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Abstract: The excess-mass ellipsoid is the ellipsoid that maximizes the dif-
ference between its probability content and a constant multiple of its volume,
over all ellipsoids. When an empirical distribution determines the probability
content, the sample excess-mass ellipsoid is a random set that can be used in
contour estimation and tests for multimodality. Algorithms for computing
the ellipsoid are provided, as well as comparative simulations. The asymp-

totic distribution of the parameters for the sample excess-mass ellipsoid are

derived. It is found that a nl/3 normalization of the center of the ellipsoid
and lengths of its axes converge in distribution to the maximizer of a Gaus-
sian process with quadratic drift. The generalization of ellipsoids to convex

sets is discussed.
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1 Introduction
Hartigan (1987) and Muller and Sawitzki (1989) independently proposed

a set statistic to estimate the contours of a density and to test for bimodality.
Hartigan notes that for P the unknown distribution of interest with density
p, the ca-level contour {2 : p(z) > ae, X E Rd} can be defined as the set that
maximizes

P(S) - aV(S)
over all sets S, where V(S) is the volume of S. The a-level contour of P can
be estimated from a sample if the empirical distribution Pn is substituted for
the unknown distribution. In particular, if C is the collection of convex sets
in IRd then
(1) arg sup P (C) - aV(C)

approximates arg supc P(C) - aV(C), which we call C,,. Note:Ca> coincides
with the a-level contour of P when the density has nested convex contours.

Additionally, Hartigan (1987) and Muller and Sawitzki (1989) base a test
for bimodality on the search for a second convex set, exterior to C,a, where
the density also exceeds the level a:

(2) sup sup P(C) -aV(C).
a cC<,

If the density is bimodal then the test statistic formed by substituting Pn in
(2) should be quite large.

In this paper, the case is treated when the supremum in (1) is restricted
to the collection of ellipsoids. The limit distribution of the ellipsoid that
maximizes (1) is found; we call this ellipsoid the empirical a-level excess-
mass ellipsoid. The simplification from convex sets to ellipsoids does not
seem unduly restrictive. Practically speaking, many distributions are nearly
elliptical or a transformation makes them so, and the density itself need not
have elliptical contours in order for an ellipse to find a primary or secondary
mode, or in order for (1) to be uniquely maximized over ellipsoids. The
class of ellipsoids allows a parametrization of the problem that enables us
to find the limit distribution of the empirical a-level excess-mass ellipsoid,
which is also key to determining the rate of convergence of the test-statistic
for bimodality. We show that the center of the ellipsoid of interest and the
lengths of the axes of the ellipsoid converge at a n1/3 rate to a Gaussian
process with quadratic drift.
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The asymptotic results presented here are dosely related to those that
arise from other set statistics that are contour estimates, density estimates,
and tests for multimodality. We describe a few of them briefly now.

Chernoff (1964) and Venter (1967) estimate the mode of a density func-
tion in one dimension by the center of the interval of fixed length to contain
the greatest number of observations and by the center of the shortest inter-
val to contain at least half of the observations, respectively. Sager (1979)
generalized these univariate set statistics to the multidimensional case. He
estimates the contours of a unimodal density by a sequence of nested convex
sets. The first and largest set is the smallest convex set to contain a fixed
proportion q of the observations; the second set is the smallest convex set
that contains proportion q of the observations within the first set, and so on.
Eddy and Hartigan (1977) proposed a similar multidimensional estimator.

These set statistics also arise in density estimation: the center of the fixed-
length interval of Chernoff coincides with the mode of a fixed-bandwidth
uniform-kernel density estimate; and the center of the shortest interval with
a fixed proportion of the observations locates the mode of the kth nearest-
neighbor density estimate, for k = 'n. Howeve; they are not completely
comparable, because in density estimation the bandwidth and the number
of nearest neighbors shrink with n. More recently, tests for bimodality con-
structed from density estimates have been suggested. Silverman (1986, p.139)
proposes a test based on the size of the 'critical bandwidth' that provides
a kernel density estimate which borders on bimodality. That is, a smaller
bandwidth gives a density estimate with two or more modes, and a larger
banduidth yields a unimodal estimate. Wong and Schaack (1985) assess mul-
timodality with kth nearest-neighbor density estimates. For values of k from
1 to n, they count those kth nearest neighbor estimates that are bimodal.
The number of k's that produce a bimodal estimate represents the size of
the smallest modal cluster among density estimates with two modes. A large
count indicates the presence of a second mode.

Asymptotic results for these set statistics include those of Chernoff (1964),
Andrews et. al (1972), Griubel (1988) and Kim and Pollard (1990). Chernoff
shows the center of the fixed-length interval converges at a n1/3 rate to the
maximum of a Gaussian process with quadratic drift. Griubel finds the length
of the shortest interval to contain half of the observations (the shorth) has a
v/;; asymptotic normal distribution. Kim and Pollard find general conditions
for which cube-root rates of convergence are obtained in arbitrary dimension.
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We make use of their results here to show that not only does the center of the
empirical excess-mass ellipsoid converge at a n1/3 rate to a Gaussian process
with quadratic drift, but additionally, unlike the case of the shorth, the length
of the axes of the ellipsoid also have cube-root rates of convergence.

The following comparison of the shorth and the a-level excess-mass in-
terval points out the difference between the convergence rates of these set
statistics. The a-level contour estimate is a maximization over I, the collec-
tion of intervals in R, i.e.

'or =arg sup Pn(I) - aV(I),
I

whereas the shorth is a constrained maximization over {I: PnI > 1/2}. This
constraint is responsible for the different convergence rates. Another factor
that plays a role in both set statistics' distributions is the nondifferentiability
of indicator functions.

To see how these two factors determine the rates of convergence, parametrize
each interval I by p its center and r half its length, so I,,,, [p - r, p + r].
Then

Pn(Ip,r) aV(Ip,r) = [P(Ip,r) - aV(Ip,r)] + [Pn(II,r) P(I-,r)]-
Typically, we would take a Taylor-series expansion of the deterministic term
about P(Io) - aV(Io), where Io = 'Po,o is the unique maximizer of P(I) -
aV(I), and at the same time we would expand I;,r in the stochastic part
about Io. Nondifferentiability of indicators does not allow the latter expan-
sion. Therefore, assuming P has a differentiable density p,

O sup Pn(I,r)-Pn(IO) -aV(Ip,r) + aV(Io)
p,r

= [(- ro)2 + IL2]p('o + ro) + [Pn(I,r -Io) - P(IH,r - Io)].

The coefficient of the first term is negative, as expected in a maximization.
The varianceofthe second term is O((Ir-rol+I,-p ol)/n). Kim and Pollard
(1990) point out that the maximization occurs for values of the quadratic
trend that balance those of the noise in the second term, which implies Irn -
rol + Illn - oI is of order n1/3, for the optimal interval I

Both An -jlo and rn -ro of the a-level excess-mass interval have nonde-
generate limits when normalized by n1/3. Not so for the length of the shorth.
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Here is where the constraint that Pn(In) = 1/2 enters the picture; a faster
n1/2 normalization is needed for a nondegenerate limit for r - ro. See Griubel
(1988) and Kim and Pollard (1990) for a more thorough explanation. They
show that for An = sup1 IPn(I) - P(I)I and some constant c that depends
on P,

Pn(IpO,rO+cA) .> An + P(IpO,ro+CAn) > 1/2
and

Pn(Ipi ,rO-cA,1c) < -An + P(Ipoo,ro -c&n ) < 1/2.
These inequalities imply rn - ro is of order n-1/2. However, this constraint
does not change Pn's rate of convergence.

In addition to providing a consistency result for the convex set in (1)
and a heuristic argument for a bound on its rate of convergence, Hartigan
provides an algorithm for finding the empirical a-level excess-mass convex
set in two dimensions. The algorithm builds up polygons from triangles with
vertices at the observations. It requires O(n3) computations. Hartigan also
proposes a faster method that approximates (1) by dividing the plane into
N2 cells using only the centers of cells as potential vertices for the convex set.
In Section 3, we show that in two dimensions, determination of the a-level
excess-mass ellipsoid also requires many computations, about O(n6). We too
present a faster algorithm, based on that of Rousseeuw and Leroy (1987), to
approximate the ellipsoid.

Muller and Sawitzk-i provide algorithms for finding multiple modes in
one dimension. They build a density contour cluster tree which they call a
'silhoutte' by varying a and finding theM disjoint intervals In, (a)... In,M(a)
that maximize, over the collection of all possible M disjoint intervals,

M

E PnIj - aV(Ij).
j=1

They do not extend the silhoutte to higher dimensions.
The remainder of the paper is organized as follows: Section 2 contains

the formal definition of the excess-mass ellipsoid as well as a proof of con-
sistency. Section 3 compares the ellipsoid that estimates the a-level contour
to the minimum-volume ellipsoid, which is a robust estimator of location
and scale in the multivariate setting. This comparison leads to algorithms
for computing the ellipsoid of interest here. Section 4 contains weak conver-
gence results for the sample excess-mass ellipsoid and Section 5 generalizes
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the main result of Kim and Pollard (1990) to indude other rates of conver-
gence. This result is then applied to set statistics of interest to Hartigan
(1987) and Muller and Sawitzki (1989). Proofs are in Section 6.

2 The Set-up
Let Xl, ... , Xn be n independent observations from the distribution P

with density p on Id, and let Pn represent the empirical distribution con-
structed from the observations. The constant a is assumed positive. Let E
denote the collection of ellipsoids {E} in IRd and S the collection of spheres
{S} inlRd.

Definition: Define the a-level excess-mass ellipsoid to be the ellipsoid .EN
that maximizes, over E,

(3a) P(E)-aV(E).

Similarly, the a-level empirical-excess-mass ellipsoid Eft maximizes, over E,

(3b) Pn (E) -aV(E). 0

Definition: The a-level excess-mass sphere So is defined to be the sphere
that maximizes

(4a) P(S)-aV(S),

over all spheres S in the collection S. The empirical version Sn maximizes,

(4b) Pn(S)-aV(S). 0

If the excess-mass ellipsoid or sphere is not uniquely defined, use an ar-
bitrary fixed rule to choose a candidate ellipsoid or sphere from among the
possibilities. We ignore the slight complication in the above definitions that
this rule entails. Only those distributions where Eo and So are uniquely
determined are considered below.

If P belongs to a family of elliptical distributions then the density p can
be expressed as

((- )1( A )),
for some function g : R+ --+ R+ and some symmetric positive definite matrix
E. The density need not be of this form in order for Eo to be uniquely
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determined, but this restriction is placed on p to simplify the central limit
theory for En.

The advantage of restricting the maximization to ellipsoids, or even spheres,
is dear from the parametrization of these sets. Each element S of S can be
parametrized by A E Rd its center and r E R+ its radius. Denote such a
sphere S(u, r). This parametrization is insufficient for ellipses. An ellipse
can be represented via the quadratic form:

(X- p)t1(X - IA) < 1

where s E Rd and E is a positive-definite symmetric matrix.
Parametrize the ellipse by (js, A) where s is the center of the ellipse and

A is the d + (d) vector of elements of A = 1/2, the symmetric square

root of E. That is, A (A, A22,.. .,Add, A12, A13,, A23, ...,Ad-1,d) where
A = [Ai:] =ma*().

The collection of spheres is the subset of £ such that A can be written as
AI, for some positive scalar A. In this case, the quadratic form above reduces
to (: -_ )'(X _ A) < A2, the first d elements of A are A and the last ( 2)
elements are 0.

Express So, Eo, Sn and En as S(PO, ro), E(po0 o), S(pn, rn) and E(An,XAn),
respectively. We determine the limiting distribution of the parameters (p n irn)
and (An An) in Section 4. As for consistency, the lemma below provides an
almost-sure result for the parameters of En. The result for Sn is implied by
that of En.

Consistency: Suppose the ellipse Eo = E(pO,AO) uniquely maximizes (3a)
and P has bounded density p. Then E(pn,An) the ellipse that maximizes
(Sb) is such that

An 'AO
and

An -~Ao almost surely.

Proof: The proof follows from an application of the Glivenko-Cantelli result
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for ellipsoids in Rd. That is,

sup IPn(E)-P(E)- 0 a.s.

(See Pollard 1984, Theorem II.24). In particular, Pn(En) - P(En) 0 a.s.
Denote the supremum above by Anz

The definition of En implies

Pn(En) - aV(En) > Pn(Eo) - cV(Eo)
or

P(En) - aV(En) + An 2 P(Eo) - aV(Eo) -An
Likewise, the definition of Eo implies

P(Eo) - tV(Eo) > P(En) - aV(En).
Let J(u, A) = P(E(s,A)) aV(E(p, Ai)). Combine the above two inequal-
ities to show

I(/ni Xn) J(,Uo io)I < 2A.
The function J is a continuous function of (t, X), because P has a bounded
density. Therefore, the uniqueness of the maximum yields the desired con-
sistency, provided J(A, A) is bounded away from J(AO, Xo) outside some
compact region about (Ito, so). This provision is implied by boundedness of
P. O

A similar argument works for the Hausdorf distance between En and Eo
(see Hartigan (1987)). Notice that if a > supg, p(ar) then the ellipse Eo is
degenerate, and so, is not unique.

3 Minimum-Volume Ellipsoids and Computational Algorithms
The excess-mass ellipsoid (EME) can be recast as a function of the minimum-

volume ellipsoid (MVE). This representation is useful because it suggests
algorithms for computing En. See for example Titterington (1978), Silver-
man and Titterington (1980), Preparata and Shamos (1985), Devroye (1983),
Rousseeuw and Leroy (1987).

Observe that Pn(E) = k/n for some k = 1,2,... ,n. So, if MVEk is the
ellipsoid of minimum volume that contains at least k observations then

sup[Pn(E) -cV(E)] = sup[k - aV(MVEk)]
£
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That is, the EME is MVEk for some k.
This representation provides techniques for computing the excess-mass

ellipsoid from a given set of observations. If one additionally restricts the
search to spheres then the problem is equivalent to that of the smallest en-
closing circle (Preparata and Shamos (1985)), or the problem of finding the
center and radius of the smallest kth-nearest-neighbor ball for each k. In two
dimensions, all the kth-nearest-neighbor balls can be found in O(n3) time.
The restriction to spheres reduces computational complexity, and for many
distributions, it can still be effective in mode hunting.

In the elliptical setting in two dimensions, the minimum-volume ellipse
has either 3, 4 or 5 of the n observations on its boundary (Titterington, 1978).
Therefore, the computations required to find the EME are of O(n5), or pos-
sibly 0(n6). To reduce the computational burden, Rousseeuw and Leroy
(1987) propose an algorithm for estimating the MVE. This algorithm can be
adapted to estimate the EME. We describe one iteration of the algorithm.
Sample d+ 1 points X,.1. , Xd+1 from X1,.i.., xn, nwithout replacement. De-
termine the average , = (x,W1 +.. + X'd+l )/(d+ 1) and the covariance matrix

= [(Xlr1 - l) (xr1 - )+ *** + (XWd+l - T)(Xld - 20]/(d + 1). Next
calculate the order statistics

Cw(k) = kthsmallest value of {(xi-x,)t;1(xi-
Then C,(k) can be used to magnify E, to contain k observations. The volume
of the resulting ellipse is proportional to C<(k) det(S). Repeat the above
procedure m times. For each k, find the smallest of the m ellipses that con-
tains k observations. This is an estimate of the MVE(k), call it MVEEm(k).
Finally, minimize k/n -aMVEEm(k) over k. Here the number of operations
to estimate the MVE are 0(nm). For comparison, Figures 1 and 2 show the
EMS and an estimate of the EME based on m = 60, respectively, for a sam-
ple of size 75 from a standard bivariate normal. The a-level contour is also
displayed in these figures.

A third possible algorithm uses the sample covariance matrix to trans-
form the data points to spherical symmetry and then proceeds with the first
approach based on nearest-neighbor ba. Figure 3 shows this estimate for
the same sample and a of figures 1 and 2.

4 Rates of Convergence
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In this section, limit distributions of the maximal sets are obtained. Three
cases are considered in turn. First the density is assumed to be spherically
symmetric and the maximization of P - ceV is restricted to the dass of
spheres inlRd. Then the restriction that the density be spherically symmetric
is relaxed to elliptical symmetry. Finally, the collection of sets is enlarged to
indude all ellipses. The proofs appear in the last section.

In the lemmas below 11j 11 denotes Euclidean distance; g : R -- R is a
bounded nonnegative function; Vd stands for the volume of the d-dimensional
unit sphere; and wd = {yly<11 y2dy. Also t is a d-dimensional vector, u is a

d + (2d )-dimensional vector, s is a scalar, and Z is a mean-zero Gaussian
process.

For ellipsoids, the limit process Z is indexed by (t, u) and the covariance
kernel is:

(5) C((t, U), (t* U*))
lim 6-'P(E(tto + t6, )o + uS) - E(t&o, Ao))
640

(E(IAO + t*6, o + u*6) -E(j Ao))
=lim 6- [PA(tS, uS, 0,0) + PA(O,0, t*, u*6)

640

-PA(tb, ub, t*b, u*b)]
where A(?,,Yi,, 2,Y2) = E(/uo + 2,,1,o + yl)f E(AO + X2,A0 + Y2)C

In the case of spheres, take Z to be a centered Gaussian process with
covariance kernel:
(6)
C((t, s), (t*, s*)) = lim &-'P(S(jAo+t6, ro+sb)-S(pO, ro))(S(po+t*6, ro+s*6)-S(Lot, ro)).

640
If P is spherically symmetric about Po with differentiable density then the
limit in (6) becomes
(7)

C((t, s), (t*,s*)) = x(d -1)vd-.rd-1 [sL( ) + IItlM((sI, lltll)
- s*L(- ) + llt*IIM(s*Il, llt*ll)

+ (s - *)L( ) + lit - t*jIM(Is - s*, lit -tD)]
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where

L(x) = j;(1-y2)dy, x *=max(-1,min(1,x))

M(x,y) (1 -min(1, /y )).

At first glance, this representation of the covariance kernel does not appear
symmetric in (t, s) and (t, s*). But, the equality

L(x) = L(1) - L(-x)

can symmetrize (7) when L(x) is replaced with i[L(x) + L(1) - L(-x)] in
the first 2 terms on the right hand side.

The lemma below finds the limit distribution of (n, r) when P has
spherical contours.

4.1. Lemma: Suppose

(i) S(0, ro) is the unique maximizer of (4a) and S(u,,, rn) maximizes (4b)
over S;

(ii) p(z) = 'g2 );

(iii) g has two derivatives g(1) and g(2), and g(l)(r2) < 0.

Then n1/3(pn, rn - ro) converges in distribution to (t*, s*) the almost-surely
unique maximizer of

r0g(l)(r9)[vdt't + wd(d2- 2d)s2] + Z(t,s),
where Z is a centered Gaussian process with covariance kernel (7). 0

The density need not be spherically symmetric in order for a sphere to
uniquely maximize (4a) over all spheres. For example, if p is elliptically
symmetric then some sphere, say S(O, ro), uniquely maximizes (4a) over S
(Tong, 1980). In this case, provided g is strictly decreasing, we get a limit
process not unlike that of the pretious lemma.

4.2. Lemma: Suppose

(i) S(O, ro) uniquely maximizes (4a) and S(.u., rn) maximizes (4b), both
over S;
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(ii) p(s) = g(x'E-1a) where E is a positive definite diagonal matrix with
E =diag(o'), or EI?d;

(iii) g is decreasing on RI and g has two derivatives g(l) and g(2).

Then n1/3(pn, rn - ro) converges in distribution to the almost-surely-unique
maximizer of

2 (t,s)'W(t, s) + Z(t, s),
where Z is a centered Gaussian process with covariance kernel (6) and W is
a (d + 1) x (d + 1) diagonal matrix with diagonal elements:

2 4y?Wii = -g(u)( Ily) + a (')(yE-1y)dy i < d

Wd+l,d+l = 7E-1Y)2g(2)r(y'E y)dy
d 2

J(O ro

Notice that when ,
= I the expectation and covariance kernel of the limit

process reduce to the specal case of Lemma 4.1. This is made clear in the
proof of Lemma 4.1.

The next lemma finds the asymptotic behavior of the maximizing ellipse
En when p is elliptically symmetric. Recall Ao - 0/2 and AO is the vector
of elements in Ao.
4.3. Lemma: Suppose

(i) p(z) = g(x' 1x) for Eo =diag(a) a positive definite diagonal matrix
and a =(l);

(ii) E(O, Ao) uniquely maximizes (Sa) over £ and En = E(IA,u, k) maxi-
mizes (Sb) over C.

(iii) g has two derivatives g(1) and g(2), and g(1)(1) < 0.

Then n A/3(\l1,An-Ao) converges in distribution to the almost surely unique
-maximizer for

(t,u)'W(t, u) + Z(t, u)
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where Z is a centered Gaussian process with covariance kernel (5) and W is

a 2d + ( d) diagonal matriz with

Wnii- g(')(1)vddet(E'2)/u) 1 < i < d
3g(1)()wddet(El/2)/uaid d+ 1 < i < 2d

and for i > 2d, if the ith element ofA is Ai, then

Wi- g(1)(1)Wddet(/2)( 1 + 2 o

5 Other Rates of Convergence
Muller and Sawitzki (1989) and Hartigan (1987) examine set statistics

that are offshoots of the a-level excess-mass ellipsoid. What is interesting in
both cases is that these set statistics offer rates of convergence other than the
n113 seen already. A rigorous treatment of the asymptotic properties of these
statistics follows from an extension of Kim and Pollard's (1990) main result.
In this section we extend their result to cover general rates of convergence
and apply it to the set statistics of Muller and Sawitzlki (1989) and Hartigan
(1987).

5.1. Example. Muller and Sawitzki (1989) consider the following difference,
in one dimension,

Dn(a) sup Pn(IU J)-cV(IU J) -sup Pn(I) - cV(I).
{I,J:InJ=O,I,JEI} IE2

They use Dn (a) to indicate multimodality of the distribution P. They bound
it by

(8) max(sup Pn(I) -cV(I), sup -Pn(I) + aV(I)),
ICJI&, IC IC

which they then bound by a Kolmogorov-Smirnov statistic with a ,/; rate
of convergence. Marron and Nolan will investigate the exact asymptotic
distribution of Dn(a) in fRd 'in a future paper.
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If P is strongly unimodal the first term in (8) should be dose to

max(sup Pn[bo, b0 + t] - at, sup Pn[a, - t, a,] - at)
t>O t>O

where I, = [a,, b0,,]. Here we find the asymptotic distribution of the related
multidimensional set statistic

(9) arg sup Pn(Bt) - aV(Bt)
t>O

where Bt = S((1 + t, 0), t) is the ball with center (1 + t, 0) and radius t. We
take P to be the standard bivariate normal and a = e-1/2/2ir. We show
that t,, the value of t that maximizes (9), converges at a n1/4 rate to a
nondegenerate limit. 0

5.2. Example. Hartigan illustrates the slow rate of convergence that oc-
curs in (1) with a heuristic argument that finds the limit distribution of the
Hausdorff distance:

P(Scr U T(sn), S) =Sn

where T(sn) is the triangular cap formed by taking the convex hull of Sa and
the point (1 + Sn, 0), Sn > 0. He considers the case where P is the standard
bivariate normal and S,,= S(O, 1). We make his example rigorous by finding
the limit distribution of Sn, where Sn is chosen to maximize

sup Pn(ScO U T(s)) - aV(S0, U T(s)). 0
8>0

The following theorem extends Theorem 1.1 of Kim and Pollard (1990) to
cover these examples. We borrow their notation and format for the statement
of the result.

5.1 Theorem. Let {f(.,O) : e E e} be a class of functions indexed by a
subset 0 ofR. Let {On} be a sequence of estimators of 0o E 0 based on a
random sample from a distribution P such that

(i) Pnf(,On) . supO Pnf ( ,J).
Suppose that

(ii) On is consistent for So, the unique maximizer of Pf(., 0)
(iii) 9o is an interior point of E.
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Let the functions be standardized such that f(, 00) 0O. If the classes .FR-
{f(-, 0) I8-OoI < R}, forR near 0, are uniformly manageable for the natural
envelope FR = SUP;R If(,X) I and satisfy

(iv) Pf(.,) = KI- otl + o(e -eoIa) forO near 00, a > 1, x < 0.
(v) C(s, t) = lim,6...o 65Pf(., eO + s6)f(., so+ t6) exists for each s,t E Rd

and lim,6_.o b-'pf(., 0S + Sb)2 { If(., 0O + s6)I > e6-0} = 0 for each e > 0 and
s EJR, for some 0< , < 2a.

(vi) PFR = O(RO) as R -O 0 and for each e> 0 there is a constant M
such that PFR{FR > AM} < eR3 for R near 0.

(vii) PIf(,S01) - f('.82)1-=( - 1) near 0
then the sequence n

a

Pnf(., 0O + sn!- ) converges in distribution to a
Gaussian process Y(s) with continuow sample paths, expected value KIsr and
covariance kernel C. IfY has nondegenerate increments then n2+' (6In- o)
converges weakly to the (almost surely unique) random vector that maximizes
Y. o

Before proving the above result, we apply it to the two examples. Rather
than rigorously checking all the conditions of the theorem in the examples,
we simply determine a, ,G, and the rate of convergence. See the proofs in
Section 6 for a discussion of uniform manageability and other conditions.

5.1. Example (continued). Here we let 0 = t and

f(.,t) = St - cw2t2.

Then Pf(., t) is maximized at t = 0. A change of variables followed by a
three term Taylor series expansion of Pf(-, t) about 0 shows

Pf(., t) = t2 lj,z<I g(t2Z'Tz + 2x1(t + t2) + (1 + t)2)dc- av2t2

27rrItl3g'(j) + o(ItI3).
Also,

Pf(., t)f(.,s) = PStS + o(s2t2).
Apply Theorem 5.1 with a = 3 and ,B = 2 to the collection of functions
{St - aV2t2: t > 0}. Therefore

n3/4pnf(. tn -/4
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converges in distribution to a Gaussian process with expectation 2irg'(1)jtj3
and covariance kernel C(s,t) = aV2min(t2,s2). As 9'(1) < 0, n1/4ttn con-
verges to the unique maximizer of the limit process. 0

5.2. Example (continued). In this example

f(., s) = Sa U T(s) - aV(Sa, U T(s)) - So, + aV(S>,)
= T(s) - aV(T(s)).

As above, Pf(., s) is maximized for s = 0. However,

Pf(.,s) = IT 2(1 r2/2 e-7/2)rdrdO

ISIsI5/2 + o(S5/2).
20

Take a to be 5/2. For some constant c,

(10) PT(., s)T(., t) = acmin(s, t)3/2.

So ,8 = 3/2. By Theorem 5.1, n57Pf(., sn-2/7) converges to a Gaussian
process with expectation -_ ISI5/2 and covariance kernel (10), and n2/7sn
converges to the maximizer of the limit Gaussian process. 0

We dose the section with a proof of the Theorem. The argument follows
that of Theorem 1.1 of Kim and Pollard (1990). There, the limit process has
a quadratic drift, and the normalization is n2/3 for the process and n1/3 for
the parameter. References to their lemmas are made as needed.

Proof: We first show that On - 0=; Op(n-1/'), where y = 2a - /. Then it
is shown that the stochastic process Zn defined by

(11) Zn(s) - n/[Pf(.,sn-1/) + (Pn -P)f(,sn-'/')]
converges to a Gaussian process Z(s) with continuous sample paths, expec-
tation islsla and an almost surely unique maximum. This in turn implies
nl/ (On- 0) converges in distribution to arg max. Z(s).

Consider the stochastic process (Pn - P) indexed by FR={f(., 0): 0 <
1I-Sol < R}. By the assumption of uniform manageability it is stochastically
equicontinuous. Stochastic equicontinuity says (Pn - P)f(-, On) = op(n'1/2)
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(Lemma VII.15 Pollard, 1984). This fact and the following inequality from
(i) and (iv):
(12) KI6n - G01 + °p(Ion - 8o!0) + (Pn - P)(f(6n)) > 0,

imply that On - So = Op(n-1/21). For, otherwise the lower bound of 0 is
violated.

To further refine the stochastic order of 6n - O0 we use the following
maximal inequality, based on a inequality of Marcus and Pisier (1981),
(13)
PsupIV'i(Pn -P)f(i, G)J < P if , f .,R)J(supPnf(., O)2/Pnf( -, R)2)

sR .~~~~~~~~R

< cRO/2

Here J is a continuous, increasing function with J(0) = 0 and J(1) < 00.
The last upper bound is due to the boundedness of J(1) and the upper bound
from (vi). Inequalities (12) and (13) imply that On - So = Op(n1l/7). This
is seen from the two statements: if O,n - 0o= Op((n) then by (13), (Pn -
P)f(,iOn) = Op(n-1/26/2)]; and if (Pn - P)f(*,Gn) = Op(n-1/24/2) then by
(12), On -00 = Op(n l/'6/20). The coefficient 2a-(3 2 X 2Ek=O(' X )k.

Now that the rate is established, the parameter 8-60 can be rescaled by
nl/'Y. Let 0- 0o = sn-1/1 and Fn = {f (-,sn1h/Y): 0 < s < M}. Also rescale
the process by n*/y to get Zn(s) as in (11). Convergence of Zn to Z follows
from the convergence of the finite dimensional distributions and a stochastic
equicontinuity argument. For fixed s, note that by (v),

cov(n'h/(Pn - P)f(., sn1/'), fnl/-'(Pn - P)f(., s-n-1/'))
= n/'P[f(., sn1/7)f (., s-nl/')] - na/YP[f(-, sn1/-1)]P[f(-, sn 2/7)]

C(s,t)
The Lindeberg-Feller CLT and (v) show that Zn(S) converges in distribution
to Z(s) a normal random variable with mean rcIsIO and tariance C(s, s).

Stochastic equicontinuity follows from Lemma (4.6) of Kim and Pollard
(1990) adjusted to reflect the facts: the expectation of Z(s) is Isl* rather
than S2; the normalization in (11) is n/7 rather than n2/3; and Pf2(., 8) -
0(18- GoI') rather than 0(jO - Gol). Change the conditions (ii), (iii) and (iv)
of Kim and Pollard's Lemma (4.6) to reflect these differences:

17



(ii)' Pf(.,R)2 - O(R") as R -O 0;
(i)' Plf(-,31) - f( , 2)1-= (jS s'91) near 0;
(iv)' for e> 0 there is a K such that

Pf(-,R)2{f(-,R) > K} < cR1 for R near 0.

Then, according to this new version of the lemma,

no/IP sup I(Pn - P)(f(.,sin117')- f(.,s2n'/'7))1 =o(1)
[6n]

where [6n] = {(S1,82): IS1 - 21 < n and 0 < Sl,S2 < M}.
Finally, in order for nl/'v(n0-0) to converge in distribution to arg max Z(s),

the process Z must have an almost surely unique maximum and Z(s) -o-o
as s8 oo, almost surely (Theorem 2.7, Kim and Pollard 1990). The unique-
ness of the max of Z is ensured provided var(Z(s) - Z(t)) # 0 for s 0 t
(Lemma 2.6, Kim and Pollard, 1990). The second property follows from:

P{lim sup Is81W(s) > e} = 0,

where Z(s) = KIsj*+W(s). Lemma 2.5 of Kim and Pollard with 1t12 replaced
by Isa and k1/2 replaced by k'/2 yields this result. Therefore n - 0 attains
the daimed distribution. 0

6 Proofs of Lemmas 4.1, 4.2 and 4.3
The proofs of the weak convergence results of section 4 are found here. To

prove them we use the following result of Kim and Pollard (1990; Theorem
1.1).

6.1 Theorem. Let {f(-, 0); 0 E 0} be a class of functions indexed by a
subset E) ofRd. Let {O,n} be a sequence of estimators of 0o E /3 based on a
random sample from a distribution P such that

(i) P.f(.,0) > sup9 Pnf(-;0) -op(n2/3).
Suppose that

(iia) 0w is consistent for 0o
(iib) O0 is the unique maximizer of Pf(., 0)
(iii) 0o is an interior point of (3.

Let the functions be standardized such that f(., Oo) 0_ . If the classes .R
{f(.,0): 11011 < R}, for R near 0, are uniformly manageable for the natural
envelope FR = sup,R If(.,0)1 and satisfy
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(iv) Pf(., 0) is twice differentiable with second derivative V at do;
(v) C(s, t) = lim6O 6-1Pf(., SO + s6)f(., O0 + t6) exists for each s,t E Rd,

and lim6-"obIPf(.,go+s6)2 {If(.,0o+s6)I > e6b-} - 0 for each e > 0 and
each s Ed;

(vti) PF24 = O(R) as R -+ 0 and for each e > 0 there is a constant K
such that PFR{FR> K) < eR for R near 0.

(Vii) PIf(.01) - f(.,0 2)1= O(I81 - 0211) near 8O,
then the sequence of processes n2/3Pnf(., 0o + sn-1/3) converges in distribu-
tion to a Gaussian process Y(s) with continuous sample paths, expected value
2s'Vs and covariance kemel C. IfV is negative definite and ifY has nonde-
generate increments then n'/3(On - SO) converges weakly to the (almost surely
unique) random vector that maximizes Y. 0

Proof of 4.1: To prove Lemma 4.1, apply Theorem 6.1 to the collection of
functions

{f: f(, s,r) = {c E S(Ii,r)} - {2 E S(O,ro)} - aVdrd + 0Ud4,
OtZ& EI d,r ER+}

Here {z E S(ji, r)} should be interpreted as the indicator function for the
self same set. The 1 of Theorem 6.1 is (is, r) in our application. The subdass
YFR of F has envelope FR:

{x E S(0, rO + R)} - {X E S(O, rO- R)} + arVd(R + ro)d - avd(ro R)d.
The requirement that the class YR be manageable for envelope FR is a

metric entropy condition on YFR. Pollard (1989) provides sufficient conditions
for manageability. Of particular interest here are the following conditions for
manageability:

(i) A collection of indicator functions for a Vapnik-Cervonenkis class of
sets is manageable for the envelope constructed from the supremum
over the indicator functions.

(ii) The collection of constant functions {g : g(x) =- c, 0 < c < C) is
manageable for the envelope C, because the dass of sets {A, = {(x, y):
x E R, 0 < y < c})} is a Vapnik-Cervonenkis class of sets.

(iii) IfY and Q are manageable for envelopes F, G respectively, then {f+g:
f E Y and 9 E 5) is manageable for the evelope F + G.
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Uniform manageability implies manageability for a family of dasses {YR},
where the bounds in the metric entropy for each .FR depend on R only
through the envelope FR. In our case, the collection of spheres {S(p, r) : Ipj+
ir -ro < R} is a Vapnik-Cervonenkis class of sets, and so is manageable for
the envelope S(0, ro+R). The constant functions {cavd(rd-rd): jr-rol < R}
are also manageable, and so by (iii) FR is manageable for FR.

Conditions (i) through (iii) of Theorem 6.1 are immediate consequences
of the assumptions of the Lemma 4.1. Condition (vi) is easily met because
PFR < 2po((ro + R)d _ rd), where po = sup, g(r). The same is true for
(vii). It is (iv) and (v), the expectation and covariance structure of the limit
process, that need to be established.

Recall P(S(p, r)) - cV(S(p, r)) is:

J(,r) = <r'(g('z) - a)d.

A change of variables gives

J(p,r) =- rd I(g
ro J{IIYII<ro}

Then 8J(p, r) rd
aiii

-

rd {llyll<ro}
and

OJ(p,r) = dr'lJ(p, r) + - JIIYII<°

I + 11112) -a)dy-
rO

r y + 112I)2[-ry + ,i]dy
rO rO

9(1)(,, r Y+ 11112 )2[-rIly112 + Y'p]dy.
rO rO

Evaluate these integrals at p = 0, r = ro to see that they are both 0. In
particular, integration by parts gives

r1 jIIYII<ro} 9(')(1lyl12)llyll2dy = r)E v 1)(gl(y12)2y2dy
[g(r2 )rdVd -JI <

g (IlyII2)dy]
d

----J(0, ro).rO
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Symmetry of g implies the second order partial derivatives 82J(ts, r)/8asj8pi
are 0 at p = 0, r = ro for i # j. For the same reason 82J(p, r)/8reri 1,r=7o,,=o
is also 0. The only nonzero terms are:

(14) I.o2Jr = 2) g(2)(y'y)4y?dy + f(yy<,2) g(l)(y'y)2dy
= 2rdg(l) (r2O)Vd

and

a2J(Gu r)1 o = d(d - 1)rq2J(0, ro)+ r2(2d +1)1 g(')( 2y')2yydy +
872 Tr { J7Jr

r6gj(2)(y'y)(y'y)2dy

_ 2rdg(l)(r2)w (d2 2d).

This establishes condition (iv) and gives the expectation of the limit process.
Finally, we establish (v), and find the covariance kernel of the process.

Reparametrize (p, r) as (t6, ro + sS) for some positive scalar 6. Then

lim 61-Pf(t6, ro+s6)f (l6, ro+s6)

= lim 6-P[S(tb, rO + s6) - S(O, ro)] [S(i6, ro + 36) - S(0, ro)]
6-.0

= a lim 6-1[V(A(t6, s6, 0,0)) + V(A(O, 0, t6, s6)) - V(A(tS, s6, t-6, 36))] 116-0

where A(z, ,B, y,'*y) is the set S(:,ro+/3)fnS(y,ro+-y)c. For the first equality,
the quadratic and linear terms in (Vd[(ro + S6)d - rd] are negligible, because
[(ro + S6)d - rd] = 0(6) and PIS(t6,ro + s6) - S(0,ro) =o(l). The second
equality above is due to the fact that p(s) = a for a E aS(O, ro). The co-
variance reduces to limiting volumes of symmetric differences of spheres. We
find the volume of A(O, 0, t6, s6). The other two can be found by analogous
argument.

6-1 V(A(0, 0, t6, s6)) = 6-1 | dm.

Symmetry allows the replacement of t6 by lItbllei where el = (1,0,...,0).
From this representation it is evident that the integral above is 0 if s > lit l.
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It is also evident that the integral is vdlsIdrod if s < -1th. For the remainder
of the argument we assume -litlJ <8 < lltJl

e51 V(A(O0 0, tS, s6)) = dojr dz

+6J{-r0J6+iitii6s.-r*iiiti}[(Vr ) (Iro + 5)2- (XI- t6)2) ]dxl

The first integral converges to 0 as 6 -+ 0. The second integral has the
nondegenerate limit:

-(d- 1)vd-lrO s /1 1 - ly2)idy + (d - 1)vd.1rOdtl(1l-82/ ||t1||)

The covariance kernel for the limit process has been established. This con-
cludes the proof of Lemma 4.1. 0

Proof of Lemma 4.2: To prove this lemma return to the proof of Lemma
4.1 and substitute g(x'F-' 2) for g(z'z) in J(p, r). The first derivative is
still 0, by the maximization property of J(O, ro). The second derivative is
nearly the same as well (see 14)). Unfortunately it does not simplify as in
the proof of Lemma 4.1. 0

Proof of Lemma 4.3: The collection of functions to which we apply The-
orem 6.1 is only slightly different from that of Lemma 4.1. Simply replace
the spheres by ellipses to get

F= {f : f(2,pA,) = {s, E E(JA,A)}-{z E E(O,>o)} -avd(detA-detAo),

E d )

.UEdl E R 2)

The work that remains is to find the quadratic drift by computing the second
derivative of Pf( ,.t, A).

First write PE(js,A) - aV(E(jA,A)) as J(IA, .). Then by a change of
variables,

J(p&, A~) = det(A) j g((Ju + Ay)':O (IA + Ay)) - ady
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The first derivatives are 0, by the maxcimization property of (0, Ao, 0).

aJi, det(A) g(l)(( A V))[- + 2 E Aiiyi]dy

1__=0 = det(Aii) g(y'AEo Ay) -dy+

det(A) g9(1)(y'AEo lAy)[-Ei yiyi]dy0'
where Ai, is the matrix found by dropping the ith row and jth column from
A.

aJ(A, A) jt=0 = 2(-l)i+j det(A,,) g(y'AF,-'Ay)-2y+
A Y2 A,,y2

2det(A) g(1)(y\AlSJAy)[os-? + j +

AikYkY±ZAejylyi].
a¢i + j jk:Aj 1ts

The partial 82J/laiaAjk and 82J/a8pO j are 0 at IA = 0, A = Ao, because
of the symmetry of g(y'y) in yi. The second partial derivatives 82J/8ia? are
similar to the spherical case of Lemma 4.1.

a2jjj 4yj2X2YY,}a23. det(EI/2)g(1) (1)V2.+

Finally we find the derivativwes for the square root matrix.
82JIA?) M=2 = dt.! /)iJ

a~ A-"l ^3yi2g(2)(Vy) +2yg( )(y2y)dy

=(det(_J/2)6g(1)(l)Wd

a.i
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and

8A2J(~, ° 2det(1/2rf -+g)[g(1'Y)- )(yIy)( Ly +=un -2deE gWY '-

aA?, A=/2 eo L]Ol 0

+ 2Y2Y2(J.E + 1)2)

=2 det(El/2)( L-. + 1 )2g(1)(1)W
This concludes the proof of Lemma 4.3. 0
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