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Abstract. "Intuitively, the Brownian sheet should be a Markov process if any process
is". This feeling is apparently contradicted by the fact that the sharp Markov property
fails for triangles, and has led to the widely studied notion of germ-field Markov pro-
perty for random fields. In this paper, it is shown for the Brownian sheet that in fact,
the germ field is equal to the sharp field for almost every curve y = f(x) (when f is
drawn at random according to Wiener measure on the set of continuous functions), and
thus the two Markov properties coincide in this case. This result follows from
sufficient conditions on f for equality of the two fields. In the case that f satisfies a
weak regularity assumption (implied by Banach's classical condition (T1)), we give
necessary and sufficient conditions on f for equality of the two fields. When f has
bounded variation, the condition is that f be singular with respect to Lebesgue-
measure.



1. Introduction.

The Brownian sheet has long been known to satisfy the sharp Markov property
with respect to finite unions of rectangles (see [Wl]; a detailed proof for planar
processes with independent increments is given in [Ru]). However, this property fails
for the triangle ((tl,t2) e RF: t1 + t2 ! 1) [Wi], leaving the impression that the sharp
Markov property is valid only for a very restricted class of sets. In contrast, the
weaker germ-field Markov property is valid for all open sets in the plane ([Ro], [Nu]).

Thus, for many sets A (e.g. the triangle), the germ-field G (aA) of the boundary is

strictly larger than the sharp field FO(A), whereas for curves r which are a finite

union of horizontal or vertical segments, F (F) = G(F). One might think that these

were the only curves for which this equality is valid. However, Dalang and Russo
[DR] exhibited separation lines containing no vertical or horizontal segment for which
the two fields are equal; [DR] also contains a detailed study of the structure of F (F)

and G (F) when r is a separation line.

The motivation for the research reported here is to show that, in a sense, the "gen-
eric" case is equality of the germ and sharp fields. More precisely, we consider
curves F which are the graphs of continuous functions y = 4 (x), where 4 E C (R+, R).
We show that if 4 is drawn at random according to Wiener measure on C (R+, R),
then with probability one, G (F) = F (I) (see Corollary 4.13).

This result is obtained in several steps. First of all, we show that G (F) is also the

minimal splitting field M (F) (Theorem 2.1), by using a result of Nualart [Nu]. We

then give a description of the generators of the miinimal splitting field (Theorem 3.8),
which corresponds to the "vertical and horizoncal shadow" description for domains
with smooth boundaries ([W1], [W3], [WZ]). It is then possible to give conditions on
4 (Assumption 4.5, Remark 4.11) which ensure that F(F) = G (I) (Theorem 4.9). In

particular, if 4 has almost everywhere an infinite upper-right Dini derivative, then the
two fields are equal; this is also the case when 4 has bounded variation and is singular.

It is more difficult to obtain necessary conditions on 4 for equality of F (F) and

G(F). We address this question by giving an explicit representation of the closed

Gaussian subspace G (F) spanned by the generators of the germ field (Theorem 5.5),
generalizing a result of Dalang and Russo [DR]. Under a regularity assumption on r
(Assumption 5.7), we give conditions that elements of G (F) must satisfy in order to be
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F (f)-measurable (Proposition 5.12). This regularity assumption is implied by

Banach's condition (T1) that almost every level set of + be finite. Under this assump-
tion, we can then provide necessary and sufficient conditions for equality of F (I) and

G(I) (Iheorem 5.14). In particular, if ¢ has bounded variation, then F(Ir) = G(F) if

and only if ¢ is singular with respect to Lebesgue-measure.
In Section 2 below, we summarize the principal notations and definitions we will

be using, and prove equality of the germ and minimal splitting fields.

2. The germ field of a continuous curve is the minimal splitting field.

Throughout this paper, T = RF2 will denote the non-negative quadrant in the plane.
If t = (t1,t2) e T, Rt will denote the set ((sl,s2) e T: s1 s t1 and s2 s t2). Lebesgue
measure on R42 will be denoted dt whereas Lebesgue-measure on R will be denoted
g (a measure g will be defined in Section 4).

Let (S, F, P) be a complete probability space on which a Brownian sheet

(Wt, t e T) is defined. The Brownian sheet can be regarded as 'e distribution func-
tion of a white noise W on T, that is W, = W (R) a.s. (see [W3; chap.3] for a com-
plete definition).

Given A c T, the sharp field H(A) of A is defined by H(A) = ac(Wptt A),

whereas H (A) denotes the closed linear span of (Wt, t e A) (in L2(, F, P)). The
germ field G (A) is defined by

G (A) = 'A

where A. is an e-neighborhood of A. If we set

G (A) = H (AE)
E>0

then Lemma 3.3 of [M] asserts that G (A) = a (G (A)).

A a-field A such that H (A) and H (A) are conditionally independent given A is

called a spliting field for A. The following properties are well-known.

(2.1) H(A) n H(AC) c A, for any splitting field A of A ([Mc; Sect.6], [WI]);

(2.2) G (A) is a splitting field for all open sets (see [Ro; Chap.3 §5] for bounded

open sets, [Nu; Th. 3.1] in the general case);
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(2.3) H (A) is a splitting field for A when A is a finite union of rectangles with sides

parallel to the coordinate axes [Ru; Th.7.5];

(2.4) H(aA) is not a splitting field when A is the triangular region ((sl,s2) E T:

s1 + s2 < 1) ([W1], [W3; p.399]).
Property (2.2) is known as the germ-field Markov property of the Brownian sheet. We
say that the Brownian sheet has the sharp Markov property with respect to A C T pro-
vided H (A) is a splitting field for A (see [W2]). Because of (2.4), it has widely been

assumed in the literature that the Brownian sheet has the sharp Markov property only
with respect to a very restricted class of sets (e.g. those in (2.3)). In fact, as men-
tioned in the introduction, we will show that the case G (A) = F(A) is the "gen-

eric" case, at least when aA is the graph of a continuous function from R.F to R,.
Throughout this paper, we work with a continuous function +: [0,U] -+ R, such

that U > O, ¢(u) = 0, and

O 5 u < u =$ O (u) > O .

The graph r1 of ¢, defined by r = ((u, (u)): 0 u 5 u) is a continuous curve, with
two-dimensional Lebesgue measure 0, that splits R+ into two disjoint open connected
components. The bounded component is

DI = It =(t1. t2) e R2: t < U, t2< P(0)}
and the unbounded component is

i5c = It = (tli t2) e RF2: t, > u or (ti < u and t2 > 0 (t1))}

2.1. Theorem. The germ field G((1) of 17 is the minimal splitting field for F (D1) and

F(Dc). In particular, G(I-) = H(D1) r H(Dc).

Proof. This proof is similar to that of [DR; Theorem 3.1], which covers the case
where f is non-increasing. It is sufficient to prove that

(2.5) G(I() = H (D1) n H(r c),
since then, by [M; Lemma 3.3],

G ) = c (G ()) = a(H (D1)) nca(H()) = H (D1) n H (5 c),

and the conclusion will follow from (2.1) and (2.2).
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Let

K = (h:T-R: h(-) = g(s)ds, g L2(Tdt))

be the reproducing kernel Hilbert space of the Brownian sheet, with the norm

g(s) ds IIK = 11 gIIL2(T. dt)
R.

According to [Nu; Proposition 2.2], the condition below is equivalent to (2.5).

(2.6) For a E (D1,DI), for each Th e K with support included in AX and for e > 0,
there is 1i2 e K with support included in A such that I¶11 - 12 IK < e8

To check (2.6), fix 1 E K with support in D1 (respectively DI), and g E L2 (T, dt) such
that

1(t) = fg(s)ds, t e T.

For a > 0, set ga(s, s2) = g(sl,as2) and

Wno (t) = ga (s1, s2) ds, ds2, (sl, s2) e T.

Note that la (tl t2) =T (t1, at2)/a, and for a > 1 (resp. a < 1) the support of ila is
contained in D1 (resp. D5; note that this is due to the fact that r contns no vertical
segments, and so this proof does not cover the case of [DR; Theorem 3.1], nor vice-
versa). So (2.6) holds since i1 g -g IIL2 converges to 0 as a approaches 1. 0

3. The generators of the minimal splitting field.
The generators of the minimal.'splitting field of a domain with a smooth boundary

were determined in [W1], [W3; Th. 3.11] and with a piecewise monotone boundary in
[WZ; Prop. 1]. In these cases, the minimal splitting field is generated by the white
noise measures of the vertical and horizontal shadows of portions of the boundary, and
the proof can be carried out by drawing pictures [W3; Th. 3.11]. The ideas in the
smooth case are essentially valid in our setting. However, since we make no regularity
assumptions on 4 or F, precise topological definitions and formal proofs are necessary.
Let

S2= ((tI,t2) e T: there is (ss, s2) e r with s, 2 t1 and s2 = t2)
be the "horizontal shadow" of r. Note that S2 = D u 29 where D2 = int(S2 n If).
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An analogous definition of the vertical shadow S1 of r leads to the set D1.

3.1. Proposition. For0susu, set Sju= (se D1: sIs u) and W.1 W(SI). Then

W,e H(D1) r H(D5).

Proof. Observe that

Su = (s e T: 0 :5 s, -s u, 0:5 s2 < 0(sj)).
For n e i and i = 0, . .., n, set aj = iu/n, and

rn = min (v), Mi = max * (v),
1%SV:%aj1 lkS:V%14

-I n-1

ni=o n i=o
n-I n-i

(3.1) 2= 2 - Wi,m, Yn = (Wa,,Mi - W,M)

Then clearly Y. e H(D1), Y2 e H(Dc), and for i = 1,2,

E ((YnWJ)2) =IWsu-J (v) dv 0
0

as n - o, since sn (respectively sb) is the lower (resp. upper) Riemann sum of 4 and
4 is continuous. This completes the proof.

Proposition 3.1 essentially takes care of vertical shadows. To get horizontal sha-
dows, define p: SI U S2 -. [0,u] by

p(tI,t2) = inf(u 2 tl:4(u) = t2).
This mapping has interesting measurability properties.

3.2. Lemma. (a) The function p is Borel.

(b) For any rectangle 0 = [a,b] x [c,d], contained in D1 or in D2, or more gen-
erally, for any open subset 0 of D1 u D2, p (0) is a Borel subset of D1 u D2.

(c) p(Dj) n p(D2) = 0.

Proof. (a) For u, v e [0, u ], with u s v, set

L (u,v) = max4 (x), I (u, v) = min4 (x)
U5XSV Usxsv
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(these notations will be used throughout the paper). Observe that for 0 s v T u,

(3.2) (sE S1u S2: p(s) < v) = (s e T: s1 s v, l (sl,v) < s2 s L(sl,v)).

This is clearly a Borel set, since (*, v) and L ( - , v) are continuous functions.

(b) It is sufficient to prove (b) when 0 is a closed rectangle in D1 or D2. Indeed,
any open subset of D1 u D2 is a countable union of such rectangles, and the image of
a union is the union of the images. So set

0 = [a,b] x [c,d], a < b, c < d,

and suppose for example that 0 c D1 (the case 0 C D2 is similar). Set uo = p ((b, d)),
u = p ((b, c)), and

(u) = inf(v.uo:I(uo,v) = I(uo,u)), uo0u.u .

Then l (u0,?(u)) = I (u0,u), uo s u s u1, and

p(O) = (ue [uO,Ul]: 'r(u)=u).

Since u i-+ r (u) is easily seen to be left-continuous, p (0) is Borel.

(c) Suppose s e D1, t e D2 and p (s) = p (t). Then s2 = t2 by definition of p, so we
suppose for instance that s1 < tl. Then 4(sl) > s2 since s E D1 and 4 (tl) < t1 since
t e D2. By the Intermediate Value Theorem, there is u e t ] sl, t [ with (u) = s2 = t2.
But then p (s) u < t1 5 p (t), a contradiction. O

3.3. Proposition. For 0 < u < U. let

S2u = (seS1uS2: p(s).u)

denote the horizontal shadow of ((v,4 (v): v s u), and set W-2 W(Su). Then

Wu2 e H(D1) n H ( c)*

Proof. The region Su is characterized in (3.2). In particular, Su = E1 \ E2, where

El (((s1,s2): 0 < s, 5 u,s2 < L(s1,u)),

E2 = (SI, S2): 0 5 SI :5 u, S2 < l (Slt U))
So we only need to show that W(El) e H(Dj) n H(Dc), i = 1,2. We only carry out

the proof for i = 1, since the case i = 2 is similar.

To show that W (E1) is H (D5)-measurable, we proceed as in the proof of Proposi-

tion 3.1, by approximating the area of the region E1 by upper Riemann sums. The
variables which correspond to the Yn in (3.1) are clearly H (DI)-measurable, so W (El)
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is too.

To check that W (Ei) is H (DI)-measurable, we must take care to use only points in

D1 in the approximaton. This will be achieved using a "horizontal" discretisation
instead of a "vertical" one. Set a = L (u, u) = (u), b = L (0, u), s? = u, and for n E
andi= ,..,n - 1,

SI = a + i(b-a)/n,

St = inf(v s u: L(v,u)=4)
(si exists because L ( ,u) is continuous). Now set

n-i
Yn = z (Wg{L(stru) - Ws4I,L(si,u)).

Clearly, E((W(E1) - Y 2)2) u/n, so the proof will be complete if we show that Yn2
is H (D)-measurable. This will be the case if we prove that *(s L (s, u),

i =0..., n - 1, because in this case we wil have

(si, L (sj, u)) e D1 and (si+i, L (si, u)) e D1 (i * n).

By definition of sl,
(3.3) v > sl = L(v,u) :s s4 : (v) !5

and v < sj =s L(v,u)>4. Thus, by definition of L(,-), for any e > 0, there is
vi E ] si - e, Si [ such that * (v')> 4. But then continuity of * and (3.3) imply
*(si) = s4 = L (si, u). This completes the proof. 0

The image under the mapping p of Lebesgue-measure on S1 u S2 is a measure p2
on the a-algebra B ([ ,0 u]) of Borel sets of [ 0, u ], defined by

k2 (0) = Lebesgue-measure of pl (I), I e B ([ 0, u]).

If we consider that white noise W is an L2(Q,F,P)-valued measure (i.e. a vector

measure), its image W under p is an orthogonal measure on [0,1u] with variance 2
i.e.

InJ= , I,Je B([0, u]) => E(W(I)W(J)) = 0,

and for Borel f e L2([,u ]), dp2),

E(( f (u)dWU)2) = J f2 (u)d2 (u).
[OIw o i [on sse

If one wants to avoid images of vector measures, one can simply consider that
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J f(u)dWu
0u,

is a shorthand notation for

|f (p (t)) dWt .

SIUS2

3.4. Proposition. Suppose f e L2 ([ 0,1] , dp±2) is Borel. Then

(3.4) |f(v)dWv e H(DI).H(d5f).

Proof. Observe that if f = I0, u] (I[o, u] is the indicator function of [0,u]), then

f (v) dWv = )U I

so the conclusion in this case follows from Proposition 3.3. This implies (3.4) for all f
which are a finite linear combination of indicator functions of intervals. Now suppose
(fn, n e IR) is an increasing sequence of uniformly bounded Borel functions that satisfy
(3.4), and set f = i, .,f.Ten fn -+ f in L20, u ]), dg) so

J fndW - J fdW in L2(Q,F,P),
[0,U] [0.W]

so f satisfies (3.4). We now apply the Monotone Class Theorem (see [DM; I.21]) to
see that (3.4) holds for all bounded Borel functions. If f 2 0 is Borel and
f e L2 ([0, u ]),dg,), then

f = lim min (f, n) in L2 ([ ,11 ], dp2),
n-o

so (3.4) again holds in this case. Finally, to conclude for general Borel
f e L2 ([ 0, u ], dp2), simply decompose f into its positve and negative parts. [

3.5. Lemma. Set

G1 (W (O),9 c' 1, open),

out= f(J fWdW, f bounded Borel)

(recall that p (D2) is a Borel set by Lemma 3.2 (b)). Then G. and GI,,, are indepen-

dent and H(D1) = Gv1vGI
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Proof. Observe that for each open set 0 c D1 and for each bounded Borel function f,

E (W() ff(2W dW) = E (W(0) f(p(s))ID2 (s)dW)
[o,U] Sis2

since 0 ri D2 = ¢. Since we are working with Gaussian random variables, G 1 and

are independent. To check the second statement of the lemma, it is sufficient to=out

show that if t e D1, then

Wt = W(D1 r intR) + |JIpOnt t)Ip( dW
(0, U

where int R, is the interior of the rectangle Rt. Now for t e Dj,
Wt- W(D1 rI intR) = W((intRd)\(DI rn intRt))

= W (D2 n int R)

- I Ip(intRj Ip(D)dW
[0,U]

(in the second equality above, we have used the fact that the Lebesgue measure of I'
is zero). 0

We now recall the following lemma concerning conditional expectations of Gaus-
sian random variables.

3.6. Lemmu. Let H1 and H2 be two closed subspaces of a Gaussian space H.

(a) Suppose H1 and H2 are orthogonal and Y e H is orthogonal to H1. Then

E(YIa(HI)va(H2)) = E(Yla(H2))

(b) Suppose G c H1 H2 is aWo a closed subspace, such that prG (Y) = prH2(Y),
for all Y e H1 (pr denotes orthogonal projection). Then a (G) is a splitting field for
a (HI) and a (H2)

Proof. (a) is a consequence of the fact that conditional expectations of Gaussian ran-
dom variables are orthogonal projections, and (b) is a standard result (see [C; Lemma
5]). 0

3.7. Lemma. Suppose t e Df. Then
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(a) there is a G -measurable variable Zt such that

E (Wt IH (DI)) = W (D1I Rt) + Z7 .

(b) W(D I ^ RI) = Wtll - |p((s.DI:s sti, >t2))dW

Proof. (a) Note that W, = Y1 + Y2 + Y3, where

Y, = W(Rt r D1), Y2 = W(Rt r D2), Y3 = W(Rt\(DI u D2)).
Now Y3 is independent of H(D1), since

Rs n (R\(DI u D2)) = 0, VS e D1,

and Y1 is H(D1)-measurable by Lemma 3.5. So

E (Wt H(DI)) = W (D1r R) + E (Y2 iH(D1))

By Lemmas 3.5 and 3.6(a),

E(Y2IH(D1)) = E(Y2IG vG ) = E(Y2 IG0m)U.
This concludes the proof of (a). As for (b), it is an immediate consequence of the
definitions of Wt, and W.

3.8. Theorem. Set

K(r) - a(Wu,00 u 5-u) v a( f fdW,f bounded Borel).

Then K (r) is a splitting field for H (D1) and H(D5) and K(r) = H(D1) n H(Dc) (in

particular, K (17) is the minimal splitting field).

Proof. Proposition 3.1 and 3.4 imply that

K(f) C H(D1) n H(Di).

To get the converse inclusion, observe that by Lemmas 3.5 and 3.7,

E(WtIH(DI)) c- K(I Vt 5 cI,
so by the above inclusion,

E (Wt IH (D1)) = E (Wt IK()), Vt e D
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By Lemma 3.6(b), this means that K (F) is a splitting field for H (DI) and H(D). By

(2.1), we get the desired equality. E

4. Sufficient conditions for equality of the germ and sharp fields.

In this section, we will need the notion of stochastic line integrals for monotone

curves. These notions were introduced in [CW; §4] in a more general context.

Suppose 0 . a < b and f: [a,b] - RK is monotone and continuous. Let
rf = ((u,f(u)): a 5 u . b) be the graph of f, which is a continuous monotone curve.
Set

Wf = WuJ(u) Wuf'I = W(SI(ruf)), WUf.2 = W(S2(uf)),
where rf = ((v, f (v)): a s v . u) and S1(A) (resp. S2 (A)) denotes the horizontal
(resp. vertical) shadow of the set A (see beginning of Section 3). Then (Wf&i,
a 5 u 5 b) is a continuous martingale, i = 1,2, with quadratic variation

u f(u)

< w£O> = Jf(v)dv, <Wf2> = J vdf(v).
a f(a)

When f is non-decreasing, (Wb, a 5 u 5 b) is a continuous martingale, and

wfzu = uf(u) - af(a).
In this case, if h e L2 ([ a, b ], d (uf (u))), the stochastic line integral of h along rf is by
definition

b

JhaW = fh(u)dWU.
a

When f is non-increasing, and h e L2 (f (u) du) n L2 (udf (u)) is Borel, the stochastic
line integral of h along rf is defined by

b b

fhaW = fh(a)dWuf = Jh(u)dWf2.
a a

Recall that if f is non-decreasing on [a ,b I, the inverse of f is the function
f1 (v) = sup(u: f (u) s v), whereas if f is non-increasing, the inverse of f is
f4 (v) = sup(u: f(u) > v). We also set F1 (v) = inf(u: f(u) > v) (resp.
f- (v) = inf(u: f(u) s v) when f is non-decreasing (resp. non-increasing).

4.1. Lemma. Suppose f: [a, b - R+ is monotone. Then

JhaW = J (h(S)IS,(r)(s) + h(f1(s2))1sS2(n)(S))dWsFt
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for all h for which the left-hand side is defined.

Proof. The equality is a simple consequence of the definiton of line-integral when h
is the indicator function of an interval. The general case follows by a standard Mono-
tone Class argument. c

4.2. Lemma. Fix uo0 U, and set f1(u)= L (u, uo), u. uo, and f2 (u) = L (uo, u),
uo < u0.u. Thenfori= 1,2,

(a) fi (fij1 (s2)) = (s2), and fij(t (s2)) = (s2), when (O, s2) e S2Wf).
(b) Set Bi = (u: (u) = fi(u)). Then Bf is an open set, so we can write

BPC = U]t, vi) [
k

where ui < vj' and the union is countable and disjoint Then

f(uk) - )(uk) = (vk) = f (uk)
In particular,

d fi (u) = 0.

Proof. We only carry out the proof for B1, so we drop the index 1: f(u) = L(u,uo).
(a) By definition, s, = f1 (S2) satisfies f(s1 + 8) < f(sl), VS > 0. Thus

f (s1) > max 0 (u).
si+&cuu

Now assume f(s1) > 0 (si). We show that this leads to a contradiction. Indeed, there
would be e > 0 and 8 > 0 such that

S1 5 U. S1 +S= ¢(U)<f(SI)-s
But then

f(sl) = max (u) = max( max *(u), max (u)) < f(sl),
SjSUS%U St suss14 S14SUSUO

which is the desired contradiction.

(b) Note that uk and vk belong to B, so *(uk) = f(uk) and 4(vk) = f(vk). It
remains to check that f (uk) = f (vk). Observe that 4 (u) < f (u), uk < u < vk, by
definition of B. Now suppose f(vk) < f(u). Since f is continuous, there is
Wk e ] uk,vk [ such that f (uk) > f (wk') > f (vk). But then

max (u) > max 4 (u).
WkuSu0 vk.U<Uo
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But since ¢ is continuous, there would be u c [ wk, vk I such that 6(u) = f (wk). Now

*(u) 5 f(u) 5 f(wk) = 0(u),

so f (u) = + (u), a contradiction since u e Bc.

Finally, the last statement holds since

fdf(u) = E(f(Vk) - f(uk)) = 0.

Be k

4.3. Lemma. Fix a < b < uo <U and set f, (u) = L (u, uO), u s uo. Suppose
B e B ([ a, b ]) satisfies B c B1 (defined in Lemma 4.2(b)). Then

|IBaW e H(n)

(recall that r = ((u, (u))), r'f - ((u,ff (u)))).

Proof. By definition of B1, we have 0(u) = f1 (u), Vu e B. Since the non-negative
measure f1 (u) du - udf1 (u) is outer regular, for each e > 0 there is an open set U such
that

(4.1) B c U and f(fi (u) du - udf1 (u)) f J(f1(u) du - udfi (u)) + e.
U B

Now

U = UI, where I=uj,vi[, and 1irIj= 0,i*j.
i

If B r) Ii =0. we simply can remove that I- from the union, without affecting (4.1).
So we assume B n 0, for all i. Set

a. = inf(BnrI), bi = sup(B n I),

and

V = U[ai,bj].

Then

(4.2) B c V and J(fi (u) du - udf1 (u)) < f(fi (u) du - udf1 (u)) + e.
V B

Furthermore,

Y = JIvaw = W(Wbfl - W£ (a) - (W12 - U
r~ ~~~b, (1a1 1

,fb) a, (j
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= (Wbi,fb) - Wai.f(a),

so Y e H (I) since f(bi) = (bi) and f(ai) = (aj) (because a,bi e B1). Finally, by

Lemma 4.1 and (4.2),

||fIvaW - JIBaW|IL2 5 C.

Since e is arbitrary, this completes the proof. O

4.4. Lemma. Fix u 2 b > a > uo and set f2 (u) = L (uo, u), u 2 uo. Suppose
B e B ([ a, b ]) satisfies B c B2 (defined in Lemma 4.2). Then

1IBaW 6 H(fl.

Proof. The proof is similar to that of Lemma 4.3, using the measure d (uf(u)).
Details are left to the reader. C

The following condition will tun out to be sufficient for the equality of the germ
and sharp fields of r.

4.5. Assumption. There is a countable dense set Q on [0, 1] such that for uD e Q, the
maps u -+ L (u, uo) ana uo * L (uo, u) are singular (with respect to Lebesgue measure).

4.6. Lemma. Under Assumption 4.5, the maps u I-+ L (u, uo) are singular for all
uE [0,1u].

Proof. Fix uo [0, u ]. To begin'with, if L (O, uo) =(uo), then L(, uo) is constant
on [ 0, uo ], hence singular. So assume L (0, uo) > 0 (uo). Now set

vo = sup(u < uo: L(u,uo) > (uo)).
If vo < uo, then L(, uo) is constant on [ vo, uo ], so it suffices to check that L(, uo) is
singular on [ 0, vo]. We may thus assume in addition that L (u, uo) > 4 (uo), for all
u < uo. Then fix 8 > 0, and let ul 6 [uo -8, uo[ be such that 4 (ul) = L (uo - 8, uo).
Now fix do e [ ul, uo ] n Q, where Q is given in 4.5. We claim that

(4.3) L (u, do) = L (u, uo), Vu < uo - S.

Indeed, for u < uo - 8, L(u,do) < L(u,uo) by definition. So suppose
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L(u,do) < L(u,uo). Now L(u,do) > (uI) = L(uo - 8,uo), so if v e [O,uo] is such
that 0 (v) = L (u, uo), then u s v < uo - 8. Thus L (u, do) > (v) = L (u, uo), a contrad-
iction.

By Assumption 4.5 and (4.3), L( ,uo) is singular on [0,uo-8], for all 8 > 0,
implying L( ,uo) is singular on [O, uo]. The proof for L (u0, * ) is similar and is omit-
ted. °

4.7. Lemma. Fix uo0 a,be [0,uo] such that a<uo<b and L(a,u0)=u (uo)=
L(u%,b), and define f1:[a,uo]-+RR+ and f2:[u0,b]-R+ by fi(u)=L(a,u) and
f2 (u) = L (u, b). Then under Assumption 4.5, W (S, (rif)) e H (IT) and

W (S2 (if')) e H (r), i = 1, 2.

Proof. We only indicate the proof in the case i = 1. Let A1 be a set of Lebesgue
measure 1 in [a,uo] such that

fdf (u) = 0.
Al

Then A2 = B1 n A' satisfies the hypothesis of Lemma 4.3, so

J IA1aW = WUuo - Wa aa) - IA2aW

H (1')

since L (a, uo) = ¢ (uo) and L (a, a) = § (a). By the change of variables formula of
[DM2; chap. VI 2, (55.1)],

fi(uo)

IA, (fI (S2))dS2 = J IA (u)df (u) = 0,
fi(a) [abuol

SO (Sl' S2) - IA, (fj1 (s2)) is a.s. zero on S2 (I'fI) for i = 1, and a.s. one for i = 2. But
then Lemma 4.1 implies that

AaWIA,(SI)Is(rl)(s)dWs
= W(SI(rf))

since (sI, s2) - IA, (sI) is a.s. the constant function 1 on SI (Ifl). Similarly,

IB2aw = W (S2 (rJ)) .
ri



- 16 -

This completes the proof. 0

4.8. Proposition. Under Assumption 4.5, Wuo e H (f, O s uo s u, i = 1,2.

Proof. We begin with the case i = 1. Fix ne I1, and set x =juo/ n, j=, . . . , n.

Define ge: [O,u0]uo R by

gnr(u) = L(xn,xpi1) if xjn < u X1x.

Note that there is vjn e [ xjn, x+j ] such that gn (u) = ¢ (vjn), u e ] xjn, xjnl
The map ge is piecewise monotone, though not continuous. Let

Q = jn <jn < ... < j = n be such that ge is monotone on [x,,x] but is not mono-
tone on [x3-,ax91.1 I, for each I (it is important to take intervals closed on the left).
Then if ge is non-do-creasing on [ x, xx1]j it will be non-increasing on [xj,, x +]. So

we assume without loss of generality that

(4.4) gf is non-decreasing on [ xj xji].
We then define hn: [ O, uo ] -+ R by

hn(u) = L(vj,u) if vjm s u s vj1 and l is even,

h (u) = L (u, vjr1) if Vj1 s u s vj,1 and I is odd,

hn(u) = L(vAu) if vj. u 5 uo.

Now hn is piecewise monotone, and singular by Assumption 4.5, with intervals of
monotonicityv [0,v ], [vI',v1 ], ..., [ vj.1, uo ] and 4p s hn 5 gn. Since the area of the
vertical shadow of re decreases to the area of DI, the same is true for the area of

si (rh). But then the random variables W (SJ7(rh)), which are H ()-measurable by
Lemma 4.7 and Assumption 4.5, converge to W (D,), completing the proof for i = 1.

To see that W2 e H(Ir), set k (u) = min(hn(v): u s v . uo). Then k' is non-

decreasing, and singular since hn is (see proof of Example 4.10(a) below). Further-
more, it is not difficult to see that

lim k" (u) = l (u, uO),

and so

lim W (S2 k)) = W (S2(Ff2)) in L2 (i,F, P),

where f2 (u) = l (u, uo). So the proof will be complete if we show that W (S2 (r)) e
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H(F). Since hn is piecewise monotone, kn will coincide with hn on finitely many

intervals of the form [vji, wn ], where I will be even (by (4.4)) and
n~~~~~~~~

wvn = sup(u: v.v u . uo andhn(v)=kn(v), Vv -[v,,v,u])

= inf(u 2 v: L (vir, u) = min (vr))
even

By Lemma 4.2 (a), we will have

k" (win) = hn (win) = L (v, win) = (wn

so by Lemma 4.7, W(S2(If')) E H(I), where fI: [vj,pwr] -4 R is defined by

fi (u) = h(u), Vj,. s u 5 w n. But then, since S2 (1k) is the disjoint union of the

S2 (If'), we get the desired result.

4.9. Theorem. Under Assumption 4.5, H (1) = G (r).

Proof. By Proposition 4.8 and Theorem 3.8, we have H(I) v H(D1) n H(Dj). The

converse inclusion is also clear since W,6Vu) E H(D1) n H(D5), 0 s u . u. So the

conclusion follows from Theorem 2. 1. O

4.10. Examples.

(a) If 0:[0,u] -+ R+ has bounded variation and is singular with respect to
Lebesgue measure, then Assumption 4.5 is satisfied (the converse is also true: see
Proposition 6.1).

(b) If : [0,1] - RF is such that any one of its four Dini derivatives is 1 a.s.
for Lebesgue-measure, then Assumption 4.5 is satisfied. For example,

g(u) = limsup V(u+h)-h (u) = - a.s.
h40 h

implies Assumption 4.5.

Proof. (a) We only check that u H. f (u) = L (uo, u) is singular. In fact, we prove the
stronger statement

(4.5) fdf(u) < fd 11(u), B E B([uO,uD).

Indeed, assume to begin with that B = ] a, b ], a < b. Set
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v = sup(u: f(u) = f(a)), v2 = inf(u: f(u) = f(b) ).

If v2 s vI, (4.5) is clearly satisfied. So assume vI < v2. Then f(vl) < f(v2) and by
Lemma 4.2 (a), f(v1) = ¢(vl) and f(v2) = (v2). Thus

J df(u) = f(v2) - f(v1) = ¢(v2) -4(v1) f d 11 (u),
la,b] Ia,b]

and so (4.3) holds in this special case and also if B is a countable union of intervals.
The general case follows since any Borel set can be approximated from above in
df (u) + d I I (u)-measure by a countable union of intervals.

(b) Fix uo e [O,fu]. For any u s uo, such that g(u) = +oo, we have
L (u, uo) > 0 (u). So by Lemma 4.2 (b),

J L(du, uo) = 0.
(u: g(u)=s)O,uNJ

But since by hypothesis, (v: g(v) = oo) n [0,u] has Lebesgue-measure uo,
u i- L (uo, u) is singular.

We now check that u + L (uo, u) is singular. Indeed, u ^-+ L (uo, u) has a
Lebesgue-decomposition

u

L (uo, u) = fh(v) dv + v (u),
U0

where v () is a non-decreasing singular function and h is non-negative and integrable
on [ uo, u]. Thus

(4.6) a L (uo, u) = h (u) a.s.

with respect to Lebesgue-measure. However, at every point u in the support of
v -+ L (uo, v), L (uo, u) = 0 (u), so for du-almost all u in the support, h (u) = g (u) = +**.
Since h is integrable the support of v s-+ L (uo, v) must be a Lebesgue-null set, con-
cluding the proof.

4.1 1. Remark. Theorem 4.9 remains valid if Assumption 4.5 is replaced by an analo-
gous assumption on the functions l ( *, uo) and I (uo, - ), 0 < uo < u.

- Theorem 4.9 also remains valid if Assumption 4.5 is replaced by either of the fol-
lowing two assumptions:

L(,uo) and (,uo) are singular, Vuo c D

or

L (uo - ) and l (uo, - ) are singular, Vuo E D
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(recall that D is a countable dense set). The important feature in each of these
assumptions is that we have both non-increasing and non-decreasing functions in each
case.

- Assumption 4.5 does not imply that u t-+ I (0, u) is singular, as shown by the
example below.

4.12. Example. We are going to define a function ¢: [0,1] R+ which is continu-
ous, satisfies Assumption 4.5, but for which l (0, ) is absolutely continuous with
respect to Lebesgue-measure. Let f: [0,1] e R be a continuous function which has
the following properties:

f(0) = f(1) = 0
- f(u) > 0, 0 <u < 1

-limsup f (u + h) -f(u) = +,for almost all u e [0, 1]
h-+O h

-max(f(u):0u.1) = 1.

Let C be a Cantor set, obtained by removing from [0, 1 ] at the kdl step 2k"1 open
intervals Ik,1, ... , Ick-1 of length 4A4. Then C has Lebesgue measure 1/2. Let

Ik ] ukcj vkj [.We then set

+1(U)= 2-12f((u - uk,j)4k), uk,j 5 U Vkj
1(U)= , U e C.

Observe that ¢ is continuous on [ ,1], and for all u e C,

*im-w l (u + h) - 41 (u)lim suP = +00.
hJ9O h

Finally, we set
u

(u) = 1/2 - JIc (v) dv + ¢1(x)v

It is then clear that ¢ satisfies the condition of Example 4.10 (b), and so Assumption
4.5 is valid. On the other hand, it is easy to see that

1
l (O,u) = 2 ICI(v) dv,

so I (0, - ) is absolutely continuous with respect to Lebesgue-measure. O

4.13. Corollary. Let C = (f: R+ -e+ R: f(0) = 1 and f is continuous), and let B
denote Wiener measure on C. For f e C, set
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4(f) = inf(u>0:f(u)=0) if ( )* 0,

4 (f) = 0 otherwise.

Let 0 (f) be the restriction of f to [0, (f]. Then

B(feC: 4(f) <+ and H(I*f)) = G(J7(f))) = 1.

Proof. Immediate consequence of Example 4.10 (b) and Theorem 4.9. 0

5. Some necessary conditions for equality of the germ and sharp fields.

In Theorem 3.8, we detennined the generators of the nimal splitting field for
H (DI) and H(Df). By Theorem 2.1, these are the generators of the germ field. In

this section, we are going to give an explicit integral representation for the closed
Gaussian linear subspace spanned by these generators. By Theorem 2.1, this subspace
is G().

These results generalize those of [DR; Th. 3.8], where such a representation is
given when 0 is decreasing. Also Rozanov [R; Chap. 3; Sect. 3.5] has given an impli-
cit representation of G (I) in terms of the solution to a generalized partial differential
equation, when r is the boundary of any bounded open set. Our representation can
thus be viewed as the solution to Rozanov's equation when r is the graph of a con-
tinuous function 0.

Once we have a good description of G(r) at our disposal, it becomes possible,
under a rather weak regularity assumption on 0, to give conditions under which an ele-
ment of G (I) does not belong to H (I). Though we do not give a complete descrip-
tion of H(IF) (and such a description is unnecessary for our purposes), this approach
leads to necessary and sufficient conditions on 4 for equality of the germ and sharp
fields (provided 0 satisfies Assumption 5.6 below). In particular, when 4 has bounded
variation, Corollary 5.15 gives a complete answer to the question: " when are F (I)

and G() equal?"

If fl, f2: [0, e R are two Borel functions, we define three Borel functions
J1 (f1, f2), J2 (f1, f2) and J (fl, f2) on T by

JI (fl, f2) (t) = (fl (t1) + f2 (P (t))) ID, (t)

J2 (fl f2) (t) = f2 (P (t))ID (t)

J (fy f2) (t) = J1 (fl, f2) (t) + J2 (fl f2) (t) .
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5. 1. Lemma. (a) Suppose J (fi, f2) e L2 (T, dt). Then Ji (fl, f2) e L2 (T, dt), i = 1,2. In
particular, f2 p(D2) L2 ([ , U ] , dg2).

(b) Suppose (fe, n e- N) and (f2n, n e 1) are sequences of Borel functions such that
J (fl, f2n) e L2(T, dt) for all n e 1 and

g = lim J(f1 f2)
n-0

exists in L2 (T, dt). Then

= lim J, (fn, f2)
n-*

exists in L2 (T, dt), i = 1,2. In addition, there is a Borel function f2: [0,1u] - R such
that

f2Ip(D2)= lim f2nIpD) in L2([0,UI,dpd2)

and g2 (t) = f2 (p(t)) dt-a.s. (Note: the question of convergence of f2 "p(D,) is addressed
in Lemma 5.2).

Proof. (a) Let 1111 denote the norm in L2 (T, dt). Since
J1 (f f2)(t) J2 (f1,f2) (t) = 0, Vt e T, we have

(5.1) IlJ(f1,f2)112 = IlJ1(f1,f2)112 + II J2 (fl1, f2) 112.
This implies the first statement in (a). The second is a consequence of the relation

(5.2) f (f2 (u))2 I (D,) (u) dp2 (u) = J (J2 (fl, f2) (t))2 dt.
[0,] P2

(b) If (J(f, f2n), n e N) is a Cauchy sequency in L2 (T, dt), then (5.1) implies that

(J, (fn, f2n), n e N) is also, i = 1,2. This yields the first statement of (b). To get the
second statement, observe by (5.2) that (f2nIpD2, n e N) converges in
L2 ([0,u]), dg2). Choose a Borel function f2 which is a p2-version of this limit. Then

11 g2 - (f2°P) ID211 Ig - J2 (fn,f I) 1

+ IIJ2 (fn, fn) - (fop)ID2I + I(f op)ID2 (f2P)ID2
= iIg-~J2 (fl f2n) 11 + 1 fn -f2IILD2

as n -)e oo. 0
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Set

LI = -L2([0,tu-e],dI1I, L2 = qL2([0,U-e],dpg2).

If g E L2 (T, dt) satisfies g = J1 (f1, f2) for some couple (f1, f2) e LI x L2, we say that g

is determined by (f1, f2). If k e R, and we set

fk = fl - k, f = (f2 + k)IpD1) + f2IDc),
then (fk 4rk) also detennines g.

Now fix so = (s ,s2) e D1 such that R,o c D1 (recall that RSo = (s e RF2 S1 < So
and s2 < se°)). For any g e L2 (T, dt) which is determined by some (fi, f2), we may (by
adding an appropriate constant to fl) choose (f1, f2) that determines g and such that

0
Si

(5.3) f1 (u) du = 0
0

Finally, for e > O, set £ = inf{u: t(u) = e) and D = (s(1, S2) e D1: s1 < ).

5.2. Lemma.

(a) If (f1, f2) e x L2, then for each 8 > 0, t t-+ fl (tl)IDl and

t - (f20P) (t) I[ (p(t)) belong to L2 (T, dt).
(b) If J1 (f1If2) e L2 (T, dt), then (fl, f2) e L1 x L2.
(c) Suppose g E L2(T,dt) is determined by (f,Jf2) e L1 x L2 where f, satisfies

(5.3). Then for each e > 0, there are constants Kf and KI such that

l1ifI[Q,Xe] IIL2([O U] C41) ' KF1 11 g 11

11 f2 I[0o,e] IIL2([O,u],dP.) ' K2 1gh1

(d) Suppose (g, n e IK) is a sequence in L2 (R2, dt) converging o g. If gf is
determined by (fn, fn) e L, x L2, where fn satisfies (5.3), then there is

(fl, f2) e L, x L2 that determines g, and for each e > 0,

flI[o,Te] = lim fl I[o0] in L2([0,Ul,dgl),

f2IpDp)n[0o,te] = im f2n p(D1)r40,teI in L2([0,ti],dpd2),

Proof. (a) Observe that

Xe X~~~~~~~~~e
J (f1 (t1))2 ID1 (t) dt = J (f1 (U))2 4 (u)du . L (0, U) J (f1 (U))2 dg
T 0 0
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and

f ((f20p) (t))2 I[0, (p(t)) dt = J (f2 (u))2 d92 (u),
T 0

so the conclusion follows by definition of L1 and L2 and the fact that ;£ < U.

(b) Suppose JI(fl, f2) e L2(T, dt). Then J1 (fi, f2) e L2(Rso, dt). Since
p (t1, t2) = p (0 t2), for all t e Rso, we get

so so
s ° S2

f dt1 Jdt2(f1 (tl) + f2 (p (, t2))2 < co.
0 0

By Fubini's theorem, this implies that for almost-all t1,

t2 i-+ fi (tl) + f2 (P(O t2))

belongs to L2 ([ 0, s ], dt2). But then t2 H f2 (P (O, t2)) also belongs to L2([,s ],dt2),
which, when £ < s°, implies in particular that

Ire £ £

J dt J dt2 (f2 (p (t)))2 = r Jdt2 (f2 (p (0, t2)))2 < 4+c.
0 0 0

But then t i-+ f2 (p (t)) belongs to L2 ([0, ] x [ 0, 1], dt), and since

(5.4) J1 (fl ,f2) (t) = (fl (t1) + f2 (P(t)) ID1 (t),

we get that

;e £

(5.5) |dt I dt2 (fI (tl))2 < +c
0 0

But then

e dt1(f1(tl))2 < 4-0

so f, e L2 ([0,], dJl). Since e is arbitrary, f1 e L1.

On the other hand, (5.5) implies
ITc 401)

L ( e
U

£

Jdt1 J dt2(f1(t1))2 < (e') fdt1fdt2(f1(tl))2 < +00.
0 0 0 0

so tH fi(ti)i belongs to L2(T,dt). But then (5.4) implies that t f2(p (t))ID
belongs to L2(T, dt). By the definition of p2, we find that f2 e L2 ([0,° ], dg2). Since
e is arbitrary, f2 e L2, concluding the proof of (b).
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(c) Set f1 (t) = f1 (t1), t = (t1, t2), and fix r > 0 such that r < s0. We have
S10 SI0

+°° > 11 g 112 Jdt f dt2 g2 (t) dt
0 r

(5.6) so so so so

= (s2 - r) J (f1 (t1))2dt1 + 2 f dt1 f1 (t1) J dt2 f2 (p(t)) + sI J (f2(s (t)))2 dt2
0 0 r r

(we have used the fact that on Rso, f2op is a function of t2 only. The use of r > 0 is
necessary to write the double product as an iterated integral). By (5.3), the second
term in the last equality above is zero, and so, letting r go to zero in (5.6), we get

(5.7) 11 f1 IR,O II < 11 g11* 11 (f2OP) IR,0 11 11 g1gl.

We are now going to use several times the fact that g = fI + f2op on D1, and f1 only
depends on t1 and f2op only depends on p (t). We have

so soS2 S1

f (f2 (p (t)))2 dt = f dt2 J dt1 (f2 (p(t)))2
Roo ~~0 0

0
S2o

=|dt2 (f2 (p (t)))2 S 0

0

50 s2 p(O,t2)
> - f dt2 (f2 (s (t)))2 J dt1

u 0

0

- l f (f2 (p (t)))2dt,
U p-I (p (R,0))

so by (5.7),

II(f2Op);-'1(pRdo))I11 < u 11g11

For 0 < e < s°, this inequality implies

11 f I(o, ]X[O,£] 11 x 11< II L (p(R 0)) 11 = 11 (g- (f20P)) ;-p(p(R0)) II

<'(1+ u ) I gil.
Si

Now since f depends only on tl, we get

so ffo IDr om < fconsIta[,n.Xt,

so for some constant Kl ,
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(5.8) Ilfl I 1 ' 1gh .

If we now set K2 1 +K,we get

(5.9) II(f2oP)IDlhI < K2£ ulghl.
Finally, observe that (5.8) implies

(5.10) hIf1 t[O,¶c]j IL2([o,U],dpd1) < - hIfID.'II . Kl II

for an appropriate constant Kf, and (5.9) implies

(5.11) 11 f2 Ip(D)r 0,. 1]IL2 ([O, U ], 2) . 11I(f2op)IDI . K2 11ga.

(d) If e < e', then t, > 'y. Furthermore, lime £'re = u. By (5.10),
ep n E ) converges in L3([0,tU],d.L1). Fix ko e IE large enough, and let hi

be a Borel function which is a version of the limit of this sequence, and define f,:
[O,U] -4 R by

hk(u) if u ko,
f1(u) = h +1 (u) if /1k < u 5 'l/(k+l)'

0 if u=u.

Then fi is Borel, and

flI[o,|j& = 1 I[O X1/K] Ill-a.s.

In a similar fashion, we get from inequality (5.11) a Borel function f2: [0,u] - R

such that for each k > ko,

f2Ip(D,) n [ = liM f2Ip(Dm).[0,,r,I in L2 ([0,1U], dp2).

It only remains to be shown that (fl, f2) determines g (note that f, satisfies (5.3)).
This follows from the equality

11 (9 - J1 (fl, f2))IDpln([o,x0,xo[)e 1 = 0, VY > 0,

which is valid by the definition of f, and f2. [

5.3. Remark. It is not possible to remove the ID1 or the I[O,0e] in the statements of

Lemma 5.2, as the following example shows. Consider the continuous function
4: [ 0, 1 ] -4 RF which is obtained by modifying the function 0 (u) = 1 - u on each
interval [ 1 - 2-1, 1 - 2'1] as follows: 4 is linear on each of the intervals
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In= [ 1 -2;n+l,1 - 7 2-n+1/8 ]

= [1-72-n+1/8, 1-32-n+1/4I,

1 -[132--+l/4, 1 - 2-n

and

'(1-7 2-n+l / 8) = 2; I2, (1-3 2n+1 /4) = 2-1+.

(See Figure 1). Now set an = 2n/n and define fl, f2: [O,u]0 R by

f1(u) = an , f2(u) = 0 if ues I

f1(u) = an, f2(u) = -an1 if u e

fl(u) = 0, f2(U) = 0 if ueIC.

Observe that (fl, f2) E x L2, since fi is bounded on [0°,t], £ > 0, i = 1,2, and

J1 (fl,f2) anI(Iul.2)x[ o,21 ],
nlE M

so

J (J1(fl,f2)(t))2dt = 2-n-12 <
nlEli n2 nreli n2

On the other hand,

2 ~ 1 n-I272| (f1 (tl))2 dt, dt2 = 2 an (2-2n + - 27- 2-n/2)
DI n~~fEWR 2

1 21n/2-2
nEl n2 n2

= +00.

Similarly,

(f2 (p (t)))2 dt1 dt2 = + °*
DI

5.4. Lemma. Set L = ((f1,f2) e LI x L,2: J(fl,f2) e L2(T,dt)). For (f1,f2) e L, set

I (fl, f2) = fJ(fl f2) (t) dWt

(a) If f1 e L2 ([0, u,(u) du) and f2 e L2 ([ 0 u],t dl2) are Borel, then (f1, f2) e L

and
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u

I(fl f2) = Jfi(u) dWJ1 + f2 (u) dWu.
0 [(O,f]

(b) For all (fl, f2) e L, I (fl, f2) G().

Proof. Under the hypothesis of (a), we have

1 DJfi(u)dWu - Jfi(tI)dWtl, 2
o

and

f2 (u) dWu = f f2 (P (t)) dWt
[O,U] D1uD2

= J f2 (p(t)) dWt + J f2 (p(t)) dWt,
DI D2

so by definition of J (f1, f2), the conclusion of (a) holds.

To see (b), observe that by Lemma 5.1(a), Ji (f1, f2) e L2 (T, dt), i = 1,2. Since

JJ2 (fl, f2) (t)dWt = J f2 (u) Ip(Dr) (u) dWu G (IF)
T (OJI]

by Proposition 3.4, we only need to show that

Il (fl, f2) = J J1 (f1, f2) (t) dWt e G (rI).

Set fi = fiI[or.] i = 1,2, e > 0. By Lemma 5.2 (c),

u

Yf = fff(u) dWJ and Y2 = J f2 (u) dW
0 [o,U]

are well-defined. These two variables belong to G (17) by Theorem 3.8. Now

IiJl (fl ff2) -J (fl f2) 11 < 11 Jl (fl f2) I(DD )C II + 1 (f2f )p) I[o,r]x[o, E

The first term on the right-hand side tends to zero as e -* 0, and

II(f2OP) [°]x[o,e]11 = ;f(f2op(O,f2))2 dt2
0

< u I (f20p (t))2dt
St (,sO]x[0,E

u 2 (t) dt
0[0,OSj ]X[O,E£]
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(the last inequality uses the same type of argument as in the proof of (5.6) and (5.7)).
thus

Ii (f1, f2) = liM J1 (ff, f2) (t) dWt = lim(Y + YE)

e G (r).
C

The following theorem gives an explicit representation for G (I).

5.5 Theorem. (a) G(I) = (I(f1,f2): (fl,f2) E L)

(b) If (f1, f2), (f1, f2) e L, then I (fl, f2) = I (f1, f2) if and only if there is k e R such

that

= f1 + k jL-a.s.

f2 ;(D,)= (f2 - k) Ip(D1) 112-a.s.

f2Ip(r2 = f2Ip(D2) g2-a.s.

Proof. To prove (a), it is sufficient by Proposition 5.4 (b) to prove that G(F) C H,
where H = (I (fl, f2): (fl f2) e L). Since H is a linear subspace containing the genera-

tors of G (I), this inclusion will hold provided H is closed in L2 (L, F, P). So suppose

(Yn, n e IN) is a sequence in H converging in L2 (S2, F, P) to Y, and Yn = I (fn', f2n),
where (fjn, fln) E L, fj satisfies (6.3), for all n e N. We must show that Y = I (fl, f2) for

some (fl, f2) E L. Now convergence of Yn implies convergence in L2 (T, dt) of

(j(fnf2n) n e N), to g e L2(T,dt), say. By Lemma 5.1 (b), this implies g = gl + g2,
where g1 is the limit in L2 (T, dt) of (J, (f n, f2n), n e N), and g2 (t) = h2 (P (t)) ID2 (t), for
some Borel h2: [0,u] - R.

By Lemma 5.2 (d), gt = J (f1, f2) for some couple (f1, f2). We now set

f = f1, f2 =f2Ip(Dl) + h2Ip(D2)-
Clearly, g = J(f1, f2).

(b) Suppose I (f,f2) = I(f1, f2). Choose k, k' e R so that fi and f both satisfy
(5.3). Then I (f - 4"4f -fk ) = 0. So we only need to show that if (fl,f2) e L

satisfies (5.3) and I (fl, f2) = 0, then f1 = 0 gij-a.s., f2 = 0 92-a.s.
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To begin with, equality (5.1) implies that

J, (f1, f2) (t) = 0 dt-a.s. and f2 (p (t))ID2 (t) = 0 dt-a.s.

This last is equivalent to f2I)(W = 0 2-a.s. On the other hand, Lemma 5.2(c) implies

f, = 0 dp1-a.s. and f2Ip(%) = 0 dp2-a.s. Since

pk([0O,uf]\(P(D1)UP(D2)) = 0,

the conclusion follows.

We are now going to give properties of the elements of G (I) which also belong to
H (I). We will do this only under a (weak) regularity assumption on 0. These proper-
ties will lead to necessary and sufficient conditions for equality of the germ and sharp
fields of r.

Let us introduce some notation. Set 'Vo (u) = u, and for k > 1, set

rinf(v> rk_ (u): (v)= (u)) if 9¢

Nfk(t?= l+oo otherwise,

and t (u) = sup (k > 0:0 k (u) < + c). We have the following elementary results.

5.6. Lemma.

(a) Nfk(u) < Vk+1 (u) <.-co Vk+j (u) = p(D1)u p(D2).

(b) NVk+l(u) = NVk 0 'V,(u) = 'Vi 0 Vk(u).

(c) t:(u) <-i-co° t(Vk+1 (u)) = t(Vkpk(u)) - 1, 0 < k < r(u).
(d) '1k is Borel, k 2 0.

(e) t is Borel.

Proof. (a) Observe that when 'fi (u) < V4k+I <+0, we have either

Nfk (U) < V < Vk+ I (U) * )(V) < /Q(U)

or

Vk (U) < V < Vk+I (U) (U) > 4,(U)

In the first case, Vk+I (u) e p (D2), and in the second NVk+1 (u) e p (D1).

(b) and (c) follow clearly from the definitions.

(d) By (b), it suffices to show that 'fI is Borel. Fix uo e [0, u]. For u < uo, set

k1(u) = sup{v < uo: 1 (v,uo) = 1 (u,uo)),
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k2(u) = sup(v < uo: L(v,uo) = L(u,uo)).
Then kl and k2 are right-continuous, hence Borel, and

(ue [0,u]: 1(u) > uo) = (u u : kl(u)=u)u u(u uo: k2(u)=u).

This implies that ifr is Borel.

Property (e) is a direct consequence of (d). O

Throughout the remainder of this section, we shall be working under the following
assumption on ¢.

5.7. Assumption. X < p.2-a.s.

This assumption is implied by the following (weak) regularity assumption on ¢.

5.8. Proposition. Suppose that Banach's condition (Tl) holds, that is, for pl1-almost
all x e R+,

Ex = (u e [O,uI:4(u) = x)

is finite (see [S; Chap. IX. §6]). Then Assumption 5.7 holds.

Proof. The proof relies on the following fact: let (Ok, k e N) be a non-increasing
sequence of subsets of R+, and set

O = n Ok.
keIi

Then

p ((D1u D2) o (R+ x O)) = n P ((D1 u D2) n (R+ xOk)).

Indeed, "c" is obvious. To see "D", suppose u E [0,u] satisfies

Vk e W, 3 tk e (DIu D2) r (R+ x ok): p(tk) = U.

By definition of p, there is t2 e R such that tk = t2, for all k e K. Thus

(til,t2) (D1 u DO ) (R+ x 0) , and p (t ,tO) = u

yielding the desired conclusion.

Now to prove the lemma, let N c JR+ be a p.l-null set such that Ex is finite when
x 4 N, and let (ok, k NN) be a non-increasing sequence of open sets containing N such
that .1(O \ N) = O, where
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O = nok.
keI

By the fact proved above and Lemma 3.2 (b),

R = p((Di u D2) n (R+ x O))

is a Borel set, and clearly,

p-l (R) = (D1 u D2) n (R+ x O).

Observe that if u e p (D1 u D2) \ R, then X (u) is finite. Since p2 ((P (D1 u D2))c) = 0
and

92 (R = f I(D,uD2R xxO) (t) dt = 0,

the proof is complete. a

Proposition 5.8 gives a large class of functions for which Assumption 5.7 holds.
Indeed, necessary and sufficient conditions for Banach's condition (Ti) to hold are
given in [S; Chap. IX. Th. (6.2)]. In particular, (TI) holds if 4 has bounded variation
[S; Chap. IX. Th. (6.3)]. Condition (Ti) is also satisfied by functions which are
smooth except at finitely many points ul, ... , U, in neighborhoods of which they
resemble c + (u - ui) sin (1 / (u - ut)) or some other oscillating function. Finally,
observe that X (u) = + if for some £ > 0, 4 is constant on [ u, u + e]. However, in
this case, p.2 ([u, u+ C ) = 0, so the presence of such horizontal segments on r does not
affect Assumption 5.7.

An element u0 of [ 0, ] is a strict local maximum (respectively minimum) of 4 pro-
vided there is 8 > 0 such that I u - u0 I < 8 implies 4 (u) <4 (u0) (resp. 4 (u) > 4 (u0)).
A strict local extremum is a point which is either a strict local maximum or minimum.
A point of increase of 4 is an element uo E [0, u ] such that for some e > 0,

0<8<eE* L(uo-e,uo-8)<4(uo)<l(uo+8,uo+ E).

A point of decrease is defined analogously.

5.9. Lemma. The following statements are implied by Assumption 5.7.

(a) Almost every u e [ 0, u ] (with respect to p2) is a point of increase or decrease.

(b) For p2-almost every u e [ 0, u ], 11k (u) is a point of increase or decrease, for all
0 < k < t(u).



- 32-

Proof. (a) Under Assumption 5.7, we have

g2((p(D1) u p(D2))r (' <+)) = A2(I09u
Fix u e (p(DI) u p(D2)) n {'r < +). Assume to begin with that u e p(D1). Then

there is el > 0 such that

(5.12) 0 < 8 < (u -l i(- ,u - ) > 0 (u).

Now since r (u) < + oc, either there is e2 > 0 such that

(5.13) ° < 8 < e2 I(u + 8,u + e2) > OWu
or

(5.14) ° < 8 < e2 : L(u + u + e2) < 0 (u).

If (5.12) and (5.13) happen, u is a strict local minimum. Since a continuous function
has at most countably many strict local minima (see e.g. [S; Chap IX. Th. (1.1)]) and

j2 is diffuse, (5.14) holds for p.2-almost all u in p (Dl), i.e. u is a point of decrease

2-a.s.
A similar reasoning shows that if u e p (D2) n {'r < + cc), then u is t2-a.s. a point

of increase.

(b) We continue the reasoning begun in part (a). Set
Q = (p (D1) u p (D2)) rn (u: u is a strict local extremum ). Then Q is a countable set,
and so 4 (Q) is too. In particular, [,0] x 4(Q) has two-dimensional Lebesgue-
measure zero. Now

(u e (p(D1) u p(D2)) n ( < +c): Nfk(U) is not a point of increase or

decrease, for some k < ' (u))

is contained in p ([O, u ] x 0 (Q)). Since

j2(p(t): t2 E 4(Q)) . f dt = 0,
[o, uI]x(Q)

the lemma is proved.

5.10. Lemma. (a) Suppose N c p(Dj) u p(D2). Then

92 (N)= O <=> O(N) is a gl-null set.

(b) Let N c p (D1) u p (D2) be a 2-null set. Then

92 U e [O,Ui]: there is k e N S.t. Nfkk(u) e N) = 0.
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Proof. (a) By definition,
L(0,i) k (t)

12 (N) = J ½-i (t) dt = f dt2 J dt,I -i!(tl t2).
D1uD2 0 0

where k(t2) = inf(u: L(u,U) = t2). Now since N c p(D1) u p(D2), the intersection of
p1l (N) with any horizontal line t2 = x is either the empty set if x *¢ (N), or a count-
able union of horizontal segments if x e 0 (N). In particular,

L(,)

(N2 = f dt2l (t2)I
0

where I (t2) > 0 <=> t2 e ¢ (N). This clearly implies (a).

(b) Observe that (u: there is k e NW s.t. 1fk (u) e N) c * (N), so the conclusion
follows from (a). [

It will be convenient to number elements of a given level set from right to left
instead of from left to right. On ({ < +co), set

vi(u) = NIq}i (u), 0O. i.r C(u).
Provided Vk (u) is a point of increase or decrease, for 0 . k .5 r (u), we have

Nfi (u) p (D1) if 2i :5 r (u) and Nf2i+1 e p (D2) if 2i+ 1 :5 c (u).
If f: [O,iu] -* R is Borel, we set f (+ c) = 0, and define two Borel functions a, (f),
a2f:[0,u] R by

a, (f) (u) =f (u)

cc. (f (U) [0s2i f(V2u +u -M f(VY2i (u))1 I(,<+*-) (u) 9

and set K (f) = J (a, (f),, a2 (f)),, L (f) = I (a, (f),, a2 (f)) if K (f) e L2 (T, dt).
Fix a,b e R, and suppose fl,f2: [0, u ] -+ R are Borel.

5.11. Lemma. (a) We have K(af1 + bf2) = aK(fl) + bK(f2) and K(f1 + a) = K(fl).
(b) Assume in addition that (a, (fi), a (f)) e L x L2, i = 1,2. Then L (fl) = L (f2)

if and only if there is k e R such that f1 = f2 + k g1-a.s. and 92-a.s.

Proof. The first statement in (a) holds because a1 and a2 depend linearly on f and the
definition of J implies

J(a ao (fi) + b a, (f2), a a2 (fl) + b a2 (f2)) = a J (a, (f), a2 (fl)) + b J (ac (f2), a2 (f2))
To prove the second statement in (a), note that
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T (u) = 0 * a% (f, + a) (u) = a2(f1)(u) - a,

' (u) = 1 c a2 (f1 + a) (u) =(u)

and by induction, we get for u e ('r < +) that

u e p (D1) => a(f + a) (u) = a2(fl) (u) - a

u e p (D2) > a (f1 + a) (u) = a2 (fl) (u).

But since a, (f1 + a) = a, (fl) + a, Theorem 5.5 (b) implies that K (f1 + a) = K (fl).
(b) Suppose f1 = f2 + k .1- and p.2-a.s. Then a, (fl) = a, (f2 + k) gl-a.s. and

a2(f1) = a2 (f2 + k) p2-a.s., so by (a),

L (fi) = L (f2 + k) = L (f2).

To show the converse, assume L (f1) = L (f2). We then use Theorem 5.5 (b) to get
k E R such that

ax(f1) = a1(f2) + k .1 a.s.,

(5.15) k2(fl)Ip(D1) = (a2(f2) - k)L,,(D,) 92-a.s

(5.16) a2(fl)Ip(D,) = a2(f2)Ip(D2) 12-a.s.

Let N be a j2-null set outside of which (5.15) and (5.16) hold. By Lemma 5.10
(b), we may assume that

,r(u)<+ NfMr(u)4Nn(p(Dj) up(D2))90< k < (u).
But then, when u 4 N and r(u) < +oo, Nbo(u) e p(D1), so by (5.15),

-fl (io (u)) ip (D1) (u) = (a2 (fl) (Vo (u)) - k) Ip (D1) (u) = -f2 ('fo (u)) - k.

We then use (5.16) and the fact that Nf1 (u) e p (D2) to get f, ('f1 (u)) = f2 ('fIf (u)) + k
(if t (u) > 1). By induction, we get for p2-almost all u

fl (f, (u)) -f2 (f,(u)) + k, 0 < I <. (u) .

Setting I = ' (u) gives the desired result. l

Set H(lI) = (Y e G(M: there is f Borel such that Y = L(f)}.
The following lemma gives, under Assumption 5.7, a characterization of the ele-

ments of Y of G (F) which belong to H(F). It is a generalization of [DR; Lemma
3.11].

5.12. Proposition Let (fl,f2) e L. Then Y = I(fl,f2) e H(IF) if and only if there is a
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p4--null set Ni, i = 1,2, such that if u e [O,UI\(N1i\Nu N2), then

(5.17) fl (u) Ip(D) (u) = (-f2 (u) + f2 (V (u))) p(D1) (U),

and

(5.18) fl (u) IP(D2)(U) = (f2 (u) - f2 ((u))) Ip(D2) (U) -

Proof. If Y = I(fl,f2) = L(f) for some Borel f: [0,u] - R, then (5.17) and (5.18)
follows from Theorem 5.5 (b) and the definitions of a, (f) and a2 (f). Now suppose
(5.17) and (5.18) hold. We define f: [O,1u] -4 R successively on the sets ( = 0),
{t = 1),... as follows. First, we define f on the set ({ = 0) by setting

fI(I=O) = (flIN' - f2IN1) I-X=0),9
and then, assuming by induction that f has been defined on ({r = k - 1), we set

(5.19) fI(r=k) = (f1 IN + (f2 - f2o l) IN,)I(=k)
if k is odd, and

(5.20) fI(s=k) (flINc + (-f2+ f2oV)IN1)I('r=k)
if k is even. This defines f on ({ < +0), and we set

fI('=+) = fl I(t=+o)
Clearly, f1(u) = a,(f)(u), u d N1.

By Lemma 5.10 (b), let N2' be a L2-null set such that u 4 N2' implies

Vk (U) 4 N2 r) (p (D1) u p (D2)), 0 < k . r (u). Clearly N2' D N2, and if u 4 N2', we
have by (5.17)

a2 (f) (u) I( =o) = - f (u) I( =o) (u) = -(fl (u) IN (U) - f2 (u) IN1 (U))I(t=o)
= f2 (u) I(r=o).

Similarly, equations (5.19) and (5.20) become respectively

fI(=k)\N2 = (f2 - f2oVOI(¶=k)\N2 , k odd,

fi(r=k)\N2' = (-f2 + f2V01)I(k=k)\N2', k even.

Proceeding by induction on k, one checks that

a2(f)(u) = f2(u), ue <<+oo)\N2i'
Since L2({Q < +00) \ N2') = 92([0,u]), we have shown that cq (f) = fi pq-a.s.9 i = 1,2.
Thus
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Y = I (fl, f2) = L (f)

concluding the proof. E

5.13. Lemma. (a) Fix O < uo u. If f = I[0uo1, then L(f) = Wuo,u
(b) H (I) is a closed linear subspace of G (IF).

Proof. (a) To begin with, we have in this case a, (f) = I[o, uo, and clearly

c% (f) (u) = 0 if u > uo. In addition, we will check by induction that p2-a.s., if

4 (u) > 4 (uo) then

uep(D1) = a2(f)(u) = -1,

u e p (D2) =* a2 (f) (u) = 0,

whereas if 4 (u) <4 (uo), then

U e p(DI) = c2(f)(u) = 0,

u e p(D2) 2x2(f)(u) = 1 .

Indeed, if (u) < +oo, let u=vo < v1 < ... < Vk < uo be such that

(VO,.., Vk) = (Ve [u,U0]:4)(v) = VW)()
Now if u e p (D1), u is a point of decrease of 4, and so when 4 (u) > 4 (uo), k must be
even. On the other hand, if 4 (u) < 4 (uo), then k will be odd. Together with a similar
argument for p (D2), all four implications above follow from the definition of a2 (f).

It is then easy to see that

K (f) = J (a1 (f), a2(f)) = IR ,( dt-a.s.

and thus I (f) = Wuo (u3o)
(b) Let (Yn, n e NE) be a sequence of elements of H (F) converging to Y in

L2 (Q, F, P). Since G (I) is closed, Y e G (F). By Theorem 5.5, there is (fn, f2n) e L

and (fl,f2) e L such that yn = I(f ,f2n), n E IT, and Y = I(fl,f2). We may of course

assume that fn and f1 satisfy (5.3). But then Lemmas 5.1(b) and 5.2(d) imply that for
each e > 0,

f, I[ 0 r = lim fn I1o,;j in L2([O, u ,d1),
n-->oo

]n=lim f2'I[;] in L2 ([0, u], dL2).

Using a diagonal subsequence argument, we get (Borel) sets M1 and M2 with
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(Mi) = 0, i = 1,2, and subsequences (fX, k e I) and (fN,k e lE) such that

(5.21) fi(u) = lim f"k(u), uM, i = 1,2.
n)

Since Ynk e HW ), Proposition 5.12 affirms the existence of g.-null sets Nik, i = 1,2,
such that if u e [0,U] \ (Nk u Nk),

ftk (u) Ip(D1) (U) = (-f2 (u) + f24('VI (u))) Ip(D) (u),

(5.22) fnk (u) IP (D) (U) = (f'\ (u) 2f4 (u))) I(D,) (u).

Now set

N1' = (UNk) UM1, N2' = Nk)
k,E k1El

By Lemma 5.10 (b), there is a g2-null set N2"O N2' such that
u 4 N2" =* V (u) 4 N2' n (p (D1) u p (D2)). Finally, we set

N2 = N2''U(p(D )up(D2))cU =+c)
which is a j2-null set, such that

ui2 * u i 2k M2 and V, (u) 4 N2 uM)

We can now pass to the limit in (5.22) using (5.21), to see that if
u e [O,u] \ (N1 u N2), then

f1 (u) Ip(D1) (u) = (-f2 (u) + f2 (Vl (u))) Ip(D) (U),

f2(u)Ip(D2)(U) = (f2(u) + f2(V1l(u)))Ip(D2)(U).
By Proposition 5.12 this means that Y e H (F), concluding the proof. O

The following theorem is a generalization of [DR; Theorem 3.12], which contains
the case "O monotone non-increasing".

5.14. Theorem. Suppose 0 satisfies Assumption 5.7. Then the following conditions
are equivalent:

(a) H (r) = G (I);
(b) W (D1) is H(F)-measurable:

(c) wi and 92 are mutually singular.

Proof. (a) > (b). This follows from Proposition 3.1 and the fact that
W(D1) = W.
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(b) : (c). Note that W(D1) = I(fi,f2) where f1_ 1 and f2 0. Now if W(D1)
belongs to H (), it will in fact belong to H (F). In particular, by Lemma 5.13, W (D1)

would belong to H (I). But then Proposition 5.12 would yield g,-null sets Ni, i = 1,2
such that

us [O,u]\(NUN2) =* 1Ipjj1. = 0.

This means that p (D1) u p (D2) c N1 u N2. Since

2 ([O,U \(p (D1)U p (D2))) = O,

we can assume that

[ O,u\ (p (D1)u p (D2)) c N2.
But then [O,,] = N1 u N2, with gj (Ni) = O, i = 1,2, so g1, and 1.2 are mutually singu-
lar.

(c) * (a). By Remark 4.1 1, it suffices to show that

u - L (uo, u) and u - 1 (uo, u)

are singular functions, for all uo e [O,u I. But this is a consequence of Proposition 6.1
(a) below. C

5.15. Corollary. Assume 4 has bounded variation. Then H (r) = G (F) if and only if

4 is singular with respect to Lebesgue measure.

Proof. This is an immediate consequence of Theorem 5.14 and Proposition 6.7 (b)
below. C

6. Conditions under which P12 is singular with respect to Lebesgue-measure.

In view of Theorem 5.14, it becomes of interest to determine for which functions 4
the measures g, and P2 are mutually singular. The following proposition gives a com-
plete answer when 4 has bounded variation, and, in the general case, relates the pro-
perty to singularity of I (uo, - ) and L (uo, - ), uo E [0, u.

6. 1. Proposition.
(a) For an arbitrary continuous function 4, the following two conditions are

equivalent
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(6.1) There is a countable dense set Q c [0,u0] such that l (uo, ) and L(uo,-) are

singular (with respect to Lebesgue measure), Vu0 e Q.

(6.2) P2 is singular with respect to Lebesgue measure.

(b) If 4 has bounded variation, then (6.2) holds if and only if 4 is a singular func-
tion.

Proof. (6.1) : (6.2). Observe that there is a sequence of rectangles (Rk = [ak, bk] x

[ck,d], k e Ii), where each Rk is contained either in D1 or in D2, such that

Ekr)E =El a.s.,k*1, and UJEk = D1uD2,
k

where Ek = (Dl u D2) n p-I (p (Rk)). It is thus sufficient to show that for a fixed rec-

tangle R = La, b ] x [ c, d] (a < b,c < d), the restriction of P2 to the Borel set p (R) is

singular with respect to kl. We only examine the case R c D1, since the case R c D2
is similar.

Let u0 e Q n [a,b], and set f(u) = I (u0,u), u > u0. By (6.1), there is a Borel set
N c p (R) such that Pg (N) = 0 and p (R) \ N is a df-null set. By the above considera-
tions, the proof will be complete provided we show that p2 (P (R) \ N) = 0.

For c < t2 ! d, set I (t2) = p (u0, t2) - q (u0, t2), where

fsuptu < u0: 4(u) = t2) if ( ) 0,

q(uo,t2) = iS otherwise.
We then have (recall that fh is defined prior to Lemma 4.1)

2 (p(R) \N) = Ip-1(p(R)\N) (t) dt

d

= Jdt2 I (t2) I (rI d N) (t2)

d
. Jdt2 f1 (t2) INC(f 1 (t2))

1 (d)
= J uINC(u)df(u)

f (c)

=0

(the last equality uses the change of variables formula of [DM; Chap. VI. 2, (55.1)]).
This completes the proof of (6.1) => (6.2).
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(62) (6.1). We shall only prove that f(u) = I (uo, u) is singular with respect to l1,
for all uo e [0, u ], since the other case is similar.

Since ¢ is continuous at uo, for any fixed £ > 0, there exist a, b and d such that

a < uo< b,g 1(uo) - < d < 0(uo)
and R = [a,b] x [0,d] c D1. By (6.2), there is a Borel set N with Lebesgue measure
1 such that g2 (N) = 0. Since

l (t2)\f(t2) > (b - a)\i ,0 t2 < d,

we get

0 = 22(P(R) n )

- J If1-(p(RY)N) (t) dt
DI
d

= 4(2) (p-((R)r)N) (Uo,t t2) dt2
0

2 b-a JF1 (t2) IN(F1 (t2)) dt2

b-a (d)

= -a J u IN (u) df (u) .
u a

Thus N n [Vf1 (d) u,] is a df-null set. Since e was arbitrary, N n [uo, u ] is a df-null
set. But this implies that f is singular with respect to il, concluding the proof of (6.2)
= (6.1).

We now turn to the proof of (b). To begin with, assume 4 is singular. By (a), it
is sufficient to show that I (uO, ) and L (uo, ) are singular, for all uo E [0, u]. In
Example 4.10 (a), this was done for L (uo, - and the other case is similar.

We now show that if (6.2) holds, then 4 is singular. Since 4 has bounded varia-
tion, its derivative 4' exists almost everywhere [S; Chap. IV. Th. (9.1)] (4' may take
on the values +oc and - co). In order to check that 4 is singular, it suffices to show
that 4' = 0 pl-a.s. [S; Chap. IV. Th. (7.8)].

Set N= (ue [0,0u]: ¢'(u) exists and 4'(u) 0). We assume g1(N)>0 and
show that this leads to a contradiction. Now N = N1 u N2, where

N1 = {u e [0,u]: ¢'(u) exists and -oo < ¢'(u) < 0)

and N2 = N \ N1. So we may as well assume g1 (N1) > O. Now observe that
N1 C p (D1). To derive a contradiction, we are going to show that for some
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Ue [ ,011u], f(*) = I (uo,) satisfies f' = Of on a subset of N1 with positive Lebesgue
measure.

Since p (D1) is a countable union of sets of the form p (Rk), where Rk is a rectangle
contained in D1, there is a rectangle R c D1 such that g, (N1 n p (R)) > 0. Let a < b,
c < d be such that R = [a,b] x [c,d], and set uo = b, f(u) = I (uo,u), u > uo. Fix
u > u0, u e N1 n p(R). We show that f`(u) = 4'(u). Now since O'(u) < 0 and
u e p (R), we must have f (u) = 0 (u). But then, for sufficiently small h > 0, we have

D (f h) = f (u + h)-f (u) < 4(u + h) -4(u)
h h

so

(6.3) limsupD(f,h) < O'(u).hiLO

Now fix e > 0. Then for sufficiently small h > 0,

4 (u + h) 2 0 (u) + h (4'(u) - e).

The right-hand side of this inequality is a decreasing function of h, so

f (u + h) 2 f (u) + h (4'(u) - e).

But then

liminfD(f,h) . 4'(u) - e.
h40

Since e is arbitrary, we combine this inequality with (6.3) to get

limD(f,h) = 4'(u).
h4~

A similar argument for h t 0 gives f` (u) = 4' (u) < 0.

Thus f' < 0 on a set of positive Lebesgue measure, so f cannot be singular with
respect to 1. By part (a), this contradicts the assumption that (6.2) holds, and the
proof is complete.
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