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1 Introduction

A randomized random walk is a continuous-time stochastic process which is obtained
from an ordinary random walk by specifying that the epochs of the jumps are reg-
ulated by a Poisson process. We consider only symmetric processes with integer
values, i.e. the jumps themselves are random variables assuming values +1,...,+k
with probabilities p;/2,...,px/2, independent of each other and of the Poisson pro-
cess. The lifetime of this time-dependent process if regulated by an exponentially
distributed random variable independent of the process.

The classic book of Feller (1968 and 1971) devotes substantial space to the topic
of random walks (c.f. chapters III and XII of Feller (1968) and chapters II, XII,
XIV, XVII of Feller (1971)). Problems connected with first passages, path maxima,
hitting points, etc., are treated using combinatorial methods and Laplace and Fourier

transforms. The study of randomized random walks, however, is more restricted and
the treatment (Feller (1971), §I1.7 and XIV.6) is less developed.

In this paper we find first-hit distributions of symmetric randomized random walks
with exponential lifetimes (i.e. if X,,u > 0 is the process described above and 7 is
the time of first entry of a set S by X when X, € S, then the probabilities of interest
are {P(X, = s),s ¢ S}). We use a rather unusual method based on prediction
of time series and on the theory of Dynkin, which relates Markov processes X with
Gaussian processes ®. Specifically, we use the prediction formula of Dynkin (1980)
which expresses the coefficients of the best least square predictor of ® in terms of the
first-hit distribution of X. (See formula (2) in Section 2 below).

Ylvisaker (1987) first proposed use of this theoretical result for practical applications,
in his case, prediction and design of Gaussian random fields through simulation of
underlying Markov processes. We in some sense invert his idea. As noted by Ylvisaker,
if X is a randomized symmetric random walk with exponential lifetime, the Gaussian
process ® associated with X is an autoregressive sequence. This means that the
coefficients of the least square estimate of ® can be found through well-known time
series algorithms; these coefficients are the first-hit probabilities of X, according to
Dynkin’s prediction formula. '

In section 2 we review Dynkin’s theory of Gaussian processes associated with Markov.
In section 3 we discuss the AR(k) sequences which arise from association with ran-
domized random walks. In section 4 we get explicit formulas for first-hit probabilities
of random walks and compare our results with the ones in Feller (1968, 1971).



2 Gaussian Processes Associated with Markov Processes

Let us review the results of Dynkin (1980). Here, we follow the paper of Ylvisaker
(1987). Let X,,u > 0 be a symmetric homogeneous right Markov process with the
state space T C R and transition density p,(t,s) = p.(s,t),s,t € T. This means that
for all Borel BC R

PX,eB|X, =t,.... X0, =t0,0<u; < ... < up <u<()

=P(X,eB|X,, =t,,0 <up, <u<()= /Bpu_,,,,(tn,t) dt.

Let ¢ be an exponential random variable with mean 6,6 > 0, independent of X, which
determines the lifetime of X. Denote by X the “killed version” of X. This means
that X, = Xu, u < ¢ and X, = A(“the cemetary”), v > (. Then X,,u > 0 is a
Markov process with transition density e=%p,(t,s),t,s € T and the Green’s function

g(t,s) = /0  emtup.(t, s)du = g(s, t). (1)

(The function g (as well as the process X) depends on the parameter #, but we omit
the subscript 6 for notational simplicity). The function g is the average time spent
by X at s when started at t and the “killing” of the process keeps this quantity finite
for almost all s for every ¢. We shall assume throughout that g is finite for all s and
tin T. Using the Chapman-Kolmogorov identity and the symmetry of p, we have
that g must be non-negative definite: for any real constants cq,...,c,

Seicigltisi) = Leies [ e pultiy)du
= ZC,’C]' / 6—0u / pu/2(ti7 T)pu/?(r, Sj) dr du
= / / > cipuya( t,,r)) drdu >0

This means that there exists a Gaussian process ®;,t € T whose parameter space T'
is the state space of X, with mean zero and covariance function g¢(t,s). Following
Dynkin, we will call ® a Gaussian process associated with a Markov process X. (In
Ylvisaker’s terminology, ® is called the G-MAP.) For these Gaussian processes ®,
here is a special case of Dynkin’s theorem:

Theorem. (Dynkin(1980)): Let pi be the first-hit distribution of X on a countable
subset S of T starting from the statet € T\S:



pi(s) = P(X,s = s|Xo =1t), where 7s = inf {u > 0: X, € S}and s € S.

Then :
E(9:|®,,s € S) =Y pi(s)®, (2)
s€S )

It is clear that not every Gaussian process can be created in the above described way.
We notice that ¢ always has a positive correlation function and the coefficients in the
prediction formula (2) satisfy '

pi(s) > 0; Egpf(s) <1 (3)

For further discussion of the relationship between X and ®, and exam‘mples, see
Ylvisaker (1987), Dynkin(1980), and Adler and Epstein(1987).

3 Randomized Random Walks and AR Processes

We will concentrate on the special case of stationary Gaussian processes. A zero-mean
Gaussian process is stationary if and only if its covariance function depends only on
the difference between its arguments:

9(t,8) = g(t —s) = g(s — 1) (4)

Thus, the transition density of the Markov process X associated with ® satisfies

Pu(t; ) = pu(t — s) = pu(s — 1) (5)

According to Blumenthal and Getoor (1968), p. 17, this condition implies that X is
a Levy process, i.e. a Markov process with independent stationary increments. Since
the Fourier transform of p, is known for such processes we immediately have:

Proposition. A Gaussian process ®,,t € T C R, associated with a Markov process
X, u > 0, is stationary if and only if its spectral density f(A) is given by the following
expression:

1

F) =277 (e — i+ 02N2)2 + /R (1—ide/(1 + %) — ) u(da:))_ (6)

where v is a Levy measure on R\{0}, [rz?/(1 + 2®)v(dz) < o0, 0? > 0,
—00 < f < o0.



Proof. For a Markov process X,, u > 0 with independent stationary increments:

Pu() = /_oo e*7pu(z)de = Ee?Xe = ¥ | (7)
with
P(A) = —iAB - 0?A?/2 - /R (1 +ide/(1 +2?) — e=) v(da) @®

(see Blumenthal and Getoor(1968), p.18). The relationship between the spectral
density f and the covariance g is

fN=en7 [~ ePeg(a)de,
and from (1) and (7) we have: |

foy = (2n)7" /Ooo e'o“e“'l’("\)du'
= (207 (0 —y(=)7,

for the discrete case, replace integrals with sums. Put (8) into the last formula and
we are done.

Corollary. The Gaussian process associated with Brownian Motion is an Ornstein-
Uhlenbeck process with spectral density

FO) = @m)7H 0+ 022?/2) 7

According to a result of Dynkin (1980), a Gaussian process ® associated with a
Markov process X is itself Markovian if X is continuous. Since there exists only
one continuous Markov process with stationary independent increments—Brownian
motion, we can construct only one stationary Markov Gaussian process. This, of
course, is well-known (see discussion in Adler and Epstein (1987) §5).

As another corollary, we obtain the following:

Theorem 1. Let X,,u > 0 be a randomized symmetric random walk with exponen-
tial lifetime:
for v < {, when { ~ exp(6),6 > 0,

Ny
X.=)_&, N, ~ Poisson(pu), u >0, 9)

i=1

where ¢; are i.i.d. random variables and

P(§t=i1)=%, l= 1,...,k, p1+--°+Pk=1-
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Then the Gaussian process ®,t = 0,+1,+£2, ... associated with X, is a causal AR (k)
process with spectral density

X -1
f) = (@2mn)™! (0 +p—p Y picos /\l) (10)
=1
Proof. For given X, 3 = 0,0? = 0 and the measure v is concentrated on +1,...,+k:
u 4l
v(dz)=p) 5(6_1(.1:) + 8i(z)) dz. (11)
i=1 .

Note that [z/(1 + z%)v(dz) = 0. Then

)

i -1
(2r)7! (0 +pd %(1 —eMN 1 — em))

=1

' -1
= (2m)7! (0 +p—pd_ picos /\l) .

=1

Since f(A) is a positive symmetric integrable bounded function, it is the spectral
density of a real-valued stationary process. It can be written in the form

-1
- bt _in
f(A)=(27r)1(9+u—u —é ) :
I=—k§k,l¢0 2

i.e. f()) is a rational function of e”*. According to Yaglom (1962), p. 121, it can be
then represented in the form

) = |B(eM)>  |Boe™* + ByefM-DX 4 | 4 Byl|?
= |A(6i’\)|2 - |AoeiNA +Ale‘(N‘1)’\+... +AN|2 ’

where A; and B; are real, Aq, By, An, and By are all non-zero, all zeros of the
polynomial A(z), z € C, lie inside of the unit circle and the zeros of the polynomial
B(z) have absolute values which do not exceed unity.

In our case the complex-variable function f*(z) := f(e**) can be written as

£1(2) = 2m) 7 (=2/ upe) 2* [Pai(2)] 7Y, (12)
where
Po(z) = 226 4 Bozlozk-1 0 PLokin H0+p FB-1y 41 13)
Pk . Pk KPk Pk



The right-hand side of (12) has no zeros for z # 0, |z| < 1 and f*(z) = |B(2)|*/|A(2)|?
has M zeros inside the closure of the unit circle, all of which are non-zero. This is
possible only if M =0, N = k and '

2\ -1

) . (14)

= (g

From Brockwell and Davis(1987), §4, we learn that this is the spectral density of a
causal AR(k) process

A A
Tle=id y . 4 Zkemikx
Ap Ap

1+

A Ao : : | Bo|?
Qt + AO (pt—l + ...+ Ao Qt—k = Zt, Zt ~ Whlte NOISC(O, 2w ]A0|2) (15)

We are done.

Corollary. The AR(k) process ® associated with random walk (9) has representation
O, =A0,1+...+ A0+ Z,, Z, ~ White Noise(0, 27| Bo|?)

where the constants By, A;, . o Ag can be found from the system

al+a2+...+ak = Al

aroz + ooz .. a1 = —Ag
(16)
amay...op = (=114,
12 | Bo|?
o upx  Ax

As before ay, . . ., o are k roots of the polynomial Py, defined in (13), which lie inside
of the unit circle.

This follows from Vieta’s theorem and the fact that ai,...,cx are k roots of the
polynomial A(z) (A(z) was defined while proving Theorem 1). Since only A;/Ao
matter, we took Ag = —1. Of course, if all roots a,...,ax are distinct from each
other, the coefficients A;,..., Ay can be found from a linear system:

Ao 4 A 4 A = o
Alag'l + Agal;—z +...+ Ak = a’;

Aef '+ Aok P4+ A = of

Example 1. Let ¢; be Bernoulli random variables, P(¢§; = 1) = P(& = —1) = 1.

Then the Gaussian process ® associated with the randomized random walk X has

6



spectral density
1
f) =5 (0+u — pcos A)~!
This is the spectral density of an AR(1) process ®: &, = A;®,_; + Z; with

Ar=(1+0/p) — /(1 +6/p)? —1; Z, ~ White Noise(0,24;/p).

Example 2. Let k=2, P(¢;= 1) = p1/2 and P(¢;= £2) = py/2; p1+p2 = 1. Then
the spectral density of the Gaussian process P is

1 _
FO) = 5= (0 + i = ppr cos A — ppy cos 2) ™

This is the spectral density of AR(2) process. To find the coefficients A; and A, we
write:

Py(z) = 2* + P1s_ ——2(0 + ”)z2 + h, +1=0.
P2 H1P2 P2

Let z + 1 = y; then y? = 22 + % + 2 and we have:

2 2 0
y=-2 4 %—+2+-—(1+—)
2pz  \ 4p3 P2 [z
P1 2 0
. +2+—(1+-).
2= Top, J4p 2\ p

Thé roots o and az of Py(z), which are inside the unit circle, can be obtained from
2
Y

R RS SR )

Al = o+
Ag = —Q1Q9 (18)
Z; ~ White Noise(0,(2/up3)A2)

Then

For example, if § = 1/16,p = 5/4,p, = 3/5, and p,
5V5)/4; a3 = (1 +/5)/4 ~ 0.809,0, = (1 — V/5)/4
0.25,|Bo|? = 1/2r.

We get d: Qt = (1/2)¢t—1 + (1/4)¢t—2 + Zt, Zt ~ White Noise(O, 1)

2/5 then y;, = (-3 &
—0.309,4; = 0.5,4, =

Qo
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4 First-Hit Probabilities of Randomized Random Walks.

The main result of section 3 is that Gaussian processes associated with randomized
random walks are causal stationary AR(k) processes with spectral density given by
(10). Applying the theory of extrapolation of stationary sequences with rational
spectral density in e** for density (10) we obtain the following prediction procedure:

1. Let ay,...,ax be roots of the polynomial

- 2
Py(z) = G BEol okt Pk (—M) APy t1=0 (19)
Pk Dk KPk Pk .

such that |o;| <1, j =1,...,k. Assume that the roots o; are all distinct.

2. For m > 0 find the coefficients *y((,m), ceey 7,(:_‘{ of the linear system

el 4 4 4 = ot

(m) al'rcn+k (20)

ek + May + M

3. Then find the (m + 1)-step predictor from:
Gt +m) = E@ipm|®, s <t —1) =40t — 1) + ... + 1™ 0(t - k).

Note that for m = 0, 73_; = A;.

In the general case, if a; = «; for some ¢ # j, we can use the recursive methods of
prediction (Brockwell and Davis (1987)) or methods of Yaglom (1962), §24, relying on
the knowledge of roots of the polynomial P,;(z). Combining the prediction formula
for ® with the theorem of Dynkin from section 2 we have the following results:

Result 1. Let X,,u > 0 be a randomized symmetric random walk with jumps of
size +1 and exponential lifetime:
for u < ¢, when ( ~ exp(6),6 > 0,

Nu
X, =>_¢&, N, ~ Poisson(uu), u >0, (21)

i=1

where §; are i.i.d. and P(§; = £1) =1/2.
Let 1 > 1. Then

2
P(XuZIforsomeu<()=A';A=(1+§)—J(l+£) - 1. (22)

8



Proof: The Gaussian Process ® associated with X is an AR(1) process:

¢, = A0, + Z,

0 AN , .2
Ai=1{1+—-) - 1+—| —1; Z; ~ White Noise(0,—A,;)
p p p

(see example 1 of the previous section). The prediction formula for & is:
bt +m) = A™1®,_;, m >0,

ie.
E(@um |8y, s<t—1)= 3 plisst=(5)p, = A1,y
s<t-1
which means that (owst-1)
_ Piym  (t—1) =A™,
while pg:,:,st_l}(s) =0 for s <t — 1. But, using the symmetry of X, we have:
piEst=1N 4 —1) = P(X, starting at t + m, enters {s: s<t—1} at point ¢t — 1)
= P(X, starting at 0, enters {s: s < —m — 1} at point —m —1)
= P(X, starting at 0, enters {s: s > m + 1} at point m + 1)
= P(max(X,;u <) >m+1).

Replace m + 1 by [ and we are done.

Remark. For comparison, we compute (22) using combinatorial methods of Feller(1968).
Consider only [ = 2. First, let us find the probability 7y that the path of length N
(i.e. the number of steps is fixed to be N) starting from the origin has maximum less
than 2. This is the same as having minimum greater than -2. Let us fix an end point
(N,2k), where k£ > 0, N = 2n, and n > 1. The number of paths from the origin to

the point (2n,2k) is
2n
N2n,k" (n+k>’

each has probability 272" (see (II1.2.2) of Feller(1968)). The number of paths from
the origin to (2n,2k) which visit point -2 is the same as the number of paths from
(0,—4) to (2n,2k) (by the reflection principle) and it is equal to the number of paths
from (0,0) to (2n,2k + 4), i.e. Napok4sa. Thus, the probability that the path from
(0,0) to (2n,2k) will not visit -2 is 272*( Ny 2k — Nop 2k+4), and the probability that
the path with N = 2n steps, starting from the origin, will be above level —2 (or below
level 2) is

™ = Z 2—2n(N2n,2k - N2n,2k+4) = 2_271'(]\,271.,0 + N2n,2)
k=0



o ((2)+ () - (mn) e () o

(we used formulas (I1.8.6) and (IL.12.5) of Feller (1968)). This quantity also represents
the probability of interest for a path with N = 2n + 1 steps, since a path which is
below level 2 for 2n steps remains there for at least one additional step. Thus,

P(max(X,;u < () >2)

= / fe= % dz
2

= §a+ (a+u> (1 =m)

e K2

N!

(2) (1 - )

gL

%
t

- (Oiu) gaw(ow) (17t (G11)
- (%) RS ) o ()
- () () ) @ ()
- () -2 (- () - () (4]
- (%) - 9222”%1’2# “0(9322"’”(0;32”) ()
- () ol ez e

0

= A?
Case | > 2 involves even more complicated combinatorics and summations. In fact,

10



§7 of Chapter II and §6 of Chapter XIV of Feller (1971), which discuss randomized
random walks, deal with jumps of size £1 only and use Bessel functions.

Result 2. Let X,,u > 0 be a randomized symmetric random walk (21.) with jumps
of size £1,+2, i.e. in (21)

P& ==1)=p:/2, P(§i=22)=p2/2;p1 +p2=1.
Let 7 = min{u > 0: X, € {1,2,...}}. Then

2 2
P(X,=1)=M_\/y_l_1+\/§’z_1

2 4 4
v yi Y2 y3
P(X,=2)= 5 —4-—1 E+ I_l

where

2( 0
h= -t p—+2+—(1+—);
2p2 \

2
P1 p1 2
=, | =4+24+={1+-].
= Top, T\ 483 Pz( u)

Proof. The Gaussian process ® associated with X is an AR(2) process ®; = A;®;_;+
Ay®,_ 5 + Z; with Ay, Az, Z; defined in (17) - (18). The one-step predictor for ® is
<i>(t) = A19;_, + A3®;_5. The coefficients A;, A, of the prediction formula are
expressed through the first-hit probabilities of the random walk:

Al — pjs:sSt—l}(t _ 1), A2 — pt{s:JSt—l}(t _ 2)

The symmetry of X gives us the desired formulas.

Using symmetry and reflection properties of random walks, we obtain the following
result:

Result 3. Let X,,u > 0 be as in Result 2. Let
o =min{u>0: X, € {n,n+1,...}}

Then
n__ AN
P(X,,=n+1) = alaz% =)
Q; —
= (alag) (a’l"‘l + a1'2a2 +...+ a;"l)

nt+l _ n+l
P(X, =n) = X~

Qg — Qg

= af+af e +...+0f

11



where a; and a, are defined in (17).
We get this by direct solution of system (20) for the case k = 2, and the symmetry
of the random walk. "

For example, if the parameters in Result 2 are p; = 3/5, p = 2/5, § = 1/16, and
gt = 5/4, then from the calculations at the end of example 2 of the previous section
we find that P(X,=1) =1/2 and P(X,=2) =1/4.

Result 4. Let X,, u > 0 be a randomized symmetric random walk (21) with jumps
of size +1,42,..., %k, i.e. in (21).

Pli=xD)=pp;l=1,....;6p+...+p =1

Assume that all roots ay,...,ak, |a;| < 1, of the polynomial Py from (19) are
distinct. Let 7, = min{u > 0 : X, € {n,n+1,...}}. Then P(X,, = n+1) =
7,(::1)1, l=0,1,...,k—1, where 7,(::1), . ,7((,"'1) are found from system (20).

Result 5. Let X be as in Result 4, except without conditions on the roots of Py.
Then P(X, =1+41)=9)__; = Ai}1, 1 =0,1,...,k — 1 where Ay, ..., A; are found
from (16).

In general, P(X,, =n+1),l =0,...,k — 1, can be found as coefficients of ®;_;_; in
the prediction formula, estimating ®:4,-1 from observed values ®;_1,®;_,...

Until now we were interested in first-hit probabilities for sets of the form {n,n+1,...}
(the first-hit probabilites for sets {...,—(n + 1), —n} are the same because of the
symmetry of this random walk). The following result involves first-hit probabilities
for sets of the form {...,q,¢ + m + 1,...} when the process starts from points ¢ + [
of the set {g+ 1,...,q + m}. A similar situation is discussed in Feller (1968), ch.
XIV, §8, where the problem is related to sequential analysis. As before, we consider
a randomized symmetric random walk, for simplicity allowing only jumps of X1 at
one step.

Result 6. Let X,,u > 0 be a symmetric randomized random walk (21) with §;
taking values =1 only, each with probability 1/2, except that let now Xo = q+1. Let
r=min{u>0: X, €{...,q,g+m+1,...}}, for somem >1and1 <1< m. Then

1— A%
— _ l 2m+2-1
P(X;,=q) = A-A 1 — A2m+2
1 — A%
m+1-1
P(X,=q+m+1) = A"~ —rres,

where

a1 d) -

12



Proof. To prove the result we have to show that for an AR(1) process ®; satisfying
&, = A®,_, + Z;, Z, ~ White Noise(0,2A4/y), the following prediction formula holds:

Potijgm = E(<I>q+,|<1>1,...,<I>q_1,<I>q,<I>q+m+1,<I>q+m+2,...,<I>,,)

a2 1_A2l el 1_A21
= |A-amT 'm] ‘Pq+[A | Sermn

where n > ¢+ m + 1 and ¢ > 1. The latter follows easily from application of the
Kalman Fixed-Point Smoother to estimation of the missing value ®,; of our AR(1)
process (see Brockwell and Davis (1987), §12.7).

The formulas of result 6 can be easily checked for the simplest case, m = 1:

P(X,=4q)= P(XT = g+ 2) = 1/2P(path length is at least 1)

— *° -0z —zpy 0 _ 1Y _ A

- 1/2/0 B dz(1 — ) = 1/2 (1 0+#) = S = T A
where the last equality follows from the identity A% — 2(6 + u)/uA +1 = 0. The
case of m > 1, however, involves calculations similar to ones following result 1. The
advantage of the method appears when we try to calculate first-hit probabilities for
random walks with jumps +1,..., £k, k > 1, m > 1, through the theory of estimation
of missing values of an AR (k) process. Programs for performing such calculations can
be found in Wampler (1986).

13
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