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Consider ay-valued response variable having a density functionf(. Ix) that depends

on an s-valued input variable x. It is assumed that$ and y are compact intervals and

that f( l ) is continuous and, positive on ,W x y Let F( Ix) denote the distribution

function of f(' jx) and let Q( Ix) denote its quantile function. A finite-parameter

exponential family model based on tensor-product B-splines is constructed. Maximum-

likelihood estimation of the parameters of the model based on independent observations

of the response variable at fixed settings of the input variable yields estimates of fl( I )

F(- ) and Q( ). Under mild conditions, if the number of parameters suitably tends to

infinity as n -oo, these estimates have optimal rates of convergence. The asymptotic

behavior of the corresponding confidence bounds is also investigated.
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Logspline Response Models

1. Discussion of results. Consider ayvalued random response variable Y having an

unknown density function f( Ijx) that depends on an $-valued input variable x; here W

andY are intervals in R having positive length. It is assumed that f( L ) is continuous

and positive on W x y. Let F(* {x) and Q(* Ix) denote the distribution function and

quantile function, respectively, corresponding to f( Ix). Let fixed inputs (design points)

x1 ,x1 e W be given and let Y1, , be independent random variables such that

Yi has density function f(* ix) for 1 < i < n; here Yl,. Yn are the response variables

corresponding to the settings x1, ,xn, respectively, of the input variable. Observations

on these response variables can be used for inference concerning f( ), F(. ) and

Q( .)

The classical approach is to assume a fixed parametric model f(lei .,e" K) for

the density function of Y and consider fixed parametric forms k= hk(x; k for the

dependence of 9,1 X OK on x. Normal linear models and generalized linear models in

which Y has a gamma distribution with known shape parameter are of this form (see

McCullagh and Nelder, 1983).

A refinement of the classical approach is to assume that Ok = hk(x) for 1 < k < K,

where h1,... ,hK are unknown continuous functions on $, approximate these functions

by members of some flexible J-dimensional linear space X such as a space of polynomi-

als, trigonometric series or polynomial splines, and let J -+ oo as n -4 oo.

A further refinement is to choose a flexible K-dimensional linear space Y and a

basis B1, BK of Y, approximate log ft x) by 01B1 + + 6KBK C(l+)..

where C(e1,.. ) is the normalizing constant, approximate the dependence of

01 ' 0K on x by members of some flexible J-dimensional linear space X, and let

J,K - oo as n -- oo. This doubly-flexible approach will be pursued in the present paper, with

Y and X being spaces of polynomial splines.

The general field of statistics constaining the classical approach is referred to as

parametric inference, while that containing the indicated refinements is referred to as

functional inference (see Stone, 1990).
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Logspline Response Models

For theoretical purposes, £X andy are required to be compact subintervals of R. Let

d° be a standard linear space of spline functions of a given order q 2 1 on y having

dimension K . 2. (The functions in d' are piecewise polynomials of degree q - 1 or less.

If q = 1, we choose them to be right-continuous on y and continuous at the right end

point of ,y, if q > 2, they are (q - 2)-times continuously differentiable on ,) Let

B1,~* ,BK be a basis ofY consisting of B-splines (see de Boor, 1978). Then B1,... ,BK

are nonnegative and sum to one ony
Given o= (e,...O K)t E e, set s(y; ) = e1B1(y) + + 6K8K(y) fory E

C(O) = log .fexp(s(y; 0))dy, and fly; 0) = exp(s(y; 0) - C(a)) fory E , Also, set

E) = O(0l'(e1 K) E{[R: l+ + eK =°}1
Then f(. ; 0, 0 E 03, defines an identifiable exponential family; it is referred to as a

logspline model since log f( ; 0) E Y. The theory of such models was developed in Stone

(1990), which is a precursor to the present paper. Barron and Sheu (1991) independently

obtained results for logspline models as well as for similar models involving polynomials

and trigonometric series.

Let X be a standard linear space of spline functions of a given order (which is not

necessarily the same as that ofY) having dimension J . 1 and let H1,... ,H1 be a basis

of X consisting of B-splines. Let X denote the collection of J x K matrices IP= (J3) of

real numbers 13jk' 1 <j.J and I < k < K, such that Xkf=O for 1 < j < J, which can be

regarded as a [J(K- 1)]-dimensional subspace of RJK. Let 3eE. For 1 < k < K, let

hk(.; J5) be the real-valued function on W defined by hk(x; Ok)= XIIJkHJ(x) for x E S. Set

h(x;f) = (h(x;J. ,hK(x;f))t for x E LW and observe that h( ;() is a 8-valued

function on ,W. Also, set f(y x; f) = f(y; h(x; f)) = exp(s(y; h(x; 1)) - C(h(x; 13))) for

PBE X, x ELW andy E y Then f( Ix;j) is a positive density function on yfor 13EE and

x E LW. We refer to fl( x; M), x E LW and p E X, as a logspline response model.

The loglikelihood function 1(p), 13 E X, is defined by

logf(YiI xi; p) = i [s(Yi; h(xi; M) - C(h(xi; A)] PE 2.l~~~~~~~~~
Set c(P)=liC(h(xi; )) for PE 2. Then l(p))=Xis(Yi;h(xi;f3))-c(f) for p3E . The
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Logspline Response Models

expected loglikelihood function A((p), P( E , is given by

X(1) = El(f) = [s(y; h(xi; ))f(yI X)dY - C(1), P E 2.
i

The functions l(*), c(.), and X(*) can also be viewed as functions on RJlK. For 3 E X, let

I(5) denote the corresponding information matrix, which equals the Hessian matrix of

c(*) at ,3 and is a positive semidefinite symmetric JK x JK matrix. Thus c(*) is a convex

function on X, and 1(.) and A(*) are concave functions on 2.

It is assumed that X is nonsingular relative to the design set: if he J and

h(xl) =... = h(xn) = 0, then h = O onS. Then {I(AT > O forp,e and rE2 with r O.

Thus c(*) is strictly convex and 1( ) and X() are strictly concave on X.

Let 13 denote the maximum-likelihood estimate of (3; that is, the value of p E $ that

maximizes the loglikelihood function. Then 3 may or may not exist. Under the

nonsingularity assumption on , if J3 exists, then it is unique. Given x E X, consider the

maximum-likelihood estimate f(* Ix) = f( Ix;p) of f( Ijx) and let F(. Ix) and Q(* Ix)

denote the corresponding maximum-likelihood estimates of F(. Ix) and Q( Ix).

Similarly, X(*) has at most one maximum on 2. It is easily seen that X( ) does have

a maximum on 2 and hence a unique maximum f5 on X. Consider the function f"( )

on X xy defined by f(y x) = f(y [x;13) forxE$ andy E , Let F*(. Ix) and Q*(. Ix)
denote the distribution function and quantile function, respectively, corresponding to

J* Ix).
The knot sequences defining I' and M are allowed depend on n, but it is assumed

that they are are a-quasi-uniform in the sense of Page 216 of Schumaker (1981): the

ratios of the differences between consecutive knots are bounded away from zero and

infinity uniformly in n. We make the mild assumption on the design points that there is

anM > 0 (independent of n) such that, for n sufficiently large (n >> 1),

(1) M1 nJh2(x)dx < h2(xi) < Mnjh2(x)dx, h E M.

(The nonsingularity assumption on M is an immediate consequence of (1).)

Given a subinterval I of$, let III denote the length of I and set N(J) = #{i: xi E I).

Under (7) below, in light of the a.quasi-uniformity of the knot sequence defining d, a
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sufficient condition for (1) is that for every 3 > 0 there is an M > 0 such that, for n) 1,
1 3-1(2) AFnnIII < N(I) S Mn II for every subinterval Iof X such that I 2 n

Let 5= oY oYd denote the tensor product of X and d; that is, the linear space of

real-valued functions ons x 3yspanned by functions of the form h ® s as h and s range

over X' and Y respectively; here (h o s)(x,y) = h(x)s(y) for x E W and y E y. Then 5has

dimension JK and the functions H1® Bk, l<j<J and 1< k . K, form a basis ofS.

Given a real-valued function g( ) on x y, set

IIg(- )Loo= sup sup g(ylx).

Also, set = inf P9Ilogf(. )- t'1. Under the auasi-uniform condition on the knot

sequences, 5 0 as J,K -. See Theorem 12.8 of Schumaker (1981) for this result and

for an upper bound to 35in terms of the smoothness of log f(t 4

Since ft L) is continuous and positive on the compact set W x y, log f( I ) is

bounded and continuous on this set. Under (1) and the a-quasi-uniform condition on the

knot sequences, it was shown in Stone (1989) that

(3) j0logf(. )-logJ*(. )Lo0=O(85).
It follows from (3) that

(4) Qlt -* |)lo°6<

(5) IIF( - F*( ) l o = Q(I)
and

(6) IIQ( )Q*( )lloo=
(In (6) the supremum is over p and x with 0 < p < 1 and x E ,$.)

From now on, it is assumed that

(7) JK = o(n ) for someE E (0,).

This is slightly stronger than the assumption JK = o(vn), which arises in Portnoy (1986,

1988).

In Section 2 it will be shown that P exists except on an event whose probability

tends to zero with n. There the asymptotic behavior of J will also be determined.
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(8)

(9)

(10)

(11)

and

In Section 3, it will be shown that

fyIx) - ryIx) = Op(NIKhi),
Jf(y I x) - y I x)]2dy = Op(JK/n),

max If(yx)-J x)I =O (Jog JK)/n),
x,y

max IF(yIx)-F*(yIx)I =Op(7Th),
y

(12) max IQ(p Ix) - Q*(p Ix)I =Op(V77Th).
p

In (8), x E X and y E dare fixed, while in (9), (1 1) and (12), x E W is fixed. The order of

magnitude VIM in (8) is plausible: there are about n/(JK) trials per unknown parameter

,jk' so the asymptotic standard deviation of the t3jk's should be proportional to sfKThi. In

light of the local support of the B-splines, the asymptotic standard deviation of f(y x)

should have the same order of magnitude as that of the S.

Suppose that 6= O(P1 + K7P2), whereP1 > 1 andp2 > i. Set
p 2 p - P2 an P-p Pi
pF '7VpP(2p+2) PI+pP2 + 2P1P2 P2(2P+2) Pi +P2+2PJ'2

Let a
n

b mean that a lb is bounded away from zero and infinity as n -+ oo.nn nfn
Suppose that p > 1. Choose J and K such that J - ny, and K - n'Y2. Then 3# =

O(n-p/(2p+2)3. Also JK- nl/(P+l), so (7) holds. By (4) and (8),

(13) fI(yx)-f(yIx)=O (n P/(2P+2));

by (4) and (9),

(14) LfY I x) - f(y Ix)]2dy = Op(n -p(P/(Pn
Choose J and K such that J - (n/log n) I and K - (n/log n)k Then

3g= O((n/log n) PI(2P

Also JK - (n/log n) l/(P+l) so (7) again holds. By (4) and (10),

(15) max I( Ix) - f( x) = O((nllog (2p+2)
x,y

Suppose p1 > I andp2 > 2p11(2pI - 1) and set a=p111p2(2pI + 1)]. Choose J and K

such that J- nl/(2pi+1) K1 = O(n-a) and (7) holds. Then 3y= O(n Pl (2p1+1)). By
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(5) and (1 1),

(16) max F(y x) - F(y Ix) =Op(nPl/(2Pl));
y

by (6) and (12),

(17) max jQ(pIx)-Q(pjx)j =Op(n-P1/(2P1+l)).
p

Under reasonable further specifications, the rates of convergence in (13)-(17) are

optimal (see Stone, 1980 and 1982, and Hasminskii and Ibragimov, 1990). For fixed

E the rate convergence - = piI(2pi+l)y EY, the rate of convergence F(y Ix) - F(y Ix) = Op(n ) can be achieved by

using a different estimate under the corresponding smoothness assumption on F(y Ix) as a

function ofx without having to make any smoothness assumption on F(y Ix) as a function

of y. (Observe that F(y Ix) = E(ind(Y.y) X = x) and see Stone, 1980.)

Let J,K - oo as n -4 oo; let r* be defined as I)(y Ix), F*(y Ix) with y in the interior ofy,
or Q*(p Ix) with 0 < p < 1; and let i be defined as the corresponding maximum-likelihood

estimate f(y Ix), F(y Ix) or Q(y Ix). Let ASD(r) and SE(r) denote the asymptotic standard

deviation and standard error, respectively, of ^, as usually defined in terms of the

information matrix in large-sample parametric inference. Then, uniformly for x E X,

SE(t)/ASD(t) = 1 + op(1) and the distributions of ( - t*)/ASD(T) and (T- <*)/SE(t)

converge to the standard normal distribution as n -^ oo. These results will be verified in

Section 4, where explicit formulas for the various asymptotic standard deviations and

standard errors will be given.

According to the last result, for 0 < a < 1, T ± z1-ai2SE(t) is an asymptotic

100(1- a)% confidence interval for t*; here z -a/2 is the (1 - a/2)th quantile of the

standard normal distribution. Such confidence intervals are useful in practice, but they

must be interpreted with care. Under the additional, but dubious, assumption that

(-r- r*)/ASD(t) = o(l), the confidence intervals for e* can be interpreted as confidence

intervals for r itself.

The arguments used in Sections 2-4, which are natural outgrowths of those devel-

oped in Stone (1985, 1986 and 1990), also apply when the fixed design is replaced by a

random sample from the distribution of a random variable X having a density function
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that is bounded away from zero and infinity on W (in which case, a suitable probabilistic

version of (2) is easily verified). Alternatively, the joint density function fl ,) can be

estimated by f(x,y) = f(x,y; 1l) = exp[XIXkIJlIkHI(x)Bk(y) -c(,B)], where =

is the maximum-likelihood estimate and c(13l) is the normalizing constant. The asymptot-

ic behavior of this estimate follows from results in Barron and Sheu (1991) or from the

extension of results in Stone (1990) given in Koo (1988). The corresponding estimate of

the marginal density function of X is given by f(x; 1 = ff(x,y,pl)dy. This leads to the

alternative conditional density function estimate f1 (y x) = f(x,y;'y1)f(x; Jl), which has

the same fonn as the estimate f(y x) defined above, but with an estimate PI that differs

somewhat from 1B. The alternative conditional density estimate inherits the accuracy of

the corresponding estimate of the joint density function. (The preceeding remarks in this

paragraph were suggested by a reviewer. It should be pointed out that the alternative

estimate of the conditional density function achieves the rates of convergence obtained in

the present paper only under an auxiliary smoothness assumption on the marginal density

function of X. In the related context of nonparametric regression, Fan (1990) refers to

estimates of the regression function that require such an auxiliarly assumption as being

inadmissible: they are dominated by estimates that achieve the optimal rate of conver-

gence without requiring the auxiliary smoothness assumption on the marginal density

function of X.)

The numerical and practical aspects of logspline modelling were treated in Stone

and Koo (1986) and Kooperberg and Stone (1991). The results to date clearly indicate

that logspline modelling is competitive with other approaches such as kernel density

estimation. A numenrcal investigation of logspline response modelling has yet to be

carried out. Such a study would undoubtedly go beyond what is mathematically tractable.

In particular, Z and Ycould be unbounded if linear restrictions were imposed on the tails

of the various splines entering into the model. Also, it would be worthwhile to study

stepwise selection of the basis functions of the model, as introduced in Smith (1982) and

used successfully by Breiman and Peters (1988), Friedman and Silverman (1989),

Friedman (1991), Breiman (1989, 1990), Kooperberg and Stone (1991) and Jin (1990).

8



Logspline Response Models

2. Parameter estimaton For b = (bik) E 2, let I b denote the nonnegative square

root of j4b-k.2In the next result, x E X, y E yand 0 <p < 1; the quantitiesj and k in (b)

and the quantity j in (c) are allowed to depend on n in an arbitrary deterministic manner.

THEOREM 1. (a) 13 exists except on an event whose probability tends to zero as n -4 oo.

(b) ' jk- jk = Op(ITh).
1 ~ 2(c) R I(Pjk -fk)= Op(JK/n).
k i

(d) 1p V 2 Op(J K /n).

(e) max |3-jk> =O(vJK(log JK )n).

The proof of Theorem 1 is divided into a number of lemmas. For 0= ( ,.X X,ed t

E E, let I 01 denote the nonnegative square root of X 62 Also, let and 1ll bek k' s, e IIsII2 an *b
defined in the usual manner for functions s onY

LEMMA 1. LetM > 0. Then there is an MI > 0 such that if 01 , 02 E E, IIs( ;0i)IIoo <

M and IIs(- ; 02)I100 < M, then

[C(02) - C(01)] < M1IIs 02) - s(. ;01)112

Proof. Since

C(02) -C(01) = log { s( 62)dy - log { es(Y; 1)dy
and 0 < length@) < oo, the desired result follows from the Schwarz inequality and

elementary properties of the exponential and logarithm functions. o

LEMMA 2. Let M > 0. Then there is an M > 0 such that if 0, 8 E E3, Illogf(. ; W)

<M and Ils(. ; 8)- s(. ;tr)II <M, then

(a) Illogf(. ; G) - logf(- ; )IIc < M

and

(b)Milrll0 r12< IIj0gf(. ;0-_logf(. tr)112 II1_K12.-R
PROOF. By Lemma 3 of Stone (1990), there is an M2 > 0 such that IC() I < M2.

Thus IIS(. ; 8")IIo < M + M2 and hence IIs(. ; 0)11c < 2M + M2. Consequently, there is an

M3 > 0 such that IC(q) I < M3 and hence Illogft. ; 0) - logf( ; T)'II.< M + M2 + M3,

which yields (a). According to (12) of Stone (1986), there is an M > 0 such that

M-1K1 I 0_ 0 12 < ls(* ; 0) -s( ; 6)112 < M4K-1 6_ 2. Hence, by Lemma 1, there
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is an M5 > 0 such that

11logft. ; 0) -logfl(. ;8)112 <M5K 10-t_rl2
Observe that

logf(. ; 0) - logfl( ; G")jI2 = J [ k (ek - Ok)Bk(y) - [C(0) - C(G)]] dy

= J' [ Ok - Ok - [C(U) - C(G*)] JBk(y) dy.
Thus, by (12) of Stone (1986), there is an M6 > 0 such that

logf( ;0)- Iogfl( ;t7) 12 m6 K" te{k- ek nC()-c&)
k

Now 0, & E e, soXk(ek - 9k) =0 and hence

{Ok-Oc[C(G-C(0 )] } 2£(k -O*)2 U2 19- & 21 1ek k -ICe) ((" > 10(k-O 2

Consequently, jllogf(l ;) - logf(;f0l)II2>M 1J 1 0 & 2 Therefore, (b) is valid. o

LEMMA 3. ||s( ; h(. ;P2))-s(.; h(. ; P))I < P2-1 1 for11 ' P2E
PROOF. By the properties of B-splines, XIXkH 2(x)B2(y) <. kHI(x)Bky = 1. Thus,

by the Schwarz inequality,

s(y;h(x3)) s(Y;h(x;21))]= [ (P2jk - 3Ijk)Hi(x)Bk(y)1 < 12 - P 12
where P, = (13ljk) and P2 = (12jk) °

The next result follows from (1), the s-quasi-uniformity of the knot sequence

defining X and (viii) on Page 155 of de Boor (1978) (see the proof of (12) of Stone,
1986).

LEMMA 4. There is an M > 0 such that, for n >> 1,

M~1J1I2 Pi 12 < £ h(x ; 0 ) - h(x; 2 <- Mal- I 01 PI E2

Let p E 2. Then, by a direct computation,

( 1 8) Ttl(ffi), = [s(y; h(x; Tr)) a.] f(yxi; P)dy, TeE2,

where ai= Js(Y; h(xi; T)) f(y xi;I)dy. Let fE 2. Then dt 14jT + t(P-W)) t = 0 and

2 X(1* + t(f-)) = - (-t(
dt
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Thus, by (18),

(19) X(J)- (T) =-J(1 - t) [s(y;Xh(xi; P )) - ai(t)]Xf(y Ix p + t(p- ))dy] dt,

where a.(t)= Js(y;h(xi;P-P))f(yIxi;P3+t(P- ))dyfor 1 i<n.

Choose E E (0, A) satisfying (7): JK = o(n ).

LEMMA5. There is a 3> 0 such that if n > 1, eE2 and I 3- p =nEJKI/Fi, then
2EX,(P - A(Z) < - 3n2 JK.

PROOF. It follows from (3), (19), Lemma 2a and Lemma 3 (see the proof of

Lemma 4 in Stone, 1990) that there is a 1 > 0 such that

X(15 (Z)' -X ) i£ J[logf(YIxj;IJ) - logf(yjxj;IM)]2dy.
By Lemmas 2b, 3 and 4, there is a 32 > 0 such that

£ J[logf(y Ixi; X) - logfl(yi;x)]2dy . 32n&F1r1K fP * 12.

Consequently, the desired result holds. o

LEMMA6. Let 3>0. Then there is a 6l>0 such that if n» 1, PeE and

IP-Pi|< nEJKAIn, then

P [(p) - 1(1) - [x(A) - X($J)] 2!n2eJK] < exp( - 61n2 JK).

PROOF. Write 1(p) - 1(5) - [X(p) - A($Z)]= i, where

Zi= logf(Y xi; P) - logf(Yi Ixi;f) - E[logf(Yi Ixi;f3) - log f(Yi Ixi;3)]I
It follows from (3), Lemma 2a and Lemma 3 that there is an M > 0 such that

PIZliI < M1) = 1 for 1 < i < n. Observe that, for I < i < n, EZ =0 and

var(Z.) <E([logf(Yilxi; - lgf(Yilxi- 2

- J[logf(yIxj;fi)-logf(yIxj;1)]2 f&ylxi)dy.
We now conclude from Lemmas 2b, 3 and 4 and the boundedness of f( ) that there is

an M >0 such that X.var(Z <. Mn2CJK. The desired result now follows from2ne'iqlys(.£ 2ng
Bernstein's inequality (see (2.13) in Hoeffding, 1963). o
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LEMMA 7. Let 3 > 0. Then there is a 31 > 0 such that

|p)1(Pi) -[X(p2) - 831]S62e
for n > 1, 1,J2IE, |IPi -$|=nCJKIV, IP2 - I =neJK/V, and 1 2 -P I S

3 n2e-JK.
PROOF. Observe that

11(32) - (p)- [X(32) -X(P)] . 2nlllogf(. -;2)-logf(i
By Lemmas 1 and 3, there is an M > 0 such that j1logf(. .;132)-logf(' ;Pj)JI.
Ml P2 - fS 1. Thus the desired result is valid. o

The diameter of a subset B of2 is defined as sup{ 1P2 - PI I: PI P2 E B). The next

result is easily established by considering suitable inscribed and circumscribed JK-

dimensional cubes.

LEMMA 8. Let 81 > 0. Then there is an M > 0 such that, for n» 1,

{13E : 1pl- =nCJKI6InEI
can be covered by exp(MJK(log n)) subsets of 2 each having diameter at most

5 n2E-1JK.
LEMMA 9. (a) 1 exists except on an event whose probability tends to zero as n - cx.

(b) Ip- J I = Op(n8JKIVHn).

PROOF. Set 2 = {f3E : j3- I <.nCJKI/vfin. Then 21 is a compact set whose

boundary relative to 2 is X2 = IX3 E 2: 1 p1- J = nJJKvi}. By Lemma 5 there is a

6 > 0 such that A(p) - X($) < - 6n2EJK for P3 E 32 Thus it follows from Lemmas 6-8

that, except on an event whose probability tends to zero as n -. oo, 1(p) < 1(J) for 1l3 E2
so l(.) has a local maximum in the interior of 1 relative to 2. The desired results now

follows from the strict concavity of l(*) on 2. o

The next result follows from (4), (7), and Lemmas 2a, 3 and 9.

LEMMA 10. There is a positive constant M such that, except on an event whose

probability tends to zero as n o,M fl( ; + t(P- )) < Mfor O < t < 1.

LEMMA 1 1. There is an M > 0 such that, for n > 1, fPE X and t E A,

Wf1nJF1K11I I2minf( 'I ; 1 < !I(f5)'< Mni 1K 1 II2maxf(. ; 13).
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PROOF. Set min = minft( ; ) and max = maxf(. ; ). Using (1), (18), and (12)

of Stone (1986), we see that there are positive numbers 81 82 and 8 such that, for n > 1,

Pe 2 and 'reE,

iI(P)'r 61(min) X f[s(y; h(xi;'r)) - ai]2dy

- 8(min) I [ [hk(xi;r) - ai] k(Y) dy

. 82(min)K71XX [hk(xi;r) - ai]2i k
2

- 52(min)A71X I IIy j -ai)H.(xi)]

> 8(min)nJF-11C I1 2

Similarly, we conclude from (18) that I(p)'r< (max)l [s(y; h(xj;'r))]2dy and hence that

there is an M >O such that, for n > 1, PE 2 and r E4, hI(p)r < M(max)nJ1K1 I 2.
Thus the desired result is valid. o

Let S(P) E 2 denote the score at P1; that is, the JK-dimensional matrix the entry in

row j and column k of which is

di(P) = I H.(x ) [BY -c(h(Xi;4)
(In computing dC(O)Id&k, we let Orange over RK.) Then ES(ft) =0 and

E|S($) ~~~|2£ H (xi)var(Bk(Yd))<I J H-(xi) E£Bk(Yi)] < n.

Consequently, the following result is valid.

LEMMA 12. IS(Pr)I = Op(n).
The maximum-likelihood equation S(J) = 0 for 'P can be written as

J E S((M + t(pf- T))dt = -($)

Thus it can be rewritten as D(P- f5") = S(O), where D is the JK x JK matrix given by
D= Jf I(JT + t(P- M))dt.

LEMMA 13. 11P-P = Op(JK/fIi).

13
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PROOF. According to the maximum-likelihood equation for ,

(20) (Pf- $)tD(p_ f) = (f_ M)tS().
It follows from Lemma 12 that

(21) (p $ )tS(m) =Op(Ip- IV).
According to Lemmas 10 and 1 1 there is an M > 0 such that, except on an event whose

probability tends to zero as n - oo,

(22) (1-P)tD(p- ffi2 -lnK- _,

We conclude from (20)422) that nF1K1 1 12= Op( f3n-Vi), which yields the

desired result. o

Let VC(S(J)) denote the variance-covariance matrix of S((r).

LEMMA 14. There is an M > 0 such that, for n > 1 and rE X,

M1 1 'ri2 .1 2VC(S(J))'r MnF K

PROOF. Since

(23) 1VC(S(M))'r= r[s(y;h(xi; ))-ai12f(yIxi)dy, se

where ai = fs(y;h(xi; r))f(yjxi)dy for 1 . i . n, the desired result follows from the

argument used to prove Lemma 1 1. o

Let p E 2. Then there is a positive semidefinite symmetric JK x JK matrix [I(p)]

having range 2 such that I(p) [I(P)]fr= [I(P)] I(J5),r= r for 'reE. (Consider the

orthogonal diagonalization of I(fp).) The marix [I(1p)] is referred to as the generalized

inverse of I(p).

Let 4 E 2 be the approximation to f- , defined by I(f)4p= S(f). Then

v = [I($T)]- S($), E' = 0, and

(24) VC(4) = [I(P)] VC(S(J5)) [I(J)].

The next result follows from (24) and Lemmas 10, 11 and 14. (Consider a symmetric

square root of [I(,B)] .)

14
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LEMMA 15. There is an M > 0 such that if n ) 1 then

(25) M 1n1K1J2I [I(_)]R.< Mn-1JK 'r12 E ,

and

(26) M1-1nJKI 'ri2< var(QJP) <Mn-1JKJrjI2 rE

Given y Ey and 3 E 2, let G(yIx;15) E 2 denote the gradient of logf(y x;.) at 13:

the J x K matrix the entry in row j and column k of which is

H .(x) Bk(y) - dC(h(x;p)l

It follows from Lemma 3 of Stone (1990) and Lemma 10 that

(27) max | h(x;.) =O(K1C.
k dek

Thus there is an M > 0 such that

(28) IG(ylx;Ir)l <M, xEandyeY
Observe that S0(f) =iG(Yi xi; P) for 13 e s and hence that

(29) =k ([I(QT)] G(Y xi;p)T)k9i
The quantities j and k in (a) of the next result and the quantity j in (b) and (d) are allowed

to depend on n in an arbitrary deterministic manner.

LEMMA 16. (a) -, = 0 (V7R7i).=Pj Op(
(b) R 4,2 Op(JK/n).

(c) 12 Op(J K21n).
(d) max k | P(JK(log K )n')

k
(P

(e) max | = Op(JK(og JK)n).
j ,k 'j

PROOF. Now max1 kE4'jk = max1 kvar(ipIk) = O(JK/n) by (26), so (a)-(c) hold. By

(25) and (28), there is an M > 0 such that, for n > 1,

max Ir?[I(tP)] G(yI x;1) I < MnkIJKITI, T E,
x,y

and hence

maxmax ([I(M)I- G(yix;,M)) k I <MJK/n.
x,yP ,k

Parts (d) and (e) now follow from (7), (29) and Bernstein's inequality. o

LEMMA 17. 2| (n2J3K2(log JK)).

15
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PROOF. It follows from the maximum-likelihood equation that

-Z = -[I(Zr)]- [D- I(Z)] (p- $)r
By (25),

[i(I)I [D - I()(* J)12=Op(nr2(JK)2I[D- )

The entry in row (j, k) and column (' , k') of D - I($) can be written as

jz,, ,Ajkj'j'j"k"(j"$'k";"!Ik"l)'
j" k

where

A. t kZjttktt= S|(1- t)H .(x )H1, (x.)H ..,(xi) NxdC ( i Zjkjlktjk" j0 i i "' eko 9

Thus the entry in row (j,k) of [D - I(fM)](pf- fB) is

A.kX j""P - -*,*k( fk Pi ' k' i" k" 1J'1 1 k i k
which is dominated in absolute value by

max (O 'k- 0k) jtI I I" E"Ajkj /V k" I

There is a positive integer J0 such that Ajkjk, = 0 unless li' -j S Jo and

i" -jI <J0. Thus, by (8) of Stone (1989), there is an Ml > 0 such that

I'll'*k"I Ml1 sup maxAS, IAkfj'kjk j- I

n xfi0a< 0dkc@k(h(x; JT + t('f)
Consequently (see the proof of Lemma 15 of Stone, 1990),

jk[j'k ' tt ,, jkj'ktktt"kl ] = O(nK 1

and hence I [D - I(fr)](J3- PT) I2 = O(nKC1 max1 k(,13k - Pjk)). Therefore,

Izp- PI2=Op(n'lJ2Kmax k(I3Ik-I3jk)4)
We now conclude from Lemma 16e that

max 0(ik- =Op [Fn 1JK(log JK) + n J K max (P}k - j!k)4]k i~~~~~~~~~~~~j,kJ
Thus max1 k('jk - = Op(n JK(log JK)) by (7) and Lemma 9b, so

IIpI~ j=-O2(n 2J3 K2 (logJK)). o

Theorem la coincides with Lemma 9a and the remaining parts of Theorem 1 follow

from (7) and Lemmas 16 and 17.
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3. Functional estimatin. In this section, (8)-(12) will be verified. To help the

reader follow the details, we first indicate the proof of (10). It follows from (3) that

jJlogf*( .)11( = 0(1). Thus, to prove (10), it suffices to show that

(30) max Ilogf(y Ix; fI)- logf(y x; f) = Op(.,IYK(logJK)n).
x,y

Let VC(8) denote the gradient vector of C(Q) at 9, whose kth entry dC(O)I/dk is computed

as Oranges over IK. Observe that

(31) logf(ylx;p)- logf(ylx;M)=[G(ylx;$)]ip+ [G -) -R,

where

(32) R = C(h(x;)- C(h(x; )) - [VC(h(x; ))]th(x;P- $).

According to Lemma 18c below,

(33) max I[G(yIx;VJr)]tI =Op(V/JK(logTJK7n);
x,y

according to (7), (28) and Lemma 17,

(34) max I[G(y Ix; M)]t(P _f _ s)I = op(/JKihi);
x,y

and, according to (7) and Lemma 19 below,

(35) max IR =op(V77JKi).
x

The desired result (30) follows from (31)-(35).

LEMMA 18. (a) [G(y Ix;1)] v = Op(JTKThi).
t-(b) |t [G(y Ix; PB")] ip}2dy =Op(JK/n).

(c) max I [G(y Ix;IJr)] = Op(VJK(log JK )In).
x,y

PROOF. Part (a) follows from (7) and Lemma 17. In order to verify (b), choose

X E W. There are at most JO values of] such that H .(x) > 0. For any such j,
2~~~~~~jj343*~~g~J] 2K(f.21f 422

[KR k£ | jkj0k - 'Pjkj < k£ (jk - jk k) < K ( '(k - gjk - (jk')
Thus, by (7) and Lemma 17,

max K-IIik-I>-(pIkI= Op(n J 2K12/IJK) = op(/J1h),1k
so (b) holds. Part (c) follows from (27) and Lemma 16(a,b); (d) follows from (27),

Lemma 16b and (12) of Stone (1986); (e) follows from (27) and Lemma 16e; and (f)

follows from (7) and (e). o
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LEMMA 19. Thefollowing is valid:
tmax I C(h(x; ()) - C(h(x; ()) - [VC(h(x; ())] h(x; ,3- () = Op(JK(log JK)ln).

x

PROOF. Observe that

C(h(x; 1)) - C(h(x; ()) = [VC(h(x; (5"))] th(x; 13- 1)

+ J(1 -t) [f s(y;h(x;J3- ()) - a(t)]2f(y Ix;* + t(, - Ir"))dy dt,

where a(t) = fs(y; h(x;P - I))f(y Ix;f + t(f - fX))dy (see (1 8)). The desired result now

follows from Lemma 10, Theorem le, and (12) of Stone (1986). o

LEMMA 20. (a) max logf(y Ix; ) - logf(y Ix;f) - [G(yjvx; 5)] PV = op(/TKi).
x ,y

(b) max R|y( I x;A-F(yI x;) -J fly jx; p)[G(y ' x; q)dy' | =o9(7i).
PROOF. Part (a) follows from (31), (32), (34) and (35). Since

(yIx; 3)-F(yxl)lCl(yI x;p)e f(yIxZ_]( lx; )dy
(b) follows from (a) and Lemma 18c. o

LEMMA 21. max | f(y |x;,)[G(y Ix;J)]tdy | =Op(f7i).
y y'.y

PROOF. Let -r be the member of2 the entry in row j and column k of which is

H (,dC (h(x; 13)).H1(x)jV
Then E(QJp) = 0 since Eip = 0 and var(rt) = O(Jln) by (26) since |I 1 2 = O(K 1) by (27),

so = Op(fg7fi). Thus to prove the desired result it suffices to verify that

(36) max | H.(x)Y k[ f(y' Ix;IS)Bk(y ')dy' =Op(NJJTh).
y j1jk Jy !.y

For any given value of y, all but a bounded number of terms fyJ<yfl(y' Ix; t)Bk(y')dy/
are equal to ff(y' Ix;p*)Bk(y')dy' or to zero. By (4), (7) and Lemma 16d, the total

contribution of the bounded number of exceptional terms is Op(K'1JK(log K )n) =

Op(V7ThI). Let the B-splines B1, ,BK be ordered according to the right end points of

their supports. In order to verify (36), it suffices to show that

(37) max | q,P[f(yIx;p))B (y)dy = Op(vgJ1h).
Let X be a subset of consecutive integers in {1, ,K) and let K' denote the

cardinality of X. Let r denote the J x K matrix having entry ff(y x; (S)Bk(y)dy in row j

18
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and column k for k E X and all other entries equal to zero. Then

(38) r 2 = O(K'/K2)

Since

[ ,'PjkJfi jx; I)Bk(y)dy] = {VC*T

it follows from (26) and (38) that

(39) var [ ,]j'f( x;f)Bk)d -o[2]

Observe next that

(40) £ [f(y Ix; f?)Bkydy = £

where

(41) zxi ke([I()] G(YIxj;t))jk f(yIlx;P")Bk(y)dy, 1 . i< n,

are independent random variables whose sum has mean zero. By (4), (25) and (28),

(42) IZ7I <.b=O(n0nF J'K).
It follows from (39)142) and Bernstein's inequality that there is a 3 > 0 such that

[' k£Jf(y6I xf;)Bk(y)dy AA n(KK/IK)a]
(43)

f 2{exp[-3AVl1JK7(KK)a] + exp[-3A2(K/K 1-2a
for A > 0 and 0 < a < i.

Set R = min[r: 2r > K]. For 0 S r . R, let A denote the collection of all sets of
r ~~~r, rintegers of the form {(m-1)2. + 1, ,m2 1, where 1 . m . K/2 , and note that the

cardinality of A is at most K/2r and that each set in A has cardinality 2r. It follows

from (7) and (43) that, for any x> 0, A can be chosen sufficiently large so that, for

0<a< andn:t 1,

(44) P fk7Jk{ (yIx; I3)Bk(y)dy >A i(K'/K)a for some E A U R a.

For 1 k' . K, I 1 k' I can be written as a disjoint union of setsX E A0U -uR
such that for 0. r S R, there is at most one suchX E Jr' Thus it follows from (44) that

(37) holds. o

Equations (8), (9), (1 1) and (12) follow from (4), (7) and Lemmas 18, 20 and 21.
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4. Asymptotc normality. In this section the asymptotic normality of (^-,*)/ASD(t)

and ('-,*)/SE(t) will be established, where T is f(y Ix), F(y Ix) or Q(p Ix).

The next result follows from (1), (4), (18), (23), and (12) of Stone (1986).

LEMMA 22. There is an M > 0 such that ifn ) 1, then

rVC(S(r))r- JI(o)TI < MnF-1K185 1Tl2 rE

According to (24), (25), (28) and Lemma 22, there is an M > 0 such that if n) 1,

then

Ivar([G(yIx;P]t0) - [G(yIx;f) It [I($')]- G(yIx;P)
(45)

< Mn 1JK3 xE$andy E

Throughout the remainder of the section, it is assumed that J,K -. as n -+ oo. Under

this assumption, 65 0 as n -. o. Also, it follows from (27) that there is an M > 0 such

that if n > 1, then

(46) M 1< IG(ylx;p)l <M, xEWandyEY
It follows from (26) and (46) that if n» 1, then

(47) M-1n-1JK < var([G(y Ix;P,*t0) < Mn 1 JK, x E andy EY
LEMMA 23. Uniformly for x E W andy E Y, the distribution of

[G(ylx;p*)] v

SD([G(yIx;X)]t)
converges to the standard normal distribution as n -4 oo.

t
PROOF. Observe that [G(y jIx; Jr)] q, = S-Z where

Z= [G(yIx;fP)]t [I(I3*)]G(YjIxji;), 1 . i< n.

The random variables Z1,... 'zn are independent and their sum has mean zero.

Moreover, by (25) and (28), there is an M > 0 such that IZi < Mn 1JK for 1 < i < n. The

desired result now follows from (7), (47) and the central limit theorem (see the corollary

on page 201 of Chung, 1974). o

Set G*(y Ix) = G(y Ix; I) and G(y Ix) = G(y lx; 1p). Then

ASD(f(ylx)) = IY lx) {[G*(yIx)]t [I(r)] G*(yIx))
t
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ASD(F(yIx))= [F (vY' Ix)G*(y' Ix)dy'j [I(M)f|fJ(y x)GJ (y x)dy

SE(F(yx)) [[f f(y Ix)G(y Ix)dY ][I(1)]J f(yIx)G(yIx)dy']
.y '.5y 5

ASD(Q(p| x)) = ASD(F(y I x))ASDQ( IX))- '*YIX y=Q*(I,Ix),
and

SE(Q(p Ix)) = SE(F(y x))
f(ylx) y=Q(pjx)

It follows from (47) and Lemmas 20a and 23 that, uniformly for x E , and y E , the

distribution of

logf(ylx ;P)-logf(ylx;f)
SD(G(y Ix; )

converges to the standard normal distribution as n ~oo. It now follows easily from (45)

and (47) that the distribution of

f(y x; f-)ff(yIX;3)
ASD (f(y Ix; 13))

converges to the standard normal distribution as n -4 oo uniformly for x e , and y E

The next result follows from (1), (4), (10), (18), and (12) of Stone (1986).

LEMMA 24. Uniformlyfor r E t,

1I0 - I(f)]tI 2 =Op(&rJK' (log JK) Ir

Since

{[I(j)] - [I(13)])}ILr= [I(15)1 [I(f3) - I(15)] [I(13)] r, TrE $,

the next result follows from Lemmas 10, 1 and 24.

LEMMA 25. Uniformlyfor r E X,

I{ ['(f)]~- [I(1)I } 2 = Op(n3(JK)3(log JK))| 2

LEMMA26. max jG(ylx; 13)-G(yIx;ft*)l =Op(n JK (logJK)).
x ,y

PROOF. Observe that G(yIx;f) - G(ylx;fl) is the J x K matrix the entry in row j

and column k of which is H .(x)fB (y)[f(ylx;13') - f(yIxjJ)]dy. The desired result now

follows easily from (10). o
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It follows easily from (7), (10), (45)-(47) and Lemmas 25 and 26 that, uniformly for

xeX and y e

SE(f(yIx;A)) = 1 +op(l) asn-4oo.
ASD(f(y Ix; f3))

This completes the proof of asymptotic normality for T = f(y Ix; 1).

Let y be in the interior ofy.
LEMMA 27. There is an M > 0 such that if n > 1, then

MJ1K .< f(y'Ix;I?)G(y'Ix;P"t)dy'2 <.MK1 xe.X

PROOF. The entry in row j and column k of f ,< f(y' Ix;P)G(y ' Ix; f)dy' is

{ -HH1(x)B H-(x) h(x; P))jf(y lx;

=H (x) B ')fi ' - f(y'x;' )dydF BI(,)f(1,Ix;()dy'lI 6Y"5
('( IX;$)dy' Y ":- IXI~Yk'JJyf i'Y

The upper bound in the conclusion of the lemma now obviously holds, so to complete the

proof it suffices to show that there is an M > 0 such that if n > 1, then

M 1K 1<E [J Bk(y')f(y' x;15dy - Ix;1)dyIBk(y )f(y Ix;15)dyi
kyU_y Jy'.

for x E S. This lower bound is easily established by noting that if the support of Bk( ) is

to the right of y, then fY, .yBk(y 'f(y ' Ix; )dy' = 0 for x E. o

By (26) and Lemma 27, there is an M > 0 such that if n > 1, then

(48) M ln. <var' f(y' Ix; )[G(y' Ix; )]tiy' Mn 1J, X ES.

LEMMA 28. Uniformlyfor x E X, the distribution of

X fty Ix;P*)[G(y' Ix;P*)] fdy'

SD LI, fO" Ix; 1) [ G(y' Ix; 1)] tpdy J

converges to the standard normal distribution as n oo.

PROOF. Observe that f f(y' Ix; B)[G(y' Ix;f3)]t4dy' =XZi where

Z. = J f(vY Ix; f)[G.y |x; .) I[I($)] G(Yi Ixi; M)dy 1 5i<n

By (25),(28)and Lemma 27, there is an M > 0 such that 5 Zi l < Mn 1Jz for 1 < i < n.By (25), (28) and Lemma 27, there is an M > 0 such that .:I Mn- 1J/K for 1 . i . n.
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The remainder of the proof is as in that of Lemma 23, with (48) used instead of (47). o

The next result follows from (24), (25), (48) and Lemmas 22 and 27.

LEMMA 29. Uniformlyfor x E,

ASD(F(yI x;)) -1 as n-oo.
SD fly' x ; *)[G(y' |x;I)] dy'

y '.5y

It follows from (48) and Lemmas 20b, 28 and 29 that, uniformly for x E X, the

distribution of

F(y x; -F(y x; J)
ASD(F(Y I x;13))

converges to the standard normal distribution as n -00. It follows from (4), (7), (10), (25),

(48), and Lemmas 25-27 and 29 that, uniformly for x E X,

SE(F(y Ix;p) + op1 as n -4 oo.

ASD(F(Y Ix; fi)
This completes the proof of asymptotic normality for t = F(y x; .

Observe that F*(Q*(p x) x) = p and F(Q(p x) x) = p. Thus^^ ~~~~~~~~Q(p Ix)^
[F(y Ix) - F*(y Ix)]Y=Q*(P X) = - [F(Q(p |x) Ix) - F(Q*(pIx) Ix)] = Ix) f(ylx)dy.

We now conclude from (4) and (10) that, uniformly for x E X,

Q(P IX) - Q*(P I X) = [1 +op(l)] [F(y X) - F*(y X)]f*y Xx) yQ*( IIX),
The argument used to establish asymptotic normality for T = F(y Ix) applies with

y = Q*(p Ix) (even though this value of y depends on n). Thus asymptotic normality for

= QCp Ix) is valid.
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