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Abstract

Maximum Entropy Inversion (ME) is a nonlinear inversion tech-
nique for inverse problems where the object to be recovered is known
to be positive. It has been applied in areas ranging from Radio As-
tronomy to various forms of Spectroscopy, sometimes with dramatic
success. In some cases, ME has attained an order of magnitude finer
resolution and/or an order of magnitude smaller noise level than that
obtainable by standard linear methods.

The dramatic sucesses all seem to occur in cases where the object
to be recovered is 'nearly black': essentially zero in the vast majority of
samples. We show that near-blackness is required, both for signal-to-
noise enhancements, and for superresolution. However, other methods
- in particular, minimum 11-norm reconstruction - may exploit near-
blackness to an even greater extent.
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1 Introduction
Maximum Entropy Inversion is a technique for solving ill-posed
inverse problems arising in science and engineering. These prob-
lems may be formalized as follows. A very high-dimensional vec-
tor x describes an unknown object (for example signal amplitudes
at various times, or intensities of light in various pixels of an im-
age). We are unable to measure x directly, however. Instead, we
get a vector y of noisy, indirect observations:

y=Kx+z (1)

where K is a known linear operator, and z represents noise. It is
possible to model problems in tomography, spectroscopy, astron-
omy, and other fields in this way, by specifying K appropriately,
as a discrete form of some mathematical transform, such as a
Radon, Fourier, or convolution transform [3,19,1]. (Still other
problems, such as crystallography, might be handled as well, if K
were allowed to be a nonlinear transformation [21,2], but we do
not consider that possibility in this paper.)

The key element in many of these problems is that they are
ill-posed. While this may be expressed in various ways at a phys-
ical level, at a mathematical level, ill-posedness occurs when the
effective dimension of y is considerably smaller than the dimen-
sion of x; i.e. when the operator K has few singular values which
are significantly different from zero [3,19,1]. In one of the most
common examples, image deblurring, K would be a smoothing
transform, with singular values small at singular vectors corre-
sponding to high frequencies, so that the detailed high-frequency
information in x is lost; the inverse problem is to recover x, with
high frequencies restored (if possible).

Were it not for the ill-posedness, it would be natural to ap-
proach the problem by least squares. After all (1) is just a
linear model, and an estimate of x can be obtained from the
least-squares principle XLS arg min, jly - Kxl 12, giving 5L=
(KTK)-lKTy. However, because of ill-posedness, this estimate
is either undefined, or else has very poor performance, even if one
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interprets the matrix inverse as a generalized inverse. It is by now
traditional to approach such problems by least-squares regular-
ization. Then one estimates x by the solution to the optimization
problem x = arg minn Iy - KxII' + AIIxIi2, which gives the for-
mula XRLS = (KTK + AI)-IKTy. Here A is a tuning constant
specified by the user in some way. Of course this idea has been
used in many, many fields and also goes by many other names,
such as ridge regression, penalized likelihood, Bayesian posterior
mean, and damped least squares.

In this paper we focus on problems where the object x to be
recovered has nonnegative coordinates. Think of images, chemi-
cal spectra, or other measurements of intensities. In this context,
Maximum Entropy Inversion (ME) [13] is a regularization method
which gives an estimate of x by the prescription

max - xlogxi subject to IIy-Kxl12 < S2; (2)

see also [27,11] for related definitions of ME. We prefer to define
it in the equivalent form

XME = arg min Ily-Kxl 2+ 2AE xi log xi, (3)

which emphasizes the similarity to regularized least squares. This
way of stating the problem is equivalent, in that there is a (data-
dependent) one-one correspondence between A in (3) and S in
(2) which makes the two optimization problems have the same
solution.

Although ME has a formal similarity with least-squares regu-
larization - one is, after all just replacing the quadratic penalty

x*2 with E xi log xi - there are important differences. Because
of properties of the entropy H(x) -xi log xi, the solution
to (3) must always have nonnegative entries. Second, because
the objective in (3) is not quadratic, the solution is not linear in
the observations vector y. Finally, no closed form expression is
known for the solution of (3). Instead, (3) must be approached
as a general convex optimization problem, and solved by some
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variant of gradient descent. However, special purpose optimizers
for this problem have been developed [24] which can solve very
high dimensional problems.

The implicit claim made by advocates and users of maximum
entropy inversion is that these differences from least-squares reg-
ularization matter: that the positivity and nonlinearity of the
ME process provide benefits in applications which are worth the
computational expense of ME.

In fact, many applications of ME have been developed: to
problems in NMR spectroscopy [22]; in astronomy (interferom-
etry) [13]; and in infrared absorption spectroscopy [11]. Many
published reconstructions obtained via ME are excellent, and a
few side-by-side comparisons show that ME regularization can, in
certain cases, dramatically outperform quadratic regularization.

We mention two protypical examples. (A) Sibisi et al. [22]
compare the ME reconstruction of an NMR spectrum with recon-
struction by conventional (least-squares) methods (Figure 1.1).
Not only does the ME reconstruction look nicer (notice the lack
of noisy oscillations), but ME does a better job, in an objective
sense. The ME reconstruction resembles closely the reconstruc-
tion which conVentional methods could obtain only on data from
a much more sensitive experiment i.e. an experiment with higher
signal-to-noise ratio.

(B) B.R. Frieden [11] shows that ME can sometimes super-
resolve. We shall explain terminology in section 4; but we illus-
trate the point with Frieden's diagram. Figure 1.2 shows a true,
'spiky' object, a least-squares reconstruction, and an ME recon-
struction. In this case, the true object consists of two closely
spaced spikes; and the data are diffraction-limited. The recon-
struction by ME clearly shows the presence of two spikes, the
reconstruction by least-squares does not. The term 'superresolu-
tion' is used here because ME in this case resolves better than
the so-called Rayleigh limit, a resolution limit which all linear
translation-invariant least squares methods must obey. In par-
ticular, the two spikes are spaced less than 1/3 of the Rayleigh
distance apart, yet the ME reconstruction resolves them.
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These examples illustrate the basic phenomena that some-
times occur with ME reconstructions:

* (A) signal-to-noise enhancement; and

* (B) superresolution.

The purpose of our paper is to explain how and why these phe-
nomena occur, and particularly when (i.e. under what conditions)
they occur. We hope to make three main points.

[I] The phenomena are real, and due to the nonlinearity of
ME. However, they are delicate, and they occur if and only if the
image to be recovered is nearly black - nearly zero in all but a
small fraction of samples.

[II] ME is not the only nonlinear inversion technique able to
exploit near-blackness and produce these phenomena. For exam-
ple, another method, 11-reconstruction, can do so optimally, from
one point of view.

[III] The improvements obtained by such nonlinear processing
do not fully substitute for improving the sensitivity by getting a
better experiment.

The paper is organized as follows. Section 2 discusses a sim-
ple estimation problem in which it can be shown how the nonlin-
ear behavior of ME allows for an improvement in signal-to-noise
ratio (Phenomenon (A)). Section 3 shows how this surprisingly
simple analysis extends to studying the behavior of ME inver-
sion in NMR spectroscopy. Finally, Section 4 sketches a theory
explaining superresolution, Phenomenon (B). For Summary and
Discussion see Section 5. Section 6 contains proofs of Theorems.

Acknowledgements. The authors would like to thank M.
Burns, B.R. Frieden, E. Gassiat, F.J. Gilbert, R.L. Parker, P.B.
Stark, J.W. Tukey, and G. Wahba for interesting discussions and
correspondence. B.F. Logan kindly provided a bound copy of his
Ph. D. thesis. Lorenzo Sadun, Moxiu Mo, and Cha-Yong Koo
(in chronological order) provided computing assistance.
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2 Improving Signal-to-Noise Ratio
Consider the simple problem of estimating x = (xj)t=1 from noisy
data y:

Yi =xt zi, z 1,...,n (4)
where the noise terms zi are independent and Normally distributed
with variance a2. This is a special case of (1), with K the identity
operator.

In this model, the ME estimate of (3) is the solution to

x = arg min (xi -Y )2+ 2AE xi logx, (5)

where only positive x's need be considered in the minimum. Tak-
ing partial derivatives, one finds that at the solution (xi), say,

O = 2A(1 + logx-j) + 2(-i - yi)
so that xi, is implicitly given as the solution to

yi= xi + A(l + log i )).
Let &ME,A(Y) be the solution to the equation

y- + A(1 + logb).

Then the solution to (5) can be written explicitly in the form:

Xi =ME,A(Yi) i =,...,n. (6)
In words, the ME estimate is the result of applying the simple
nonlinearity 6ME,A coordinatewise.

Figure 2.1 displays the function 6ME,A(') for three different
parameter values A = 'L 2 2. The nonlinearity is defined for
both positive and negative arguments, is always positive, tends
to zero for extreme negative arguments, and tends to oo for ex-
treme positive arguments. The ME nonlinearity has a fixed point,
5ME,A(e-1) = e-l, towards which the data are always "shrunk":

IbME,A(y) - e11 < IY-e-
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The amount of shrinkage, as measured by the left hand side,
increases as A increases. 1

The effects this nonlinearity can produce are shown in figure
2.2. The top panel in this figure shows a "signal" x consisting
mostly of zeros, and a few large spikes. The rniddle panel shows
data y observed when the normal errors z have standard deviation
1. The bottom panel shows the ME estimate x obtained using
A = 2. The ME estimate has many visual similarities to the
"truth" in the top panel. There are only a few peaks standing
out from a nearly constant background. To some readers, the
transition from Panel (b) to Panel (c) will seem a dramatic visual
improvement.

There is certainly a quantitative improvement. Define the
mean squared error MSE(x, x) = n-1 Zi(x -x1)2. Then the raw
data of Panel b have MSE(y, x) ~1, while for the estimate of
Panel c we have MSE(x, x) 0 .45, a factor of 2 improvement.

2.1 Improvement and Near-Black Images
This improvement is due to the special nature of x used in Fig-
ure 2.2. Let Y be distributed N(9, ao2), and introduce the risk
p(0; A, a) = E (&ME,A(Y) _ 0)2, the expectation referring to the
distribution of Y. Then we have

1 n

E MSE(x, x) =-Zp(Xt)

with expectation referring to model (4).
Figure 2.3 plots p(O); the parameters A and C2 were chosen

exactly as in figure 2.2. Evidently, the risk. p is small if and
only if 9 is near zero. Hence the expected MSE of x is small
compared with ca2 if and only if most coordinates of x are nearly
zero. Indeed, one can read off the graph that

E MSE(x, x) < ca2
'The fixed point e-1, or "default value", has an arbitrary character, and in the practice

of ME, the objective is often modified by replacing log ri by log(3xi.r), where exp(-13)/11 -
A, which moves the fixed point from e-1 to A. Compare Section 3 below.
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implies (by Markov's inequality)

1 ~~~~5_#1i: xi> 2a}< -E
n 4

etc. The trivial estimate y has expected mean squared error a2.
This shows that if ME improves significantly on the trivial esti-
mate, then the true image must be significantly nonzero in only a
small fraction of samples. Hence Figure 2.2 is in some sense the
generic example of ME's ability to improve MSE in model (4).

2.2 Optimal Performance with Nearly Black
Images
ME is not the only estimate that can be used in the model (4).
Consider the optimization problem

x-arg min (xi-Yi)2 + 2AE xi (7)

where now the minimum is over nonnegative x. We call this the
minimum 11-rule because it uses a penalty which is the same as
the 11-norm for nonnegative x. Repeating the analysis above,
we see that the minimum 11 estimate is obtained by applying a
coordinatewise nonlinearity:

x = 11,A(yi), i = 1, ...

where 611,A(y) - max(O,y - A). Here one gets xi by "pulling
down" every measured observation Yi by an amount A, taking
care to ensure a nonnegative result.

If we were to display the analog of Figure 2.2c for this estima-
tor we would, of course, get a plot visually resembling the 'true'
answer for that situation, Figure 2.2a. The reader is invited to
imagine this for himself.

It turns out that for "nearly black" images of the type in
Figure 2.2a, the 11 method does an excellent job quantitatively,
and not just visually. Thus for the data of Figure 2.2b, the choice
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A gives MSE(61,,,\,x) .3. This is 50% better than ME and
more than 3 times as good as the trivial estimate y.

In fact, the 11 procedure has a certain optimality in dealing
with nearly black images. We formalize this property by using
minimax decision theory.

Definition 1 The class Xn(e) of e-black images consists of all
sequences of length n satisfying (1) x- > 0 for all i, and (2)

xi:Xi > 0} <ne.

Suppose we have a rule x-= Sn(Y) for estimating x in a problem
of size n. If this rule makes excellent use of the nearly-black
property, then it should have a small expected MSE for any x E
Xn(e). Thus, the following worst-case mean-squared error should
be small:

Mn(EnX= sup EMSE(6n(y),x)
zEXn ()

The smallest this can possibly be for any rule is

Mn(f) = inf Mn(&n, c).
fin

A rule attaining this minimum is called minimax.
The class Xn(O) contains all images which are nearly black:

images in which the nonzero pixels can have any conceivable ar-
rangement in space and in amplitude; Mn(e) therefore measures
how accurately it is possible to reconstruct x from y just using
the information that x > 0 and that xi > 0 in a small fraction of
samples. The following result describes the behavior of

M(e) supMn(f)
n

and shows that the 11 rule is nearly minimax for small c.

Theorem 1 Let F, be the class of distributions of nonnegative
random variables whhich place at least 1 - e of their mass at 0.
Then

MA(e) = cT2sup{l-I( * F): F E F} (8)
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where I(G) = f(g')2/g is the Fisher Information. We have the
asymptotic result

M(e)-= a'22 log(-) ( + o(l)) asf -O (9)

Moreover, let M(l1, E) = infx supn Mn((l,,A, c) denote the minimax
performance among 11 rules over all e-black images. Then the
optimal A satisfies A2(e) 2log(1.) and

M(l( )e) 1as e O-

. (10)M(6)
The proof is in Section 6. Our analysis has several points of

contact with work of Peter Bickel [5] and M.S. Pinsker [20].
We interpret (9) as follows. If we knew a priori which xi were

nonzero in x, we could always estimate the other xi as zero and
estimate the nonzero xi by yi. This would give EMSE = u2f.
Relation (9) says that even without knowing a priori which x, are
nonzero, we can get an MSE which is worse only by logarithmic
terms.

Table 1 illustrates the fact that (10) is a good approximation
for c as large as 5% or even 10%. Included for illustration is the
behavior of a Bayes rule which assumes that the xi are random
variables, independent, and exponentially distributed; this rule
does far worse than the 11 rule.

Incidentally, ME is not competitive with 11 in this worst-case
analysis. As figure 2.2 shows, the risk of ME tends to +oo as
any component xi -- oo. Hence M(SME,A, C) = +00. In fact, ME
is asymptotically not competitive even in the best case. Because
of the fixed-point property of ME, 6ME,A(Y) > e-I if y > e1.
Therefore, we immediately have

inf inf EMSE(SME,A(Y),X) > e-2(1-E)(-(ae)A X,,(c)

which does not go to zero with e. 2

2By changing the "Default Value" A mentioned in the previous footnote, it is possible
to improve the best case performance somewhat. However, the worst case performance
does not improve.
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In another direction, the rriinimax risk among linear proce-
dures in this problem is precisely oT2, for each e > 0: linear proce-
dures are unable to take advantage of sparsity. Finally, the family
of "threshold" estimators &Thresh,A(Y) = yl{y>A} has a rmnimax
risk infA M(6Thresh,A, X) which goes to zero with E, but at a rate
slightly worse than that indicated for the 11 method.

2.3 Bias versus Variance
The risk improvements attained by the nonlinear methods above
come at price: the estimators are biased. This may be seen by
comparison of Figures 2.2a and 2.2c. All the zero values in Panel
a are estimated in Panel c by positive values offset from zero
by a nearly constant displacement. The peak values in Panel
a are estimated in Panel c by systematically smaller x. Such
'Amplitude Bias' is present also for the 1, estimate. This bias
is of course necessary in order to obtain the risk savings. The
unbiased estimate x-y has expected mean squared error a'
which is much larger.
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3 Applications to Spectroscopy
The results of the previous section have a broader significance
than one might at first suppose. Suppose that instead of obser-
vations (4) we have observations according to the original model
(1), with linear operator K an orthogonal matrix. Such K arise in
Hadamard transform spectroscopy [14] where they are Hadamard
matrices.

With K orthogonal, K1 exists, and we can define pseudo-
data = IK-ly. As K preserves Euclidean distances, IIY -
KxIIl = IIY- xJJ_ The general optimization problem (3) can
be written as

minZp-i-X,)2 + 2A xi logx,. (11)

This is the same as the optimization problem (5) we encoun-
tered in the signal-plus-noise situation, only with pseudo-data y
replacing y. It follows that the solution to the ME problem is
given simply by

xi = 6ME,A(yi) i- --1.,n. (12)
A related analysis applies in NMR spectroscopy. In that area,

when relaxation times and observation times are long, so that
'peak deconvolution' is not required [10], K may be modelled as
the complex n by n discrete Fourier transform matrix. The data
y and the object x to be recovered are then, in general, complex.
It is possible to define an entropy for complex objects in several
ways, and this leads to different properties of estimates; see [15].
We mention here the simplest definition, which leads to

min IIY- Kxl12 + 2A Ixil log Ix{1, (13)

where, in this equation, Izl denotes the modulus (zy)1/2 of the
complex number z. Now, the discrete Fourier transform matrix is,
up to a constant factor, unitary; defining pseudo data = -1y
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it turns out, by repeating earlier arguments, that Ai = 6CME,A U()
for a certain 'complex ME' nonlinearity closely related to the 'real
ME' nonlinearity.

There is a compact verbal description of the process of solv-
ing for x in (13). One first takes the inverse discrete Fourier
transform of the observations y, getting pseudo data y, then one
applies a complex-data ME nonlinearity coordinatewise. In con-
trast, conventional NMR spectroscopy consists in simply taking
the inverse discrete Fourier transform of the data, and using the
pseudo data y to estimate x.

Hence in one area of NMR spectroscopy ('without deconvo-
lution of line widths') the difference between conventional and
ME restoration is simply in the application of a coordinatewise
nonlinearity. We have conducted experiments to show this. Fig-
ure 3.1 presents three versions of the real part of an NMR spec-
trum of the compound tryptophan in D20 at 400 MHz, taken
on the JEOL GX-400 NMR spectrometer at the Rowland Insti-
tute, Cambridge, Mass. Figure 3.1a was prepared using stan-
dard Fourier transform methodology. Figure 3.1b was prepared
using the Cambridge Maximum Entropy program [22] [24] us-
ing the four channel method for treating complex spectra, with
"Default Value" parameter A = .01 and "Noise Level" param-
eter S2 = 5.1 x 104 (these parameters are called def and Co
in the software documentation). Figure 3.1c was prepared using
the idea described in [15,8]: computing the discrete Fourier trans-
form, followed by a coordinatewise application of a 'complex ME'
nonlinearity. In principle, figures 3.lb and 3.1c must be identical.
Actually, they agree only to 6 digits of accuracy; this is due to
the approximate, iterative nature of the numerical computations
involved.

It is interesting to review Figure 1.1, taken from [22], with the
developments of this section in mind. Visual comparison between
Panels a, b, and c of this figure and the corresponding panels of
Figure 2.2 or 3.1 leaves little doubt that the same effect which
is achieved in Figure 1.1 by ME reconstruction could also be
obtained by simply applying the right nonlinearity coordinatewise
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to Panel a. In other words, the qualitative effect of using ME can,
in this case, be obtained by a simple nonlinearity. The theory of
section 2 therefore gives an explanation how ME has been able
to improve signal-to-noise ratio in the Nature article [22].

Let us recall our three points.
Point [I]: Nonlinearities can be used to improve the mean

squared error of estimation when the true object is near zero
in all but a small fraction of samples. However, as we saw in
section 2.1, if the object to be reconstructed is not nearly black,
little improvement will be obtained. In some practical cases the
true NMR spectrum has a 'nonzero background level'; there we
expect that MEM does little to improve the signal-to-noise ratio.
Figure 3.2 gives a comparison of an ME reconstruction (3.2b)
with a conventional FT NMR reconstruction (3.2a). The object
to be recovered is well away from zero in a significant portion of
the display. Note that the ME reconstruction is noticeably less
'noisy' in the areas of the figure where the values are small, but
the two figures differ negligibly in 'noisiness' in those areas where
the values are well away from zero.

Point [II]: if near-blackness is present, it is clear from the dis-
cussion of section 2.2 that other nonlinearities can exploit it as
well. One could, for example, define a 'complex 11' method as the
solution to

min Ily- KxI1I + 2AZIxI.

with . again the modulus; compare [18]. Presumably, an analysis
similar to section 2.3, would show that this method performs very
well in the nearly-black, complex-valued case.

Point [III]: One may seriously question the extent to which
a gain in mean squared error leads to a gain in insight. When
the comments of this section apply, the difference between ME
and conventional reconstruction amounts to presenting the same
data on two different plotting scales. Suppose that one wanted to
identify peaks that were 'statistically significant', by the simple
device of drawing a horizontal line across the plot at the 95th
percentile of the null distribution of the plotted quantity (here
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null refers to the assumption that the true signal value at that
sample is zero). The calculation of the height at which such a
line should be drawn would differ, depending upon whether we
were plotting y, or the ME reconstruction 6S,(Yi), but the same
i-coodinates would be identified as significant.

One might therefore maintain that ME improves signal-to-
noise ratio (if the signal is nearly black) but does not improve
sensitivity (i.e. ability to succesfully discriminate small amplitude
signal from noise). Compare [10,23].

The bias in amplitude estimates produced by ME should also
be mentioned. While the ME reconstruction may be close to the
truth in mean square, its peak amplitudes are biased. (The habit,
in papers such as [221, of suppressing axis labels on plots obscures
this fact.) In contrast, by improving the experiment, one gets a
better signal-to-noise ratio without introducing bias.
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4 Super-Resolution
A full discussion of Phenomenon (B) would require considerable
space, so we specialize. We suppose that we have data according
to model (1), where the object is a vector of dimension n, and
the operator K consists of the first m rows of the n by n Discrete
Fourier transform matrix:

J Co( (i-1)(j-i)) 1,3,..
K ; sin( ,,) j= 2, 4,...,m -1

Then the observations vector y is of dimension m, and the ele-
ments of y represent noisy observations of the m low-order Fourier
coefficients of x. (Our definition requires that m be odd). This
is a discrete model of diffraction-limited imaging; compare [11,1,
19,4].

As in many other inverse problems, here the operator K is
of less than full rank. It has m nonzero singular values and a
null space of dimension n - m. Consequently, analysis by least
squares or regularized least squares faces certain limitations. The
formula ipjs - (KTK + AI)-IKTy gives an estimate x which
must lie in a subspace of dimension m, consisting of those vectors
x whose last n - m Fourier coefficients vanish. Vectors whose
high-order Fourier coefficients vanish are representable as sums
of low frequency sinusoids, and are in a certain sense "smooth".

While there certainly exist applications where the object to
be recovered is smooth, in areas like astronomy or spectroscopy
the object to be recovered is nearly a set of scattered spikes. The
smoothing effect of regularized least squares can be to lump two
closely spaced spikes together into a single bump. Therefore, in
such areas, regularized least squares can hide important structure.
The terminology "Rayleigh distance" describes this effect; this is
the minimal distance two spikes must be spaced apart so that
they can still be visually recognized as separate features in the
conventionally reconstructed image. The Rayleigh distance in
this discrete model may be taken as R = '. This is the reciprocal
of the incompleteness ratio e = m.n
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Frieden [11] demonstrated convincingly that ME can, some-
times, resolve structures closer together than the Rayleigh dis-
tance. This was illustrated in Figure 1.2.

4.1 Theory of Superresolution
Frieden's is not the only example of the superresolution phe-
nomenon. There is by now a considerable literature documenting
many different nonlinear algorithms which may be employed to
obtain superresolution. Jansson's book [16] contains several arti-
cles detailing different approaches.

However, superresolution is not well-understood theoretically.
To our knowledge, no theoretical treatment has emerged to an-
swer questions such as: "If the Rayleigh limit can be circum-
vented by nonlinear procedures, what is the true limit of resolu-
tion?" The absence of a theory of superresolution makes it easy
for skeptics to invoke general principles (e.g. "There's no such
thing as a free lunch") which in their view, cast doubt on the
whole superresolution phenomenon.

We have developed a theory which shows when superresolution
is possible, and what its limits are. From empirical work reported
in [9], we believe that the theory adequately models the appli-
cation of superresolving methods to real data. In this paper, we
present a limited selection of results. We hope to report at length
on this theory elsewhere. Here and below we adopt the usual con-
ventions lIvili = Zt IVil, 11V112 = /,and IIv I, = maxi Iv.

Definition. Let

w(; x) =sup{(Ix'-x1 : IIKx'-KxII2.< A and x' >O}.
(14)

We say that x admits of superresolution if

w(A; x) -+O as A --0. (15)

The definition makes sense. Suppose X admits superresolution
according to our definition. When we observe data y = Kx + z,
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and the noise z satisfies IIZ112 < A, then if x is any purported
reconstruction satisfying

IY-KX||112 < -/A (16)
and

Ai > 0il...,n, (17)
we must have, by the triangle inequality,

11 - xlii < w((1 + )A; x). (18)

If the noise level A is small enough, this means that x accurately
reconstructs x from the partial information y = Kx + z.

Examples of methods satisfying (16)-(17) are Maximum En-
tropy in constrained form (2), with S = y, or the minimum 1l
variant, defined by

minZXi subject to IlY- KxII2 < S

and x > 0

also with S = -y. One could also mention the positive-constrained
least-squares estimate, defined by

min ly-KxII2 subject to x > 0,

which satisfies (17) and (16) with y=1.
On the other hand, suppose that x does not admit superres-

olution, as we have defined it. Then, there exists x' which is
nonnegative and unequal to x, yet Kx' = Kx. Even with noise-
less data, we cannot say whether x or x' is the true object. Other
pathologies occur in this case; one can show that neither the
minimum 11 estimate nor the positivity-constrained least-squares
estimate is uniquely-defined for small noise levels, etc.

Our definition is particularly strong, intended to convince
skeptics rather than reassure advocates. In fact, the definition
is so strong that it may be surprising that there is any x which
admits of superresolution. Under this definition, x must be so
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special that any method - ME, or any of those described in [16] -

must give a good restoration of the full object x, from incomplete,
noisy data y if the noise level A is small, and if the restoration
method obeys (16)-(17).

In fact, all sufficiently nearly black objects admit of superres-
olution, as we see in Theorem 3 below.

A certain geometry underlies the definition: see Figure 4.1.
When (16)-(17) hold, we know from the triangle inequality that
IIK(x' - x)ii < (1 + y)A. For the particular K we are using,
the set of all possible reconstructions x' obeying this inequality
is a cylinder, the product of an m-dimensional sphere with an
n -m-dimensional affine subspace. This set of reconstructions
is unbounded. However, when we include the constraint that we
are interested only in positive reconstructions, attention focuses
on the small cross-hatched area in the figure. When we are lucky
enough that the geometry of the situation is as in that figure, the
set of all possible reconstructions is small, and also its diameter
tends to zero as A-+ 0.

The issue, of course, is to find for which x the geometry is of
the favorable kind indicated by the figure. The following, basi-
cally technical result, permits a reduction.

Theorem 2 x admits of superresolution if and only if there exists
a finite, positive constant C so that

lix' - xlii < C iiKx' - Kxii2 (19)
holds whenever

x'>O i=1,...,n. (20)
Let C(K,x) denote the smallest constant for which (19)-(20)
hold, and C(K,x) = oo if no such relations hold. If C < oo,
x admits superresolution, and

w (A; x) --C(K,x) A as A°-O. (21)

We therefore turn attention to the coefficient C(K, x). It is
clear from the proof of Theorem 2 that C(K, x) does not depend
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on x except through the number and arrangement of nonzero
elements - i.e. the amplitudes of the nonzero elements don't
matter. Our main result involves just the number of nonzero
elements:

Theorem 3 (1) If x has m21 or fewer nonzero elements then
C(K, x) < oo.

(2) If m+1 divides n, there exists x with m+1 nonzero elements
yet C(K, x) =oo.

(3) If x has more than m nonzero elements then C(K, x) = oo.

The proof, in section 6, revolves around a lower bound on
the number of negative values taken on by high-frequency se-
quences. B.F. Logan [17] introduced a method for constructing
low-frequency functions with prescribed zeros. By adapting his
method to construct low-frequency sequences with prescribed sign
patterns, we are able to get the required lower bound.

We restate the result in the language of our title. If the in-
completeness ratio is e = m/n, x must admit superresolution if
x is e/2-black. Moreover, x might not admit superresolution if x
is not e/2-black and x cannot admit superresolution if x is not
e-black.

Thus, near blackness is both necessary and sufficient for su-
perresolution.

We now briefly turn to consider the size of C. Obviously, when
C happens to be very large, say 1012, superresolution is largely
a theoretical curiosity, since sub-quantum noise levels would be
required to make C (1 + y) A. small enough to exert useful control
on the reconstruction error 1-xlll.

It turns out that C is strongly correlated with the spacing
of nonzero elements in x. If all nonzero elements in x are well-
spaced, then C can be moderately small; but if it can happen that
as many as r are bunched together within a Rayleigh interval,
then C can be very large, growing roughly exponentially in r.
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Theorem 4 There exists x having only r nonzero elements, and
a nonnegative x' such that

lx' - xlii = F(r, m, n) IIK(G-x)112 (22)
where, if m, n -* oo with r fixed, and m/n -,

1F(r, m, n)2 r2 j P7(0)l2dO, (23)

where Pr is a certain trigonometric polynomial having Pr(O) -
(9/2)2r as 0 - 0. In particular, for small E,

F (r, m, n) ;t v8r72 7r -2r (E/2) -2r-1/2 (24)

4.2 Interpretation
Our three claims of the introduction apply to this phenomenon
also.

[J} Superresolution is a real, delicate, nonlinear effect. It is
real, because we have proved that under certain conditions, ME
accurately reconstructs the unknown object, despite massive in-
completeness. It is delicate, because it depends on the near-
blackness of the object to be reconstructed (by Theorem 3). It
is nonlinear, because it depends on the two properties (16)-(17);
these cannot both be guaranteed by linear methods.

[II] ME is not the only method which exhibits superresolution.
As mentioned earlier, many different methods have been shown
to exhibit it in published examples. In our theory, any method
with the two properties (16)-(17) exhibits superresolution.

[III] Superresolution produced by these nonlinear methods is
not, in general, a substitute for superresolution produced by de-
veloping better instrumentation (i.e. increasing m). If the object
to be recovered consists of a few spikes spaced well apart, the
coefficient C can be moderate in size, and ME and like methods
might conceivably give a highly accurate reconstruction. But if
there are a number of spikes close together, Theorem 4 shows that
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the coefficient C can be very large, and the prospects for accu-
rate reconstruction are doubtful. In contrast, developing better
instrumentation would increase the resolution of the experiment
for both the easy (well-spaced) cases, and the hard ones.

5 Summary
ME is a nonlinear inversion technique which sometimes exhibits
two desirable phenomena

* (A) Signal-to-Noise enhancement beyond what linear methods can achieve.
* (B) Resolution of spikes spaced more closely together than the resolution

limit for linear techniques.
Proponents of ME have performed a service to inverse theorists by
demonstrating the possibility of these phenomena, and to practi-
tioners by making available efficient ME software which makes it
possible to exploit these phenomena.

This paper is being written against a background of some con-
troversy [25,26,23]. Some ME advocates have, in highly visible
fora, claimed explicitly that ME is the one and only method to
use for solving inverse problems where the answer is known to be
positive. For the record, our philosophy is:

Names don't matter; performance does. The fact that the ME
penalty functional can be called "entropy" is irrelevant. The fact
that entropy has a distinguished patrimony (Boltzmann, Gibbs,
Shannon) is irrelevant. The fact that entropy has useful appli-
cations in unrelated areas (coding theory) is irrelevant. The fact
that entropy satisfies simple functional equations is irrelevant. It
does matter how ME reconstruction performs in the problem at
hand, and that it sometimes uncovers surprising phenomena. It
does matter to explain those surprises, why they occur, and when
they do and do not occur.

In certain 'fundamentalist ME' quarters, we could expect vi-
olent disagreement with each phrase in the above credo. On the
other hand, one of the originators of ME inversion is B.R. Frieden,
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who is distinctly not of the fundamentalist sect. Alone among ME
advocates, he has evidenced concern for describing the properties
of signal and noise that lead ME to improve significantly upon
conventional methods [11], and for describing conditions under
which ME fails to improve upon conventional methods [12]. We
interpret his work as precursor of our points [I]-[III], and believe
that it lends independent support to our conclusions. He might
even agree with our credo.
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6 Proofs

6.1 Proof of Theorem 1

The arguments presented here are related to those in [7], where
a fuller account, for a different class of parameter spaces, may be
found. The reader is urged to consult that paper to clarify any
issues that arise in the understanding of the proofs. The reader
may also be helped for section 6.1.1 by consulting [20] and for
section 6.1.2 by consulting [5].

6.1.1 Proof of Formula for M(E)

Let 1G denote the set of exchangeable probability measures on
Rn which put mass 1 on X (E). For a measure gr on Rn, define
the Bayes Risk

p(r) = n-1E IIE {xly} - xll'2
As in [7], the minimax theorem of decision theory implies that

Mn(E) = sup{p(7r) -r E IJG}. (25)

Given ir E IIG let -ro be the product measure with the same
marginal. As in [71 we have p(ir) < p(7ro). Now if we de-
fine the rescaled marginal F1, = r{xl/lT < t}, the Bayes risk
p(iro) = o2(1-I(F1 ,*)), where <D denotes the standard univari-
ate Gaussian distribution, and I denotes the Fisher Information
(this is an identity due to L.D. Brown; see for example [7,5]).
Finally observe that {FF1, :r E 1IG} = .F,. Combining these
facts,

Mn(E) < a2( - inf{I(F* ID) F E YF})
for every n, so that

M(6) < ao2(1-inf{I(F* 1): F E .F}) (26)

Let a < E. There exists a sequence (Fk,a,,k = 1,2,...) of
distributions in Fc, with

I(Fk, * 4) -+ inf{I(F * D): FE .FE}
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and, additionally, Support(Fk,ca) C [0, k].
Put A, = {x E Xn(E)}. Let lro be product measure with

marginal Fk,a. Let Bin(n, p) denote a random variable with bi-
nomial distribution having parameters n and p. Then

7ro(An) > P{Bin(n,cx) < nl -+ 1 (27)

as n - oo. Define the conditional measure 7rn(B) = 7ro(BjAn).
Then irn E rfG, and so by (25), Mn(e) > p(7rn). Lemma 1 below
shows that 1rn is so close to 7ro that

P( n) 1 (28)

as n -- oo. As p(ro)= a2(1 - I(Fk,c, * )), we then have

liminfMn(e) > o2(1 - I(Fk,c. *

As M(E) > Mn(E), it follows upon letting k oo that

M(E) > a2(1- inf{I(F * 1): F E J }))
Now I(F * 4) is a continuous functional of F in supremum norm
(compare, for example, [6]); letting a --+ and invoking this con-
tinuity, we get the reverse inequality to (26), and (8) follows.

Lemma 1 Eq. (28) holds.

Proof. We note that

E 1O{xly} = xro(An)E v.o{xly, An} + 7ro(A')E ro{xIy, A'}
= iro(An)EEr{xly} + 7ro(Ac)E 0{xIy, Ac}n

As Support(7ro) C [0,k]n, both E Of{xly,An} and E0{.xly,Ac}
belong to [0, k]n for every y, and

lE 1rn{xjy} -E ro{XIlY}12
- (1 - 7ro(An))21lEr{jxy, An}-Ero {xly, A'}I 2

< nk2(1 -T-o(An))2
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Now let p denote the joint distribution of (x, y) when x r,
and y N(x,cT2I). Then

n-1E .11E _ro{XIY}_X112 > (p(iro)-(1-7ro(A,))k2)/ro(A.) p(ro).

and

p(ir) = nl E IE'rnf{xjy} -x112
> n-1 E MIlE_0 {xly} - x112 - Bn/n

with

n 4 E 2IIE1o{xIy}-xII2 E mIIEro{xy} - Elr{nY}2= o(n2).
Combining these inequalities with the definition of p(7rn) and with
(27) gives (28).

6.1.2 Asymptotic Formula for M(e)

In this subsection, we establish the lower bound

M(E) > 22 e log(E 1)( + o(1)). (29)
The upper bound on behavior of the 11 rule of the next subsection
shows that equality holds. Here and in the next section we take
a = 1, without any loss of generality. (29) follows from (8), taking
a large in (31) below.

Proposition 1 Let F, = (1-e)vo+EfvM, where v. denotes Dirac
Mass at x. Let a > 0, and, for all sufficiently small e, define IL
implicitly as a function of e by

jt2 + 2aiu = 2 log(ci). (30)

Then
1- I(1 * FE,,) _i21(a) as e -+ 0. (31)
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Proof. By L.D. Brown's identity, 1-I( * F,) is the Bayes
risk for estimation of the 1-dimensional parameter 0 from data
which is N(O, 1), when 0 is 0 with probability (1 - e), and -t with
probability e.

This risk may be written

p = (1-e) J(E {0IY} - 0)2k(y)dy + e (E {0jy} - -)2O(y- y)dy
Define p(y) = P{0 = ,ly}, and note that

E {Ojy} = Up(y).
Lemma 2 below shows that as e -O 0, p tends to zero or one
depending on whether y is smaller than or bigger than ju + a.
Applying this, and carefully bounding remainder terms,

p (1 _)2j q5(y)dy + L2J q(y - ,)dy + o(ej2) (32)
p+a o

Now using the assumption (30)

0(,u + a) = q(0)eexp(-a2
and the standard inequality

1- (t) < 0(t) for all t > 1 (33)
t

we get
(1 - c),? Iji+a#(y)dy = 0(qE) =o(e6 ),

+a

and so the first term in (32) is negligible compared with the second
term, leaving

p -?12(D(a)
as required.

Lemma 2 With the assumptions and notation of Proposition 1,

p(p + z)
I

{ z>a (34)

as e -* 0, uniformly in z > a + 6 and in z < a - 6, 6 > 0.
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Proof.

A=Y) (1-e)+(y)+ k(y- s)
so that

p(iu+ z) = ((1 -E) exp{-Hz- 2/2 +log(rc-1)} + 1

Now by (30) -,i2/2 + log(cl) = ay, so

p(u + z) = ((1-e) exp{I(a - z)} + 1)'.

From this, (34) is immediate.

6.1.3 Asymptotic Minimaxity of the 11 rule

We complete the proof of (9) and (10) by showing that if we put

A = 2log( 1) (35)

then, for the 11 rule E, based on this choice of A, we have

supMn(6En) < A _ (1+ o(1)) as e -+0 (36)
n

Since the p of last section and A of this section are asymptotically
equivalent, this shows that the inequality in (29) can be replaced
by equality. It also shows that the choice (35) is asymptotically
optimal. Letting 6(y) max(O, y - A), we have

E MSE(&n, x) = J J(6(9 + z) - 9)2 q(z)dz dFn(0)

where Fn is the empirical distribution of the xi. As this functional
is linear in Fn, and as Fn(0) > (1 - E) whenever x E XV(E), we
have

E MSE(6n, x) < (1 - 6)r(A, 0) + Esup r(A, p)

where
r(A,u) =-E (6(y +Z) _-")2
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A calculation gives

r(A, ) = j2(A - I- (A + /L)s(A - IL) + (A2 + 1)(1 - >(A -

This implies

r(A) = 2 (A -

and so
supr(A, p) = r(A, +oo) = (A2 + 1

Moreover,

r(A, 0) = -AO(A) + (A2 + 1)(1 -(()).
By (35) we have

+(A) = q(0)E;
using again (33), we get (1 -¢(A)) < 0(0)/A and so

r(A,0) < A

We conclude that for e < e1,

(1 - E)r(A, 0) + Er(A, ,u) < E(A2 + 2)

and (36) follows.

6.2 Proof of Theorem 2
Let Z = {i:Xi = 0}. Let V = {v: Iv'll1 = 1 and vi > 0,i e
Z}. Then V is closed and compact. Let v* be any mininizer of
IIKvII2 on V.

If IjKv*112 > 0, we claim that C = 1/lIsKvll2, and that
w(A;x) CA for small enough A. If I IKv*Ii2 = 0, we claim
that C oo and that w 74 0. These two claims together prove
the Theorem.

Assume that IIKv*112 > 0. Put v = x'- x' > 0. Then
v/IIvlij E V, so

JIA vI2 > IlIv*1121VIIvI;
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Hence C < lIllKvl 12.
Now, if we pick a very small, then x' = x + av* defines a

nonnegative vector, with

IIK(x'- x)112 = alKv*l 12 = IKv*lJ21x'- xlil
so

w(A;x) > aliv*ll, for A > allKv*112
for all a < a0, say. As IlKv*112 > 0, this says

(37)

L(A;x) > A/IIKv* 112
for A < AO. By definition of w and C,

w(A; x) < C(K,x)A, A > O.

It follows that C > 1/IlKv*112, and hence C =
may also conclude that

1/IlKv*112. We

w(A; x) = C(K, x)A, A < AO,

completing our first claim.
For the second claim, suppose IIKv*112 = 0.

positive value of a for which (37) holds. Then
Let a0 be any

liminf w(A; x) > ao.

I.e., w t40 as A 0. From this and (38), C =

the proof of the second claim.
00, completing

6.3 Proof of Theorem 3
Assertion (3) of the theorem is an exercise in parameter counting
and linear algebra. We omit the argument.

Let 0 < k < n/2. 6(k) is the set of discrete bandlimited
sequences of length n and bandwidth k, i.e. the real sequences
(bi) satisfying

Eb exp{vCT"" ) = k + 1 ,...,n- 1-k.
i=1 ~~n
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Let 1 < I < n/2. X(l) is the set of discrete highpass sequences of
length n, i.e. the real sequences (hi) satisfying

,h eXp2 (- )j}0 , . . -1, n-1+1, ... ., n- 1.n

It follows from Parseval's relation for the finite Discrete Fourier
transform that if b e B(k) and h E H(l), with k < 1, then

bihI = 0. (39)

The importance of these two vector spaces is that

B 2) = Range(K K); 2 ) = Kernel(K K).

Let Z {i : xi > 0}. From the proof of Theorem 2 we know
that C(K, x) = oo iff there exists v 3 0 such that Kv = 0 yet
vi > O,0i Z . From now on we fix I=Z!+. We can rephrase the
condition of Theorem 2 as

C(K,x) = oo iff for some nonzero h E H(l), h >., i E Z .
(40)

We use this to prove the two halves of the Theorem.

6.3.1 (1): Fewer than ' Nonzero Elements2

The lemma below shows that a nonzero h E X(l) has at least
1 negative elements. For such an h to satisfy hi > 0, i 31
we must have Card(Z) < n - 1, i.e. x has at least I nonzero
elements. As I > ' this cannot happen. The proof of the first2
half is complete.

Lemma 3 Let h E X(l). If h :A 0, then h has at least I negative
elements.

Proof. Put P = {i: hi > 0}. Put k = Card(Pc). WVe claim
there exists a sequence b = (bi) so that

n bin2bI > O, (41)

31



bihi > O, i=1,... ,2n,
and

b E 6(k). (43)
It follows from (41)-(42) that

Sb-h- > min lbil IhIl.
t 2

Now if k < 1, 7i(k + 1) D X(l). Therefore B(k) and X(l) are
orthogonal. It follows that j bihi = 0, which forces h = 0.
Consequently, if k < I then h = 0.

The construction of such a b is made by adapting a construc-
tion of B.F. Logan, who used it to show that continuous-time
high-pass functions must change sign frequently [17, Theorem
5.2].

Let (i,)u 1 be an enumeration of the elements of pc. Define

= 2r(izu- 1/2) (44)
n

2r(i,u + 1/2) (45)
n

for u 1,...,k. Define the sequence

b(u)- In1 97ij 1 27riZb(u) = sin(2-(- -su)) sin(-(--tU)) (46)t ~ 2'n 2 n U)

The reader will want to check at this point that

bMu) >0 E {1,. . , n} - {iu} (47)
b(u) < o, i= iU.

Now putting (46) in the equivalent form

b(u) = [cost-) -cos(-(i -u))]/2,n n

shows that, for certain constants e(u), e(U), and f(u), we have
b(u) = e(u) + e(u) cos( 27r(i - 1)) + f(U)sin( 2( ) (48)

n n
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In other words, b(u) E 3(1). Define now

bi= ()1) b(u) (49)

this gives a sequence (b-) such that

b >O, i E P

bi < O, EpC

Properties (41)-(42) follow. By the Convolution Theorem for the
finite discrete Fourier transform, one may show that if b(W), .. , MO
are all in 6(a), then rkI=lb(u) is in B(ka). As the b(u) are all in
6(1) we conclude that (43) holds.

One could also check this directly by combining (48) with (49),
giving explicitly the representation

k 2ir(I - 1)u 27r(i- 1)u)
bi = eO + E eucos( (- + f sin(

which implies (43).

6.3.2 (2): More than ' Nonzero Elements2

By hypothesis, I divides n. Pick 0 < t < n, and define

I1, nl '2 n
. *.

hi -1 i=t, l t + 2 l,T..
0 else

Now (hi) is periodic with period n. Thus h is representable as a
Fourier sum using only sinusoids also of period '-. Hence

Ehiexp{ o I}= 10,1,211,..,n -1}.
i=1 ~n

Now by construction L hi 0 . Hence,

hi=nexp= ° f I,91,. n-
t=1~~~
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which implies h E X(l).
If we define

_ | i -t, +1 t + 2 l
t | 0 else

then xi has only I nonzero elements. Putting Z {i: xi-°}
we see that hi > 0, i E Z. Hence, (40) is satisfied for this h and
this x, and C(K, x) = oo.

6.4 Proof of Theorem 4

We treat indices circularly, so that 0 is identified with n, -1 with
n - 1, etc. Put u = r - 1.

Suppose that r is odd. Let xi = ifi=-u,u+2,...,-2,0, 2,.. .,u-
2, u, and xi = 0, otherwise.

If, instead, r is even, let xi = 1 ifi = -u, u+2, ....,-1, 1,... , u-
2,u, and xi = 0, otherwise.

Define the sequence c (ci)t.1 via

ci={ ( 1) (cr+ )2 r r<<

O else

Pick a > 0 with
a < rin l/icj1.-r<i<r

Define x' by

xi = X2+(-1)raC, i=

then x' > 0. Now

lIx'- xII =a lciI =a

and m

II'(x' - x)112 = Ck((j))/
j=l
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where

f L1cc j - 1,3,5,...,m
= t ~ic sin(') j=2,4,6,...,m-1

are the discrete Fourier coefficients of c. Note that c is an even se-
quence, so that the sine coefficients vanish: c; 0 j 2, 4, 6,.

Define now Pr(09)-= Ci cos(Oi), so that c = *Pr ( )1))
for j = 1,3,5,. With this notation, (22) holds, with

r(r,m,n)-2 = Z(A)2 = n-1 IP2(7rj)I2 (50)
O< j<m/2 n

As Pr is Riemann integrable, if we let n, m -- oo with m/n
f E (0, 1),

1<S 2(27rin)12 kf'r 1P7(O)12d9.
0<j<m/2

To estimate the behavior of Pr, let f denote a function defined
on the real line. Define the 2r-th order differencing operator

(\2rf)(x) =-5 (-1)(1 +)f(x+ hi).

Then if f is integrable

22rP(9)f(9) = (A2rf)(O).
Now if f is Coo and of compact support,

h-2rA2rf- D2rf as h -O 0

in L1, where D2r denotes the differentiation operator of order 2r.
Hence for each fixed 0 we have that as h -+ 0

22 h -Pr(h9)f(9)0) 92 f(0)
for all f in Coo of compact support. Consequently

Pr(9) = (0/2)2r(1 + o(l)) as 0 -+ 0

and, applying (50), (24) follows.
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Notes: Assumes a2 = 1. The raw data have worst case MSE
= 1. M(Sexp, E) denotes performance of Bayes rule for exponential
prior with mean 3. (For comparison purposes).
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Table I:
Maximum Risk over E-Black Objects

E M(6) M(l,X 6) M(Sexp, E)
.01 .046 .052 .20
.02 .078 .087 .27
.05 .153 .16 .42
.10 .248 .26 .56
.20 .390 .41 .72



Figure Captions

Figure 1.1 Reprinted from Figures 1-2, [22]. (a) Conventional
FT-NMR reconstruction. (b) ME reconstruction for same data
as (a). (c) FT-NMR reconstruction from a better experiment.

Figure 1.2 Reprinted from Figure 4, [11]. Best Linear Recovery
from Noisy Data (-). Best Linear Recovery from Noiseless Data
(....). ME Recovery from Noisy Data (solid). True object consists
of two spikes at .33R spacing.

Figure 2.1 The nonlinearity 6ME,A for three different parameter
values: A = 24, 2.

Figure 2.2 (a) Object x to be recovered. (b) Noisy data y from
model (4); a = 1, n = 196. (c) ME estimate x using A 2

Figure 2.3 Risk p(O; A, o) with A = ',o = 1.
Figure 3.1 (a) FT NMR recovery of the real part of the spec-

trum of tryptophan. (b) Cambridge ME recovery of real part.
(c) Recovery of real part resulting from applying a nonlinearity
SCME,A(y) elementwise to panel (a).

Figure 3.2 (a) Real part of the FT reconstruction from syn-
thetic data. Data consist of two decaying sinusoids with line
widths 1.0 and 1000.0 Hertz and amplitudes 100, 5000. Series
length n = 256. (b) Real part of ME reconstruction for same
data, using Cambridge method with CO= 3.6 x 107.

Figure 4.1 Geometry of superresolution. The set of non-negative
objects is a cone; the set of objects satisfying IjKx' - Kxll < A
is a cylinder. When the intersection of the cone and cylinder
becomes small as A- 0, we say x admits superresolution.
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Figure 1 . 1. Improvement of Signal to Noise Ratio
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Figure 1.2. Super-Resolution
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Figure 4.1
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Figure 3.2
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Figure 2.3. Risk ofME rule
x= 1/2, a = 1
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Figure 2.2: ME Recovery
of Nearly-Black Object
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Figure 2.1. The ME Nonlinearity
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