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Abstract

t

This paper deals with processes of the type X (t) = X (0) + f U (s) ds where U (s) is an
0

Ornstein-Uhlenbeck process with drift . > 0, friction parameter ,1 and variance o2. In

particular, we are interested in the first-passage time of X (t), i.e. in

T(x,v + ,la2) = inf{t: X(t) =OIX(0) = -x, V(0) = v + p). A system of partial

differential equations is derived for the moments of T (x, v + p,&T2). These equations

are then transformed into Schr6dinger-type equations and, using WKB analysis and

perturbation methods, asymptotic expansions for the moments of T (x, v + g,a2) are

obtained. The first few terms of these asymptotic expansions are used as approxima-

tions for the moments of T (x, v + p.,a2). A series of simulations (for varies x, v, p,

a2) confirms that these approximations are very accurate for the mean of

T (x,v+p, 02). An approximation to the distribution is also given.



1. Introduction

First passage time problems (henceforth called FPT problems) constitute a set of old

and rather famous problems of probability theory. They are of importance both in

theoretical and applied contexts and they do arise naturally in fields as different as

biology, hydrology, seismology, medicine and physics, to name only a few. For exam-

ple, in stochastic models of neuronal behavior the firing of a neuron may be modelled

as the first hitting of some threshold value by the stochastic process representing the

membrane potential (see e.g. Holden (1976)), in population biology, the extinction of a

population is often interpreted as the first passage through some threshold value of the

counting process representing the number of individuals (Maruyama (1977)). In many

other instances the stochastic process for which level-crossing properties need to be

obtained is a one-dimensional diffusion.

The literature on the subject is extensive and the results are widely scattered

through many journals. It is not the purpose of this work to give a comprehensive

overview over the various methods, techniques and results. The reader is referred to

Blake and Lindsey (1973) and Abrahams (19 ) where these are expertly surveyed.

Most FPT problems are unsolved analytically and a large amount of work therefore

concerns itself with finding approximations to the FPT density. Sometimes the prob-

lems are solved for moment information only or to within the Laplace transform of the



density.

Occasionally, one is not interested in the solution of the FPT problem for the stochas-

tic process itself but for the integrated process with drift. This is the concern of the

present paper, which studies this problem for an integrated Ornstein-Uhlenbeck pro-

cess. The following might serve as an example where these type of problems arise

naturally: In stochastic models for particle sedimentation in viscuous fluids (see e.g.

Pickard and Tory (1977) or Hesse (1987)), particle velocity is modelled as an

Ornstein-Uhlenbeck process with drift. Particle position is then the integral over this

Ornstein Uhlenbeck process and the question when a particle first travels through a

given distance leads to the FPT problem for this integrated Markov process.

We now define this problem rigorously: Let {V (s), s 2 0) be an Omnstein-

Uhlenbeck process with drift 1i > 0, friction parameter I, and variance ca2 starting at

V (0) -v + ,u. Then for all s > 0 the mean and variance of the process are given by

E (V (s)) = v exp (-3s) + ,u,

Var (V (s)) = - (1 - exp (-2, s)).

Define the integrated process

X (t) = X (0) + JV (s) ds
0

with X (0) = -x < 0, and let

T(x,v + iL,a2) = -inff[t: X(t) = 0 IX(0) = -x, V(0) = v + )
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denote the first time X (t) is in state 0. We are interested in the distribution and the

moments of T(x,v + g,a2) for fixed x and under one of the following specifications

for the initial velocity V (0):

(a) V(O) = v + g fixed

(b) V (0) sampled from some velocity distribution

(c) V (0) sampled from the boundary crossing velocity distribution of the process

(V(s),s 2 0).

In the present paper we focus on (a), i.e. we consider a fixed starting velocity V (0).

In the following section we will briefly review some of the literature on this and

related problems.

2. Previous Work

Consider the stochastic differential equation given by

(2.1) d2X(t) + c (X(t)) dX(t) + C2(Xd(B)= (t)
dt2 dt dt

with

(2.2) V (t) dX (t)
dt

and

(2.3) X (0) = -x

(2.4) V(0) =v
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where (B (t), t > 0) is a (one-dimensional) Brownian motion starting at zero, and

dB (t) is white noise, the formal derivative of Brownian motion.
dt

Focusing on the simplest possible case only (i.e. cl (*) = c2 (*) 0, x = 0 and v = 1)

McKean (1963) gives a complete description of the winding of this diffusion about the

origin of the coordinate system. He also addresses the problem of finding the distribu-

tion of the time between successive returns to 0. If T' (0, 1) denotes the time till first

return to zero (starting from X (0) = 0, V (0) = 1) and H = I V (T' (0, 1)) I the hitting

velocity, McKean demonstrates that the joint distribution of T' (0, 1) and H is given by

3h 4hItex 302(2.5) P (T'(0, 1) e dt, H e dh) = exp (-2 (h2 - h + 1) / t) J exp(3e/2) df.

The marginal distribution of T'(0, 1) is unknown, however, integration with respect to t

can be performed and the distribution of the hitting velocity H is given by

3 h3/2
P(H E dh) = -c 1

dh.

Waong (1966) expresses the integral in (2.5) in terms of zta functions.

McKean's and Wong's results make use of the fact that the probabilities

Pab (X (t) E d4, V (t) e di), i.e. the transition probabilities of moving from X (0) = a,

V (0) = b to X (t) = 4 and V (t) = il are easily obtained. They also use a renewal-type

eqation for these probabilities. Wong's (1966) results hold in fact, more generally,

for the zero-mean Gaussian process Y (t) with autocorrelation function p (r) given by
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p(t)= 1exp(-I tI/ )(l - exp(-(2/3) J ) = 1 - 2 + 1
2 3 2 3-F

It can be shown that Y (t) has the same probability law as

exp ((2 / 413)t)
q_ exp (-43-t) | B(s) ds

0

where again B (s) is standard Brownian motion.

Goldman, (1971) who also studies the system (2.1) - (2.2) with X (0) = 0, V (0) c 0

gives some expressions related to the FPT to non-zero levels of the process X (t). In

particular, if p (t, t, Ti, x, y) is the transition probability density of (X (t), V (t)) and

d4v (x, t) = p(T (x, v) < t), then
dt

(a) v (x, t) = [3/(2it3)tb] 2 (3xt-1 - v) exp [ -3 (x - vt)2 /2t3] +
2

oo to

Jd4j4JP(T'(0, ,) e ds,IV(T'(0,4)I E dh[p(t - s,0,v,x,4) - p(t - s,0,v,x,-)]
o 00

(b) As t -* oo, 4f(x, t) - const. x1/6 t-(5/4)

(c) P (V (t) = max V (s)) = 0.372 if V(0) = 0 and X (0) = 0.
ONSS:t

Abraham..s (1982), in a generalizaon of Wong's (1966) results, finds the time to fnrst

zero for a special class of second order Gaussian processes of which Wong's process

is the only stationary member.

Rogers and Williams (1984) in an insightful paper, obtained a generalization of

t

McKean's (1963) work to situations where X (t) = fg (B (s)) ds with
0

fsa if s > 0
g(s) = {l K2+alsla if s < 0.
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Their paper is built on the concepts of excursions and local time. The cases of only

one and also finitely many boundary points are carefully analyzed. Other related work

is contained in Gor'kov (1976) and Durbin (1985). However, it should be noted that

Durbin's Condition (1) is not satisfied by our process X (t).

3. A System of PDEs for the Moments of T (x, v + gL,a2)

In this section we derive a system of partial differential equations (PDEs) for the

moments of the first passage time distribution of an integrated Ornstein-Uhlenbeck pro-

cess with drift. Problems of this type are complicated by the fact that the integral over

a Markov process, i.e.

X (t) = X (0) + V (s) ds
0

is neither Markovian nor stationary. This implies that the technology involving Kol-

mogorov backward and forward equations can no longer be used directly. However,

the two-dimensional process (V (t), JV (s) ds) is Markovian and this provides a starting

point for further analysis. Unfortunately, it turns out, as we will see, that the boundary

and initial conditions provided by the respective contexts are often insufficient to con-

stitute a well-posed problem with unique solution in two dimensions. This impass can

be circumvented by solving a similar problem for a closely related process X(r), say,

for which sufficient boundary and initial information can be obtained.
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Consider the process {X(s),V(s),s > O), X(O) = -x s 0, V(0) = v + g with an

absorbing boundary at the plane X = 0 and let p (xt, vt, t I x, v + t,a2) be the probability

density associated with:

X(O)=-x,V(O)=v+J,X(t)=xt, V(t)=vt and

X (s), V (s) ) did not reach the boundary in [ 0 t).

Although a boundary has been introduced, the density p, of course, still satisfies both

the Kolmogorov forward and backward equations. Define also

b +o

P(b,tIx,v + j,a2) = J fp(Xt,Vt,tIxv +g,a2)dvtdxt

so that P (0, t I x, v + ji,a2) is the probability that the boundary has not been reached

prior to time t. Hence, if f (t, x, v + g',a2) denotes the density of T (x, v + g.,a2) then

f(t,x,v + g,a2) - - g0-P(O,tI X,v + g,a2).

Also, write

Nf(s,x,v + p,c&) = E(exp(-sT(x,v + g,ca2)IX(0) = -x, V(0) = v + 1.)

for the moment generating function of T. Since both P (0, t I x, v + g,Ca2) and

f (t IX, v + p,a2) still satisfy the backward equation, v satisfies the equation obtained by

applying the Laplace transform to the backward operator, i.e. xi is a solution of

a2 ___ a2 a2 a) a
-(czI(X2(X + a22)-P2 -x2 12Daxav - avax av2 + Da at

with x4 (s, o, v+g, a2) = 1 for all s, a2 and v + p. > 0. Note that the factors (-1) in this

operator equation are due to the fact that we differentiate with respect to x rather than
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-x. As usual cqj = cqj(x,v + t,a2,t) and [3i = I(x,v + g'G2,9t) for i = 1,2, are the

infinitesimal parameters, e.g.

x11(x,v + g.t,0,O) = lim \1!Var(X(At) - X(O)IX(O)= -x, V(O)=v+ j)
At-_+O At

At

= lim Var((V (s) ds I V (O)= v + ) = 0.
At--o At

Similarly

Cx22 (X, V + T,a2, 0) = a2

C12 (x, v + ,a2,O) = a2l (x, v+ ,a2,O) = 0

D1(X,v + L,a2,o) = V+A

P2 (X, V + gPa2I, 0) =-
Hence y (s, x, v + gt,a2) satisfies the following partial differential equation

(3.1) a2 a _ (v + -)a3 _ Dv av _ s =

with the obvious boundary condition

(3.2) N'(s,O,v + .,a2) = 1 for all s, a2 and v + ,u > O.

The system (3.1) and (3.2) does not determine xy uniquely, because an initial condition

is missing and cannot be easily obtained from the problem context. What is deter-

mined uniquely, as we will see, are the asymptotic expansions (as v + oo) of the

moments of T (x, v + g,a2).

To get a handle on (3.1) and (3.2) and to generate a closely related problem with

sufficient initial and boundary information, define for r > V (0) = v + A

X(r)(t)fX (t) if V (s) < r for all s < t
lX (to) for all t ' to if V (to) = r.



I

Clearly, the process {X(r) (t), t . 0) has the same sample paths as X (t) except when

-the velocity V (s) becomes equal to r, then the particle is stopped dead. Also, let

T(r) (x,v + g,a2) be the first hitting time of X(r) on 0 and V(r) (s, x, v + g,02) the

corresponding Laplace transform. Then Nt(r) clearly satisfies (3.1) and (3.2) and in

addition

(3.3) (r)(s,x,ra2) - 0 for all s and x > O.
Since (r) (x, v + g,02) . T (x, v + g1,a2) for every sample path, with strict inequality

whenever the process V (t) hits r, and since with probability one T(r) (X, v+p., 02)

- T (x, v+g, 02) as r -e oo, it is true that

lim W(r) (S, X, V + g,&2) = IV (SX,x, V + ,2)
r-+oo

Now, define

(3.4) vr (s, c, v + tg,a2) - J exp (-cx) Nr) (S X V + 162) X
0

the Laplace-transform of the moment generating function Vr). Then Vr) satisfies

(35)2 a -_ (v + g) (Cx(r) S,,r)(S0 v + g,ac2)) _ -3VaY-(r) 0
(.)2 ')2 Nf r)

with

(3.6) $(r)(s c,r, G2) = 0

Remark: We can also obtain equation (3.1) using stochastic Ito differentials. Towards

this end write

dX = (V +p)dt
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where V is an Ornstein-Uhlenbeck process, i.e.

dV = dB - Vdt

where W is a standard Brownian motion. Then define

4 (t) = e't xf (s, X(t), V(t) a2)

where ~(s, x, v+, a2) is, as above, the Laplace transform of T for a process starting at

-x with initial velocity v + ~t. What are the increments AO of the process 4 (t)?

Ignoring two of the arguments of Nx in our notation we obtain

AO = 0(t+ At) - O(t)
- exp(-s(t + At))NI(X(t + At),V(t + At)) - exp(-st)Vf(X (t),V(t))

- (exp(-s(t + At)) - exp(-st)) [xp(X(t + At),V(t + At)) - N (X(t),V(t))]

+ (exp (-s (t + A t)) - exp (-st)) V (X (t), V (t))

+ exp(-st) [yf(X(t + At),V(t + At)) - Ny(X(t),V (t))]

To estimate the order of the infinitesimal terms we consider the conditional expectation

of A 4 given X (t) = x and V (t) = v. Also, we retain terms of order A t only:

A4) = -s exp (-st) V (X (t),V (t)) A t

+ exp (-st)- (v + (X(t),V(t)) (CAB-vAt)

2 V___ ___A__ ___t_

since (A B)2 is an infinitesimal of order A t. Replacing the infinitesimal increments by

the differentials one obtains the stochastic It6 differential of the process 4 (t), i.e.

do = exp(-st) a cIdB + exp(-st)[ 2 (v +~ L) _s]dt

or using the integral representation
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(3.7)

4)(t) = )O) +Jexp(-st)a-I dB(t) +fexp\ I2) (2 +'~tLCw v svfl dt.
0 av0pS)Td()fx(S 2 aV2 -V ax av ]

Also, it is clear from stopping time arguments that the process 4 (t) is a martingale, in

fact a local martingale. However, -for 4 in (3.7) to be a martingale the argument of the

second integral needs to vanish identically. Hence we obtain (3.1)

a. We will first solve the system (3.5), (3.6) for the special case = 0 and without

loss of generality for g = 0, i.e. for the first hitting time on 0 of an integrated Wiener

process starting at -x with velocity v. The equation in (3.5) simplifies to

a2 ja-2~r)+v=(3.8) fa2 (vc + s) + v = O

with (3.6) still holding. The most profitable path is now the substitution co = a, v + a2

with a, = 21/3 a2'3 c3 and a2 = +21/3a-2/3 c-213 s which transforms (3.7) into

(3.9)
a2h (s. cl Cf ) Cgr)(s,2c,(0,02) = -1 (, + 21/3 r213 C53S

with

(S, CI Cl) = 0

where Cor = 21/3 c1/3 C-2/3 r + 21/3 c-2/3 C-23s. The homogeneous part of (3.9) is a one-

dimensional Schr6dinger equation. We use perturbation methods and methods of glo-

bal analysis such as WKB analysis and the method of dominant balance on this

Schrodinger equation.
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00

If the power series £ p (n) cd' is substituted into the homogeneous part of (3.8) then

the coefficients satisfy

p(3n + 2) = 0

p (3n + 1) p (1) fr(4/3)9g - n! F (n + 4/3)

p(3n) = P(O) r(2/3)
gn n! F (n + 2/3)

for all n > 0. Defining the so-called Airy functions

coo/3 Q3fl01 (co) = 3-( +£ co 23
n=O 9nU!F(n + 2/3)

00

- 3-43 £
n=O

co3n+ 1

9g n! r (n + 4/3)

= -1/6 £ co3n +coo____£co3n+1
n42 gn n-! r (n + 2/3) n=O 9gn n! F (n + 4/3)

then it is clear that any linear combination of +1 (c3) and 02(CO+)formally solves the

homogeneous part of (3.8). After variation of parameters and letting r -4 oo the fol-

lowing solution (which vanishes as co tends to oo) is obtained

00 c)

(3.10) (00) ( co,a2) = -St 21/3 V3 C-53 (02 (CO) o (t) dt + ¢ (co) 2 (t) dt) + k (s, c) 4l (co)
co 0

+ IC-1 (41 (Co) t 02 (t) dt - 02 (CO) t 1 (t) dt).
0 0

Note that the Wronskian of 41 (co) and 0p2 (CO) is equal to i-1. We also made use of the

fact that

co 00

f41(t) dt = - J1 (t) dt,°r Co

and
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which can be checked using the Bessel function representation of i (co) and 02 (0)

(see Abramowitz and Stegun (1965)), i.e.

¢1 (c) = 1(e) 1/2 [I1./1) - I1,3(r1)] = C1(Co)1/2K(fl)0 co
3j l/3 1)3 13 1

022(CO) = ( 1O)l/2[1(/3() + I113(r9)]3

with il = 2- w3/2 For given s and c, k (s, c) is a constant. Now, to simplify (3.9)
3

observe that

co

t 0~2(t)dt =

0

d202 dt =

o dt2
t

d42 (t) / c

dt t=C) + const.

and after some computations, asymptotically as cl tends to infinity

dO2(t) / -1/2co1/4exp(2 O3/2O) as co-+co.
dt _=( 11eX ( (i31

Similarly

t (t) dt = |2 (t) do t
0 0t)d d dt = dt tC)+ const.

and

dt/t_ =__-1/2 1/4_ 2 3/2dt1(t /t=0 -2-1 r12C14exp (--3co ).-
Hence, asymptotically as co tends to infinity

(3.1 1)Nf(s,c,co,a2) c1-st2113a 3c513(42(CO)frj(t)dt+ Pj(co)J02(t)dt) as co o.c
C 0

By the notation f (x) g (x), as x -+ xo here is meant that lim f(x) = 1. Note that
x-*xo g(x)

the summand k(s,c) does not appear in (3.11) since 1 (co) converges to zero
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exponentally fast, in fact

qi(cO) co /4exp(-2 co3/2) as co - oo.3

We now derive an asymptotic expansion in terms of powers of cl). For this purpose

the method of dominant balance is used on (3.9), (3.11). The basic strategy is to first

peel off the leading asymptotic behavior then, after having removed this, to determine

the leading behavior of the remainder, and so on. For an account of this method see,

for example, Bender and Orszag (1978).

As a first step assume

82xVcyo)(S,c,co,a2) ,0 as Xo -*

where the notation f(x) - g (x) has the same meaning as above. Using this in (3.8) we

get

(k)(S,C,cO,a2) = c1 - 21/3 C-2/3C-5/3c&-1 s, as co-* oo

Corrections to this leading term are determined as follows Write

r(-) (c, sI co,2) = c-1 - 21/3 a-23 c-5/3 s (Ca)fl + R(co)) ,as co -+ c0*

where the correction term R (co) is asymptotically of smaller order than co-l. It is easy

to check that R(co) in turn satisfies the differential equation

d2R(o)) + 2c-3 - coR (co).
dcO2

Again, setting R (as co -e oo) one obtains that R (co) - 2 Co-. Continuing in
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this fashion, one arrives at the full asymptotic power series expansion of

;(co) (s. c, cW)sy2)

(3.12) r(c)(s,c,o,a2) yc-l - 21a'3c513s £ (3n)! c-3n-i as co- .
n=O 3nn!as(

Again, it is confirmed that the asymptotic expansion does not depend on k (s, c) due to

the fast exponential decay of 41 (cO) as co -* co.

For the purpose of approximation it is sufficient to know the asymptotic behavior of

I(s, c, ,a2) as given in (3.12). Remembering again that co= a v + a2 with

a, = 21a3a-2/3 C1/3 and a2 = 21'3 CF-213 c-2/3 S one gets

(3.13) (s, c,v,ac2) c-_I (3n)! a (v + c-s)-3n-1 as v-* co.n=-O 6n n!c'2
Note that i((s,c,v,a2) in (3.13) formally satisfies equation (3.8) exactly but the sum

does not converge. After formally taking the inverse Laplace transform termwise,

differentiating (repeatedly) with respect to s and evaluating the derivatives at zero one

obtains

E (T(x,v,a2)) 31£(3n)!a2nx as v oo

n=O n! (n + 1)! 6" v3n+
02(3n+ )!a xy2nX2E*(T2(x,v,2)) I 3n_2_as_v______+=0 n! (n + 2)! 6nv3n2

and in general

(3.14) E* (Tk (x Vl,2)) £ k (3n + (k- 1))! a2nxn+k
n=O n! (n + k)! 6n v3n+k

where E* (Tk (x,v, a2)) denotes the conditional k-th moment of T given that the boun-
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dary is being reached in finite time. Since VO() is the Laplace transform of T (x, v,a2)

*it has the representation

(3.15) V( (S,X,V, a2) E*(Tk(x,v,a2)) as v -e oo.

Substituting (3.15) into (3.1) for D = 0 and g = 0 and equating coefficients of powers

of s one derives the following system of partial differential equations for

E (Tk (x, v, 02))

(3.16) G2 42E (Tk (X, V, a2)) _ V a E (Tk (x,v, y2)) = _kE (Tk 1 (X,V, 2))
2 av2 ax - ETixv0)

for all k > 1. It is easily checked by differentiating (3.14) termwise that

E* (Tk (x,v,a2)) formally satisfies (3.16) and the appropriate boundary condition but

that the sum in (3.14) does not converge for any nonzero value of a2x/v3. Although

this might be surpnsing at first it is well-known in theoretical physics and applied

mathematics that most problems in perturbation theory or WKB analysis lead to diver-

gent series. It was Poincare who introduced this concept of divergent asymptotic

expansions into mathematics and demonstrated that formal solutions of differential

equations are asymptotic expansions of actual solutions. In fact one can even go a

step further: Typically, optimally truncated divergent series are very good approxima-

tions for these actual solutions. For some- information on divergent series and on their

optimal truncation we refer the reader to the book by Bender and Orszag (1978). We

chose to use the first 3 terms of the asymptotic expansion.
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Hence we obtain for the conditional mean

E* (T (x,vxa2))_ + a2 2+ 5a4x3\I~X,,aJ, v 2 v4 3 V7

Intuitively -, the first term of the series, provides a deterministic approximation to
V

T (x, v,a2) (when ay2 = 0 so that V (s) = v = const. for all s), while a2x v-3 measures

the effect of Brownian fluctuations. A probabilistic explanation for this can be

obtained in the following way. By definition

t

T(x,v,a2) = mrin(t: t 0O, vt + jW(s)ds = 0 X(0) = -x, V(0) = v}
0

where here W (s) is a Brownian motion process starting at zero with variance a2.

Clearly,

t

T(x,v,a2) = min (t: t 2 0, vt + JW(s)ds = x I X(0) = 0, V(0) = v)
0

t

- minft:t > 0, vt + fcaB(s/c2)ds = xIX(0) = 0, V(0) = v)
0

where c is a positive constant and B (s), s > 0 is a stanldard Brownian motion, i.e. witn

mean 0, and variance 1, and starting at 0. We also made use of the fact that

c a B (s/c2) is identical in law to W (s). We can further simplify to

tic2
= min(t: t 0O, c2vt/c2 + c3a f W(z)d(z) = xIX(0) = 0, V(0) = v}

0

= c2min{t: t 2 0 c2vt + c. aJW(z)d(z) = xIX(0) = 0, V(0) = v} .
0

Now, taking c = v/a we get
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t ~ ~ x2
v2cf22min{t:tO0, t + fW(z)d(z) = -f IX(O)=O, V(O)=v}.

0 V

And this implies that

T(x,v,c2) and a2v2T(xa2v3 1 1)

have the same distribution.

To make an effort to also find an approximation for the distribution of T consider

again (3.13) and perform a Laplace inversion with respect to s. Then

^ (t, C, v, a2) -c1 6(t) - a- c2C1t3exp (-vct) as v - oc
at n=O 6nn!

and hence

(3.17) I(t,c,v,a2) c-18(t) - - exp(-vct+ -c2t3) as v -4atc 6

'y( (t,c,v,&) in (3.17) satisfies exactly the following PDE (obtained e.g. by applying

the Laplace transform with respect to x to the Kolmogorov backward equation which

Nx (t,xj,v,a2) satisfies):

a2 a2XVcc(tICI,v,2) (C0) 2ay2v( o2) - vcWVCc (t,C,v,aY2) - av (t,c,v,''

Again, applying the inverse Laplace transform but now with respect to c and after

some calculations we get

f (t,x,v,a2) - (3x - vt) / ((8/3)ita2t5)112 exp (-3(x - vt) / 2t3) as v - oo

Notice that the argument of the integral is the density of a normal distribution with

a2
mean vt and variance t.
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Hence for the distribution function of T

x-vt 102
(3.18) F (t,x,v,a) 1 - (y2t3/ 3)1/2 + const. (x, v 2)

where 4 is the distribution function of the standard normal.

This approximation is expected to be accurate for not too large values of t if negative

velocities occur with small probabilities. Notice, however, that

_~~~)x-vt1t F (t,x,v,cY2) z -at [ has no moments of any order (and is not even a
t t 4f~~~~~(ay2t3 /3)1/2J

density) and so we are unable to obtain the asymptotic expansions of the conditional

moments and their approximations from (3.19) directly. We are presently working on

refinements of the approximation (3.18).

b. We will now consider the case where V (s) is an Ornstein-Uhlenbeck process with

drift i.e. we will try to solve (3.1) with 3 > 0 and ,u > 0. Towards this end perturba-

tion methods will be used. Again, working with the representation of yr as in (3.14)

and (3.15) we obtain a partial differential equation for the mean mp (x, v + ~t,a2) say:

a2 a2 mP (x, v + g,a2) am (x, v + ,c.2) am (x, v + g,ga2)
2 av2 -(v+}1) ax , 3v av =-1
with mp (0, v + g, 02) = 0 whenever v + A > 0. Defining Laplace transforms,

m (c v + gAo2) - exp (-cx) m (x, v + g,a2)dx
0

one has
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2 a2 (v+p.)cmp - v- =-C2 av2 av

so that by making the substitution co = 21/3 c1/3 r-2/3 (v + p) one arrives at

a2
(3.20)

M
/ m-/2a(2m - (2"3c a3c3wo- 2v3c-1/304/3a ) 21/3C-a/3-=3

Now, set

(3.21) m(x,v + p.,a2) piE im(i)(x,v + g,ac2) for small ,

where m(0)(x,v+ p.,a2) is the solution of (3.1) for ,3=0, i.e. m(0)(x, v+,a2)

E*(T (x, v + g,a2). Using (3.21) in (3.20) and setting a = 21/3c-2/3 6-'3 and

b = -2 c-1/3 cs 4'3 one obtains the following system to be solved:

a2 111(i) ________-- COm)-(i) (aco + bj) a0= 0 for i = 1,2,.

We will be content with first order corrections to the mean. For i = 1,

ao2 - corn) - (ax + bg) aco = 0.

Again using the method of dominant balance as described above, it is easy to show

that the first two terms in the asymptotic expansion of m(l) are given by

(V+ g,a2) ~1 x2v + (7v - 3g)a2X3
M X62 (v + )3 6(v +g)6

and hence we get

2 x2 3_2_2_3MP (X,V+g02)_ +_ + 5 4 X +( 1 x2v + (7v- 3g) x

V+g 2 (V(+ g)4 3 (v+g)7 2 (V+p.)3 6(V+ )6
as an approximation to the mean FPT of an integrated Ornstein-Uhlenbeck process

with drift p, variance a2 and friction parameter P. Again we ignored powers (v + g)-8
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and smaller. We will study the quality of our approximations via a series simulations.

4. Simulations.

It is quite complicated to find an analytic bound for the error term innroduced by the

various approximations and heuristic arguments which led to (3.14). Therefore we

performed an extensive series of simulations for different values of ay2 and several dis-

tances x and initial velocities v obtaining 224 different simulated mean first-passage

times. These simulations show that the approximation is excellent whenever

2 z v-3 < 1 /4. For the given values of a2 this is the case for all the values of z and v

in Tables 1,2,3,4 at the end of this section.

The basis for simulations is provided by the following relation between the velocity

process V (s) and the position process X (t):

t+At

(4.1) X(t + At) = X(t) + f V(s)ds.
t

Of course, it is impossible to obtain complete (for all s . 0) realizations of the velocity

process V (s). Instead, we deduce the entire trajectory from the velocities V (k - At),

k = 1, . . . , n. Then an assumption is necessary for the behavior of the velocity pro-

cess between the discrete time points k - At. The only assumption which makes both

physical and analytic sense is the assumption of constant acceleration during

[k * At, (k + 1) * At) for all k < n. This assumption leads to position being a quadratic
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spline (and hence to a quadratic interpolation scheme for the exact first passage-time)

and to the approximation of the integral in (4.1) by the trapezoidal rule. The simula-

tions were performed in the Statistical Laboratory at Queens University in Kingston,

Canada. At time t = 0 we started 2000 particles with V (0) = v. The time increment

At was chosen in such a way that always of the order one hundred steps were needed

for the particle to reach the boundary. This is a necessary compromise between accu-

racy and computation cost. For each particle, the time was determined (via the qua-

dratic interpolation scheme in the Appendix) when it crossed several boundaries at

x = 1,2,... and ensemble averages were taken.

For a = .1,.3,.5,.7 the results of the simulations are reported in Tables 1,2,3,4 at the

end of this section. The following notation is used (for convenience the dependence

on x, v, a2 will not be explicitly indicated):

ms: sample averages of simulated first-passage times for given z, v, cr2.

x 2 x2 5 4 x3
A1=-, A2= - A3 5 xv 2 ~~V4' 3 v7

Ml (3.__s_A_Mm- (A1+A2) Ms__________A3
M 103 m-At) M2 = 103 mS (A9) M3 =103 5 1
M1=1&. Al 2=& A1l3=& Al

SD(MK): sample standard deviation of Mi, i = 1,2,3.

Mi

SD (Mi)
The findings are summarized as follows:

I J
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1. In 105 out of 224 cases, It, I s 2.00 and in 21 cases t, . 0.00 indicating clearly

that the 1St order approximation A1 tends to underestimate the mean first-passage

time. This is confirmed by the following summary statistics of tl:

Mean = 2.57, STDEV = 4.15, SEMEAN = 0.14

Max = 8.00, Min = -0.87, Q3= 4.15, Qi = 0.85.

Q1 and Q3 are the first and third quantiles, respectively.

2. In 197 out of 224 cases, It21 < 2.00 and in 118 cases t2 . 0.00. So, in the great

majority of experiments (i.e. 88%), the 2nd order approximation is within 2 stan-

dard errors of the simulated mean. Also, the frequencies of underestimation and

overestimation (relative to the simulated mean are about equal. The summary

statistics of t2 are:

MEAN = -0.04, STDEV = 1.27, SEMEAN = 0.09

MAX = 3.48, MIN = -3.63, Q3= 0.85, Q1= -0.91

3. In 199 out of 224 cases, It3I < 2.00 and in 126 cases t3 < 0.00. The 3rd order

terms in the approximation and hence the difference between t2 and t3 are some-

times very small. The precision of the experiments (i.e., 2000 particles for given

a2 X, V) is not sufficiently high to determine whether the 3rd order approximation

improves over the 2nd order approximation. The summary statistics of t3 are:
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MEAN = -0.22, STDEV = 1.32, SEMEAN = 0.09

MAX = 2.69, MIN = -6.85, Q3 = 0.70, Q = -1.02

Appendix: Boundary Crossing by Quadratic Interpolation.

A particle which is observed in discrete time crosses a barrier at 0 during the time

interval ((k - 1) - At, k At] if X (k At) > 0 and X((k - 1) - At) < 0. In this work

we made the assumption of constant acceleration during times k At, k = 1,... , n.

This leads to position being a quadratic spline and hence suggests a quadratic interpo-

lation scheme, compare also Pickard et. al. (1985). Since particles can have negative

velocities, first passage can also take place if X ((k - 1) - At) < 0 and X (k * At) < 0.

The following interpolation scheme can also handle this case but it cannot distinguish

between two or more crossings during the time increment.

Let X((k - 1) - At) = x < 0, V((k - 1)- At) = u, V(k * At) = v. The position at inter-

mediate times is given bv

X((k 1) -At+) =x+u +[vjj4-u for0 <- X At

and interpolation involves finding the smallest real nonnegative zero to of f, say, where

f(t) = X((k - 1) At + t). If the discriminant D = u2 - 2 [ 1 x is nonnegative

then

I. To = (-u + ) * Atv-u
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Since f(t) is a quadratic function, the maximum is attained either at X = At in which

case f (At) = x +u+V At or at the critical point c = (u * At) / (u-v) if u > 0 > v and2

then f(c) = 2At + x. Clearly, both f(At) . 0 and f(c) > 0 imply D . 0 and hence2(u-v)

first-passage.

In summary, first passage occurs during an increment at time ((k - 1) - At + t0) with

-roas in Equation I. if either At > -x or D 0 withLu > 0 > v.2
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