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ABSTRACT

We consider a biased sampling model that has been found useful in incorporating size-
biases inherent in many types of discovery data. The model postulates that the data are
obtained from a fmite population by selecting successively without replacement and with
probability proportional to some measure of size. Unlike the ppswor scheme in survey
sampling, we assume here that the size measure is a function of the unknown population
values. In this article, we consider maximum likelihood estimation of the finite population
parameters under this biased sampling model. We study the large sample behavior of the
MLE's and derive a simple, asymptotically efficient approximation to the MLE. The
approximate MLE is structurally similar to the Horvitz-Thompson estimator. We show
that information about the order in the sample can be used to make inference even when
the population size is unknown, which in fact can be estimated. Small sample behavior of
the estimators are investigated through a limited simulation study, and the results are used
to analyze oil and gas discovery data from the North Sea Basin.
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1. Introduction

Let 0L= {U1, ..., UH} denote a fmite population of N units, and let Yj be a

characteristic associated with Uj, j = 1, ..., N. Let 9, = (Ul, ..., U,,) be an ordered sample

of size n that is selected successively without replacement and with probability proportional

to some measure of size {w1, ..., WN}. More specifically,

P{(U ..., U)I= ]I N J-1 ' (1.1)
J-1l 2 WI 7 w

i-1 k'l

where wj = w(Yj), a positive function of the unknown population characteristic, and

w-O0 . A special case of this model is the ppswor scheme in survey sampling where the

wj's are auxiliary attributes whose values are known for all the units in the finite

population. We are interested in the general case where the selection probabilities can

depend on the a priori unknown population characteristics (which are in fact the

parameters of interest). In this case, the wj's associated with the (N - n) unobserved units

will not be known with certainty even after the sample is observed.

The sampling design (1.1) where the selection probabilities depend on the parameters

of interest is sometimes known as an informative design (Cassel, Sarndal and Wretman,

1977). It has been used by Cozzolino (1972) and Barouch and Kaufman (1976) as a
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model for analyzing oil and gas discovery data. They considered the case w(y) = y and

suggested the ppswor successive sampling scheme as a mechanism for incorporating the

size-bias inherent in the discovery process. Bloomfield et al. (1979) and Lee and Wang

(1983) extended their work by taking w (y) =ye The parameter e is called the coefficient

of discoverability in the petroleum estimation literature. Expression (1.1) can also be

interpreted as a (marginal) likelihood of suitably defimed rank statistics under a

proportional hazards model (Kalbfleisch and Prentice, 1980). This relationship will be

considered in more detail elsewhere.

Throughout this paper, we shail ignore any information in the labels Ul, ..., UN. We

can then represent the ordered sample YS' by its attributes which we denote by (yI, .Yn)

Let zl,..., zx denote the distinct values in the fmite population with multiplicities

N1, ..., N. We are interested in estimating the parameters Nl,...,N, from an observed,

ordered sample of size n based on (1.1).

Statistical inference under the model (1.1) has been considered by various authors.

Most of these results were developed under the assumption that a population characteristic

K
such as the population size N or the population total R = > Nkzk is known. Barouch and

k -I

Kaufman (1977), Barouch, Kaufman and Nelligan (1983), Lee and Wang (1983, 1985),

and Nair and Wang (1989) developed parametric estimators of the distribution under a

superpopulation framework where the fmite population itself is assumed to be an iid

sample from some underlying population. Gordon (1989) and Andreatta and Kaufman

(1986) discussed inference procedures for the fmite population itself and considered,

among other things, Horvitz-Thompson type estimators. Gordon (1989) also provided an

approach for estimating the population size by moment-type estimator using a split-sample

technique. Andreatta and Kaufman (1986) considered the situation where the information
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about the order in the sample is either unavailable or ignored. They discussed the use of

Murthy's (1957) estimator assuming that R or some other population parameter such as N

is known. See also Godambe and Rajashari (1989) for a related biased sampling problem

with Bernoulli sampling.

The present paper deals with maximum likelihood estimation. We show that it is

possible to do inference without assuming any knowledge of the population size or other

population characteristics. We can in fact estimate these characteristics through maximum

likelihood. It is the information in the ordered sample that allows us to do this unusual

inference. Maximum likelihood estimation of the fmite population was considered in Smith

and Ward (1981) but they did not get any explicit results and did not study the properties

of the MLE's.

In Section 2, we study MLE's of {N1, ..., N}. In particular, we indicate how

parameters such as N and R can be estimated. The asymptotic behavior of the MLE

suggests a simple, asymptotically equivalent estimator that is easily computed. This

estimator is structurally similar to the Horvitz-Thompson estimator, but it depends on the

order in which the data in the sample S9° are observed. Consistency, asymptotic

distribution and efficiency of the MLE are also discussed. Proofs are deferred to Section 6.

Section 3 compares the asymptotic and fmite-sample behavior of the MLE's through a

limited simulation study. In Section 4, the results are applied to the analysis of oil and gas

discovery data from the North Sea Basin. Section 5 develops some large sample results of

estimators under the ppswor model. These are extensions of the results in Holst (1973),

Sen (1979), and Gordon (1989). Section 6 deals with some auxiliary results and proofs of

the theorems in Section 2. For the asymptotic results, we assume that K, the number of

distinct values in the fmite population, is filxed as N-=. The more general case where

K = K(N) - X will be considered elsewhere. We also assume that the sampling proportion



fNi n/N satisfies 0< lmfN<<1. If fN = 1, aU the N units of the finite population have

been observed, so there is nothing to infer. If fN -0 (n fLxed and N -X), sampling without

replacement is equivalent to sampling with replacement, and the model in (1.1) simplifies

to the familiar length-biased estimation problem considered in the literature (Cox, 1964;

Patil and Rao, 1977; and Vardi, 1982).

In practice, the size-bias mechanism w(y) is unknown and may have to be estimated

from the data. One approach is to parameterize the shape of w(y), for example by letting

w(y) = y, and to estimate all the unknown parameters simultaneously. However, for

our results we will assume that w(y) is a fixed, known, positive function.

2. Estimaton

Let z1, ..., zx. be the distinct values of the fmite population with multiplicities

N1, ...., NK. In this section, we consider nonparametric maximum likelihood estimation of

{N1, ..., NK}, and hence of the population size N.

If the zk's are known, the problem of estimating {Y1, ..., YN} is equivalent to estimating

{N1, ..., NK}. In general, of course, the zk's will not be known a priori. However, as we

shall see below, the nonparametric MLE gives nonzero mass only to the zk's which are

observed in the sample. Therefore, we can restrict attention to the zk's which are the

distinct values in the observed sample.

2.1 Notation

Throughout the paper, we will use the following notation. Let

I = I[UR1Sfj], (2.1)

the indicator of the event that the jth unit is included in the sample Sfn of size n. Let



zl .. zrz be the distinct values of Y1 in the observed sample, and let I[[Yj = zk] = I if

N
Y= zk and 0 otherwise. Then, nk = Z I[Y1 = Zk]Iji denotes the multiplicity of

1-1

zk, k = 1, ..., K. In addition, let wk = w(zk)

Tk(t) = 1-e-'-Wk (2.2)

and

Fk(t) = l-Tk(t) = e twk (2.3)

for k = 1, ..., K. Let

fn/N, ek=NkIN, k= 1, ...,K, (2.4)

be, respectively, the sampling fraction and the cell probabilities. It will also be useful to

consider the quantities

Vk=Nk/ln,k = , ...,K. (2.5)

Note that

K
= VVk. (2.6)

k-1

2.2 Maximum Likelihood Estimatdon

Defme

D(i) = w(y), i ,..,n, (2.7)
J-o

with w(yo) -O. The likelihood of N = (N1, ..., NK) is obtained from (1. 1) as

K N n(i ) (2.8)
eL 11(N -flk)! KK28r

k-I k iil XNrwr -D(i)
r1I
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The combinatorial coefficients indicate the number of different ways in which the ordered

sample could have been obtained. It is easily seen from (2.8) that the nonparametric MLE

gives nonzero mass only to the zk's for which nk > 0.

To obtain the MLE {Nk}f.,, one can maximize the likelihood (2.8) numerically subject

to the constraint Nk a nk, k =1, ..., K. Note that the solution can occur on the boundary,

i.e., Nk = nk for some k. The computation of the MLE involves maximization over a K-

dimensional space and can be difficult in practice. In the next section, we obtain a simple

estimator that is asymptotically equivalent to the MLE. But first we study the large sample

behavior of the likelihood equations. This is done within the following asymptotic

framework. To avoid cumbersome notation, we will suppress the index N from the

subscripts of fN& zN, vta and so on. But one should remember that the various quantities

considered depend on N.

Al As N-=:, the number of distinct values in the fmite population, K, is fixed, and the

distinct values {z1, ..., zK} converge to some fixed, fmite values.

A2 OekNk/N satisfies 0< limek< 1 for k= l,...,K, and fNinnN satisfies

< limf < l.
N-=~~~~~N.

The more general situation where K = K(N) - X as N - X will be considered elsewhere.

As N -co, the parameters of interest Nk - x for k = 1, ..., K. So we will work with the

parameters {Bk}ff and f defmed by (2.4) or the equivalent set of normalized parameters

{Vk} I defmed by (2.5). The observed sample proportions will be denoted by

pe= k,k=1,...K. (2.9)n

Our basic approach is to replace factorials by gamma functions in the likelihood in

(2.8). Our parameters can then be treated as continuous and we can differentiate the log-
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likelhood and obtain the likelihood equations. We argue that MLE's (more precisely first

local MLE's to be defmed below) satisfy these equations to a high enough order of

approximation. Then we deduce their asymptotic theory by the usual linearization

process.

With some abuse of notation, we will let L(v) denote the log-likelihood of v. From

(2.8),

K f
L (v)= const + > log r(nfvk+ 1)- log r(n(Vk-Pk) + 1)

(2.10)
n K

- Z log (> vrw,-nr1D(i)].
f11 r-l

We will use the notations vo, fo, etc. to distinguish the true population parameters from

the argument of the likelihood function: Note that these values also vary with N since we

are considering a sequence of finite populations for our asymptotic framework. But we

will continue to suppress their dependence on N for notational convenience. The following

result is known (see Ros6n, 1972; Holst, 1973; and Gordon, 1989) and can be obtained as

a consequence of Corollary 5.5. For 1 s k 5 K,

IPk-VkO,Tk(XO) = op(l), (2.11)

where X0 = X(fo), and X(u) satisfies

N-1 I No kex()W - 2 Ok;Rk(X(U)) = 1 -u, 0<u< . (2.12)
k-i k-i

Note that X(u) is an increasing, convex function of u; so there is a one-to-one relationship

between the sampling proportion fo and the parameter Xo.

We see from (2.11) that, if k0 is known, one can estimate vko consistently by
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Pk - Pk (2.13)'Trk(XO) 1e O-kot

When we replace the unknown inclusion probabilities, 1- e O, by their asymptotic

approximations, this yields the Horvitz-Thompson estimator. We will see in the next

section that the approximate maximum likelihood estimator also has.this structure but now

the data are used to estimate the unknown parameter Ao.

The likelihood in (2.10) can, in general, have several local maxima. We shall consider

the "first" local maximum defmed as follows. Reparameterize v by (0,f) given by (2.4),

and (with some abuse of notation) write L(@, f) for L (v). For each fiLxed f, the Ok's vary

over a non-empty subset of the simplex, and L(O,f) is continuous in 0. So, for a given f,

L(f) - max,{L(0,f): Ok fPk, k = 1, ..., K} is achieved by some O(f). We call L(f) a

"profile log-likelihood" of f. Let s be the set of all local maximizers of L(f) in (0, 1].

Note that for fe (0, 1), f is a local maximizer if L' ) = 0, and L "(f) < 0. At the

boundaries, f= 0 is a local maximizer if L'(00"s) <0, and similarly, f= 1 is a local

maximizer if L' (1 ) >O. We consider the "first local maximizer" of L(f) given by

f = min{fe Sq. Since L(f) is continuous in f, the set 9Y is non-empty and f exists. Let v

be the value of v that corresponds to (0(f) ,f). We establish the consistency and asymptotic

normality of v in Theorem 1 below. We consider the first local maximizer rather than the

global maximizer because of technical constraints which require f to be bounded away

from 1 in our proofs. It may well be that the global MLE is also consistent but we have

not shown this.

Theorem 1: Under A1-A2,

i) v is consistent;

and ii) 2(n"(v-vO)) - sN(O, I (vo)),

where



wJdjowkdkofof [AR(u)]2du1(VO) -IBjkdkO + k" O () JxKX (2.14)
ff-foffO [ )]2dU I W2dro)

dko = kO Ftk(XO) (2.15)
'ITk(XO)

and from (2.12),

A'X(u),- du = LXwk lTkx(u))J. (2.16)

Remark 1: Since vo depends on N, the statement (ii) above (and those in the sequel)

should be formally interpreted as 2 OI*(vo) [i - vO] -sN(0, 1).

2.3 Approximate MILE

The estimator i can be difficult to compute in practice. We obtain an approximation

that is easy to compute and is asymptotically equivalent to i as follows. Differentiating

(2.10) with respect to the Vk'S, we get the "likelihood equations" as

aL = n [ (nvk+1)- *(n vk-pk]+ l)]- wk T. Vr wr - nfl D(i)) (2.17)8Vk -1 (1

for k = 1, ..., K, where ( denotes the digamma function. Recall that

4(x+ 1) = log x + O(x1) as x -=. So,

akL (log VkPWk k(V;Y) + Op(n-1), (2.18)
aVk V -Pkpe

where XA(v;y) is the data-dependent function
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kt(v;y) - n
- I 7, VkWk-n (2.19)

l-1 -1

If we ignore the second term on the right-hand side in (2.18) which is of smaller order

than the first term and solve for v by setting the flrst term equal to zero, we obtain an

estimator implicitly defmed by

Vk - PkTk(X(v;y)) k1,..., K. (2.20)

Note the structural similarity between this and the Horvitz-Thompson estimator in (2.13).

Since Xn(v;y) in (2.19) depends on the unknown parameters, the approximate MLE

(2.20) is still not easily computable. However, the Vk9s are easily obtained once X,(v;y) is

determined. So let

VkW() = Pk = Pk k=1,...,K. (2.21)'Trk(X) I -eXWk',

Substitute Vk(X) in the log-likelihood (2.10), treat A as an unknown parameter, and

consider the "profile log-likelihood" of A (which we denote as LPR(X)). The derivative of

this likelihood with respect to X is

dLpR(X) =
n

K PkWklrk(X) (2.22)

dA k-i1 [lT(A)]2
x [*(nv() + 1)- (n[vk(X)-pk] + 1)-WkZn()I,

where

Zn() = nI M : vk(Mwk-n-1D(i)) (2.23)

n KPkWk
= 1 l.k-1 lT()- 'i).



- 11 -

Recall that *(x+1) = log (x) + O(x 1) as x-X. So the term in square brackets in (2.22)

reduces to wk[X - Z,(X)] + Op(n - 1). Hence, setting the "profile log-likelihood" equation

(2.22) equal to zero and solving for A is equivalent to solving the equation

Zn(X) = X. (2.24)

It is now natural to estimate v by v(X) where A > 0 solves (2.24) and Z (X) < 1. X = 0

is always a solution of (2.24), but this corresponds to f = 0; we are interested in a strictly

positive, fmite solution.

We have thus reduced the problem of computing the MLE's (a K -dimensional

problem) to fmding an appropriate root of (2.24) - a one-dimensional problem. The

asymptotic equivalence between the v(X) and the MLE v is formally stated in the

following theorem.

Theorem 2: Under A1-A2,

i) v(X) is consistent;

ii) v(X) = v + op(n -

.and hence iii) n4'(v(X) - vo) also has N(O, I1(vo)) as a limit in law.

Remark 2: The asymptotic variance-covariance matrix j1 (vo) can be estimated by

substituting consistent estimates for the unknown parameters in (2.14). The right hand

term in (2.16) can be used for estimating X'(u).

Remark 3: When the underlying population is continuous, equation (2.24) can still be

used to estimate X. Thus, parameters such as the cumulative distribution function, N, and

R can also be estimated from (2.24) and (2.21) for this problem. Properties of these

estimators will be investigated elsewhere.
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Remark 4: As k -.0, it can be seen from (2.12) that the sampling proportion fo -.0. For

this limiting case, we can see from (2.21) that vk is proportional to PklWk. (Note that only

the probabilities 0k are meaningful in this case.) These are indeed the MLE's for this

special casc: Ok = PkcL Wk where a is a proportionality constant (see Cox, 1969 or Vardi,

1982).

2.4 Efficiency

We defme efficiency in this context as follows. Let i be a competing estimator to v(X^)

such that

NT,,(n"( - va)) - sN(O, ZVO) (2.25)

for all sequences of populations with v = vn such that nO(v. - vo) is bounded and

Vo R+X ... XR+. Then,

Theorem 3:

z a (v )

where ' is as usual defmed by A a B iff A - B is nonnegative definite.

Altemative equivalent formulations of efficiency are a Hajek convolution theorem

when the limit in (2.25) is not necessarily Gaussian and an asymptotic minimax theorem

where all competitors are permitted but optimality is measured by the minimax risk in n *

neighborhoods of vO.

3. A Simulation Study

In this section, we examine the fmite sample behavior of the MLE's through a small

simulation study. The distinct values of the finite population were taken as the quantiles

of a standard exponential distribution -In ( k1/2), k = 1, ..., 5, with
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multiplicities Nk = 20, k 1, ..., 5, and hence N = 100. We generated 1000 samples of

size n =SO each from this population with ppswor according to the size measure w(y) = y.

From each sample, we computed the approximate MLE's of Nk and Ok based on Vk(X) in

Section 2.

[Figure 1 about here.]

Figure 1 shows the box plots of the (approximate) MLE's of Nk, k =1, ..., 5. The

estimates are reasonably centered around the true values of 20. The variability in the

distributions decreases as one goes from left to right, corresponding to increasing values of

zk's. This is intuitively reasonable because of the selection bias which results in more units

being observed from cells with large zk - values. The heavier upper tails are also be

expected since the lower tails are bounded by the constraint Nk a nk, the observed

frequencies.

[Table 1 about here.]

Table 1 compares the asymptotic errors of the estimators with the observed standard

errors from the simulation. We see that the asymptotic formulas provide reasonable

approximations to the true standard errors in almost all the cases. It is still possible,

however, that interval estimators based on asymptotic normality may not do well because

the finite sample distributions are quite nonnormal. This appears to be the case for the

data in Figure 1. A referee has suggested the use of transformations to enhance normality

and the quality of interval estimation. While this is possible, it is unlikely that a particular

transformation, like the log-transformation, will work well in all cases. Our own

preference is to use the bootstrap technique to obtain interval estimates in these

situations.
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[Figure 2 about here.]

Figure 2 shows the box plots of Ok k = 1, ..., 5. These distributions are fairly

symmetrically distributed around the true values of 0.2. The variabilities do not exhibit a

definite pattern as they did with Figure 1. Table 1 also shows that, for the 9k'S, there is

little difference between the actual standard errors and those obtained from the asymptotic

approximations. Thus, the asymptotic normal approximation for Ok (or something like

logit ( 80) ) is likely to provide reasonable interval estimates for e.

4. Application

We shall now illustrate our results by applying them to oil and gas discovery data from

the North Sea Petroleum Basin. The data, given in Table 2, are the estimated recoverable

reserves (in millions of barrels of oil and gas equivalent) from 99 reservoirs that were

discovered during the period 1967-1976. At the time of the last indicated discovery,

drilling had not advanced far enough to exhaust the play. So, it was of interest to

estimate the remaining amount of petroleum resources in this reservoir.

[Table 2 about here.]

Smith and Ward (1981) and Andreatta and Kaufman (1986) have modeled the North

Sea data by using the successive sampling scheme (1.1) to approximate the discovery

process. Unfortunately, their original data are unavailable and the data in Table 2 appear

to differ slightly from theirs; so we cannot make a comparison of our estimates with theirs

which are based on other estimation schemes.

[Table 3 about here.]
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Following the previous analyses, we grouped the data into seven classes and replaced

the data by the class mid-points. The class sizes, mid-points, and observed frequencies are

given in Table 3. We estimated the parameters through the approximate MLE's in

Section 2 with the weight function w(y) = y. The estimates of the cell multiplicities, Nk,

and the cell proportions, Ok, together with their estimated standard errors are given in

Table 3. The population size N is estimated to be 404 with a standard error of 144. Most

of the 404-99 = 305 unobserved reservoirs are in the smallest class-size. As expected, the

units in the larger class sizes have been mostly observed. The total amount of available

resources from this pool is estimated to be R = 46,942 million barrels with a standard

error of 8,259. Since 31,925 million barrels have already been discovered (based on the

grouped data), the remaining undiscovered resources are approximately 15,907 million

barrels. Table 3 also gives the estimated cell proportions and their standard errors.

[Figure 3 about here.]

Although there are 99 discovered pools in Table 3, we can actually estimate the

population parameters based on each sequential sample of size i, 2 S i s 99. Figure 3

shows how the estimates of N vary with time as more discoveries become available. There

is initially an increase, from an estimate of 268 based on the first two discoveries, to

around 2600. But after the first 30 discovered pools, the estimates become quite stable

and vary only from about 300 to 500.

S. Related Asymptotic Theory

In this section, we develop some results on the asymptotic behavior of estimators under

ppswor sampling. Our results are in part restatements and in part extensions of the results

of Rosen (1972), Holst (1973), and Gordon (1989). While the conditions we give can be
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considerably weakened, they are adequate for our purposes.

Consider a successive sampling scheme with replacement and with probability of

selection proportional to the size measures {w1},Y.1. Let Xj(m) be the number of times U1

is selected in such a ppswr scheme of size m, and let

ej(m) = min(Xj(m), I), (5.1)

N
the indicator of the event that U1 is selected. Further, let wi' = wI/ 2 w,, the normalized

r-l
weights, and el(m) = 1 - e1(m). Evidently under the ppswr scheme,

E e;(m) = (1 -w) m (5.2)

Let N(t) be a homogeneous Poisson process independent of everything with intensity N,

i.e. E(N(r)) = Nt. If we defme X1(N(t)) in the obvious manner, then it is easy to see that

X1(N(t)) are independent Poisson (Ntwv1). Therefore, el(N(t)), 1 s j s N are

independent. Further, let [x] denote the greatest integer function, and defme

N
MN(t) = inf{s: 2 e1(N(s)) = [Nt]}. (5.3)

J-1

Then, evidently {ei(MN(n))} have the same distribution as { 1 given by (2.1).

This embedding of ppswor in a Poisson sampling scheme also leads immediately to

Gordon's (1989) formula. See also Holst (1986). Let Tj be the waiting time to the flrst

"event" in the Poisson process Xj(N(s)), 1 5 j S N. The Tj are independent exponential

(Niv) rv's. The probability of obtaining a particular sequence Uj1, ..., Uj. of objects in

the ppswor scheme with n = N is simply
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P[TjI < TJ2< ...< T>^ =n wWig

r1

and this is Gordon's (1989) formula.

Given a function gN: [0, 1] - R, defme a stochastic process on [0,=) by

N
WN(t) m N-" I gN(J/N)(eJ([Nt]) - (1 -I ,)(NtJ) (5.4)

J1-1

It is convenient to also think of the wI as being defmed by

wj = WN(jIN)

where WN:[O, 1] -R+. We shall assume:

RI: The wN are bounded and

WN(t) - w(t) > 0 on [0,1]

N
so that if WN(t) - wN(t)/[N 1 wj], then

1-1

WN(t)
- w (t) ffw(s)ds -

(t)

Note that under A2 we can take wv(t) = wk on an interval of length 0k' 1 C k < K where

the Ok's are defmed in (2.4).

R2: The gH are bounded and

gN(t) -g (t) on [0, 1].

Defime

WN(t) = WN(N(t)/N). (5.5)

From (5.4), we can write WN(t) as
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WN(t) = N" g8N(j/N) ([eC(N(t)) - e N1 - [(1 - W,)N(t) -e r]}
i-i

Under our conditions,

N(t) log (1-w ) =-w1N(t) + Op(N

and

(1 -w,)N(i) - eNI = - e -Nv'1J w1(N(t) - Nt] + Op(N-').

All remainders which are written in Op form here are functions of the form Rflv(t) such

that sup3,,t lRjv(t) I has the prescribed order. Therefore,

WP(t) = N {N(t)()[N(t) - Nt] + 2,gN(jlN)[eC(N(t)) - e ] } + Op(N )
J-1

where

gN(t) = Z gN(J/N) ij ey
i-i

Proposition 5.1: The processes WN converge weakly in D [0, T] to a Gaussian process W

with mean 0 and, if s < t,

cov(W(s),Wt)) = lim N1 g.(jIN)e (1 - e SNS)- sv(s)gN(r)J . (5.6)

Proof: Finite dimensional convergence follows from Lindeberg-Feller. Tightness of WN(r)

can be inferred from the proof of Proposition 5.3, which is a more general version of this

result. See also Sen (1979).

To verify (5.6), since
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gN(t) = - coV gNj/Nej(N(t)), N(t))/Ntr

note that

cov(WN(t), N(t)) = 0,

and

cov(WP(s), N(t) - N(s)) = 0.

Hence,

cov(Wy(S), Wy(t)) = N 1 z gj(j/N)cov(e (N(s)), el(N(t)))
]-l
N

+ N-1 cov( :z gN(j/N)eC(N(t)), N(s))
i-i

which yields (5.6). 0

By our assumptions, if

i(s) ff g(u) v(u)e~s(u) du,

then, for s < t,

cov(W (s), W ()) = fJ g2(u) etk(u)( - e v'(u)) du - s g(s)g(r). (5.7)

It is easy to see that the process W has continuous sample functions.

By Proposition 5.1

N-1z eq(N(t)) = N' z e NJ + Op(N-')
1-1 1-1

uniformly on [0, TI. So, from (5.3),

MN(t) = TN(t) + Op (1)

uniformly on [0, TI, where
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N '7inI e -,N?) = l-t. (5.8)

Comparing (5.8) and (2.12), we see that rN(') is just a scaled version of X(Q). Under our

assumptions,

'TN(t) = r(t) + o (1) uniformly on [0, T], (5.9)

where

f1 c~)'(') (Xdxc -t. (5.10)0

Since (el(MN(W)), . . . ,ce(MQ(t)) are distributed as {I']}, I - 1, . . . ,N, we obtain the

basic result proved by Rosin (1972), Holst (1973), Sen (1979) and Gordon (1989) under

different conditions. A more general version of this result is given in Proposition 5.3. In

this section, we will let £ denote weak convergence in D [0, T].

Proposidon S.2: Let

VN(t) - N 2 gN(J/N) (ry - [1-NN(*J

Then, under our assumptions, for all T< = ,

VN(Q) - W(Qr()). (5.11)

We actually need a slight extension of this result which is new. Let

hN:[0,T] X (0, 1] - R,

and defmc

WN(t) = N-' IN hN(t, jIN) ceY([Nt]) - (1 - wvj)'N]J
a -1

and WN, VN and hN(t) analogously. Replace R2 by
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R2':

a) hN(t,u) - h(t,u)

b) sup IhN(t,u)i sM1 <

c)
ahNC SUIu| dN(t,u) SM2 <x

Proposidon 5.3: Under R 1, R 2' and A 1-A 2,

se

MN-W,W(5.12)

VN -W(r()). (5.13)

where, if s t,

cov(W(s), W(t)) = f1 h(s,u)h(t,u)e'"(u) (1 - es'v(u)) du- sh(s)h(t), (5.14)

and

h(s) = fIh(s,u) wv'(u)esw(u) du, (5.15)

and T is given by (5.10).

Proof: (5.13) follows immediately from (5.12) and (5.11). Finite dimensional convergence

of WVN and (5.13) follow from the Lindeberg-Feller theorem as in Proposition 5.1. For

tightness we note that the scaled Poisson processes

N-%hN(t) [N(t) - Nt]

are evidently tight. If tl < t2 < t3 and Afiv(t) - ec(N(t)) - e J, then

(N N (N NN

E1(( Vi,)2(X2 V1)2J ' 12( E(V11V2))2 + (2,EV1)( EV2) (5.16)
j-1 j-l jmj jmj1

where
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V1J = hN(t2 IJN)AJ(tz2) - hN(t I , j/N)Af(tr1),

and

V21 = hN(tO, j/N)Afl(t3) - hN(t2, jIN)AflV(t2).

Now

E(VlJV21) = hN(t2,j/N)hN(t3,j/N) eM) 3(1 - e N3j:2) (5.17)

- h?i(t2,j/N)e NWJ:2(1 - e-NlJt2)

- hN(tj .j/N)hN(t3,j/N) e - j3 (1Ie- M9

+ hN(tI,j/N) N(t2 /lN)e 1N(1- e ju1)

The right-hand side of (5.17) is bounded by (M2Nij + M1M2)(t2 - t1). Similarly,

EV2J = O(t2-r1), EVij = O(t3 - t2). (5.18)

and from (5.16), (5.17), (5.18) we see that the conditions of Theorem 15.6 of Billingsley

(1968) are satisfied. Thus, (5.11) and Proposition 5.3 follow. O

Let {cuvl, 1 s i 5 n, 1 5 j 5 N be a double array representable as

ciql = mw hN(i/N, jIN) .

Assume

R3:

a)syuN-N12 ImIN<I<
1-1

b ) MN(s) - N miN - M(s) on [O,fo].
i sNs

Proposidon S.4: Suppose A1-A2, RI, R2', R3 hold. Then,

N- 7, 7, Cl(I] e
i- vNSIN)wJ]V.N(OtaC2) (5.19)

Cqm'. Iy

where
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a2 2f ('fo fk(h(@(s), u)h(r(t), u) e-T()O(u)(l - e-s)w(u)) (5.20)

-s(s) h(Q(s))h(T(t))) dM(s)dM(t)} du.

rfo' fo -
Proof: (5.19) follows from the fact that JfVN(S) dMN(s) - W (S)) dM(s). O

As an immediate consequence of Propositions 5.3 and 5.4, we obtain

Corollary S.S: Under the conditions of Proposition 5.4,

suf 1N1 7, hN(s,j/N)I4$] - f01h(r(s),u)(1 - e-T(s)'(u)) du (5.21)O<s<f jmi

=Op(N-)

and

N-2
n N

- I ff h(1T(s), u)(l-c~e(s)w())dM(s) du (5.22)
1-1'-1 0 0

+ Op(N-4).

6. Proofs

We now complete the proofs of Theorems 1-3 in Section 2. But flrst we need some

notation and preliminary results. Defme

lrrr(U) = lTr(X(U)),.rTr(U) = 1 -

IrO= Cr(fO), '1TrO = 1- io, and PrO = VrO'rrO.

Lemnma 6.1 establishes the properties of A(v), an asymptotic approximation to the

likelihood. We will need these results in our proof of the consistency of maximum

likelihood and approximate maximum likelihood estimators. Let
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K
A(v) k-i(vk: log Vk - (Vk - pk)log (vk - Pk)

- vkO log VkO+ (VkO -Pko) log (VkO - PkO)) (6.1)

w(v,- 'Tr*(U)VrO)r'K
_ f flog , - du.

I WrVrO;1T (U)
r1l

Lemma 6.1:

A(v) S A(vo) = 0 (6.2)

with < unless v = vo.
K

Prof: Maximize A subject to 2 wkVk = C, Vk 2 Pko, 1 S k s K. There is a unique
k-i

solution of V(A - O0(c)0kwkvk) = 0 given by,

log Vk
Vk - Pko=OLW

where a(c) is the unique solution of

K K
7, Wk Pko (-e =c, c->7 WkPk (6.3)
k-i k-1

We claim

Vk(c) = Pkoe-e (C)wk

gives a local and hence a global maximum. Evidently, vk(C) maximizes A subject to the

constraint iff it maximizes

K
A(v) - > {Vk 10g Vk - (Vk - Pko) log (Vk - PkO)-a(C)wkvk}

k-l
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But the Hessian of A is just Diag(-pko [vk(vk--pkO)f1) and hence v1(c) is a global

maximizer. Now,

a- A(v(c)) = :z log
k-1

Vk | FiffoaV
_

Vk PkO) aC~

t-1

7, Wk'lrk*(U) VkO
kini

= -.[* czWi PkOle (1 k)- 2-"t)-

+Rfo (C Wkwk'(U) VO)) du0 k-ikkl

= (c) + fo 7, Wk lk*(U) Vk10) du,

which is increasing in c. Since a(v(c)) = 0 if a(c) = Xo, or equivalently v(c) = vo,

the lemma follows. O

Proof of Theorem 1:

h5) (i/N,j/N) =

We can apply Corollary 5.5 by identifying, for k = 1,..., K,

-
W

' , 1Si5n, 15jsN,
Wr Vro 1r(i/N))

and

to conclude that

SUpIsnI D (i)
n

K
- Wk VkO irk(i/N) = op (l1)

k-i

n- 1

log r(nVk + 1) - log r(nf(Vk -Pk) + 1) = log n + 2 log(vk --jln),
j=0

du

I(YJ= Zk)

VkOlTkO

Also,

(6.4)
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P&o
= logn + flog(vk-u)du + op(l)

0

uniformly in Vk, for k 1, ..., K. The second equality follows from (2.11) since

Pk =Pko + op(l). Let A(v) be given by (6.1). It then follows that

n1(L(v) - L (vo)) = A(v) + op(1) (6 5)

uniformly for {v:O5fS1-E} for every e in (0, 1). Recall (2.6) and the l-1 relationship

between v and (0,1). Uniform convergence here and in the sequel means that if R,(v) is

the remainder in (6.5), then sup{IR.(v) I: v as specified} = op (1). By Lemma 6.1, A s 0

with equality iff v = vo. (Note that vo still depends on N as does A.) By identifying

h() (i/N,j/N) appropriately as before, it can be shown using Corollary 5.5 that, for

j = 1,2,

n-I d8L (v) = oJA (v) + op(l) (6.6)
Vk1 . .Vk Vk dv aVk

uniformly for 0sf 9 1-e for every e in (0, 1). From this and the fact that

aA- (v0) = 0,k = 1, ...,K, with probability -1, there is a unique maximum of L in a
a9Vk

neighborhood of v0- (0,fo). Further, with probability -lI the first local maximum

defmed in Section 2 coincides with this value, thus proving consistency.

To establish asymptotic normality, from (6.6) and the consistency of i, we see that

-,~ aL K '
ki

n ddL (vo) = _(v0) (v} - VA0) + Op( I I-vo 12) + Op(n l), (6.7)

aLfor 1 -< k sK. On the other hand, if we expand n 1-(v0) around Pko and the limits of

n-1D(i) and apply Corollary 5.5 again, we obtain
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n~l 8V (vO) = (Pk - PkO)/vkO'rkO

n

-1

(6.8)

(xK -
2

K
2 [wrvro1rr(i/N) ]2 x [n1 D(i) - I wr V,rIr(i/N)]I
-1 r-1 )

+ Op(n-1).

We can now apply Proposition 5.4 to the right-hand side of (6.8), identifying h) (i/N.j/N)
and mw as before to conclude that

(6.9)' '. dOV -)N(O I(VO))

Lemma 6.4 shows that the covariance matrix can be obtained explicitly as

I(vO) = - °A(v)I"KXKaVJaVk

Now

d'A(v0) = wjwJfoffO [XA(U)]2 du - &Jkdko,avJavk
(6.10)

where dko and X'(u) are defined in (2.15)-(2.16). By Theorem 8.3.3 of Graybill (1983),

I(vo) is invertible iff

fO [x (U)]2 du # (fox J-e, t11 wkOk1Tk(Xo)/Trk(X0))

But (2.23) holds by Lemma 6.2 below, hence completing the proof.

(6.11)

0

Lemma 6.2: Under Al-A2,

fo f (X'(u))2 du <
0

L wiW k Fk(X(t))/1rk((X(t)) -1 for all t e (O, 1) .

-% aL(vo)
n

av,
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Proof: Let u(A) be the inverse mapping of u -X(u). Then, X'(u) =

implies u'(X) -
K
> Ok wk;Fk(X). Therefore,
k-l

t A(t)

f(X'(u))2 du = f (u'(X))Y1 dA
0 0

A(t) x -1

= f I OkWkrrk(X) dX.
0 -1

So, we need to show that, for Xe (O,cx),

A(X) -|j ,
[ kWk'nk(S))

0 1

Note that A (0) = B (0) = 0. Further,

A'(s) = 7, OkWksk(S)

and

B'(s) =

7. 9k Wi k(S) I [rk(S)]2
k-1

9kWi 'TRk(S)/ Trk(S))

Define the measure p, by

ek wkIFk(S)dp. (k) = K

lWrfr(S)
rini

Then

ds < , 9ekwiFk(X)/Irk(X) -nB(X).

K - I

7, Ok WkiFk(X(U))
=1
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B (s) E=E[W/(j_-IWs)]2
> 1A '(s) (,[/1-SW25w]

Therefore, B (X) > A (X) for all X e (O, c), as required. O

We need the following lemma in the proof of Theorem 2.

Lemma 6.3: Ao is the only solution of Z(X) = X> 0.

Proof: Let

K 'TrkO
c(X) = 2 Wk VkO (x)

Then, for X > 0,

-a: < c'(A) = -wk. Wi VkO 2(A ' k(X) < 0

and in the notation of Lemma 6.2,

d aA- (v(c(X))) = -(v(c(X))) c'(X)dX ac

On the other hand, a direct calculation gives

aA(v(c(X))) = - Z(X)
av

and the result follows from Lemma 6.2.0 0

Proof of Theorem 2: To prove consistency, we see from Corollary (5.5) that

Zn(X) = Z(X) + op(l) (6.12)

uniformly for 0 s X <M where



- 30 -

Z(X)JVfo Jrkvo 1I'Z(A =4toW ITre(k)O 7T*(a)ja du. (6.13)
0 [kmi

Note that Z(O) = 0. By Lemma 6.3, Z(X) = X has the unique positive root Xo at which

point Z' (Xo) < 1. Since Z"(X) -P Z' (X) uniformly for 0 < XA M, we conclude that X is

consistent for Xo. Since Pk tends in probability to PkO, we have consistency of v(X).

It is easy to see that (6.7) and (6.8) must also hold for v(X). The rest of the results

can be proved as in Theorem 1. 0

Proof of Theorem 3: By Hdjek (1971) to show efficiency it is enough to:

1) Establish that the uniformity in convergence specified by (2.25) holds for v(A), as is

evident from our proof of Theorem 2.

2) Show that if v,-=vO + n -tn where t, - t then

2. (L(v.) - L(vo)) -.sN(_-. 2 t'I(vo)t3 (6.14)

and

fv, (L (v,) - L (vo)) - sN t I(v)t t I(vo)Jt (6.15)

But (6.14) and (6.15) are proved in the following lemma which establishes local

asymptotic normality in our models, a result needed both for efficiency and an important

"information" identity. Hence, efficiency follows. 0

Lemma 6.4: (Local asymptotic normality)

If vn = vo + tn -% and r - t, then
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o(L(v.)-L (vo)) - sN (- tI°(). t'Iz(vo)tO) 9

.Tv,(L(vn) - L(vo)) - sN (v)t r'I(vo)t)9

I A(v0)V I = _ i(vo).
aVjaVk

Proof:

A study of Le Cam (1960) actually shows that if we can establish convergence to

sN(p.,ao2) with a2 = r'I(vo)t in (6.16) and tightness (or a fortiori convergence to a normal

distribution) in (6.17), then (6.16) and (6.17) hold as given.

Note from Corollary 5.5 that, for all j a 0,

-1 1L(v) = d ( ) +opl
aVk1 .a~Vk 8Vkl . &aVk,

uniformly for OSf 1-e for every e in (0, 1). Therefore,

L(Vn) L(vo) = n-%t'VL(vo) + n 11 a IL(v) , + o (n- )From2 no aVJaVk

From Theorem 1,

(6.19)

and by (6.19) again,

1 02L(vo) = ,2A (VO) + Op (1)
n avjaVk avJavk

So,

and

(6.16)

(6.17)

(6.18)

2,0(n -%t p 7 L (vo)) -- SN(O, t
1 I (vo) t) 9
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2o(L (vn)-L (vo)) - sN [t
1 I dVJ(Vk) il t, t'l(vo)t .

dvjdVk

Similarly,

.v. (L(v.) - L(vo)) - sN [- St' I I Avo) I I t, t I(voft)
OVjOVk

By Le Cam (1960), for all t

t, II 2A(vo) 1
t = - t'I(vo) t,

avjaVk

and the lemma follows. a



Table 1: Comparison of Asymptotic and Actual Standard Errors

Estimator Asymptotic Actual

Vi .38 .44
V2 .27 .30
v3 .22 .27
v4 .16 .17
v5 .08 .09

el1 .12 .12
Q2 .07 .07
I3 .05 .05
64 .04 .04
o5 .07 .06

N 49 55
R 30.5 33



Table 2: North Sea Oil and Gas Data

Name or Discovery Recoverable Name or Discovery Recoverable
Location Date Reserves Location Date Reserves

Baldr 7-67 100 W Beryl 8.74 115
Cod 6-68 100 N. Cormorant 8.74 367
2/3-1 4.69 12 W. Heathe 9.74 75
Montrose 9-69 150 15/23.A1,2,4B 10.74 225
Ekofisk 9-69 2100 211/13 11.74 250
Josephine 9-70 88 15/22.1 11-74 t
Forties 10-70 1800 Tatan 1.75 268
Tor 11-70 340 Hod 1-75 88
W. Ekofisk 12-70 375 3/11.1 1-75 t
Auk 2.71 63 Mabel 2.75 100
FrigS 6-71 1264 14/20.1,5 2-75 62
30/2-1 6-71 t Brat 4-75 649
Brent 7.71 2252 211/27-3 4-75 258
Statfjord 2-74 3017 Crawford 4-75 350
Argyll 8-71 28 Tern 4-75 238
3/25A 12-71 310 2110-1A,2,3 4.75 50
Lomond 5-72 220 W. Nin 5-75 100
Bream 6-72 75 9/13-7 5-75 650
S.E. Tor 6-72 45 Gudrun 6-75 450
Albuskjell 8-72 714 21/2-1 6-75 50
Beryl 9-72 617 312-lA 6-75 242
S. Cormorant 9-72 140 VaIhall 6-75 647
Edda 9-72 126 3/4-5, 3/9-1 7-75 400
Eldfisk 12-72 1186 16/7-2 8-75 t
Heimdal 12-72 285 16/21 8-75 45
Piper 1-73 679 Murchison 9-75 365
Maureen 2-73 148 211/26-4 9-75 175
Dunlin 6-73 582 211/18-9 9-75 50
Thistle 7-73 530 15/30-1,2 9-75 t
3/19-1 7-73 t 15/21 10-75 62
3/15-2,3 8-73 150 15/13-2 10-75 200
E. Frigg 8-73 40 Fulmar 11-75 485
Hutton 9-73 240 3/23-1 11-75 t
3/29-1,2 9-73 t 3/8-4 11-75 t
Brisling 10-73 62 15/29-2 2-76 t
3/4-1,2,3 10-73 225 23/25A 3-76 100
Alwyn 11-73 358 Ranger 3.76 75
Heather 12-73 150 Renee 4-76 162
N.W. Tor 12-73 t 211/16 5-76 t
Ninian 1-74 1117 9/19-2 5-76 t
Odin 3-74 178 3/28-1 5-76 t
3/4-4,5 3-74 200 N. Thisde 7-76 175
Flyndre 4-74 t Thelma 7.76 375
N.E. Frigg 4-74 66 30t7 8.76 t
Seiper 4-74 660 7/12-2 8-76 200
Claymore 5-74 438 Beatrice 9-76 162
Andrew 6-74 150 35/3 10.76 t
S.E. Frigg 6-74 7 33/9-7 11-76 225
Bruce 7-74 450
Magpus 7-74 430
Buchan 8.74 155

Source: O'Carrol, F. M. and Smith, J. L. (1980)
Notes: 1. Data shown are the constructed "consensus" data in O'Carrol and Smith

2. Reserve volumes are in millions of barrel of oil and gas equivalent.
3. t represents small reservoirs for which estimates are not available. These have been

included in the smallest class size.



Table 3: Analysis of North Sea Data

Class Interval

[0, 50)
[50, 100)
[100, 200)
[200, 400)
[400, 800)
[800, 1600)
[1600, 3200)

25
75
150
300
600
1200
2400

26 262 (+ 110)
15 56 (± 22.5)
17 36 (± 12.3)
20 28 (± 6.5)
14 15 (±' 1.8)
3 3 ( .15)
4 4 (± .01)

99 404 (± 144)

ek (± s.e.)

.64 (± .06)

.14 (± .03)

.09 (± .02)

.07 (+ .01)

.04 (±..O1)

.01 (± .00)

.01 ( .00)

A

nL Nk (±-s.e.)
-



Fglpre Legends

1. Figure 1: Box plots of the approximate MLE's, Nk, k - 1, ..., 5 from the simulation study. Note

the distributions are all reasonably centered around the true values of 20, the upper tails are heavier

as to be expected, and that the variability decreases from the left to the right.

2. Figure 2: Box plots of the estimated proportions, ek, k 1, ..., S from the simulation study. The

distributions are centered around the true values of 0.2 and are reasonably symmetric.

3. Figure 3: Plot of the estimates of the population sizes for the North Sea Data based on increasing

sample sizes. Note that the estimates settle down around sample size 40 and vary thereafter only in

the region of 300.600. The fimal estimate of 404 is based on a sample of size 99.
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Figure Legends

1. Figure 1: Box plt of the approximate ML's, Nt, k = 1, ..., 5 from the simulation study. Note the

distributions are all reasonably centered around the true values of 20, the upper tails are heavier as to be

expected, and that the variability decrases from the left to te right

2. Figur 2: Box plots of the estimaed proportions, Oh,k = 1, ..., 5 from the simulation study. The

distributions are centered around the true values of 0.2 and are reasonably symmetric.

3. Figure 3: Plot of the estimates of the population sizes for the North Sea Data based on increasing sample

sizes. Note that the estimates settle down around sample size 40 and vary thereafter only in the region of

300-600. The final esimate of 404 is based on a sample of size 99.
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