8], one of which is R'k and
all three of which contain at least one point of r by definition of ri*. Call the two other
components F and F, and fix s E F nr, EFn r. Let r' and r" be the two sub-arcs of
I' with extremities s and i. By Lemma 5.2, Sk and st wiU not be on the same subarc, and
thus Gk n GtC= . This completes the proof of Claim 1.

Claim 1 together with Lemma 5.2 imply that {O> Uk: (P(e'9) E Rk+1} # k, k = O*... , ko-
1, and thus none of the uk are infinite and the sequence uo, ... , uk4+4 is strictly increasing.
We now reparameterize each simple arc of r of the form {p(e'0): Uk < 9 < uk+1} by

a continuous strictly increasing map on the interval [ak, ak+1], in such a way that we get a
counterclockwise parameterization / of r. Observe that (ak) =-p(eiu%), fork 1,... ,ko+
and

(7.5) jjs(e'Uh) - s u(euk+L)IIl < 4 x 2` < S

by (7.4).

Claim 2. For u E [ak,ak+1], 11t(u) - g(ak)I1 < 77.
By definition, this is equivalent to showing that

Uk < V < Uk+I b lk(e'") - (e"k)II < q.

By (7.5) and (7.3), we have

(7.6) liei"^+, - eiU& 1 < e
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so there are two possible cases, shown in Figure 7.4. In case (b), we would have diam(r") <
2,q < diam(r)/2, a contradiction given our choice of rq. So we are in case (a), and thus

Uk < U < Uk+&,1 lie'U - eiuhII < e jp(e'u) - p(esUu)Il < 7,

by (7.6) and (7.2). This proves Claim 2.
Now for u E [ak, ak+1], we have

Ikb(U) - /.n(U)II . I(u) - lk'(ak)II + 11L(ak) - 4n(ak)jI + 1I4n(ak) - 4n(u)II
<7 + IIr(e ) -4n(ak)II + V/ 2-

< 7 +2V22
< 2r1.

Thus 114-$n1. < 2r. Since r7 is arbitrary and k is a continuous one-to-one parameterization
of r by construction, the proof is complete. O

Theorem 7.3 would not be very meaningful if the set a itself were meager! Since 3 is
not complete (for instance, a sequence of ellipses could converge to a segment) the Baire
category theorem cannot be applied. However, we have the following theorem.

7.4 Theorem. The set 3 with the uniform metric (see (1.5)) is not meager.

Proof. By the definition of "meager" [R; Chap.VI. Sec.71, it is sufficient to show that if
(On,n E -IV) is a sequence of dense open subsets of 3, then nnEIV 0n # ¢.

Observe that if y is the parameterization of some Jordan curve, since Cp1 is uniformly
continuous, we have

(7.6) Ve > 0, 36(p, e) > 0 : IY(x) - Y(y)I < S(Qp e) iIx - Yj <C.
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Now fix ri E 01. Since O1 is open, there is r, > 0 such that B(rI,ri) C O1. Let Yp
be a parameterization of ri, and set 61 = 6(pl, 1). Since 02 is dense in J, there is r2 E
02n B(ri,si), where s, = min(rl, l)/8, and since this set is open, there is r2 > 0, r2 <Sl,
such that B(r2, r2) C 02 n B(rP, si). We now proceed by induction.

Let Yn be a parameterization of rn, and set dn = S(n, 1/n). At step n + 1, there is
rn+l E On+, n B(rn, Sn), where

Sn =min(rn,min Em)/8,

and since this set is open, there is rn+l > 0, rn+1 < Sn such that

(7.7) B(rn+lI rn+l) C On+, n B(rn, Sn).
Now observe that if m, n > N, then

Il(n - Pmlloo < min(rN/8; bN/4) -+ 0

as N - oo, so (n, n E IV) is a Cauchy-sequence for the uniform norm. Thus, there is a
continuous function y : C __ R+ such that lim IWn - _II=ll 0. We are going to show
that y is one-to-one and thus r =(C) E .

Indeed, assume that there are x, y E C, x $4 y, such that p(x) = y(y). Fix n E lV such
that Ix - yI > 1/n, and fix m EIN, m > n, such that lWm(X) - m(Y)l < in/4. Then

lRn(X) - Pn(Y)I .< l n(X) - Pm(X)I + lpm(X) - pm(Y)I + IYm(Y) - Wn(Y)I
< En/4 + En/4 +Sn/4

n

so Ix -yl < 1/n by (7.6), a contradiction. Thus r E .
It now only remains to be shown that r is in the intersection of all the °n. For each

n E IVf, note that Ik - SnI < rn/4, so r E B(rn, rn/4), and this ball is contained in O° by
(7.7). This completes the proof. 0

7.5 Remark. At first glance, it might seem more natural to equip 5 with the Hausdorff
metric rather than the uniform metric. However, if we used the Hausdorff metric, the space
5 itself would be a meager set.

Recall from Section 1 the definition of the probability measure Q' on J. We have the
following Jordan curve analogue of Theorem 7.2. (We would like to thank T. Mountford,
who brough reference [M] to our attention, and K. Burdzy, who showed us a different proof
[B1].)

Theorem 7.6. For Q'-almost al r E 5, 7(D(I(r)) and 7((D2((r)) are conditionally inde-
pendent given i(r).
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Proof. Suppose the contrary. By Theorem 5.6, there would be a set with positive Q'-
probability on which A{pr1(M(r))} > 0. By Lemma 5.5, for each such r, there is a subset
F of r, totally ordered by < or A, such that A(pri (F)) > 0 and r has a tangent at each
point of F. By [M; Theorem 2.(iii)], it follows that F does not have null harmonic measure
in Di(r), i = 1 and 2. But this contradicts Theorem 2.6(i) of [B], where it is shown that
Q'-a.s., the set of points of r which are not "twist points" [B; Section 2] has null harmonic
measure. 0
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