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Abstract. ‘‘Intuitively, the Brownian sheet should be a Markov process if any process
is’’. This feeling is apparently contradicted by the fact that the sharp Markov property
fails for triangles, and has led to the widely studied notion of germ-field Markov pro-
perty for random fields. In this paper, it is shown for the Brownian sheet that in fact,
the germ field is equal to the sharp field for almost every curve y = f(x) (when f is
drawn at random according to Wiener measure on the set of continuous functions), and
thus the two Markov properties coincide in this case. This result follows from
sufficient conditions on f for equality of the two fields. In the case that f satisfies a
weak regularity assumption (implied by Banach’s classical condition (T1)), we give
necessary and sufficient conditions on f for equality of the two fields. When f has
bounded variation, the condition is that f be singular with respect to Lebesgue-
measure.



1. Introduction.

The Brownian sheet has long been known to satisfy the sharp Markov property
with respect to finite unions of rectangles (see [W1]; a detailed proof for planar
processes with independent increments is given in [Ru]). However, this property fails
for the triangle {(t;,t;) € R2: t; +t, s 1} [W1], leaving the impression that the sharp
Markov property is valid only for a very restricted class of sets. In contrast, the
weaker germ-field Markov property is valid for all open sets in the plane ([Ro], [Nu]).

Thus, for many sets A (e.g. the triangle), the germ-field g(a A) of the boundary is
strictly larger than the sharp field g(a A), whereas for curves I' which are a finite
union of horizontal or vertical segments, E:(I') = C=}(D. One might think that these

were the only curves for which this equality is valid. However, Dalang and Russo
[DR] exhibited separation lines containing no vertical or horizontal segment for which
the two fields are equal; [DR] also contains a detailed study of the structure of l:(l")

and C=i (I") when T is a separation line.

The motivation for the research reported here is to show that, in a sense, the ‘‘gen-
eric’’ case is equality of the germ and sharp fields. More precisely, we consider
curves I' which are the graphs of continuous functions y = ¢ (x), where ¢ € C(R,,R).
We show that if ¢ is drawn at random according to Wiener measure on C(R,,R),

then with probability one, G (I') = F (I') (see Corollary 4.13).

This result is obtained in several steps. First of all, we show that G(T)) is also the
minimal splitting field 1![(1") (Theorem 2.1), by using a result of Nualart [Nu]. We

then give a description of the generators of the minimal splitting field (Theorem 3.8),
which corresponds to the ‘‘vertical and horizontal shadow’’ description for domains
with smooth boundaries ([W1], [W3], [WZ]). It is then possible to give conditions on
¢ (Assumption 4.5, Remark 4.11) which ensure that I:(I') = (=}(1") (Theorem 4.9). In

particular, if ¢ has almost everywhere an infinite upper-right Dini derivative, then the
two fields are equal; this is also the case when ¢ has bounded variation and is singular.

It is more difficult to obtain necessary conditions on ¢ for equality of I:(I') and
G([T). We address this question by giving an explicit representation of the closed

Gaussian subspace G (I') spanned by the generators of the germ field (Theorem 5.5),
generalizing a result of Dalang and Russo [DR]. Under a regularity assumption on I
(Assumption 5.7), we give conditions that elements of G (I") must satisfy in order to be
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F (I-measurable (Proposition 5.12). This regularity assumption is implied by

Banach’s condition (T1) that almost every level set of ¢ be finite. Under this assump-
tion, we can then provide necessary and sufficient conditions for equality of F(I') and

G () (Theorem 5.14). In particular, if & has bounded variation, then E=~'(I') = C=i(F) if
and only if ¢ is singular with respect to Lebesgue-measure.

In Section 2 below, we summarize the principal notations and definitions we will
be using, and prove equality of the germ and minimal splitting fields.

2. The germ field of a continuous curve is the minimal splitting field.

Throughout this paper, T = R2 will denote the non-negative quadrant in the plane.
If t=(t;,t) € T, R, will denote the set {(s;,sy)) € T: s; <t; and s, < t5}. Lebesgue
measure on R? will be denoted dt whereas Lebesgue-measure on R will be denoted
K, (a measure |, will be defined in Section 4).

Let (Q,F,P) be a complete probability space on which a Brownian sheet

(W,, te T) is defined. The Brownian sheet can be regarded as ‘e distribution func-
tion of a white noise W on T, that is W, = W(R) a.s. (see [W3; chap.3] for a com-
plete definition).

Given A c T, the sharp field I;I(A) of A is defined by I;I(A) =0 (W,te A),

whereas H(A) denotes the closed linear span of {W,te A} (in LZ(Q,F, P)). The
germ field (=} (A) is defined by

e

A) = NhAY,
0
where A; is an g-neighborhood of A. If we set
G(A) = NH(Ap,
0
then Lemma 3.3 of [M] asserts that G (A) = 6(G (A)).

A o-field A such that H(A) and I;I(Ac) are conditionally independent given A is
called a splitting field for A. The following properties are well-known.

(2.1) H(A) n H(A®) < A, for any splitting field A of A ([Mc; Sect.6], [W1]);

2.2) g(aA) is a splitting field for all open sets (see [Ro; Chap.3 §5] for bounded
open sets, [Nu; Th. 3.1] in the general case);
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(2.3) I_-__I(BA) is a splitting field for A when A is a finite union of rectangles with sides
parallel to the coordinate axes [Ru; Th.7.5};
2.4) I;_I(aA) is not a splitting field when A is the triangular region ((s;,s,) € T:

s; + 82 < 1} ([W1], [W3; p.399)).
Property (2.2) is known as the germ-field Markov property of the Brownian sheet. We

say that the Brownian sheet has the sharp Markov property with respect to A < T pro-
vided I;I(aA) is a splitting field for A (see [W2]). Because of (2.4), it has widely been

assumed in the literature that the Brownian sheet has the sharp Markov property only
with respect to a very restricted class of sets (e.g. those in (2.3)). In fact, as men-
tioned in the introduction, we will show that the case (;:(BA) = I__f(aA) is the ‘‘gen-

eric’’ case, at least when dA is the graph of a continuous function from R, to R,.

Throughout this paper, we work with a continuous function ¢: [0,T] = R, such
that @ > 0, ¢ (@) =0, and

O<su<d = ¢(u)>0.

The graph I' of ¢, defined by I" = {(u,¢ (u)): 0 < u s U} is a continuous curve, with
two-dimensional Lebesgue measure 0, that splits R2 into two disjoint open connected
components. The bounded component is

D, = {t=(t},tp) € R2:t; <T, t, <O (1)},
and the unbounded component is

Df = (t=(;,tp) e R2:t;>Tor(t, < Tand t, > d(1,))).

2.1. Theorem. The germ field G (I) of T is the minimal splitting field for F(Dy) and
F (D). In particular, G(I) = H(Dy) » HD).

Proof. This proof is similar to that of [DR; Theorem 3.1], which covers the case
where f is non-increasing. It is sufficient to prove that

(2.5) G@M = H(Dy) n HDY),
since then, by [M; Lemma 3.3],
GM = 6(GM) = c(HD)) N cHD) = HD) ~ HD),

and the conclusion will follow from (2.1) and (2.2).



K=(h:T->R:h(:) = igmds,ge L2(T, d)}

be the reproducing kernel Hilbert space of the Brownian sheet, with the norm
Il fgs)dslx = Nglaer,ay-
R,

According to [Nu; Proposition 2.2], the condition below is equivalent to (2.5).

(2.6) For A € {D,,Dy}, for each n; € K with support included in A, and for € > 0,
there is 1, € K with support included in A such that ||n; - N,k < &.

To check (2.6), fix € K with support in D, (respectively Df), and g € L?(T,dt) such
that

ne = l‘g(s)ds, te T.

For a > 0, set g*(s1,5p) = g(s1,as,) and
%@ = Lg“(sl,sz)dsl ds,, (sp.sp) e T.

Note that n*(t;,t) =N (t;,aty)/a, and for a > 1 (resp. & < 1) the support of N® is
contained in D, (resp. Df; note that this is due to the fact that I" contains no vertical
segments, and so this proof does not cover the case of [DR; Theorem 3.1], nor vice-
versa). So (2.6) holds since ||g = g®|l;2 converges to 0 as a approaches 1. a

3. The generators of the minimal splitting field.

The generators of the minimalsplitting field of a domain with a smooth boundary
were determined in [W1], [W3; Th. 3.11] and with a piecewise monotone boundary in
[WZ; Prop. 1]. In these cases, the minimal splitting field is generated by the white
noise measures of the vertical and horizontal shadows of portions of the boundary, and
the proof can be carried out by drawing pictures [W3; Th. 3.11]. The ideas in the
smooth case are essentially valid in our setting. However, since we make no regularity
assumptions on ¢ or I', precise topological definitions and formal proofs are necessary.
Let

Sy = {(t),tp) € T: there is (s; s5) € I' with sy 2 t; and s, = t,}
be the ‘‘horizontal shadow’’ of I'. Note that S, = D; L D,, where D, = int(S, N Df).
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An analogous definition of the vertical shadow S, of T leads to the set D;.

3.1. Proposition. For 0 s u< @, set S = {se€ D;:s; < u} and W}! = W(S}). Then
W! e« HD) n HDD.

Proof. Observe that
S' = {seT:0<s;5su,0ssy<0(s))}.
Forne Nandi=0,...,n,seta; =iu/n, and

m; = min ¢(v), M; = max ¢(v),

aisvsay, 84SVSay,
1 1 El 2 _ 1 "f;l
2 = n i=om" " n i=0Mi’

n-1 n-1
(3.1) Y,} = Eo(wm.nu - wq.ma)' Yr% = Eo(wm.Mi - WA.M)'

Then clearly Y, € H(Dy), Y2 ¢« H(DY), and fori = 1,2,

E(Ya-W?) = Isi-[owdv| - 0
0

as n — oo, since s (respectively s?2) is the lower (resp. upper) Riemann sum of ¢ and
¢ is continuous. This completes the proof. a

Proposition 3.1 essentially takes care of vertical shadows. To get horizontal sha-
dows, define p: S; U S, = [0,T] by

p(tl’tZ) = inf[u 21t ¢(U) = tz}.

This mapping has interesting measurability properties.

3.2. Lemma. (a) The function p is Borel.

(b) For any rectangle = [a,b] x [c,d], contained in D; or in D,, or more gen-
erally, for any open subset 6 of D, U D,, p(8) is a Borel subset of D, U D,.

©) p(D))Np(Dy = .

Proof. (a) Foru,v e [0,0], with u < v, set

L(uv) = max ¢(x), [/ (u,v) = min ¢(x)
usxsyv usxsv
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(these notations will be used throughout the paper). Observe that for 0 s v s 1,
(32) (s€S,US,:p(s)sv) = (seT:s;sv, I(s,v) s s L(s53,V)}.
This is clearly a Borel set, since / (+,v) and L (-, V) are continuous functions.

(b) It is sufficient to prove (b) when 0 is a closed rectangle in D; or D,. Indeed,
any open subset of D, U D, is a countable union of such rectangles, and the image of
a union is the union of the images. So set

0 = [a,b] x [c,d], a<b, c<d,

and suppose for example that 6 < D, (the case 8 < D, is similar). Set uy = p((b,d)),
u =p ((bv C)), and

t(u) = inf(v 2ug:/ (upv) = [ (ugu)}, yy<us<uy.
Then [ (ug, T (u)) = (up,u), uy S u < uy, and
p@®) = {ue[ugpu]l: t()=u}.
Since u > T (u) is easily seen to be left-continuous, p (0) is Borel.

(c) Suppose s € Dy, t € D, and p(s) = p(t). Then s, = t, by definition of p, so we
suppose for instance that s; <t;. Then ¢ (sy) > s, since s € D; and ¢(t;) <t; since
t € D,. By the Intermediate Value Theorem, there is u € t]s;,t; [ with ¢ (u) = s, =t,.
But then p(s) < u <t; s p(t), a contradiction. . a

3.3. Proposition. For 0 < u < T, let
S} = (seS;US,: p(s) su}
denote the horizontal shadow of {(v,¢ (v): v < u}, and set W‘f = W (S3). Then
WZ e HD) N HOD.

Proof. The region S} is characterized in (3.2). In particular, S} = E; \ E,, where
E, = {(s1,8):0 s s Su,59 < L(sq,u)},
E, = {(51,8):0 <51 su, S5<(s,u)}.
So we only need to show that W (E;) € H(Dy) N H(Dy), i = 1,2. We only carry out
the proof for i = 1, since the case i = 2 is similar.
To show that W (E,) is Izi(ﬁf)-measurable, we proceed as in the proof of Proposi-

tion 3.1, by approximating the area of the region E; by upper Riemann sums. The
variables which correspond to the Y. in (3.1) are clearly H (Df)-measurable, so W (E;)



is too.

To check that W (E,) is H(D,)-measurable, we must take care to use only points in
D, in the approximation. This will be achieved using a *‘horizontal”’ discretisation
instead of a ‘‘vertical’’ one. Seta =L (u,u)=¢(u),b=L(O,u),s’=u,andforne N
andi=1,.,n-1,

si =a+ i(b-a)/n,
si = inf(v s u: L(v,u) = si)
(s§ exists because L (-, u) is continuous). Now set
2 n-1

Yy = iE‘)(\Ws{.L(s{.u) = ws{".L(s{.u))'
Clearly, E (W (E;) = Y2)?) < u/n, so the proof will be complete if we show that Y2
is I;I(Dl)-mcasurablc. This will be the case if we prove that ¢(s}) = L(s{, u),
i=0,...,n~-1, because in this case we will have

(s},L(s},u)) € D; and (s{*',L(s{,u)) € D,(i=n).

By definition of sj,
(3.3) v2s) = L(v,u) s si = ¢(v)ssi,

and v<s{=>L(v,u)>s}. Thus, by definition of L(-,-), for any € > 0, there is
vie ]s{ —gsi[ such that ¢(v)) > si. But then continuity of ¢ and (3.3) imply
¢ (s{) = sd = L(si,u). This completes the proof. O

The image under the mapping p of Lebesgue-measure on S; U S, is a measure p,
on the o-algebra § ([0,T]) of Borel sets of [0,T], defined by

H, (T) = Lebesgue-measure of p~! (I), I e B([0,TD).
If we consider that white noise W is an L2(Q, l:, P)-valued measure (i.e. a vector

measure), its image W under p is an orthogonal measure on [0,T] with variance ,,
i.e.

InJ=¢, LIe B(0,T]) = ECWDOWQ) = 0,
and for Borel f e L2([0,T]), du,),

EQC [ f@dWpd) = [ £2(u)dp, ).
[0,T] (0,7]

If one wants to avoid images of vector measures, one can simply consider that
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[ f)aw,
(0,u]

is a shorthand notation for

| fewaw,.

S |US:

3.4. Proposition. Suppose f € L2([0,T],dy,) is Borel. Then

(34) [ fyaw, ¢ HO) NHDD.
(0.T]

Proof. Observe that if f = I, (Ig,y) is the indicator function of [0,u]), then
[ fwaw, = w2,
(0.a]

so the conclusion in this case follows from Proposition 3.3. This implies (3.4) for all f
which are a finite linear combination of indicator functions of intervals. Now suppose
(f,,n € R) is an increasing sequence of uniformly bounded Borel functions that satisfy
(3.4), and set f = lim,_,.f,. Then f, — fin L2([0,T]),dy,) so

[ f.dW = [ fdW in L2(Q,F,P),
(0.1] (0,1 -

so f satisfies (3.4). We now apply the Monotone Class Theorem (see [DM; 1.21]) to
see that (3.4) holds for all bounded Borel functions. If f2>0 is Borel and
f e L2([0,T]),dp,), then

f = limmin(f,n) in L2([0,T),dy,),

so (3.4) again holds in this case. Finally, to conclude for general Borel
fe L2( 0,7],du,), simply decompose f into its positive and negative parts. a

3.5. Lemma. Set
G = 6(W(),0<S,, 6 open),

Gou = O( [ fILp,dW, f bounded Borel)
(0,1}

(recall that p(D,) is a Borel set by Lemma 3.2 (b)). Then (3,}, and C=i(}ut are indepen-
dent and H(D) = Gip V Gourr
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Proof. Observe that for each open set © < D! and for each bounded Borel function f,
EW® [ fLpydW) = EW®) [ f(p()Ip(s)dW,)

[0,u] Sius?
0

since 8 " D? = ¢. Since we are working with Gaussian random variables, (j,}, and
GJ, are independent. To check the second statement of the lemma, it is sufficient to

show that if t € Dy, then

W, = W(le'\ mtR‘) + I Ip(mtR,)Ip(D;)dW’
(0.u]

where int R, is the interior of the rectangle R,. Now fort e D,,
W, - W(D; nintR) = W((intR)\(D, N intR)))
W (D, N intR)

| By Iy dW

[0,3]

(in the second equality above, we have used the fact that the Lebesgue measure of I’
is zero). a

We now recall the following lemma concerning conditional expectations of Gaus-
sian random variables.

3.6. Lemma. Let H! and H? be two closed subspaces of a Gaussian space H.
(a) Suppose H! and H? are orthogonal and Y € H is orthogonal to H!. Then

E(YIoH)VveM?)) = E(Y|oHD)
(b) Suppose G < H' m H? is also a closed subspace, such that prg (Y) = pr (Y),

for all Y e H! (pr denotes orthogonal projection). Then 6(G) is a splitting field for
o (H!) and o (H?).

Proof. (a) is a consequence of the fact that conditional expectations of Gaussian ran-
dom variables are orthogonal projections, and (b) is a standard result (see [C; Lemma
SD. a

3.7. Lemma. Suppose t € Df. Then
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(a) thereis a gjut-mcasurablc variable Z, such that

E(W,[HDp) = WD, NR) + Z.
() WDy N R) = Wi = [L(yep,:a 2, m>udW

Proof. (a) Note that W, =Y, + Y, + Y3, where
Y, =W®R,ND), Y,=W(R, "Dy, Y3=WRN\D,; v Dy)).

Now Yj; is independent of I;I(Dl), since

ReNn(R\(DyuUDy) = ¢, Vse D,
and Y, is I;I(Dl)-measurable by Lemma 3.5. So

E(W,|H(Dy) = WD; "Ry + E(Y2|[HD).
By Lemmas 3.5 and 3.6(a),
E(Y2|H®y) = E(Y2IGnVGow) = E(Y2IGaw.

This concludes the proof of (a). As for (b), it is an immediate consequence of the
definitions of W,! and W. O

3.8. Theorem. Set

K@) = 6(WJ,0sus®) v o( [ fdW,f bounded Borel).
(0.1}

Then K (I is a splitting field for H(D;) and H(D{) and K([) = H'Dy) » H(D}) (in
particular, K(I') is the minimal splitting field).

Proof. Proposition 3.1 and 3.4 imply that
K@ < HDp n HOY.

To get the converse inclusion, observe that by Lemmas 3.5 and 3.7,
EW,[HDy) « K@M, VteDf,
so by the above inclusion,

E(W,/H®D,) = E(W, /K@), Vte Df.
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By Lemma 3.6(b), this means that K (T) is a splitting field for H(D;) and I;I(ﬁf). By
(2.1), we get the desired equality. a

4. Sufficient conditions for equality of the germ and sharp fields.

In this section, we will need the notion of stochastic line integrals for monotone
curves. These notions were introduced in [CW; §4] in a more general context.
Suppose 0 <a<b and f:[a,b] > R, is monotone and continuous. Let

I'f = {(u,f(u)): a < u < b} be the graph of f, which is a continuous monotone curve.
Set

WE = Wog, WE = WS TH), Wi = wS, @),

where 1"5 = ((v,f(v)): a<v<u} and S;(A) (resp. S,(A)) denotes the horizontal
(resp. vertical) shadow of the set A (see beginning of Section 3). Then (WX,
a < u < b) is a continuous martingale, i = 1,2, with quadratic variation

u f(u)
<WELS, = [fwmdv, <WE2>, = [ vdf(W).
a f(a)

When f is non-decreasing, (W?, a < u < b) is a continuous martingale, and

< WIS, = uf(u) - af(a).
In this case, if h € L2([a,b], d (uf (u))), the stochastic line integral of h along rfis by
definition

b
[hdW = [h@dW{.
r a

When f is non-increasing, and h € L2 (f(u)du) N L2 (udf (u)) is Borel, the stochastic
line integral of h along I'f is defined by

b b
[hoW = [h@dW{! = [h()dW2.
r a a

Recall that if f is non-decreasing on [a,b], the inverse of f is the function
flv) = sup{u: f(u) < v}, whereas if f is non-increasing, the inverse of f is
lv) = sup{u: f(u) 2 v}. We also set f! (v) =inf{u: f(u) 2 v} (resp.
! (v) = inf{u: f(u) < v} when f is non-decreasing (resp. non-increasing).

4.1. Lemma. Suppose f: [a,b] — R, is monotone. Then

rj1 hoW = [ (h(SPIs () + h(F™ (s9) s, ) () AW,
R?
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for all h for which the left-hand side is defined.

Proof. The equality is a simple consequence of the definition of line-integral when h
is the indicator function of an interval. The general case follows by a standard Mono-
tone Class argument. a

42. Lemma. Fix uy<®, and set f;(u) =L (u,up), u<uy and f5(u) =L (up,u),
uy < u <0 Thenfori=1,2,

@ £ (s) = 0(sp, and £, (s9) = 0(sy), when (0,5 € S,[T".

(b) Set B; = {u: ¢(u) =f;(u)}. Then Bf is an open set, so we can write

Bf = luk v,
k

where uX < v¥ and the union is countable and disjoint. Then

@) = 0@d = ovd = f@b.
In particular,

[dfi@ = 0.
B

Proof. We only carry out the proof for B, so we drop the index 1: f(u) = L (u, uyp).
(a) By definition, s, = ™! (s,) satisfies f(s; + 8) < f(s,), V8 > 0. Thus

f(sp) > s,+tg<aux<u,¢ (v).

Now assume f(sy) > ¢ (s;). We show that this leads to a contradiction. Indeed, there
would be € > 0 and & > 0 such that

s;sus Sl+8 > ¢(u)<f(sl)—-8.
But then

f(s)) = max ¢(u) = max( max o¢(u), max ¢(u)) < f(sy),
S SuUSU, 5, Su<s;+9 s +dsusuy

which is the desired contradiction.

(b) Note that uk and vk belong to B, so ¢(u¥) =f(u¥) and ¢ (v¥) = f(v5). It
remains to check that f(uk)=f(vK). Observe that ¢(u) < f(u), uk <u< vk by
definition of B. Now suppose f V) <f (uk). Since f is continuous, there is
wk e Juk, vE[ such that f(uX) > f(wX) > f(vK). But then

wg:& o) > V&Mﬂ).



-13 -

But since ¢ is continuous, there would be u e [ wX,vK] such that o =f (w). Now
0@ < f@ s fWH = o),
so f(u) = ¢ (u), a contradiction since u € B°.
Finally, the last statement holds since

[df@ = ZEW - £@) = 0.
Be k 0

43. Lemma. Fix a<b<uy<T and set f;(u)=L(uuy), usu, Suppose
B e B([ab]) satisfies B < B, (defined in Lemma 4.2(b)). Then

j IBaW € I;Im
r‘l =
(recall that " = {(u, ¢ (w))}, rf = ((u, fy ())).

Proof. By definition of By, we have ¢ (u) = f; (u), Yu € B. Since the non-negative
measure f; (u) du — udf; (u) is outer regular, for each € > O there is an open set U such
that

(41) BcU and l(fl(u)du—udfl(u)) < [(f; (w)du - udfy (u)) + €.
B

Now
U = Y, where [; = Ju;, v;[, and [N, = @,i=j.
i
If BNIL= @, we simply can femovc that I, from the union, without affecting (4.1).
So we assume B N I, # ¢, for all i. Set
3, = iffBNIL), b = supBNI),
and

vV = ulabl.
i

Then
(42) BcV and i(fl (u)du - udfy (w)) < !(fl (u)du - udf, (w)) + €.

Furthermore,

Y = 1!‘ IyoW = >i:(wg;}m - Weolbay - §(W§;,2f<b9 - Wk
1
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= ZWhmm ~ Watw):

so Y « H() since f(b) = ¢(b) and f(a) = ¢(a) (because a,b; « By). Finally, by
Lemma 4.1 and (4.2),

I [IlyoW - [IgdWli» < €.
r r
Since € is arbitrary, this completes the proof. O

44, Lemma. Fix T2b>a>uy; and set fy(u) =L(upu), u2uy Suppose
Be E ([a,b]) satisfies B < B, (defined in Lemma 4.2). Then

[1goW ¢ H(D.
3 L

Proof. The proof is similar to that of Lemma 4.3, using the measure d (uf (u)).
Details are left to the reader. a

The following condition will turn out to be sufficient for the equality of the germ
and sharp fields of T'.

4.5. Assumption. There is a countable dense set Q on [0,T] such that for uy € Q, the
maps u — L (u,ug) ana ug > L (ug, u) are singular (with respect to Lebesgue measure).

4.,6. Lemma. Under Assumption 4.5, the maps u > L(u,uy) are singular for all
ue [0,T].

Proof. Fix uye [0,T]. To begin with, if L (0,ug) = ¢ (ug), then L(+,ug) is constant
on [0,uq], hence singular. So assume L (0, ug) > ¢ (ug). Now set
vo = sup{u s ug: L(u,up) > ¢ (ug)}.

If vg < ug, then L (-, ug) is constant on [ vy, uq], so it suffices to check that L (-, ug) is
singular on [0,vg]. We may thus assume in addition that L (u,ugy) > ¢ (ug), for all
u<uy Then fix 8 >0, and let u; € [ug — §,uy[ be such that ¢ (u;) = L (ug - 3, up).
Now fix dg € [u;,uy] N Q, where Q is given in 4.5. We claim that

4.3) L(udy) = L(uug, Yu<uy-3.
Indeed, for u<uy-98, L(udy) <L(u,uy) by definidon. So suppose
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L (u,dg) < L(u,up). Now L(u,dy) 2 ¢(uy) = L(ug - 3,up), so if ve [0,uy] is such
that ¢ (v) = L (u,up), then u < v < uy - 3. Thus L(u,dg) = ¢ (v) = L (u,up), a contrad-
iction.

By Assumption 4.5 and (4.3), L(-,up) is singular on [0,uy - 8], for all >0,
implying L (-, uy) is singular on [0,uy]. The proof for L (ug, - ) is similar and is omit-
ted. a

4.7. Lemma. Fix uj, a,be [0,uy] such that a<uy<b and L(a,up) = ¢(uy) =
L (ug,b), and define f;: [a,up] = R, and f;: [up,b] > R, by f; (u) = L(a,u) and
fy(W=L(s,b). Then under Assumption 4.5, W(S,™)eHT) and

WS, (M) e HID), i=1,2.

Proof. We only indicate the proof in the case i = 1. Let A, be a set of Lebesgue
measure 1 in [a,uy] such that

[dfy@) = 0.
A,
Then A; = B; N AT satisfies the hypothesis of Lemma 4.3, so

IIA‘aW = WiL@aw = WaLes — IIAzaW
r r

@

nn

since L(a,ug) = ¢ (up) and L(a,a) = ¢(a). By the change of variables formula of
[DM2; chap. VI 2, (55.1)],

£1(uo)
[ Il Gdsy = [ I, (wdfyw) = 0,
fi(a) (au]

O (81,59 IA‘(fl‘l (sp) is a.s. zero on S, (I‘f‘) fori=1, and a.s. one for i = 2. But
then Lemma 4.1 implies that

1,,0W
rj;A

I I (s)dW,
R“;A 1 S;(l'"‘)

W (S, ()
since (sy,sy) > I, (sy) is a.s. the constant function 1 on §, T, Similarly,

j{rmw:_ W (S, ().
r'l
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This completes the proof. |

4.8. Proposition. Under Assumption 4.5, Wi, € HI), 0 s up < T, i = 1,2.

Proof. We begin with the case i = 1. Fix ne K, and set x" =juy/n, j=0,...,n.
Define g": [0,u5] = R by

g'(u) = L(xj“,xj‘il) if xj“< us xj'h.
Note that there is v € [x[,x[};] such that g"(u) = ¢ (v]"), u € 1x,x[3; ].

The map g" is piecewise monotone, though not continuous. Let
0=j§ <jf <***<jm=n be such that g" is monotone on [x;p,x; ] but is not mono-
tone on [Xj,X;s .11, for each [ (it is important to take intervals closed on the left).
Then if g" is non-d=creasing on [le., Xip, 1]' it will be non-increasing on [xj& o xjh]. So
we assume without loss of generality that

4.4) g" is non—decreasing on [xjo., le.] .
We then define h": [0,uy] — R by
h"(u) = L(ng,u) if VipSusvp and / is even,

h" (u)

L(U,Vj‘aﬂ) if lel sus Vj‘nﬂ and / is Odd,
h"(u) = L(vj:.u) if Via S u S u.

Now h" is piecewise monotone, and singular by Assumption 4.5, with intervals of
monotonicity [0, "j?]’ [Vj?’ Vj:]' -~-'[Vj;_,r“o] and ¢ < h" < g". Since the area of the
vertical shadow of I'S" decreases to the area of Dulo, the same is true for the area of
S, (™). But then the random variables W (S; (T*")), which are H (T")-measurable by

Lemma 4.7 and Assumption 4.5, converge to W (Dulo), completing the proof fori = 1.
To see that Wuzoe I;I(l"), set k"(u) = min{h"(v): u < v < uy}. Then k" is non-

decreasing, and singular since h" is (see proof of Example 4.10(a) below). Further-
more, it is not difficult to see that

lim k" (u) = [ (u,up),

and so

lim W (S, (T¥)) = W (S;(T™) in L2(Q,F,P),

where f; (u) =1/ (u,uy). So the proof will be complete if we show that W (S, (%) e
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H(). Since h" is piecewise monotone, k" will coincide with h® on finitely many
intervals of the form [vj,., w['], where [ will be even (by (4.4)) and
wi = supfu: VpSusuy and h®(v) = k*(v), Vve [vjl.,u]}
= inf(u 2 vp: L(vpu) = ?1)? o (vp)).
A even

By Lemma 4.2 (a), we will have

(W) = B"WP) = LvinwP) = 6(wp),
so by Lemma 4.7, W(S, (Ff')) € l;l(l"), where f;: [Vji" wi'] - R is defined by

f; (u) = h™(u), vVpsus w/'. But then, since S, (™ is the disjoint union of the
S, @), we get the desired result. a

4.9. Theorem. Under Assumption 4.5, I;I(I‘) = g(I‘).

Proof. By Proposition 4.8 and Theorem 3.8, we have H(I) > H(D;) » H(D{). The
converse inclusion is also clear since W, 4, € I_;I(DQ N I;I(ﬁf), O<sus<i So the

conclusion follows from Theorem 2.1. a

4.10. Examples.

(@ If ¢:[0,u] = R, has bounded variation and is singular with respect to
Lebesgue measure, then Assumption 4.5 is satisfied (the converse is also true: see
Proposition 6.1).

(b) If ¢:[0,T] — R, is such that any one of its four Dini derivatives is +oo a.s.
for Lebesgue-measure, then Assumption 4.5 is satisfied. For example,

$Q+h) - o)
h

= lims = <00 Qa.s.
g(u) hwllp a.s

implies Assumption 4.5.

Proof. (a) We only check that u > f(u) = L (ug, u) is singular. In fact, we prove the
stronger statement

(4.5) l!df(u) = gdml(u), B e B([u,,T)).

Indeed, assume to begin with that B = ]a,b]; a<b. Set
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v, = supfu: f(u) =f(a)}, v, = inf{u: f(u) = f(b)}.
If v, < vy, (4.5) is clearly satisfied. So assume vy <v,. Then f(v;) < f(vy) and by
Lemma 4.2 (a), f(v)) = ¢(v;) and f(v,) = ¢ (vp). Thus

[ df@) = fv) - f(v) = 0(v)-0(v) s [ dIol W,
Ja,b] ]a,b]

and so (4.3) holds in this special case and also if B is a countable union of intervals.
The general case follows since any Borel set can be approximated from above in
df (u) + d | ¢ | (u)-measure by a countable union of intervals.

(b) Fix upye [0,u]. For any usuy such that g(u) =+e, we have
L (u,ug) > ¢ (u). So by Lemma 4.2 (b),

L(du,up) = 0.
(u: g(u)=me} 0,uq]

But since by hypothesis, (v:g(v) =e} N [0,uy] has Lebesgue-measure uy,
u > L (ug, u) is singular.

We now check that ut L(ugu) is singular. Indeed, ut+> L(upu) has a
Lebesgue-decomposition

L(upu) = [h(w)dv +v(),
Uo

where v (*) is a non-decreasing singular function and h is non-negative and integrable
on [ug,u]. Thus

a - ]
(4.6) ‘a;L(“o’“) = h(u) as.

with respect to Lebesgue-measure. However, at every point u in the support of
v = L (ug, v), L (ug, u) = ¢ (u), so for du-almost all u in the support, h (u) = g(u) = +oo.
Since h is integrable the support of v + L (ug, v) must be a Lebesgue-null set, con-
cluding the proof. a

4.11. Remark. Theorem 4.9 remains valid if Assumption 4.5 is replaced by an analo-
gous assumption on the functions / (+,ug) and / (ug,*), 0 < up < T.

- Theorem 4.9 also remains valid if Assumption 4.5 is replaced by either of the fol-
lowing two assumptions:

L(-,up) and [ (-,up) are singular, Vuye D
or

L(ug,*) and [ (ugy,*) are singular, Vuge D
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(recall that D is a countable dense set). The important feature in each of these
assumptions is that we have both non-increasing and non-decreasing functions in each
case.

- Assumption 4.5 does not imply that u > / (O,u) is singular, as shown by the
example below.

4.12. Example. We are going to define a function ¢: [0,1] — R, which is continu-
ous, satisfies Assumption 4.5, but for which [/ (0,-) is absolutely continuous with
respect to Lebesgue-measure. Let f: [0,1] — R be a continuous function which has
the following properties: )
-f0 = (1) =0
-f(u)>0,0<u<1
. f(u + h) - f(u)
- limsup h
-max{f(u):0susl} = 1.
Let C be a Cantor set, obtained by removing from [0,1] at the k™ step 25! open
intervals I, ..., L o1 of length 4% Then C has Lebesgue measure 1/2. Let
Ikd- = ]“k.i"k,i [. We then set

= +oo, for almost all u € [0,1]

¢l (U) = 2—k/2 f((u - llk'j)4k), “kj fus< vk,j’
ow) =0 , ue C.
Observe that ¢, is continuous on [0,1], and for all u € C,

limsu Glath) - oW
hlo P h

Finally, we set

o = 12 - [lcWdv + ¢;(x).
: 0

It is then clear that ¢ satisfies the condition of Example 4.10 (b), and so Assumption
4.5 is valid. On the other hand, it is easy to see that

{(O,u) =

1 u
3 - £Ic<v)dv.

so ! (0,+) is absolutely continuous with respect to Lebesgue-measure. a

4.13. Corollary. Let C={f: R, > R: f(0)=1 and f is continuous}, and let B
denote Wiener measure on C. For f € C, set



-20 -

@) = influ>0:f(w)=0} if { }= @,
o = otherwise .
Let ¢ (f) be the restriction of f to [0,{(f)]. Then
B{f e C: {() <+e and HT¥) = ¥ = 1.

Proof. Immediate consequence of Example 4.10 (b) and Theorem 4.9.

5. Some necessary conditions for equality of the germ and sharp fields.

In Theorem 3.8, we determined the generators of the minimal splitting field for
H(D,) and H(Dy). By Theorem 2.1, these are the generators of the germ field. In

this section, we are going to give an explicit integral representation for the closed
Gaussian linear subspace spanned by these generators. By Theorem 2.1, this subspace
isGM).

These results generalize those of [DR; Th. 3.8], where such a representation is
given when ¢ is decreasing. Also Rozanov [R; Chap. 3; Sect. 3.5] has given an impli-
cit representation of G(I') in terms of the solution to a generalized partial differential
equation, when I" is the boundary of any bounded open set. Our representation can
thus be viewed as the solution to Rozanov’s equation when I' is the graph of a con-
tinuous function ¢.

Once we have a good description of G(I') at our disposal, it becomes possible,
under a rather weak regularity assumption on ¢, to give conditions under which an ele-
ment of G (I") does not belong to H(I'). Though we do not give a complete descrip-
tion of H(I') (and such a description is unnecessary for our purposes), this approach
leads to necessary and sufficient conditions on ¢ for equality of the germ and sharp
fields (provided ¢ satisfies Assumption 5.6 below). In particular, when ¢ has bounded
variation, Corollary 5.15 gives a complete answer to the question: *“ when are F(I')

and G (') equal?”’

If f;,f5: [0,0] = R are two Borel functions, we define three Borel functions
Jl (fl’ fz), J2 (fl' f2) and J (fl’ fz) onT by

L. 2)® = @) + HeONIH®
LE.BR® = f(p (1) Ip, (V)
JEL,0)@® = L1 (L. + LE,.)®).
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5.1. Lemma. (a) Suppose J(f),fy) € L2(T,dt). Then J;(f;,f,) € L2(T,dt), i=1.2. In
particular, f,Lyp, € L2([0,T],du,).

(b) Suppose (f!,n € N) and (f},n € N) are sequences of Borel functions such that
J(f,£9) e L2(T,dt) for all n € KN and

g lim J (f], f7)
n—oo
exists in L2(T,dt). Then
g = lim J,(f1, D)
n—oo
exists in L2(T,dt), i = 1,2. In addition, there is a Borel function f,: [0,u] = R such
that
f,1 = lim f} in L2([0,7),d
2lypy = lm 2 Lo, in L°([0,T],duy)

and g, (1) = f(p(1)) dt-a.s. (Note: the question of convergence of 7 Lp,) is addressed
in Lemma 5.2).

Proof. (@) Let |-l denote the norm in L2(T,dt).  Since
J (€, 6) I, (£, £) () =0, Vte T, we have
(5.1) WTELED I = I3 EL) IR + 11Ty ) 12
This implies the first statement in (a). The second is a consequence of the relation
(5.2) | @Y Lpy@dua@) = [ U2 ) ®)%dt.

[0,u] R?

(b) If J(T.f3), n e N) is a Cauchy sequency in LZ(T,dt), then (5.1) implies that
J; ((1,£f7), n e N) is also, i = 1,2. This yields the first statement of (b). To get the
second statement, observe by (5.2) that (f I'p(Dz)’ ne N) converges in
L2([0,T)), du,). Choose a Borel function f, which is a p,-version of this limit. Then

llg2 = (E20P) Ip, Il < llg - L (fTLEDII
+ 13 (€1 1) — (Fop) Ip, | + 1(E"op) Ip, — (f0p) Ip, Il
= llg - LAELDIN + 17 Lo, — f2llLxay,
-0

as n — oo,
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Set
L, = AL2(0,T-€],dy;], Ly = AL*(0,T-€], dyuy).
o0 0

If g € L2(T,dt) satisfies g = J; (fy, f,) for some couple (f,f,) € L; x L,, we say that g
is determined by (f,,f;). If k € R, and we set

fk = fi -k, ff = (+p,)+ 1y,
then (fX, £X) also determines g.

Now fix s? = (s{,sJ) € D; such that Ro = Dy (recall that Ro = (s e R2:s; <)
and s, < sJ}). For any g e L2(T,dt) which is determined by some (£, f,), we may (by
adding an appropriate constant to f;) choose (f;, ;) that determines g and such that

s

(5.3) [fiwdu =0
0

Finally, for € > 0, set T, = inf{u: ¢ (u) = €} and DJ = {(s,s,) € D!: 5y < T€}.

5.2. Lemma.

(@ If (f,f)el;xL, then for each €>0, t> f(t)Ip; and
t 5 (f50p) ® I} (P(Y)) belong to L (T, db).

(b) If J, (f,,f,) € L2(T,dt), then (f;,f,) € L, x L,.

(c) Suppose g e L2(T,dt) is determined by (f;,f;) € L; x L, where f; satisfies
(5.3). Then for each € > 0, there are constants K{ and K§ such that

11 T0, 1 2o, 3),00y < KT e,
210,51 2 o500 S K2 N8I

(d) Suppose (g",n e N) is a sequence in L2(R2 dt) converging 0 g. If g" is
determined by (ff,f) e L, xL,, where f[' satisfies (5.3), then there is
(f;,fp) € L; x L, that determines g, and for each € > 0,

filio,) = lim 1oy, in L2((0,T],dny),

f2 hopniorl = r}i_?lfillp(Dx)n[O,t,] in L2([0,1],duy),

Proof. (a) Observe that
Te Te

[Er@)?odu < LO,D [ (f ) ?dy,,
0 0

[ 1 @) Ipp (D dt
T
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and

Te

{((fzop) ®)*L0,-, POt = [ (E )2 duy(v),
0

so the conclusion follows by definition of L, and L, and the fact that T, < T.

(b)  Suppose J,(f,f,) € L32(T,dt). Then J,(f;,f,) € L2(Ro,dt).  Since
p(t;,tp) =p(0,ty), for all t € Ry, we get

0

$1 53

[y [du () + £ O0,p)) < e.
0 0

By Fubini’s theorem, this implies that for almost-all t,,

L b fit) + £, 0,t)

belongs to L2([0,s)1,dty). But then t, - f, (p(0,t,)) also belongs to L2([0,s?],dt,),
which, when € < s, implies in particular that

Te € €

[du [dy & @OD = T [daGEO.N < +e.
0 0 0

But then t - f, (p (t)) belongs to L2([0, 1] x [0,€],dt), and since

(5.4) L)@@ = E @) + HEWO) In®,
we get that
Te €
(5.5) - g dt; g dty (f) (1)))? < oo,
But then
T,

€ g dty (f; (t)))2 < oo,

so f; € L2([0,T¢],du,). Since € is arbitrary, f; € L.
On the other hand, (5.5) implies

T ®u) L(0,T) T ¢
[dy [ de (6 @)? < T“ [ [dty (] ())* < 4o,
0 0 0 0

50 t+> £y (t))Ip; belongs to L2(T,dr). But then (5.4) implies that t > £ (p (1) Ip;

belongs to L?(T,dt). By the definition of ,, we find that f, € L2([0,7,],dy,). Since
€ is arbitrary, f, € L,, concluding the proof of (b).
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(c) Set f,(t) =f;(t;), t = (t;,1y), and fix r > O such that r < s). We have

s? s
oo > |IglP 2 [dt; [dtg?()dt
0 r
(5.6) s s 8 5

= (s§ -0 [ @)2dy + 2 [dyfi) [dufem) +sP [ E(@)dy
0 0 r r

(we have used the fact that on Ry, f,0p is a function of t, only. The use of r > 0 is
necessary to write the double product as an iterated integral). By (5.3), the second
term in the last equality above is zero, and so, letting r go to zero in (5.6), we get

(5.7) IfiIr Il < gl IE2op) g ll < llgll.

We are now going to use several times the fact that g = f; + fop on D!, and f; only
depends on t; and f50p only depends on p(t). We have

[ &em»*d = [dy [dy € Eo)?
Ro 0 0
= [dty(f(p (0)*s!
0
s s3 p(O.t2)
> — [dy (@) [ dy
u o 0
s )
== [ (Eeo)’d,
U plpRp)
so by (5.7),

1E20P) Lo VI < :—? gl

For 0 < € < sJ, this inequality implies

11 X0, zax0elll S 1L gl = (8 = E20P) Lrigpr o |

u
<1+ =) gl
s
1
Now since f 1 depends only on t;, we get

L (0,1
€

I Il < I X0, 110,11l

so for some constant K§,
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(5.8) I Ip, Il < Kflgll.
If we now set K§ = 1 + Kf, we get
(59) Il (E2om) Ipg Il < K5 ligll-

Finally, observe that (5.8) implies
1 .7 £
for an appropriate constant Kf, and (5.9) implies
(5.11) 1 f2 Loy, %] ||L2([0'ﬁ].duz) < li(f20p) Ip; I < K3lgll.

d If ese¢, then 1,21y Furthermore, lim; T, =0. By (5.10),
(f1'I[0,1,,1 1 € N) converges in L2([0,T],dy,). Fix kye N large enough, and let hf
be a Borel function which is a version of the limit of this sequence, and define f:
[0,7] = R by
h®(u) if u sk,
fi(w) = 1hE ) if Ty <u S Ty,

0 if u=1.

.

Then f; is Borel, and

fil{or, = fFlior,) Hi-as.

In a similar fashion, we get from inequality (5.11) a Borel function f5: [0,0] - R
such that for each k > kg,

f2lp@) 1051 = M B Lmnior, in L2(0,T1,dny).
It only remains to be shown that (f},f,) determines g (note that f, satisfies (5.3)).
This follows from the equality
(g - J, (£1,£2)) ID.‘n([O.t.]x[e,oo[) I = 0, ve>0,
which is valid by the definition of f; and f,. a

5.3. Remark. It is not possible to remove the Ip: or the Ijg 4, in the statements of
Lemma 5.2, as the following example shows. Consider the continuous function
¢:[0,1] > R, which is obtained by modifying the function ¢ (u) = 1 — u on each
interval [1 — 27™1,1 — 2] as follows: ¢ is linear on each of the intervals
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I = [1-2"1,1-727™1/8],
12 = [1-72"1/8,1-32"1/4],
I3 = [1-32"1/4,1-27"],

and
o1 -72™1/8) = 272 ¢(1 -327™1/4) = 2™,
(See Figure 1). Now set a, = 2"/n and define f}, f5: [0,T] = R by
fi(u) = a,, f,(w) = 0 if uel!,
fi(u) = a,, f,(u) = -a, if uel?2,
fiu) = 0, f,(u) = 0 if ue 3.
Observe that (f},fy) € L x Ly, since f; is bounded on [0,7.],€> 0, i= 1,2, and

Ji(f,£) = E-Nan Luizxo, 2211

SO
2 2 1 yenel 1
[ Qi@ @Pdt = L =212 = 3T = < 4o,
R2 neN n2 neN n2
On the other hand,
[ @)2dydy = £ a2@+ 221
Dl nell 2
1 2n12—2
= X (= +
ne[l( n2 n2 )
= 4o00,
Similarly,

13r(fz(P ®O)*dt;dt, = +oo.

5.4. Lemma. SetL = {(f,fy) € Ly x L: J(f;,f) € L2(T,dt)}. For (f},f,) € L, set

1(f,f;) = lJ (f,, £,) (1) dW,.

(@) If f, Lz([O,ﬁ],d)(u)du) and f, € L2 ([0,u],du,) are Borel, then (f},f,) € 1=,

and
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i
I(f,f) = [fadWd + [ H@dW,.
0 [0,1]

(b) Forall (fy,f,) € L, I(fy. ) € G(D.

Proof. Under the hypothesis of (a), we have
1
[fidw! = [f)dW, ,
0 D!

and

[ E@dW, = [ f,(p®)dW,
(0,d] D,uD,

[ 200 dW, + [ £E®)dW,,
D, D,

so by definition of J (f}, f,), the conclusion of (a) holds.
To see (b), observe that by Lemma 5.1(a), J; (f;,f,) € L2(T,dt), i =1,2. Since

[LEEOAW, = [ W Ip, ) dW, G
T (0,1}

by Proposition 3.4, we only need to show that

L(f,f) = [JELE)®OdW, ¢ GD).
R?
Set ff =fil{g,r,pi=1,2,€> 0. By Lemma 5.2 (c),

Yf = [ffdW! and Y§ = [ ffwdW,

(0.a]

Oy €}

are well-defined. These two variables belong to G (I)) by Theorem 3.8. Now
13y (Fr. £2) = Ty EE D < 11Ty (61, £2) Ipeye L + 1 (E20P) 10,7, 1x 0,7 I -

The first term on the right-hand side tends to zero as € — 0, and

€
Il (fzop) I[Ov'te] x[0,€] "2 = ng(fzop O, fz))z dtz
0 .

IN

= | (Gep@)iat
ST [0,s01x[0,¢]

2 |=

g2 (tydt
S0 [0,s2]1%[0,¢]
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(the last inequality uses the same type of argument as in the proof of (5.6) and (5.7)).
thus

L () = lim {Jl (¢F.£) ) dW, = lim (Yf+ Y

e GO.

The following theorem gives an explicit representation for G (I).

5.5 Theorem. (a) G(I) = {I(f,fp): (f;,fp) e L}

(b) If (£}, £p), (Fy,fp) € L, then I(fy,f,) = I(F}, ) if and only if there is k € R such
that
f, = f; + k p,-as.
Loy = G2 - WIp,) Has.

le'p(Dz) = f2 IP(Dz) Hy—a.s.

Proof. To prove (a), it is sufficient by li’roposition 5.4 (b) to prove that G(I') < H,
where H = {I(f},f,): (f,f)) € I=.}. Since H is a linear subspace containing the genera-
tors of G (I'), this inclusion will hold provided H is closed in L2 (Q, I:, P). So suppose
(Y,,n € N) is a sequence in H converging in L2(Q, F,P) to Y, and Y, = I(f},f]),
where (T, f7) € L, f]' satisfies (6.3), for all n € N. We must show that Y = I(f}, f,) for
some (f,f,) € &. Now convergence of Y, implies convergence in L2 (T,dt) of

JENf), ne N), to ge L2(T, dv), say. By Lemma 5.1 (b), this implies g = g1 + gz,
where g' is the limit in L?(T,dt) of (J;(f,£]), n e K), and g2(t) = hy (p (1)) Ip, (1), for
some Borel hy: [0,u] = R.

By Lemma 5.2 (d), g! =J 1 f l,fz) for some couple (f l,fz). We now set
fl = fl’ f2 = fZIP(Dl) + thP(DZ).
Clearly, g = J(f}, f)).

(b) Suppose I(f;,fy) = I(f},f;). Choose k,k’ € R so that fX and f¥ both satisfy
(5.3). Then I(ff - f¥,fX - f5)=0. So we only need to show that if (f},f,) e L

satisfies (5.3) and I(f,f;) = O, then f; = 0 p,-ass., f, = 0 py-ass.
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To begin with, equality (5.1) implies that
| J1 (f1, £2) (1) = Odt-a.s. and f, (p (1)) Ip, (1) = O dt-a.s.
This last is equivalent to f, I p,) = 0 Hp-a.s. On the other hand, Lemma 5.2(c) implies
f, = 0 du;—as. and f, I, p ) = 0 dyy-as. Since
([0, TN (D) wpdy)) = 0,

the conclusion follows. O

We are now going to give properties of the elements of G (I') which also belong to
H@). We will do this only under a (weak) regularity assumption on ¢. These proper-
ties will lead to necessary and sufficient conditions for equality of the germ and sharp
fields of I'.

Let us introduce some notation. Set y,(u) = u, and for k 2 1, set

{inf{v >y oW =0@}if{ } =0,

V(D =], otherwise,

and t(u) = sup{k > 0: y, (u) < +<=}. We have the following elementary results.

5.6. Lemma.
(@) W) < Yiyy (@) <Hoo = Yy, (W) € p(Dy) L p(Dy).
®) Vi1 (@) = Yy o W1 (W) = Yy o Yy (u).
© T) <+ = T(Y ) = T(W(w) -1,0 <k <1(u).
(d) wy is Borel, k 2 0.

(e) tis Borel.

Proof. (a) Observe that when yy (u) < Wy, < +oo, we have either
Vi) < vy, = ¢6(v)<o()

or
Vi (W) <V <Yy (1) = 6 (w) > 9 (u)

In the first case, Yy, (u) € p(D,), and in the second Wy, (u) € p(Dy).
(b) and (c) follow clearly from the definitions.

(d) By (b), it suffices to show that v, is Borel. Fix uge [0,T]. For u < ug, set
klu) = sup{v < ugy: I (v,up) =1 (u,ugp)},
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K@) = sup{v < uy: L(v,ug) = L(u,up)}.
Then k! and k? are right-continuous, hence Borel, and
(ue [0,T]: W) 2up} = {usug: k! =u}u {usuy:k?u)=u}.
This implies that y, is Borel.
Property (e) is a direct consequence of (d). a

Throughout the remainder of this section, we shall be working under the following
assumption on ¢.

5.7. Assumption. T < oo py-a.s.
This assumption is implied by the following (weak) regularity assumption on ¢.

5.8. Proposition. Suppose that Banach’s condition (T1) holds, that is, for p;-almost
allxe R,

Ex = {ue[0,U]: ¢ (u) =x}
is finite (see [S; Chap. IX. §6]). Then Assumption 5.7 holds.

Proof. The proof relies on the following fact: let (OX k € N) be a non-increasing
sequence of subsets of R, and set

0

 OF.
keN

Then
p((D; v Dy)) n (R, x 0))

A\ P({D; UDyY N (R, X 05)).
keN

Indeed, ‘‘<’’ is obvious. To see ‘‘>’’, suppose u € [0, 7] satisfies
Vke N,J e (D, UDy N (R, x 0%: p(t¥) =u.
By definition of p, there is t, € R, such that t¥ = t,, for all k € K. Thus
(t{,t) € (D;UDY N (R, x0),and p(t},t) =u
yielding the desired conclusion.

Now to prove the lemma, let N © IR, be a p;-null set such that E, is finite when

x ¢N, and let (O%,k € N) be a non-increasing sequence of open sets containing N such
that p; (O \ N) = 0, where
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0 = O
keN

By the fact proved above and Lemma 3.2 (b),
R = p((D; WD) N (R, x0))
is a Borel set, and clearly,
pPR) = (D, UDY N (R, x0).
Observe that if u € p(D; U Dy) \ R, then t(u) is finite. Since p,((p(D; U D,)%) =0

and

H2(R) = Izl(Dlqu(&xO)(t)dt =0,
R?

the proof is complete. a

Proposition 5.8 gives a large class of functions for which Assumption 5.7 holds.
Indeed, necessary and sufficient conditions for Banach’s condition (T1) to hold are
given in [S; Chap. IX. Th. (6.2)]. In particular, (T1) holds if ¢ has bounded variation
[S; Chap. IX. Th. (6.3)]. Condition (T1) is also satisfied by functions which are
smooth except at finitely many points uy, ..., u, in neighborhoods of which they
resemble ¢+ (u—uy;) sin(1/(u — y;)) or some other oscillating function. Finally,
observe that T(u) =+ if for some € > 0, ¢ is constant on [u,u + €]. However, in
this case, U, ([u,u+€]) = 0, so the presence of such horizontal segments on I" does not
affect Assumption 5.7.

An element u, of [0, T] is a strict local maximum (respectively minimum) of ¢ pro-
vided there is & > 0 such that |u — uy| < & implies ¢ (u) < ¢ (ug) (resp. ¢ (u) > ¢ (ug)).
A strict local extremum is a point which is either a strict local maximum or minimum.
A point of increase of ¢ is an element uy € [0,T] such that for some € > 0,

0<d<e = Lug-€uy—98) <) <! (ug+8,uy+¢).

A point of decrease is defined analogously.

5.9. Lemma. The following statements are implied by Assumption 5.7.
(a) Almost every u € [0,T] (with respect to p,) is a point of increase or decrease.

(b) For p,-almost every u € [0,T], yy (u) is a point of increase or decrease, for all
0<k<t()
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Proof. (a) Under Assumption 5.7, we have

K (P Dy U p(Dy) N {Tt<+e2}) = W ([0,T]).

Fix ue (p(Dy) U p(Dy) N {T < +o}. Assume to begin with that u € p(D;). Then
there is €; > 0 such that

(5.12) 0<d<g = l(u-¢g,u=-08) > 6.
Now since T (u) < + oo, either there is €, > 0 such that

(5.13) 0<d<g, = l(u+du+g)>o(u)
or

(5.14) 0<d<eg, = Lu+d u+eg)<o(u).

If (5.12) and (5.13) happen, u is a strict local minimum. Since a continuous function
has at most countably many strict local minima (see e.g. [S; Chap IX. Th. (1.1)]) and
W, is diffuse, (5.14) holds for p,-almost all u in p(D,), i.e. u is a point of decrease

Ho-a.s.

A similar reasoning shows that if u € p(D;) N {T < +e¢o}, then u is W,-a.s. a point
of increase.

b We continue the reasoning begun in  part  (a). Set
Q=(([D;) upd,) N {u: uis a strict local extremum }. Then Q is a countable set,
and so $(Q) is too. In particular, [0,T] X $ (Q) has two-dimensional Lebesgue-
measure zero. Now

{ue (p(D;) UpDy) N {T < +o0}: Yy (u) is not a point of increase or
decrease, for some k < t(u)}

is contained in p([0,T] X ¢ (Q)). Since

Rp®:tre 6(Q) < [ dt =0,
[0.31x6(Q)

the lemma is proved.

5.10. Lemma. (a) Suppose N < p(D;) U p(D;). Then
Ha(N) =0 <=> ¢ (N) is a p;—null set.
(b) Let N<p(D;) up(D, be a p,-null set. Then
Mp{ue [0,U]: thereisk € Ns.t. y(u)e N} =0.
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Proof. (a) By definition,
Lo, k()

BN = [ Lagy®d = [ dyp [ dyLaggt,t),
D,uD, 0 0

where k(ty) = inf{u: L (u,T) =t;}. Now since N < p(D;) U p(D,), the intersection of
p~1(N) with any horizontal line t, = x is either the empty set if x € ¢ (N), or a count-
able union of horizontal segments if x € ¢ (N). In particular,

L(0,1)
M) = [ dyl),
0

where / (t;) > 0 <=> t, € ¢ (N). This clearly implies (a).

(b) Observe that {u: there is k € Ns.t. y, (u) e N} © ¢ (N), so the conclusion
follows from (a). (]

It will be convenient to number elements of a given level set from right to left
instead of from left to right. On {1t < + 0}, set

Vi) = Y@, 0<ist@,
Provided \ffk (u) is a point of increase or decrease, for 0 < k < T(u), we have
Yoi(u) € p(Dy) if 2i < T(u) and Wy;,y € p(Dy) if 2i+1 < T(u).
If f: [0,0] — R is Borel, we set f(+<) = 0, and define two Borel functions a (f),
o, (@: [0,u] - Rby
a (D@ = fQ),

oW = [0 T f(Yua@) - T f(\hi(u»] I{rereo} (W)

<2i+1s7(u) 0s2ist(u)

and set K(f) = J(a1 (0, 0 (6), L () = I(a; (), 0 (D) if K(f) ¢ L2 (T, dv).
Fix a,b € R, and suppose f},f5: [0,u] — R are Borel.

5.11. Lemma. (a) We have K (af; + bfy) = aK(f;) + bK(f,) and K(f; + a) = K (f)).

(b) Assume in addition that (o (f}), 0 (f;)) € Ly X L,, i = 1,2. Then L(f;) = L(fy
if and only if there is k € R such that f; = f, + k p,-a.s. and p,-a.s.

Proof. The first statement in (a) holds because o; and o, depend linearly on f and the
definition of J implies

J@ay(f)) + boy (f), aacy (fy) + bay (fy) = al(oy (f), 0 (f) + bl(a (), o, (£,)).

To prove the second statement in (a), note that
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oy (f) (u) — a,
o, (f) (),

and by induction, we get for u € {t < +oo} that

T =0 = o,(f; +a) ()

T =1 = o, +a)@)

uepD) = ouf;+a)@ = f)@) -a
ue p(Dy) = op(f;+a) = oy(fy) @.
But since o (f; + a) = a; (f;) + a, Theorem 5.5 (b) implies that K (f; + a) = K(f;).

(b) Suppose f; =f, + k M- and py-as. Then o, (f)) = o, (f, + k) p,-as. and
o, (f)) = o, (f, + k) Hy-a.s., so by (a),

L(f) = L(f,+k) = L(f,).

To show the converse, assume L (f;) = L(f;). We then use Theorem 5.5 (b) to get
k € R such that

oy (fl) = oy (fz) + k M a.s.,
(5 15) 05 (fl) IP(Dl) = (0,2 (f2) - k) [P(Dx) Hp—a.s.,
(5 16) Oy (fl) IP(Dz) = 0y (fz) Ip (Dy) Ho—a.s.

Let N be a p,-null set outside of which (5.15) and (5.16) hold. By Lemma 5.10
(b), we may assume that

TU) <+o0 = Y W) ENN (D) Up(Dy),0<kc<rt().
But then, when u ¢ N and T (u) < + oo, Y, (u) € p(Dy), so by (5.15),
£ (Wo ) Ly () = (@2 (F) (Wo W) - K L,y (W) = —f (Yo (W) - k.
We then use (5.16) and the fact that W, (u) € p(D,) to get f; (y; (u)) = £, (y; (W) + k
(if T(u) 2 1). By induction, we get for |,-almost all u
fi (¥ ) = 00 W) +k,0s<! < T().

Setting / = t(u) gives the desired result.

Set H(I) = {Y € G(): there is f Borel such that Y = L (f)}.

The following lemma gives, under Assumption 5.7, a characterization of the ele-
ments of Y of G(I') which belong to H@). Itis a generalization of [DR; Lemma
3.11].

5.12. Proposition Let (f},f,) € L. Then Y =I(f,f,) € H() if and only if there is a
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u-null set N;, i = 1,2, such that if u e [0,T]\(N; U Ny), then

(5.17) fi W) Ly = (@) + £y W) Lp,) W,
and
(5.18) fi W Lp,y @ = @) - £y W) Lp,W.

Proof. If Y =1(f},f;) = L(f) for some Borel f: [0,0] = R, then (5.17) and (5.18)
follows from Theorem 5.5 (b) and the definitions of o, (f) and o, (f). Now suppose
(5.17) and (5.18) hold. We define f: [0,U] = R successively on the sets {t =0},
{t = 1},... as follows. First, we define f on the set {t = 0} by setting

fliz=0) = (filny = f2In) I=0)>

and then, assuming by induction that f has been defined on {t =k — 1}, we set

(519) fI{‘t:k] = (fl INf' + (fz - f2°\|’l) INl) I[‘t:k]
if k is odd, and
(520) fI(‘t=k) = (fl INf + (-f2 + f2°w1) INI) I[‘t:k)

if k is even. This defines f on {T < +<<}, and we set

fI[T=+,°) = f11[1=+”}.
Clearly, f; (w) = o;(f)(u), u €N;.
By Lemma 5.10 (b), let N,” be a p,-null set such that u éN,” implies

V(@) €N, N (p(D) Up@Dy), 0 <k <t(u). Clearly N’ 2 Ny, and if u € Ny, we
have by (5.17)

a, (f) (u) I(z-_-o} -f(u) I{-::o} () = —(f; () IN,‘ () - f(u) In, () I[1=o}
= fW)Iz=0)-
Similarly, equations (5.19) and (5.20) become respectively
flge=kp\ny = (B2 = H0¥)) [iz=ip\Ny» kodd,
flge=kp\ny = (2 + 0¥ ) I(ray)\ny» keven.
Proceeding by induction on k, one checks that
o (f)(u) = f,(u), ue {T<+o) \ Ny .

Since py ({T < +20} \ N;") = n,([0,T]), we have shown that o (f) = f; p;-a.s., i = 1,2.
Thus
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Y = I‘(fl, fz) = L(),
concluding the proof. |

5.13. Lemma. (a) Fix0 s up< 0. Iff=1Ipq ) then L) = Wy e,
(b) H(D) is a closed linear subspace of G (I).

Proof. (a) To begin with, we have in this case a;(f) =Ig, ), and clearly
o, (f)(uw) =0 if u>uy In addition, we will check by induction that p,-as., if
¢ (u) > ¢ (up) then

ue p(D) = @@ = -1,

uep@Dy) = (O =0,
whereas if ¢ (u) < ¢ (up), then

uepD) = O =0,

uepDy) = @ = 1.

Indeed, if T(u) < +eo, letu=vy< vy < < vy <uyg be such that

{vo, ..., v} = (ve [uul: o) =0W)}.

Now if u € p(Dy), u is a point of decrease of ¢, and so when ¢ (u) > ¢ (up), k must be
even. On the other hand, if ¢ (u) < ¢ (up), then k will be odd. Together with a similar
argument for p (D,), all four implications above follow from the definition of o, (f).

It is then easy to see that

K® = J(oy @, 0,(0)) =

IR"on dt-as.,

and thus I(f) = wuo,¢(uo).

(b) Let (Y'ne N) be a sequence of elements of HD converging to Y in
L2(Q, I:, P). Since G(I) is closed, Y € G(I'). By Theorem 5.5, there is (f],f]) € I=.

and (fy,f) € L such that Y" =I(f,f7), ne¢ N, and Y = I(f},f;). We may of course

assume that f' and f; satisfy (5.3). But then Lemmas 5.1(b) and 5.2(d) imply that for
eache >0,

filio,e) = l}_i_)rgf{‘l[o.r,] in L2([0,T],dy;),
faliog) = lim 1o, in L2([0,T],dpy).

Using a diagonal subsequence argument, we get (Borel) sets M; and M, with
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K M;) =0, 1= 1,2, and subsequences (fln",k € N) and (f;",k € N) such that
(5.21) f(u) = limf*(u), uéM,i=12.
Nn—oco

Since Y* e H(D), Proposition 5.12 affirms the existence of p-null sets Nik, i=1,2,
such that if u € [0,T]\ (Nf U N¥),

fr@ L)@ = f*@ + £ )L p,W,

(5.22)
£3* @) Loy (W) = (f3* (W) - £5* (y; (W) L p, (V).

Now set

N/ = (UNDUM;, N = (UNHUM,.
keN keN

By Lemma 510 (b), there is a p,null set N,”>N,’ such that
ué N2” = VY (u) ¢ N2’ N (p (Dl) up (Dz)). Fmally, we set

Ny = Ny U (p(D) Up(D)° U {T=+e0},
which is a y-null set, such that
uéN, = UeéNFUM,and y;(u) éNFUM,).

We can now pass to the limit in (5.22) using (5.21), to see that if
ue [0,u]\ (N; UN,), then

fiwLpy = (-f,W + £,y W) Lo,y W),
f@hLpyw = W) + (¥ )L, WM.
By Proposition 5.12 this means that Y € H(I"), concluding the proof. O

The following theorem is a generalization of [DR; Theorem 3.12], which contains
the case ‘‘¢ monotone non-increasing’’.

5.14. Theorem. Suppose ¢ satisfies Assumption 5.7. Then the following conditions
are equivalent:

(& HD =G D)
(b) W(D,)is I;I (I')-measurable:

(¢) M, and M, are mutually singular.

Proof. (a) =>(b). This follows from Proposition 3.1 and the fact that
W) = Wy.
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(b) = (c). Note that W(D,) = I(f,f,) where f; =1 and f, =0. Now if W(D,)
belongs to H(I'), it will in fact belong to H(I). In particular, by Lemma 5.13, W (D))

would belong to H(I'). But then Proposition 5.12 would yield ;-null sets N;, i = 1,2
such that

ue [0,TJ\N; UNy) = 1Lpypmy = 0.
This means that p(D;) U p(D,) < N; U N,. Since
H2 ([0, T]\ (p(DY U p(Dy)) = 0,
we can assume that
[0,T1\ (@) UpDy) < N,.

But then [0,T] = Ny U Ny, with y;(N;) =0, i = 1,2, so y; and {, are mutually singu-
lar.

(c) = (a). By Remark 4.11, it suffices to show that
ut> L(ug,u) and um ! (up,u)

are singular functions, for all uy € [0,u]. But this is a consequence of Proposition 6.1
(a) below. O

5.15. Corollary. Assume ¢ has bounded variation. Then P=I(l") =G () if and only if

¢ is singular with respect to Lebesgue measure.

Proof. This is an immediate consequence of Theorem 5.14 and Proposition 6.7 (b)
below. a

6. Conditions under which L, is singular with respect to Lebesgue-measure.

In view of Theorem 5.14, it becomes of interest to determine for which functions ¢
the measures W, and p, are mutually singular. The following proposition gives a com-
plete answer when ¢ has bounded variation, and, in the general case, relates the pro-
perty to singularity of / (ug,*) and L (ug,*), ug € [0,T].

6.1. Proposition.

(a) For an arbitrary continuous function ¢, the following two conditions are
equivalent.
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(6.1) There is a countable dense set Q < [0,ugy] such that [ (ug,-) and L (ug,-) are
singular (with respect to Lebesgue measure), Yuy € Q.

(6.2) W, is singular with respect to Lebesgue measure.

(b) If ¢ has bounded variation, then (6.2) holds if and only if ¢ is a singular func-
tion.

Proof. (6.1) = (6.2). Observe that there is a sequence of rectangles (Ry = [ak, bk] x
[cK,d¥], k € N), where each Ry is contained either in D, or in D,, such that

EcNE = @as,k#!, and \YE, = D, uD,,
k

where E, = (D; U D,) n p 1 (p(Ry). It is thus sufficient to show that for a fixed rec-
tangle R = ;a,b] x [c,d] (a < b,c < d), the restriction of p, to the Borel set p(R) is
singular with respect to ;. We only examine the case R < D,, since the case R < D,
is similar.

Let uge Q N [a,b], and set f(u) =1 (up,u), u 2 yy. By (6.1), there is a Borel set
N < p(R) such that p; (N) =0 and p(R) \ N is a df-null set. By the above considera-
tions, the proof will be complete provided we show that p, (p(R) \ N) = 0.

For ¢ <ty < d, set ! (t;) = p (ug, ty) — q(ug, tp), where

supfu<suy:d(=t}if{ } = @,
q(up, tp) = 0 otherwise.

We then have (recall that 1 is defined prior to Lemma 4.1)
mE®N) = [ Lipwuw ©d
R?

d
[Jdal QDI o @
c N

A

d

[t T ) I (E (1)

C)

= J u Ine (u) df (u)
()

=0

(the last equality uses the change of variables formula of [DM; Chap. VI. 2, (55.1)]).
This completes the proof of (6.1) => (6.2).
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(6.2) => (6.1). We shall only prove that f(u) =/ (ug, u) is singular with respect to y,,
for all uy € [0,T], since the other case is similar.

Since ¢ is continuous at u,, for any fixed € > 0, there exist a, b and d such that
a<uy<b, d(uy —e<d<d(uy

and R =[a,b] x [0,d] = D,. By (6.2), there is a Borel set N with Lebesgue measure
1 such that p, (N) = 0. Since

Ie\FTl(ty) = b-a)\T,0st,<d,

we get

o
]

H2(p(R) A N)

= 4 L pmnn (D dt

d
[1 0 T ey (B0 1) Ay
0

a

v

a7 =g

d
[Tl InE () dt,
0

'@
uly (u)df (u).

u

Thus N N [f1(d),T] is a df-null set. Since € was arbitrary, N N [ug, U] is a df-null
set. But this implies that f is singular with respect to |, concluding the proof of (6.2)
= (6.1).

We now turn to the proof of (b). To begin with, assume ¢ is singular. By (a), it
is sufficient to show that / (ug,-) and L (uy,-) are singular, for all uye [0,T]. In
Example 4.10 (a), this was done for L (ug, - ), and the other case is similar.

We now show that if (6.2) holds, then ¢ is singular. Since ¢ has bounded varia-
tion, its derivative ¢’ exists almost everywhere [S; Chap. IV. Th. (9.1)] (¢" may take

on the values +¢o and —o0). In order to check that ¢ is singular, it suffices to show
that ¢’ = 0 u,-a.s. [S; Chap. IV. Th. (7.8)].

Set N={ue [0,T]): ¢ (u) exists and ¢'(u) #0}. We assume p;(N) >0 and
show that this leads to a contradiction. Now N = N; U N, where

N; = {ue [0,T]: ¢ (u) exists and —oo < ¢’ (u) < 0}

and N;=N\N,;. So we may as well assume pu;(N;) >0. Now observe that
N; €p(D;). To derive a contradiction, we are going to show that for some
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ug € [0,T], f(-) =1 (up,-) satisfies f = ¢" on a subset of N; with positive Lebesgue
measure.

Since p (D) is a countable union of sets of the form p (Ry), where Ry is a rectangle
contained in D;, there is a rectangle R < D; such that B; (N " p(R)) > 0. Leta<b,
c<d be such that R =[a,b] x [c,d], and set uy=b, f(u) =/ (up,u), u 2 yp. Fix
u>uy ue N;Np(R). We show that f'(u) = ¢’(u). Now since ¢’ (u) <0 and
u € p(R), we must have f(u) = ¢ (u). But then, for sufficiently small h > 0, we have

D(h) = f(UH:l)_f(U) < ¢(u+hl:—¢(u)’

SO

(6.3) limsupD(Eh) < ¢ .

Now fix € > 0. Then for sufficiently small h > 0,
¢(u+h) 2 ¢@) + h(@'@)-¢g.
The right-hand side of this inequality is a decreasing function of h, so
fu+h) > f(u) + h@ () -¢).
But then
lir}?l%)nfD (f,h) > ¢’(u) - €.

Since € is arbitrary, we combine this inequality with (6.3) to get
limD (f,h) = ¢'(u).
i (th) = ¢"(w

A similar argument for h T 0 gives f' (u) = ¢’ (u) < 0.

Thus f* < 0 on a set of positive Lebesgue measure, so f cannot be singular with
respect to M. By part (a), this contradicts the assumption that (6.2) holds, and the
proof is complete. a
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