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Abstract

New formulas are given for the minimax linear risk in estimating
a linear functional of an unknown object from indirect data contam-
inated with random Gaussian noise. The formulas cover a variety of
loss functions, and do not require the symmetry of the convex a priori
class. It is shown that affine minimax rules are within a few percent of
minimax even among nonlinear rules, for a variety of loss functions. It
is also shown that difficulty of estimation is measured by the modulus
of continuity of the functional to be estimated.

The method of proof exposes a correspondence between minimax
affine estimates in the statistical estimation problem and optimal al-
gorithms in the theory of optimal recovery.
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1 Introduction

Suppose we observe data y of the form
y=Kx+z (1)

where x is an element of a convex subset X of I3, K is a bounded
linear operator, and z is a noise vector. We are interested in
estimating the value of the linear functional L(x), and we wish
to do this in such a way as to minimize the error occuring at the
worst x € X.

When z is assumed to be a zero-mean Gaussian noise with co-
variance 02X, this is a problem of minimax statistical estimation.
There is a considerable literature on minimax mean-squared error
estimation of linear functionals in such situations — a partial list-
ing would include Kuks and Olman (1972), Laiiter (1975), Sacks
and Ylvisaker (1978), Speckman (1979), Li (1982), Ibragimov
and Has’minskii (1984, 1987), Pilz (1985), and Heckman(1988).
There is also considerable literature on minimax mean-square es-
timation in models related to, but not identical to, (1).

When z is assumed to be a vector chosen, not at random,
but by an antagonistic opponent, subject to the constraint <
z,57'z >< €%, this is a problem of optimal recovery of a lin-
ear functional. The author is not qualified to cite a complete
listing of work on this topic, but is aware of, for example Mic-
chelli (1975), Micchelli and Rivlin (1977), Melkman and Micchelli
(1979), Packel and Wozniakowski (1987), Traub, Wasilkowski,
and Wozniakowski (1988) and Packel (1988).

While the two problems are superficially different, there are
a number of underlying similarities. Suppose that L, K and
L are fixed, but we approach the problem two different ways:
one time assuming the noise is random Gaussian, and the other
time assuming the noise is chosen by an antagonist, subject to
a quadratic constraint. In some cases both ways of stating the
problem have been solved, and what happens is that while the
two solutions are different in detail, they belong to the same fam-
ily - i.e. the same family of splines, or of kernel estimators, or of
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regularized least squares estimates — only the ‘tuning constants’
are chosen differently.

Also, a number of theoretical results in the two different fields
bear a resemblance. For example, Micchelli (1975) showed in the
optimal recovery model that minimax linear estimates are gen-
erally minimax even among all nonlinear estimates. Ibragimov
and Has’minskii (1984, 1987) showed in the statistical estimation
model that with K = I and squared error loss, minimax linear es-
timates are within some constant factor of being minimax among
all estimates.

However, there are also disparities; one gets the impression
that the literature on optimal recovery is more developed and in-
tensely cultivated than the statistical estimation literature. Con-
sequently there are a number of problems that have been treated -
as optimal recovery problems, and not yet as statistical estima-
tion problems.

This paper is written mainly to bring the state of affairs for
the statistical estimation problem to roughly the same degree of
completion as the optimal recovery problem.

In previous work on statistical estimation, it has been as-
sumed either that X is ellipsoidal (compare Kuks and Olman,
Lauter, Speckman, Li) or hyperrectangular (compare Sacks and
Ylvisaker), or at least centrosymmetric (Ibragimov and Has’minskii,
Pilz). Also, in certain instances (Ibragimov and Has’minskii), the
operator K was of a very special form. In all the above instances,
the performance was measured exclusively via squared-error loss.
Theorems 1 and 2 of this paper give new general formulas for
the minimax risk of affine estimates in the statistical estimation
problem, with respect to various performance criteria. The for-
mulas hold for general bounded linear operators K, and without
assuming more than convexity of X. Our theorems may thus be
viewed as the completion of a lengthy development in the statis-
tical literature, aiming at a general characterization of minimax
linear estimates of linear functionals from noisy data.

Our approach has several corollaries of immediate usefulness.
Corollary 1 shows that minimax affine estimators are nearly mini-



max among all estimates, i.e. that the minimax risk among affine
estimates is within a few percent of the minimax risk among all
estimates, in a variety of loss functions. We list in section 9
below a wide variety of statistical models, such as nearly linear
models, semiparametric models, nonparametric regression mod-
els, and signal recovery models covered by the model (1). It
follows that in all these cases, minimax affine estimates, which
are computationally tractable, are also nearly minimax among
all estimates.

Corollary 2 gives relations between the modulus of continuity
of the functional to be estimated and the minimax risk. It follows
(see Corollary 3) that results on asymptotic behavior of minimax
risk, a statistical problem, follow from asymptotic behavior of
the modulus of continuity, an analytic object. The results given
here form the crucial step in studying asymptotic minimax risk
in a wide variety of statistical estimation problems, ranging from
nonparametric and semiparametric regression, to density estima-
tion, to signal recovery. (See Theorems 3, 4, and 5 in section 9.3
below).

Theorems 1 and 2, and their corollaries, bring the theory of
minimax linear statistical estimation to a state comparable to
the theory of linear optimal recovery. This is no accident. A
secondary aim of the paper is to show that at some deeper level,
the problems of statistical estimation and optimal recovery are
really the same — that an estimator optimal for one problem is
optimal also for the other — provided € and o are calibrated ap-
propriately. This means that results obtained in one literature
may be exploited in the other.

To show this, we have studied a generalization of the opti-
mal recovery problem of Micchelli (1975). Assuming that X is
just convex (i.e. without assuming symmetry of X), we show, in
Theorem 6, the existence of affine optimal algorithms. Our proof
is written in a way entirely parallel to the proof of Theorems 1
and 2; this shows that the basic results in both fields follow from
the same pattern of reasoning and, in the main, from a single
inequality, (44).



2 The Bounded Normal Mean

The statement of our main result in section 4 requires the intro-
duction of some ideas and results from Statistical Decision theory.

Suppose we are interested in estimating the real-valued quan-
tity 6, from observation of the random variable Y = 0 + Z, where
Z is a random variable with the Gaussian distribution N (0, o?).
Y itself may be used as an estimate, of course; but suppose we
know a priori that § € [—7,7], and we wish to use this a pri-
ori knowledge to do better than Y. The extent to which we can
improve on Y itself depends on what measure of performance we
use, and on whether we use only affine (inhomogeneous linear) es-
timates, or whether we allow the possibility of general nonlinear
estimates.

Evaluate performance by worst-case mean squared error. Then
the best performance among affine estimates cY + d is

pa(t,0) = min max E(cY +d— 0)? (2)

c¢d 9€[-7,7]

and among nonlinear estimates §(Y)

— 2
pn(7,0) = inf pInax E(§(Y) —0) (3)
where the infimum is over measurable functions. These two quan-
tities are called the minimax affine risk and minimax risk respec-
tively; they have been studied by Levit (1980), Casella and Straw-
derman (1981), Bickel (1981), and Ibragimov and Has’minskii
(1984). See also Donoho, Liu, and MacGibbon (1989). They sat-
isfy p < min(7?,0?), the invariance p(r,0) = o%p(r/0,1), and
the limiting relation p(7,0) — 02, 7/0 — oco. Three facts are of
particular interest. First, the two risks are never very different.
Donoho, Liu, and MacGibbon (1989) and Feldman and Brown
(1989) have shown that

pa(r, ) < Ton(r0). @)



Second, while there is no closed form expression for py (various
inequalities are available), for the affine risk we have

027.2

0-2+T2'
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pa(r, 0') =

Third, the minimax affine estimator is ¢Y’, where

72

co(r,0503) = p (6)

(The I, refers to ’squared error loss’ criterion).

Suppose instead we evaluate performance by worst-case mean
absolute error. Let A 4(7,0) denote the minimax value of E|cY +
d — 0| among affine estimates, and Ay denote the minimax value
among nonlinear estimates. We have not seen these discussed
before in the literature, although techniques similar to those used
for quadratic error may be used to study them. These measures
satisfy A < min(7, \/ga), the invariance A(7,0) = oA(r/0,1), and

the limiting relation A(7,0) — y/20, as 7/ — co. The two risks
are again never very different. In unpublished work, Richard Liu

(1989) has shown (by extensive computations) that
Aa(r,0) < 1.23 Ay(7,0). (7)

Unfortunately, there is no closed form expression for Ay or A4,
though inequalities can be developed. However, the minimax
affine estimator is again of the form ¢yY, where ¢, can be com-
puted numerically, and it can be proved that

co(T,0;1;) is a monotone increasing function of 7/ . (8)

with 0 < ¢y < 1.

As a third possibility, consider evaluating performance by the
size of fixed-length confidence statements. That is, let a € [0, 1],
and let x4,(7,0) denote the smallest number x such that for
some ¢,d we have P{|cY +d - 0| < x} > 1—aforall § €
[-7,7]. Similarly, let xno(7,0) denote the smallest number x
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such that for some 6(-) we have P{|§(Y) — 0] < x} > 1 -«
whatever be § € [—7,7]. These quantitative measures do not
appear to have been discussed in the literature before, but they
may be analyzed by adapting techniques of Zeytinoglu and Mintz
(1984, 1988). Denote by Z;_, the 100(1 — a) percentile of the
normal distribution. Both measures satisfy x < min(7, Z1-4/20),
the invariance x(7,0) = ox(7/0,1), and the limiting relation
x(7,0) = 21_4/20, T/o — 0o. We also have

XN,o:(T> 1) = XA,a(T, 1) =71, 7< Zl—-a'

It follows that

Zi-a
XA,a(Taa) S 21: /ZXN,C\'(T)U)' (10)
1—-o
Hence, for o = .05, the two risks never differ by more than

1.96/1.645 = 1.19... The minimax affine estimator is again of
the form ¢oY’, where ¢y can be computed numerically, and it can
be proved that

co(7,0; ) is a monotone increasing function of 7/o . (11)

with 0 < ¢y < 1.
Two final, technical remarks. First, for each of the three cri-
teria,
co(r,0;)=o(r) T — 0. (12)

This fact is apparent for the l; measure from (6); for the other
measures it may be established by analysis. Second, the minimax
and minimax affine estimates for all these problems are nonran-
domized. This follows from the theory of monotone decision prob-
lems developed in Karlin and Rubin (1956). This means, in par-
ticular, that if we had an opportunity to observe (Y, Z;, Zs, ... ,)
where the Z; are random variables whose distribution does not
depend on 6, and which are stochastically independent of Z, we
could do no better than to use a function of Y alone.



3 Hardest 1-dimensional Subproblems

We return now to the ’Statistical Estimation’ setting of the intro-
duction. We make one specialization and one generalization. We
suppose that the noise is Gaussian with covariance ¥ = oI where
I is the identity operator. We will show in section 11 that the
case of more general ¥ is also covered by these results. We also
now allow the functional L to be affine (inhomogeneous linear)
and consider as well affine estimates of L.

We are interested in determining the minimax affine risk with
squared error loss,

Ry(0) = inf sup E(L(y) - L(x))?,
L affinexex

the minimax risk with squared error loss,
Rjy(0) = inf sup E(L(y) - L(x))%,
L xeX

and the analogous quantities for absolute error loss A%(o),Ax (o).
We are also interested in the minimax length of fixed-length confi-
dence statements. C} ,(o) is the smallest number x such that for
some affine estimator L, the confidence interval [L(y) — x, L(y)+
x| covers L(x) with probability at least 1 — a for every x € X.
Formally,

C: 4(0) =inf{x : 3L affine 3> P(|L(y)-L(x)| < x) > 1—a Vx € X}.

The definition of C}, y(o) is analogous.
Suppose we knew a priori not just that x € X, but actually
that x belongs to the 1-dimensional subfamily

(x_1, %] = {tx_; + (1 —t)x; : t € [0,1]}. (13)

Put R’ (0;[x_1,%;]) for the minimax risk in this subproblem; ob-
viously

Ry(0:X) > Ry(osponxal)) (14)



since the additional prior information can only help. In fact

Ry(0;X) > sup{Rj(o;[x-1,%1]) : [x-1,x1] C X}  (15)
Ry(o;X) = sup{Ry(0;[x-1,%1]) : [x-1, %] C X}, (16)

and similar inequalities hold for A%(o),AN(0), etc. In words, the
full problem is at least as hard as any 1-d subproblem.
We now evaluate the difficulty of a subproblem.

Lemma 1

Fafosbeon)) = (TOD I p(in - Kl 2.0)

(17)

and similarly for Ry(o;[%x-1,%1]),

_|L(x1) = L(x-1)]

Ay (o;[x-1,%1]) = [|Kx; — Kx_4|

Aa(||Kx1 — Kx4]|/2,0)
(18)

and similarly for Ay (o;[x-1,%1]), Ca(o; [x=1,%1]),CR (0} %=1, X1]).

Let us see why. Let xo = (x_; +X;)/2 denote the center of the
subfamily, and put wo = K(x; — x-1)/||K(x1 — x-1)||. Define
the parameter

0 =< wo, Kx— Kxg > .

Consider the problem of estimating § from observations y. We
know that § € [—7,7], where 7 = ||K(x; — x_1)||- Defining
Y =< wo,y — KXo >, we have that Y is N(6,0?). Estimation of
@ from Y was treated in section 2, and information about minimax
affine and minimax estimators was given.

Suppose §(-) is a minimax estimator from the bounded normal
mean problem for the given criterion of interest. Then §(Y’) is ob-
viously minimax among all functions of Y'; we claim it is minimax
among all functions of y. Indeed, there is an isometry mapping y
to (Y, Z2, Zs, . ..), where Z; are Gaussian random variables, inde-
pendent of Y — @ and of each other, with probability distribution
not depending on #. Because the relevant minimax estimator is
nonrandomized, these extra, “pure noise” variables do not help
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us reduce the risk. Hence the minimax risk for estimating  from
y is that for estimating 6 from Y.

We now make the obvious comment that the problem of esti-
mating s@+t from Y has s? times the minimax risk of estimating 6
from Y, under quadratic loss, and s times the minimax risk of esti-
mating @ from Y under the absolute error or confidence-statement
criterion. The restriction of L to the subfamily [x_;,%;] is an
affine function L(x) = L(xo) + sf. The results quoted above
follow by computing s. Q.E.D.

We now employ the lemma. Introduce the seminorm ||v||x =
|| Kv||. The modulus-of-continuity of L with respect to this semi-
norm is defined as

w(e; L, K, X) = sup{|L(x1)—L(x-1)| : ||x1—%-1]|x < € and x; € X}.

We generally omit the secondary arguments, these being clear
from context.

The modulus may be used to calculate the right hand side of
(15). Indeed,

sup Rj(o;[x-1,%1]) = sup sup (L(xl)—L(x_1)> pa(€e/2,0)

[x-1,x1]eX €20 ||x1-x_1||x=¢ €

= sup (“’ie))z pale)2,0).

S

We say that the modulus “measures the difficulty of the hard-
est one-dimensional subproblem”. This might be an abuse of
language if no such hardest subfamily existed (i.e. if the cor-
responding supremum were not attained). However, a hardest
subfamily will exist in considerable generality.

We need one technical restriction on the class of problems
treated.

Definition We say that L is well-defined if the modulus of
continuity of L over X in the usual I norm is continuous at 0:
w(e; L, I,X) — 0ase— 0.

Restricting attention to well-defined cases serves primarily to
rule out consideration of nonmeasurable linear functionals and of
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problems where noisy data can provide essentially no information
about the functional’s value. This condition is satisfied by all the
many examples we have looked at.

Lemma 2 If X is closed, conver, and bounded, if L is well-
defined, and w(e) is finite for each € > 0, then the modulus of
continuity is attained. That is, for each € > 0 there ezists a pair
(x1,%-1) such that ||x; — x_1||x < € and

IL(x1) — L(x-1)| = w(e).
Moreover, for any of the three performance criteria, there erists
a hardest subfamily for affine estimates; i.e. a family satisfying
2
w(e
b)) = sup (22) paerz,o),
0 €
a (generally different) family satisfying
w(e
A% (o5 [x-1,%31]) = sup (—(2) Aa(e/2,0),
>0 3
and (a still different) family satisfying

Calo; [x-1,x1]) = sup (“@) Xaa(€/2,0).

4 Main Result

The following justifies our attention to 1-dimensional subprob-
lems.

Theorem 1 Let X be closed, bounded, and convez, let L be well-
defined, and suppose that w(e) is finite for each € > 0. Then
for any of the three performance criteria, the difficulty, for affine
estimates, of the full problem is equal to the difficulty, for affine
estimates, of a hardest 1-d subproblem. Thus,

Ry(o) = max Ry(o;[x-1,%])
Ma(o) = max Aj(o;[x-1,%1])
wal0) = max Cy(o;[x-1,%]).
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Furthermore, the affine estimator which is minimaz for a hardest
subproblem is also minimaz for the full problem.

The proof is given in section 11. This theorem, together with
Lemma 2, provides formulas for the minimax risk in the closed,
bounded case. By an approximation argument, given in the ap-
pendix, those formulas extend to the case of general X:

Theorem 2 Let L be affine and X be convexr. Then

N(o) = sup (&)2PN(6/2>0')

0 €
w(e)

€

Ay(o) > sup(

20

) An(/2,0)

w(e)

Cin(@) = sup (22 xoale/2.0)

e20

If, moreover, L is well-defined, then

()

€

Ry(0) = sup( )2pA(e/2,a>

€0 €
w(e)

D) etz

Ay(o) = SUP<

20

. w(e
Ciae) = sup (42) xaaef2io)
>0 €
For squared error loss, with K = I, and X centrosymmetric
about 0, Ibragimov and Has’minskii (1984) gave the formula

. o2 L*(x)
up ————5
xeXx 0% + [|z]|?

for the minimax risk of linear estimates. This may be shown to
be a particular case of our formula for R% (o). The formula for
R (o) has been proved before in special cases by Donoho and Liu
(1989) and by Brown and Liu (1989). The formulas for A%(o) and
C3 4(0) are new.

a
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5 Near-Minimaxity of Affine Estimates

These formulas imply that affine estimators cannot be improved
on much by nonlinear estimators. Indeed, using Theorem 2 and

(4) we have
2

a(0) = sup—5—pa(e/2,0)
>0 €
5  w(e)?
< i e pn(€/2,0)
S o
S ZRN(CT)

Arguing similarly for the other measures of performance, and
using the facts (7), (10) gives

Corollary 1 Under the assumptions of Theorem 2

R%(0) < 1.25 Ry(o)
ANy(o) < 1.23 Ay(o)
AT
Cralo) < ==L 03 (o).
’ Zl_a T

Hence quite generally, and with respect to several worst-case
performance measures, affine estimators cannot be dramatically
improved upon by nonlinear estimators.

Previous work has assumed the squared-error loss criterion.
Sacks and Strawderman (1982) had shown that in some cases the
minimax linear risk was strictly larger than the minimax risk;
Ibragimov and Has’minskii (1984) had shown, under the assump-
tion K = I and X centrosymmetric, that the ratio of the mini-
max linear risk and minimax nonlinear risk was less than some
unknown, finite positive constant. This ‘Ibragimov-Has’minskii
constant’ has been shown by Donoho, Liu, and MacGibbon (1989)
to be less than 5/4.

Here we see that for general K, without any assumption of
symmetry, and in several different performance measures, the
minimax affine estimator must be quantitatively quite close to
minimax.
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6 The Minimax Affine Estimator

For this section, fix one of the three performance criteria. Suppose
that a hardest subfamily for affine estimates [x_;,X;] exists under
that criterion. (For example if X is closed and norm-bounded).
Define the parameters Xo, and wq as in the proof of Lemma 1. For
estimating the parameter § =< wy, Kx— KX > in the subfamily
[x_1,X;], the minimax affine estimator is unique: it is just g =
co < Wo,y—Kxo > (here ¢y depends on the performance criterion
we have chosen). The restriction of L to the family is affine,
L(x) = L(xo0)+s6, with slope s = (L(x1) — L(x-1))/||x1—X_1]|-

Hence the unique minimax affine estimator in the subfamily is
Lo(y) = L(xo) + s

Theorem 1 says that the minimax affine risk of this subproblem
is the minimax affine risk of the full problem, so there is an affine
estimator for the full problem which is also minimax affine for the
subproblem. But Lo is uniquely the minimax affine estimator for
the subproblem. This forces Lo to be minimax affine for the full
problem.

The formula for Ly can be rewritten

Lo(}’) = L(xo + ¢o < Wo,y — KXo > -ug) (19)

where up = (x3 — x-1)/||x1 — x-1||. This says that the mini-
max affine estimator has the form of projecting the data orthogo-
nally onto the hardest subfamily, shrinking towards the center of
the subfamily by a factor ¢, and evaluating L on the projected,
shrunken result.

The shrinkage coefficient ¢ has an interesting form. Assume
that the hardest subproblem has length || K (x; —%_;)|| = €. One
can calculate formally that

_ €ow'(€o)
w(eo) ’
we will prove this later. Thus, if w(e) = A€”, then ¢ = 7. So in

this case the estimator reduces to shrinkage by the rate exponent
in the modulus of continuity.

(20)
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7 Risk and Modulus

The modulus of continuity of a linear functional over a convex set
is subadditive. Hence ﬂcfl is a decreasing function of €. It follows
that

sup (w—e))zp/a(e/&o’) < (@)2 sup pa(e/2,0) = w¥(0).

o €

On the other hand, w(e) is monotone increasing, so

2
sup (@) pa(€/2,0) < w(o)sup e 2pa(e/2,0) < W (o).
e<o e<o

Combining these displays, R%(c) < w?(c). Continuing in this
fashion, and using Theorem 2 for lower bounds, one proves

Corollary 2 Under the assumptions of Theorem 2,

pu(3 H(0) < By(o) S Ri(0) S wH(o)
Mz e(e) < AM(0) S A0 S w(o)
W2 Zia-0) S Con(0) S Coal0) S w2 Ziaja-0)

So the modulus of continuity determines quite closely the be-
havior of the minimax risks. (This result can be improved; the
upper bound on R} (o) can be replaced by w?(20)/4, and the

upper bound on A%(o) by w(\/:'r—sa)/Q).

8 Asymptotics as 0 — 0

We say that w(e) has exponent r if w(e) = A€” +o(€™). When this
condition holds, Cor. 2 shows that the rate of convergence of the
minimax risk to zero as ¢ — 0 is 02", under squared error loss;
and that the rate is ¢”, under both absolute error and confidence
statement loss.

Under the same assumptions, it is possible to make even stronger
statements.

15



Corollary 3 Suppose that Theorem 2 applies, and that the mod-
ulus of continuity has exponent r. Then

Ry(o) = &a(r)w(o)(1+0(1))
Au(e) = &a(r)w(o)(1+o(1))
wA(@) = Laa(r)w(o)(l+0(1))

as 0 — 0, where

£2,4(r) = supv¥2pu(v/2,1)

&1,4(r) = T;gvr"l)\,;(v/ll)

ba,a(r) = il;gv"‘xA,a(v/Zl)-
Also,

Ry(0) 2 &n(r)w?(o)(1+o(1))

An(o) = &n(r)w(o)(1+o(1))

Con(o) = &an(r)w(o)(l + (1))
as o — 0, where

En(r) = il;gvz"2p1v(v/2,1)

Ln(r) = sggv’_lz\lv(vﬂ,l)
€an(r) = sggv"lxMa(v/Q,l).

Calculus gives the closed form expression
62"4(7,) — 22r—2rr(1 _ ,’,)l—r.

For all the other quantities, it is necessary to get bounds via
computational means.
It follows from these formulas that

i RZ(U) E?,A(r)
DR = Ean()

(21)
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. A* (0) 61 A(T)
ll A s
BAE) = En(r)
im C;,A(U) fa,A(T)
i@ = fan(r)’

These may be used to give somewhat tighter bounds than those
proved in Cor. 1. For example, under squared-error loss, at
problems with r = 1/2, (21) shows that minimax affine estimates
can be improved upon by at most 7%. See for example Table 1
in Donoho and Liu (1989).

Another form of asymptotic relationship can be deduced.

(22)

(23)

Corollary 4 Suppose the modulus of continuity has exponent r,
and Theorem 2 applies. Then, for each of the three performance
criteria, if co and €y refer to the shrinkage coefficient in a minimaz -
affine estimator for that criterion and the length of a hardest
subfamily for that criterion,

co(€/2,0;:) =>r as o —0, (24)

Moreover, if v, denotes the solution of co(v,1;-) = r for the cri-
terion of interest, then

€ = 2v,0 (1 + o(1)). (25)

In other words, the shrinkage coefficient in the minimax affine
estimator tends to r, and the length of the hardest subproblem
behaves like a fixed constant times the noise level. For the [,
criterion we have, by calculus

Vo, = . (26)

The other quantities v;, and v,, must be found numerically.

9 Applications

We now briefly point out some of the different areas in which
results given above can be applied.
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9.1 Some familiar statistical models

The model with observations (1) subsumes many situations fa-
miliar to statisticians. In view of this, minimax affine estimators
for such models are nearly minimax among all estimates.

Approzimately Linear Models. Sacks and Ylvisaker (1978).
Let t; be n fixed numbers and suppose we observe

Yi=a+pti+6+2z, 1=1,...,n; (27)

where a and § are unknown real numbers, and the é; are unknown,
but they are known to satisfy

|5ilsci’ i:l,...,n (28)

with the ¢; known constants. The z; are, as usual, a N(0,0?)
Gaussian white noise. We are interested in the value of 3. Ex-
cept for the perturbations é;, this model posits a linear relation
between Y; and ¢; — hence the term ’Approximately Linear Model’.
Sacks and Ylvisaker (1978) have developed a complete treatment
of minimax mean square estimation in this model.

This model is a particular instance of ours. Define x = (a, 3, 61, . .

and (Kx); = a+ ft;+6;,: =1,...,n Then with A the hyper-
rectangular set defined by (28), and X = R? x A we get pre-
cisely a problem of the form mentioned in the introduction, with
L(x) = B. Of course, our framework handles generalizations of
the original Sacks-Ylvisaker model, by defining A differently — as
an ellipsoid, for example, or some other convex set. For example,
one might impose monotonicity constraints or moment conditions
on the (§;).

Semiparametric Models. Heckman (1988). Suppose we ob-
serve

y;=ﬂt,-+f(u,-)+z,~,i=1,...,n (29)

where t; and u; are fixed constants, u; € [0,1], say, and f is
unknown, but known to lie in a convex function class F. Again
(z;) is Gaussian white noise. We are again interested in estimating
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B, but f represents a nuisance which affects our measurements in
an unknown, but smooth fashion. Putting é; = f(v;), and

A={(&):6:= f(w), f e F}

we have an instance of the (generalized) Approximately Linear
Model mentioned above.

Nonparametric Regression (Speckman, 1979; Li 1982). Here
we have

y;=f(t,-)+z,~, 1=1,...,n, (30)

where now f € F, a convex function class on domain D C R<.
We are interested in estimating functionals such as f(¢o), f’(to),
etc. Let (¢;(-)) be an orthonormal basis for Ly(D), let z; = [ fé;,
x = (z;) and set X = {(z;(f)) : f € F}. Finally put (Kx); =
Y r;ii(t) = f(ti) and L(x) = T(f). This is a problem of our
type.

Inverse problems. O’Sullivan (1986). Here we have

vi=(PHEt)+z, i=1,...,n, (31)

where P is a linear operator, such as Radon transform, Abel
transform, Convolution transform, etc. This is again a problem
of our type; the setup is as in nonparametric regression, only K
has changed: (Kx); = 3; z;(P¢;)(t:;) = (P f)(t:).

Signal Recovery. Hall (1988). Here we have noisy, filtered
observations of a signal x = (z;), where now 7 ranges over the
lattice Z2:

Yi = Z ki_jx; + zi, 2,5 € VA (32)
J

The noise is i.i.d. Gaussian, with variance o2, and we wish to
recover L(x) = zo. We know a priori that the signal z; is slowly
changing in ¢; this is expressed by the constraint x € X, with X
a certain convex class.

White Noise Model. Ibragimov and Has’minskii (1984), Donoho
and Liu (1989). We observe

v(e)= [ ta F(u)du+ oW (2) t € [—a,d], (33)
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where W (t) is a (two-sided) Wiener process (W (—a) = 0). (This
is a rigorous way of writing dY (t) = f(t) + ocdW(t), hence the
term “observations in white noise”.) We wish to estimate the
linear functional 7'(f), and we know a priori that f € F, a convex
subset of L;[—a,al.

This reduces to a model of our type with K = I. With {¢;}2,
be a complete orthonormal basis for Ly[—a,al, let z; = z;(f) de-
note the i-th Fourier-Bessel coefficient of f with respect to this ba-
sis, so that f ~ Y2, z;¢;. Then put X = the set of coefficient se-
quences x = (z;) of members of F, and set L(x) = T'(f) whenever
x = x(f). Observing Y is equivalent to observing the Fourier-
Bessel coefficient sequence y = (y;), where y; = [ ¢;Y(dt). But
for this we have the observation equation y; = z; + 2;,2 = 1,2, ...,
with (z) ii.d. N(0,0?). Thus the mapping from functions to
their coefficient sequences maps the white noise model (33) onto
the present one.

It follows from Corollary 1 that in all the models just men-
tioned, minimax affine estimates are nearly minimax among all
estimates.

9.2 Deriving Minimax Affine Estimates

Our theory may be used to derive new approaches to the mod-
els just mentioned. For example, in Heckman’s treatment of
the semiparametric model, only two particular function classes
F are considered, and minimax linear estimators are derived for
those two cases. Our approach would allow to derive quadratic
programming algorithms to design estimators useful for convex
function classes other than the two considered by Heckman; for
example, for classes of smooth monotone functions. However, for
reasons of space we turn to other matters.

9.3 Asymptotic Statistical Theory

The results of sections 7 and 8 above allow us to derive, by sim-
ple, general techniques, relatively precise results on the behav-
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ior of asymptotic minimax risk in statistical estimation problems
with increasing sample size. In essence, the risk in problems such
as semiparametric and nonparametric estimation with n — oo
is equivalent to the risk in white noise problems with ¢ — 0.
This principle has been formulated for local minimax risk in Low
(1988) and for minimax affine risk in Donoho and Liu (1989) and
Donoho and Low (1990).

Theorems 1 and 2 above, and their corollaries, provide asymp-
totics in the white noise problem as ¢ — 0, and thereby give
asymptotics in the statistical problems as n — oo. Thus the
results of this paper, together with approximation arguments de-
veloped elsewhere, give a variety of results in asymptotic decision
theory. We mention three examples.

Optimal Rates of Convergence in Nonparametric Regression.
Donoho and Low (1990). In the nonparametric regression model
mentioned earlier, suppose that the evaluation points t; are a
random sample from the uniform distribution on D.

We are interested in estimating the affine functional T'(f).
An affine rule for this problem is any rule of the form T(y) =
e + 3; l;y; where the [; are allowed to depend on the (%;) but
not the (y;). Denote by Ra(n) the minimax risk of an affine
procedure based on n observations, with respect to squared-error
loss. Define Ay(n) and C4 4(n) similarly. Combining results in
Donoho and Low (1990) with those of section 7 above, we get:

Theorem 3 Let w(e) be the L2(D) modulus of continuity of the
functional T over the class F. Suppose that the function class F
consists of elements all bounded by M in Supremum norm. Let

T =02 + M? Then
uﬁ(%)/s < Ra(n) < w“’(%)
w(—"ﬁ)/z < Au(n) < w(ﬁ)
w(2 2o - %) L Cae(n) < w(2 2102 77-—7;)
for all n. Hence, the modulus of continuity w(e) < A" as € — 0
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n
n—r/2

Ra(n)
AA(n)
Cau(n) = n~/2,

X

X

In other words, determining the rate at which the minimax
risk converges to zero as n — oo, is completely equivalent to
determining the exponent in the modulus of continuity of T over
F.

Minimaz Risk in Density Estimation. Donoho and Liu (1989).
Suppose we observe X;,i = 1,.....,n, independent and identically
distributed F', where the distribution F is unknown but assumed
have a density f = F’ in a class D, and we wish to estimate
the linear functional T'(f) = f(0). Suppose D is the class of
decreasing, Lipschitz densities defined by

D = {f:12f(-1)2f()2f(1)20 for te[-1,1],
and 0< f(t)— f(t+h) < Ch forh>0

and [if:l}.

This class is convex asymmetric.

Donoho and Liu (1989) studied the above problem from the
minimax mean-squared error viewpoint. Their calculations, com-
bined with section 8 of this paper, give results for other perfor-
mance measures. Some terminology. An affine procedure is any
rule of the form e + (nh,)™' T; k(X;/h,) - a “kernel estimate”.
Let A4(n) denote the minimax expected absolute error for esti-
mating T by an affine procedure using n observations, and define
the confidence statement measure C4 4(n) similarly.

Theorem 4 The triangular kernel k(t) = (1—|t|); is asymptoti-
cally minimaz among kernel estimates for estimating T(f) = £(0)
over D for each of our loss functions, when the bandwidth is cho-

sen appropriately. For absolute error loss, the optimal choice of

bandwidth is

b = vy 361203013
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and to get asymptotic minimazity for (1—a) confidence statement
length, we should use bandwidth

h, = v2{§/361/30_2/3n_1/3.

Moreover the optimally tuned triangular kernel is within 23% of

minimaz (absolute error loss) and 19% of minimaz (95% confi-
dence statement loss). Finally,

Aa(n) = &,4(2/3)(6C)Pn=13 (1 + o(1))
and
Caa(n) = €,,4(2/3)(6C)/*n~13 (1 + o(1))

The results of section 8 play an integral role in this result,
which explains the appearance of the constants v and ¢, and the
figures 19% and 23%. For this application it is important that
our theorems hold for convex, asymmetric X.

Minimax Quadratic Estimation of a Quadratic functional. Donoho
and Nussbaum (1990). Suppose we have nonparametric regres-
sion data y; = f(t:;)+ z; with the t; equispaced on [—7, 7]. We are
interested in estimating the quadratic functional [ (f*)(t))2dt
using a quadratic rule e+ < y, My >. We know a priori that f®
is periodic and absolutely continuous for 0 < | < m, and that
[, (F™ @)t < 1.

While this is a quadratic, rather than linear, problem, Donoho
and Nussbaum exhibit a transformation which allows a solution
using by applying the methods developed here. This gives:

Theorem 5 Suppose r = (4m — 4k)/(4m + 1) < 1/2 and that
m > 1. Put 8 = (27)* v"/2 (1 — r)" /2 [4k + dm + 1] (c//n)*".
Let w; = n™ 13020y, exp{i?wﬁﬂnw_—ll} denote the j-th finite
Fourter Coefficient of y, and let W; = (27)*(|w;|*> — 0?/n). Then
Q) = B/2+ 3 5™(1 = B ), W;
>0
is asymptotically, as n — 0o, minimaz among quadratic estimates

of [T.(f®(t))%dt. The minimaz risk among quadratic estimates
is

Ro(n) ~ (2m) 2% 2(1 — 1)~ Y1" [4k + dm + 1] (0 /r)*
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Theorems 1 and 2, and their corollaries, play a key role in this
solution. For this application it is crucial that our theorems hold
for asymmetric convex sets X.

10 Optimal Recovery

Our inequalities between minimax risk and the modulus of conti-
nuity have a deeper explanation — they express a close connection
between the problem of optimal recovery and that of statistical
estimation.

Suppose that we have data of the form (1), where z is assumed
to satisfy only ||z|| < e. Our measure of performance is the worst-
case error

B(L,x) = sup |L(y) - L(x)].
llzlI<e
This problem setting has been treated by many authors: Mic-
chelli (1975), Micchelli and Rivlin (1977), Traub, Wasilkowski,
Wozniakowski (1983,1988), for example. See these sources for
further references, going back to the 1965 Moscow dissertation
of Smolyak and the seminal paper of Golomb and Weinberger
(1959). :

For the sake of later sections, we pedantically spell out our
approach to the problem. We are interested in the minimax error,
either over affine estimators or over general nonlinear estimators.
Hence, put

Ei(e) = inf sup E(L,x)
L affine xeX

Ex(e) = infsup E(L,x).
L xeX

We consider lower bounds based on hardest subproblem argu-
ments. Begin with the analog of the bounded normal mean. Sup-
pose that we are interested in estimation of the scalar # from data
y = 0 4 z; we know that |§] < 7 and that 2| < e. If 7 < ¢, a
minimax procedure is § = 0. If 7 > €, a minimax procedure is
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to estimate § = y. If 7 = ¢, any procedure cy with ¢ € [0,1] is
minimax. Thus, the minimax errors satisfy

en(7,€) = ea(T, €) = min(r,€). - (34)

Now suppose we wish to estimate L(x) for x known to lie in
[x-1,%;]. The minimax errors satisfy

|L(x1) — L(x_1)|
|1 — x_1]|k

ER(6 [x-1,31]) = en(lx1 = x|l /2,€) (35)

etc. The difficulty of a hardest subproblem is

sup  Ejy(e [xoy,xa)) = sup “Den(6/2,0.  (36)
X1,X—1€X 520 6

Now w is monotone, so

sup 5) en(6/2,€) = sup u—-)—(—QS/2 = w(2€)/2
5<2¢ 0 5<2¢ 0

and it is subadditive, so

6 )
sup wg )eN(6/2, €) = esup 2% = w(2€)/2
§>2€ §>2¢
Hence
sup  Ex (e [x-1,x1]) = w(2¢) /2. (37)
X1,X-1 eX

On the other hand, the nonlinear procedure
A 1
'(y) = soup{L(x): lly - Kxl| <, x € X)
1
+§inf{L(x) ly — Kx|] <¢ x € X}

(called the central algorithm in Traub, Wasilkowski, and Wozniakowski
(1983)) attains, one can check,

sup E(L*,x) = w(2€)/2. (38)
xeX
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So, in our terminology, the difficulty of a hardest subproblem for
nonlinear estimates is equal to the difficulty of the full problem,
and

Ex(€) = w(2e)/2. (39)

Micchelli (1975) and Micchelli and Rivlin (1977) showed that
if X is centrosymmetric about O there exists a linear optimal
algorithm. Since we have

sup  E%(€[x-1,%1]) = w(2€)/2, (40)
X1, X1€

existence of linear optimal algorithms is equivalent to the state-
ment that the difficulty, for linear estimates, of the full problem,
is the same as the difficulty, for linear estimates, of a hardest 1-d '
subproblem.

It is possible to generalize the optimal recovery theorem. As-
suming just convexity of X, but not centrosymmetry, we can say
that affine optimal algorithms exist.

Theorem 6 Let X be convez, closed, and bounded, and let L be
a well-defined affine functional. Then the difficulty of a hardest
1-d subproblem s equal to the difficulty of the full problem:

Ea(e,X) = max E4(e, [x-1,%1]).

Even if we assume only that X is convezx and L is well-defined,
we may still conclude that there exists an affine estimator which
attains the minimaz error and that

E(e) = w(2¢)/2. (41)

The theorem allows us to interpret Corollary 2 as giving in-
equalities between E* and R*, etc. For example, combining (41)
with Corollary 2 implies

(E%(0))*/4 < Ry(0) < (E3(0))>. (42)

In other words, if we equate noise levels € = o then (E*(¢))?
is approximately R4(0). The connection between the optimal
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recovery and statistical estimation model will be further spelled
out in section 12.

Proof. It actually is enough to prove the first half of the
theorem, which assumes that X is convex, closed, and bounded.
The second half follows from the first by following the arguments
in the proof Theorem 2, (with the auxiliary function m(a,b) =
a+ €|b]). We may also assume that w(e) is finite for all €, else the
subadditivity of w(e) implies that there are 1-d subproblems with
arbitrarily high difficulty, and so the theorem is trivially true.

As X is closed and bounded, and w(¢) finite (and therefore
bounded), Lemma 2 applies. There exists (x;,x_;) attaining the
modulus at w(2¢). We claim that for a specific choice of d, the
affine estimator

Lo(y) = L(x0) + d < wo,y — Kx¢ > (43)

has two properties:
1. Lo is minimax for the subproblem [x_;,x;]; and
2. Lo attains its worst-case error, over all of X, in the subproblem [x_;,x,].

Thus, the difficulty of the full problem for this particular esti-
mator is no more than the difficulty of the subproblem. The
difficulty of the subproblem is, by (35) and (37), w(2¢)/2, and
(41) follows.

Lemma 3 The modulus of continuity of an affine functional over
a convex set is a concave function of €. It is nonnegative and, if it
is bounded on an interval [0,¢], it is locally Lipschitz continuous
at 6 interior to that interval. It has a bounded superdifferential
O0w(6) at each § interior to that interval. That is, let Ow(8) denote
the set of slopes of lines passing through (6,w(6)) which lie above

the graph of w(8):
w(e) < w(é) + d(e — b).

Then Ow(8) is a nonempty, closed, bounded, convez subset of R.
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Pick d to be any element of Jw(2¢). The key fact about this
choice, and fundamental to the entire paper, is the following,
proved in the appendix. '

Lemma 4 Let the modulus be attained at 2¢ by x;,X_1, and let
d € Ow(2€). Suppose that labels are chosen so that L(x:) >
L(x_,). Then for every x € X,

L(x) = L(x1)
L(x) — L(x-1)

< d<wy Kx— Kx; > (44)
> d<wy, Kx—Kx_; >

For this choice of d, Property 1 is easily seen. For estimating
0 =< wo, Kx — Kxo >, from y =< wp,y — Kxo > we have
that |§| < € and that z = y — 0 has |z| < € also. By an earlier
comment, any estimator cy with ¢ € [0, 1] is minimax within the
subproblem. It follows that any estimator
w(2e)

L(y) = L(xo) + c=

< wo,y — Kx¢ >

with ¢ € [0,1] is minimax in the subproblem. By monotonicity

and subadditivity of w, any element d € Ow(2¢) satisfies 0 < d <

w(2¢€)/(2¢), i.e. we can write d = c“—’(z-zc—Cl with ¢ € [0,1]. So our

choice of d makes Ly a minimax estimator in the subproblem.
For Property 2, write

Lo(y) = L(x) = Lo(Kx) = L(x) + Lo(y) — Lo(Kx)
= Bias(Lo,x)+d < wo,z >

Picking the noise z aligned with wq (i.e. < wo,z >= sgn(Btas(Lo,x)):
€), we see that

”51'1'p |Lo(y) — L(x)| = |Bias(Lo,x)| + de.
z||<e

In this expression only Bias depends on x. So in order to estab-
lish that

sup E(LO’X) = sup E(LO)X)
xeX X€[X-1,X1]
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we need only show that
| Btas(Lo,x1)| > |Bias(Lo,x)|, x € X. - (45)

Note that Bias(Lo,X) is an affine functional with Bias(Lg, Xo) =

0. Thus Bias takes opposite signs at x; and x_;. Our choice of
labels L(x;) > L(x-1) forces Bias(Lo,x1) < 0. Then, using (44)

BiaS(Lo,Xl) - B’l:aS(Lo,X) = Lo(KXl) — Lo(KX) - L(Xl) + L(X)
= d<wpK(x; —x)>—L(x1) + L(x)

< 0 (by 44).

On the other hand, our assumption forces Bias(Lo,%x—1) > 0, and
again using (44)

BiaS(Lo,X_l) - BiaS(Lo,X) = d < Wpo, I{(X_l - X) > —L(X_l) + L(X)

> 0.

Finally, as |Bias(Lo, x1)| = |Bias(Lo,x-1)|, we have (45) and the
proof is complete.

11 Proof of Theorem 1

Our proof of the the optimal recovery theorem developed the
inequality (44). This same inequality allows us to prove Theorem
1.

Define the set I'1(€) = f—i—“(’f)f)-. Then I'y = Ueso (€ X Ti(€)) is a
subset of [0, 00] x [0,1]. In fact, by concavity of w and properties
of the superdifferential, (¢,0w(e)) makes up ‘a complete nonin-
creasing curve of R?’ (Compare Rockefellar (1970)); hence T’ is
a connected subset of R?.

Under our assumptions,

€ = sup |[x; — x_4||x < oo.
As w(e) = w(e*) for € > €*, we have 0 € Ow(e), € > €*. Thus

0 € Ty(€"). (46)
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Also, as L is nonconstant (otherwise the theorem is trivially true),

liminf 220 S Gonst > 0. (47)
=3 a0

For the criterion of interest, define
Fo = Ueso ({€} x {co(€/2,05°)}).

As ¢ is monotone increasing and continuous for whichever of the
three criteria we have chosen (see section 2, egs. (6), (8), (11)),
[o is a complete increasing curve of R2. From that section we
also recall the fact (12).

It follows from (47) and (12) that for all sufficiently small e,

inf T'y(€) > co(€/2,03-).
However, by (46), (6), (8), (11),
0 =infI'y(€") < co(€"/2,0;-).
Hence, by connectedness of I'; and Ty, these two curves ‘cross’ —
[yNTy #0.

This will imply the theorem. Let us see why. The crossing of the
curves implies that for some ¢, € (0, €*],

co(€0/2,0;-) € I'1(€o). (48)
Let x;,x_; attain the modulus at ¢;. Define

LU(€0)

Lo(y) = L(x0) + co(€0/2, 03 ) o

We claim that Lo has the two properties
1. It is Minimax Affine for the subproblem [x.;,x;]; and

2. It attains its worst performance over all X in the subproblem [x_;,x,].
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The theorem follows.

Indeed Property 1 is clear, because the use of ¢y in (49), and
the discussion in section 6. '

As for Property 2, we combine (48) with the definition of
I'1(e), we get that

Lo(y) = L(x0) + d < Wo,y — Xo > . (50)

where d € Ow(€y). Consequently, we may apply the reasoning for
Property 2 in our proof of the optimal recovery theorem, to get
(45).

Define L,V to be the probability law of the random variable
V when x is the true object. Now put

P (Lo, [x-1,x1]) = {£Lx(Lo(y) = L(X)) : x € [x_1,x1]}

and
P(Lo,X) = {Lx(Lo(y) — L(x)) : x € X}.

Note that
Lx(Lo(y) — L(x)) = N(Bias(Lg,x),d*c?).
Thus (45) implies that
P(Lo,X) = P(Lo, [x-1,%1])

Hence for the performance criterion of interest, the full problem
is no harder than the subproblem. Thus Property 2 holds and
the proof is complete.

Remark 1. The theorem may be viewed as a proof of the
optimal recovery theorem as well. In that case, we pick Iy =
(0,2¢] x {0} U {2¢} x[0,1] U [2¢,00) x {1}. Then T'oNT; # 0,
which implies there is an Ly with the two properties desired in
the proof of the optimal recovery theorem.

Remark 2. The theorem may obviously be adapted to other
performance measures besides the ones we have considered. The
fundamental issue is that the minimax affine estimator for || < 7
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be linear, and that the coefficient ¢y which gives the minimax
affine estimator be continuous in 7. This will hold for many other
loss functions. '

In other words a single proof idea handles various performance
criteria in the statistical estimation problem and also the optimal
recovery problem.

12 Correspondence Theorem

The proof above also establishes the following.

Corollary 5 Let the assumptions of Theorem 1 hold. Choose
any one of the three performance criteria in the statistical es-
timation problem. Let a hardest subfamily for affine estimates
under that criterion have length ¢5. Then the estimator

Lo(y) = L(xo) + d < wo,y — Kxo > (51)

where d € dw(ey), is an affine minimaz estimator for the sta-
tistical problem, and also an optimal algorithm for the optimal
recovery problem at noise level

€= 60/2.

In words, if we calibrate noise levels so that the hardest 1-
dimensional subproblems for optimal recovery and for statistical
estimation have the same length, then they have optimal estima-
tors in common.

Here is a simple illustration. Speckman proved the follow-
ing result, which expresses the minimaxity of cubic smoothing
splines. (For extensions of this result, see Li (1982)).

Theorem 7 (Speckman, 1979) Let y; = f(t;)) +2z;, 1 =1,...,n,
where t; € [0,1], z; are i.i.d. N(0,0?), and where the function f
is known to satisfy [y (f"(t))*dt < C?. Let g, be the solution to

min S (g(t) — )? + 4 [ (6"(0)dt.
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Then g, is a cubic spline. Let L be a linear functional with finite
minimaz risk. Then with u = 0%/C?, the estimate

LO(y) = L(g#)

is the minimaz linear estimator of L under squared error loss.

Now consider the associated optimal recovery problem, with
observations y; = f(t;) + 2, ¢ = 1,...,n, [3(f"(t))%*dt < C?,
where now the z; are nonstochastic and are known only to satisfy
i 22 < €%. Speckman’s theorem, and the Corollary above, imply
that for some w,r = por(€,C) the cubic-spline-based estimator
Lo(y) = L(gyu,,) is an optimal recovery algorithm — a fact due,
essentially, to Schoenberg (1964). In other words, Speckman’s
theorem implies Schoenberg’s. And, of course, vice versa.

In the other direction, consider the prototypical problem of
optimal recovery: estimating the integral L(f) = f; f(t)dt from
data y; = f(t;) + z;, ¢ = 1,...,n. Here we take t; = (z — .5)/n.
We know a priori only that f belongs to F = {f : |f(s) — f(t)| <
C|s — t|}, and the nonstochastic noise satisfies 3, 22 < €2. Then
the modulus is attained with f_; = —f;, where f; is the saw-
tooth function fi(t) = mini( + Clt — ti]). We get w(e) =
e/v/n+ C/(n —1), and that Lo(y) = 2 ¥, v is an optimal al-
gorithm, for each € > 0. Turning to the associated statistical
estimation problem, where the noise is i.i.d. N(0,0?), we note
that the formula supc(f-(cﬂfp,g(e/?,o) has its maximum at some
€0 € (0,00), and it follows that the same Lo is minimax affine
for the statistical estimation problem. A side calculation gives

* c? a2
a(0) =6 + 5

In short, if a problem has been solved in one of the two lit-
eratures, that solution may be considered as a solution of the
problem in the other literature.

We also have correspondence between the solutions to the sta-
tistical estimation problem with different loss criteria.

Corollary 6 Under the assumptions of Theorems 1 and 2, there
exist monotone, continuous functions o1(0), 04(0) (which depend
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on L, K and X) so that an affine estimator can be found which is
affine minimaz for squared-error loss at noise level o, for absolute
error loss at 01(0), and for the confidence statement criterion at

0'2(0).

In situations where asymptotics as ¢ — 0 make sense, of
course, Corollary 4 shows that we must have the relationships

o= 21 o (14 0(1))

1,r

o = 2 o (1+ o(1)).

o,T

Speckman’s theorem, quoted above, shows that cubic-spline-
based estimates of a linear functional are, under certain assump-
tions, minimax among linear estimates under squared error loss.
Corollary 6 says that the same estimates will also be minimax
for absolute error and confidence statement measures, at certain
noise levels. For example, with absolute error loss, let o7!(o)
denote the solution to o1(s) = o. If the true noise level is o,
we put uy = (07%(0)/C)?, and put Lo(y) = L(g,,); this is affine
minimax for absolute error loss.

Even without recalibration, the solution to one problem fur-
nishes a fairly good solution to any one of the others. For exam-
ple, suppose we know how to design an affine optimal algorithm
Ly, for the optimal recovery model at noise level e. We pick € = o
and we apply the resulting Lo in a statistical estimation problem
with noise level 0. With respect to the squared error loss crite-
rion, a simple analysis will show that

sup E(Lo(y) — L(x))? < w(20)?/4
xeX

whereas by Theorem 2 Rj(0) > w(0)?/5. Hence the optimal
algorithm, although designed for deterministic noise, is within a
factor of about 4 of minimax in MSE for the statistical estimation
problem.

Much the same story holds for other performance measures.
Consider confidence statement length. Put € = Z,_,/;0, and
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obtain an Ly which is an affine optimal algorithm for deterministic
noise of norm €. Apply this estimator in the statistical estimation
problem with noise level 0. One calculates that the interval

Lo(y) £ w(2Z1-4/20)/2

covers the true L(x) with at least 1 — a coverage probability,
for any x € X. Thus this optimal algorithm for dealing with
deterministic noise may be used to design a valid fixed-width
1 — a confidence interval. Moreover, by our results above, any
fixed-width interval which is a measurable function of the data
and which has at least 1 — a coverage probability must be at
least a factor Zy_,/2Zi_q/2 as long. So the interval is within a
few percent of efficient.

13 Discussion

13.1 Nonwhite Noise

A certain class of problems with nonwhite noise can be mapped
onto present one. If our observations (1) have z with nonwhite
covariance, and if the covariance is an operator with a bounded
inverse, then we can transform the observations via y’ = ¥~1/2y,
giving data

"'=K'x+2z

where now z is white, and K’ = ©~1/2K. Proceeding as before, we
define the modulus with respect to the seminorm defined by K’,
and the formulas from before all continue to apply. In this way we
could recapture results of Ibragimov and Has’minskii (1987); but
others as well, since our results allow indirect observations (K #
I), asymmetry of X, various loss functions, etc. Also, we could
demonstrate a close mathematical connection been estimation in
nonwhite noise and in the optimal recovery model with constraint
<z,57'z >< €2
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13.2 Nonlinear Functionals

We have shown here a close connection between the modulus of
continuity and the difficulty of estimation of linear functionals
from incomplete data with Gaussian noise. The connection be-
tween the modulus and difficulty of estimation need not persist
when we consider estimation of nonlinear functionals. See Ibragi-
mov, Nemirovskii, Has’minskii (1987), and Fan (1988). The min-
imax risk may go to zero much slower than the rate at which the
modulus goes to zero.

In contrast, in the optimal recovery model, under very mild
conditions, the modulus of continuity measures the difficulty of
estimation quite precisely for general nonlinear functionals. That
is, the “central algorithm” described in section 10 can be used
for general nonlinear functionals; it gives the worst case error
w(2€)/2 for quite a wide variety of situations, and this can be
shown to be the minimax error. Compare Traub, Wasilkowski,
and Wozniakowski (1983, 1988).

Thus the connection we are describing between Optimal Re-
covery and Statistical Estimation need not persist when we con-
sider estimating nonlinear functionals.

However, the results of this paper are still useful in nonlinear
cases, as we have suggested in section 9.3 above.

13.3 Estimating the whole object

If, rather than estimating just a single linear functional of the
object, we were estimating the whole object x with, say, /, norm
loss, statistical estimation and optimal recovery would no longer,
in general, have a close connection. In general, minimax linear
statistical estimation is connected with minimizing the Hilbert-
Schmidt norm of the estimator, subject to a side constraint on
the norm of the bias, while linear optimal recovery is connected
with minimizing the Operator norm of the estimator, subject to a
constraint on the norm of the bias. Of course for estimators with
1-dimensional range, that is, functionals, Hilbert-Schmidt and

36



Operator norms are the same, which explains why the connec-
tion holds for 1-dimensional functionals and not for more general
objects. '

13.4 Other Norms

The basic theorem of linear optimal recovery is not restricted to
use of the l; norm in specifying the constraint ||z|; < €. For
example, Micchelli and Rivlin (1977) showed that one can use
any Banach space norm for the error norm, and there will still
exist an optimal linear algorithm under quite general conditions.
However, optimal recovery under these other error norms does
not necessarily relate to statistical estimation.

One exception is when one has in the optimal recovery model
an i, error norm ||z||;, < ¢, for p € [2,00]. This corresponds
to statistical estimation with a white symmetric stable noise of
index o conjugate to p (1/p+ 1/a =1). Of course, p =a =2 is
the case we have covered in this paper; the case p = 0o, a =1
might be an interesting one to consider. It connects deterministic
noise small in supremum-norm with stochastic noise following a
Cauchy distribution.

14 Proofs

Note: we omit detailed proofs of Corollaries 1,2,5,6; these follow
from Theorems 1, 2, and other information, such as the discussion
of section 2 or the proof of Theorem 2.

14.1 Proof of Lemma 2

The whole result follows once we know that the modulus of conti-
nuity is attained. For, by Lemma 4, when the modulus is finite, it
is concave and continuous; the suprema over € in the formulas are
really therefore suprema of continuous functions of e. Moreover,
under the assumptions, only a finite range [0, €*] need be con-
sidered, where € = supy, x_, |[¥1 — X_1||x < co. A continuous
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function on a compact set takes on its maximum, and so in each
of the formulas the supremum is attained at some ¢;. The family
that attains the modulus at that ¢ is the hardest 1-d subfamily
for that criterion.

Suppose now that [X_; ,,X;,] is a sequence of subfamilies of
X with ||x1,, = X1l < e but L(xy,,) — L(%x-1,,) — w(€). Now,
as X is norm-closed, norm-bounded, and convex, it is weakly
compact. We can find a subsequence along which x; , and x_; ,,
both converge weakly. The weak limits, x; and x_;, say, must
belong to X and satisfy

Iminf |[x1,, — X-1,a|lK 2 X1 — Xx-1|x

by weak lower semicontinuity of the seminorm. It follows that
||x; — x_1]|x < €. If we can show that

L(x1) — L(x-1) = w(e),

we have therefore shown that the modulus is attained. The de-
sired relation follows from

Lemma 5 Let L be a well-defined affine functional and let X
be a norm-bounded, norm-closed conver subset of l,. Let X, be
a sequence of elements in X converging weakly. Then the weak
limit x is in X and

L(x) = lim L(xx). (52)

Proof. We first remark that L is bounded above on X. For
suppose there were a sequence (x,) with x, € X yet L(x,) —
oo. Fixing xo € X, and recalling that ||x,|| < M for some
absolute constant M, we would get that x;, = (1 — §)xo + 6%,
with § = ¢/M had |L(x1,,) — L(x0)| = o0 yet ||x1.. — Xo]| < e
Hence w(e) = +oo for each positive e. But this contradicts the
assumption that w(e) — 0 as € — 0.

The sequence (L(x,)) is therefore a bounded sequence of num-
bers. Select a subsequence along which it converges, to a limit -
l say.
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Define X = {x € X : L(x) < I} This set is convex and
bounded. Because L is well-defined, the set is strongly closed,
hence (by convexity) weakly closed. '

Fix § > 0. Along our subsequence, for all sufficiently large n,
L(x,) <1+ ie x, € Xcps. As Xqyps is weakly closed, the
weak limit x € X<i4s. Hence L(x) < 1+ 6. As § was arbitrary,
we conclude that L(x) < I.

By a similar argument L(x) > [. Hence L(x) is equal to the
limit of L(x,) along the subsequence, i.e. I. More generally, every
cluster point of the sequence (L(x,)) is equal to L(x). Thus the
sequence (L(x,)) has an ordinary limit, and this is equal to L(x).
(52) follows.

14.2 Proof of Theorem 2

The lower bounds on nonlinear minimax risk all follow from the
obvious fact that the risk of the full problem is as bad as any
subproblem.

Before proving the second half of the theorem, a comment. Let
MazRisk(L,X) denote the supremum risk of L over X, according
to whichever loss criterion we are considering. We note that

MazRisk(L,X) = m(MazBias(L,X),||L'|]) (53)

where MazBias denotes the supremum of the absolute value of
the bias of L over X, and L’ is the homogenous linear part of L.
Here the function m depends on the loss criterion. For example,
if loss is squared error, m(a, b) = a® 4+ o?b%. In any event,

m(a,b) is a continuous function,

monotone increasing in each argument separate{$4)

We now explain why closedness of X is not necessary for the
formulas to work. Indeed the minimax affine risk is unaffected
by taking the l; closure. First, as L is well-defined, it has a
unique, modulus-preserving affine extension from X to its closure.
Second, suppose the minimax affine risk is finite (otherwise there
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is nothing to prove). Let L be any affine estimator with finite
minimax risk. Then

MazRisk(L,X) = MazRisk(L, cl(X)) (55)

Indeed, by (53) the I, norm of the homogeneous linear part L’ of
L is finite. Let x be any element of the closure of X. Let (xn)
be a sequence in X converging to x. From finiteness of the norm
of I, it follows that L(Kx,) — L(Kx). As L is well-defined,
L(xn) — L(x). We can conclude that Bias(L,x) = L(Kx)—L(x)

is a uniformly continuous function of x, and so
MazBias(L,X) = MazBias(L, cl(X)).

From this, (53) and (54), (55) follows. It follows that the minimax
risk is invariant under closure.

We now explain why norm boundedness is unnecessary for the
formulas to work. We assume that the supremum of minimax
risks of all 1-d subfamilies is finite (otherwise there is nothing
to prove). Let X, denote the set c/(X N B(0,k)). (Restricting
attention to only those k > ko for which the set is nonempty). X
is a closed, convex, norm bounded set. By Theorem 1, there exists
a affine estimator Lj, say, which is affine minimax for estimation
of L over X;. Fix g in every Xy, k > ko, and put [, = Li(Kzo).
Let L} be the homogeneous linear part of L.

The sequence of norms (||L||) is bounded. Indeed, letting M
denote the supremum of the minimax risks of all 1-d subfamilies
of X and M, denote that for X, we have

M > M, = MazRisk(Li,Xy) = m(MazBias(Lg, Xk), [|Li])
= m(0,||Lgl])-

We can extract a weak limit Ly from the norm-bounded sequence
(L%). By weak semicontinuity of the norm,

|1 Lo|| < liminf || L || | (56)

where k is along the subsequence which gives rise to Lj.
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The sequence (I;) is bounded. Indeed

M > M, = MazRisk(Ly,Xy) =m(MazBias(Li,Xk),||L:]])
> m(|Bias(Lk,%0)|,0) = m(|lx — L(z0)],0).

‘We can extract, along a further subsequence of the initial subse-
quence, a limit /.
Define Lo(y) = lo + Ly(y — Xo). This is affine, and has

Bias(Lo,x) = Lo(Kx) — L(x).
We claim that

MazBias(Lo,X) < limsup MazBias(Li, Xy). (57)
k

Pick any x; € X. For k > k;, say, x; € X;. Now
BiaS(Lo, XI) - Bias(Lk,xl) = Lg(xl) - L;(xl) + lo - lk

Along the second subsequence the right hand side tends to the
limit 0. It follows that

Bias(Lo,x1) = liin Bias(Lk,x1) < limsup Maz Bias(Ly, X4).
k

This proves (57).
It follows from (56), (57), (53), (54), and Theorem 1 that

m(MazxBias(Lo,X),||Lg|l) < limsupm(MazBias(Ly,Xy),||LL|])

k

= limsup My = M.

k

In other words,
MazRisk(Lo,X) < M.

Recalling that M is the supremum of the difficulties of all 1-
dimensional subproblems, we show (by exhibiting the estimator
Lo!) that the difficulty of the full problem is not harder. The
formulas follow.
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14.3 Proof of Lemma 3

Given ¢, €, and 7 there exist pairs (x_1,%;) , (x_;,x}) attaining
the modulus to within 7: ||x; — x_1||x < € yet

L(x1) = L(x-1) 2 w(e) = m,
etc. Let x;, = (1 — h)x; + hx] and similarly for x_; 4. Then

L(x1p) = L(x-1,4) 2 (1 = h)(w(€) — n) + h(w(€') —n)

yet

en = |xop —Xoanlle = (1= A)(x — —x-1) + h(x; —x1y)||x
< (1 —h)e+ he.

so that

w((1 —h)e+ he') > w(er) > (1 — h)w(e) + hw(€) — 7.

Letting 7 — 0 demonstrates concavity. The remaining parts of
the lemma follow from these two facts, which may be abstracted
from statements about convex functions in Rockefellar (1970).

A positive, monotone increasing concave function which is
bounded above on the interval [a,b] is locally Lipschitz contin-
uous at every interior point of this interval.

A concave function which is bounded above and below on
a finite interval [a,b] has a closed, bounded superdifferential at
every interior point of the interval.

14.4 Proof of Lemma 4

We present only the argument for the first inequality; the second
is similar. Suppose that for a given d, we have

L(x) — L(x;) > (d + 6) < wo, Kx — Kx; > (58)

for some x € X, which remains fixed throughout the proof. We
will show that d & Ow(2¢).
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Put x; = (1 — h)x; + hx. Using the definition of x;, x_;, we
have L(x) — L(x;) = w(2¢), and so

L(xp) — L(x-1) > w(2¢) + h(d + 8) < wo, Kx — Kx3 > .
Now
Ixp —x_1llke = Il — %o+ 3 — 3k

= 4 +2< Kx; — Kx_1, Kx — Kx1 > +||xn — xu||%
= 4€® + 2he < wo, Kx — Kx; > +h%||x — x4||%

Note that | < wo, Kx — Kx; > | > 0. Otherwise, we would have
llxn — x-1llx = ||x1 — x=1l|x + o(h). But (58) shows |L(xp) —
L(x_1)| > |L(x1) — L(x-1)| + const h, which contradicts the
assumption that (x;,x_;) attain the modulus.

It follows that AZ||x — x;||% = O(R?| < wo, Kx — Kx; > |?).
Putting n = h < wo, Kx — Kx; > we have

w(2e + 1+ O0(n%)) > w(2e) + (d + &)n. (59)

On the other hand, by definition, for any d € Jw(e) we must have
w(2e+1n) < w(2€) +dn (60)

for all admissible . But (59) makes (60) impossible. As d does
not satisfy (60), it cannot belong to dw(2¢). Q.E.D.
14.5 Proof of Corollary 3
The result follows by plugging in A€e” + o(€") in place of w(e) in
earlier results, and bounding remainder terms.

14.6 Proof of Corollary 4

Under the hypothesis that the modulus has exponent r, it follows
from concavity of the modulus that we have the set convergence

edw(e)

€

—7r as €—0.
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In the context of the proof of Theorem 1, this means that asymp-
totically, for small ¢, we have I';(¢) ~ r for small €. It follows that
asymptotically, as ¢ — 0, I'g intersects I'y where both take ap-

proximately the y-value r. Hence ¢y = r, and the other formulas
all follow.
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Figure 1. The modulus of continuity of an affine functional over a

convex set is a nonnegative, concave function of €.

If it is bounded for all €, then at each € > 0 it is locally Lipschitz

continuous, and has a nonempty superdifferential.

Figure 2. T}y and 1"1 are connected subsets of the plane which
must intersect at some € in (0,€*].



