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ABSTRACT

Suppose the variable X to be predicted and the learning sample Y" that was
observed have a joint distribution, which depends on an unknown parameter 0. The
parameter 0 can be finite or infinite dimensional. A prediction region Dn for X is a
random set, depending on Yn, that contains X with prescribed probability a. This
paper studies methods for controlling simultaneously the conditional coverage probabil-
ity of Dn, given Yn, and the overall (unconditional) coverage probability of Dn. The
basic construction yields a prediction region Dn which has the following properties in
regular models: Both the conditional and overall coverage probabilities of Dn converge
to a as the size n of the leaming sample increases. The convergence of the former is
in probability. Moreover, the asymptotic distribution of the conditional coverage pro-
bability about a is typically normal; and the overall coverage probability tends to a at
rate ni1. Can one reduce the dispersion of the conditional coverage probability about
a and increase the rate at which overall coverage probability converges to a? Both
issues are addressed. The paper establishes a lower bound for the asymptotic disper-
sion of conditional coverage probability. The paper also shows how to calibrate Dn so
as to make its overall coverage probability converge to a at the faster rate n-2. This
calibration adjustment does not affect the asymptotic distribution or dispersion of the
conditional coverage probability, in a first-order analysis. In general, a bootstrap
Monte Carlo algorithm accomplishes the calibration of Dn. In special cases, analytical
calibration is possible.

* This research was supported in part by NSF Grant DMS 87-01426. Part of
the work was done while the author was a guest of Sonderforschungsbereich
123 at Universitgt Heidelberg. The author thanks G. Sawitzki and F. Seillier
for helpful comments.



1. INTRODUCTION

Prediction regions are of interest in the following context. The variable X to be
predicted and the learning sample Yn that was observed have a joint distribution P,n.
The parameter 0 is unknown but is restricted to a finite or infinite dimensional parame-
ter space. A prediction region for X is a random set Dn = Dn (a, Yn), depending on
the learning sample, that contains X with prescribed probability a.

Let P0 ( I Yn) denote the conditional distribution of X given Yn. The conditional
coverage probability of Dn given Yn is

CP(DnIYn1,0) = P0[X E DnIYn]. (1.1)

The overall coverage probability of Dn is

CP (Dn I 0) = Eo CP (Dn I Yn,0)
P0,n[X E Dn] (1.2)

where the expectation is with respect to the distribution Q%n of Yn. If CP (DnJ Yn, 0)
equals a, exactly or asymptotically, then so does CP (Dn I 0). The converse may not be
true, as shown by the following example.

Example 1. Consider the stationary first-order autoregressive model

Xi = 0 Xi-, + Ei (1.3)

where the (EJ) are i.i.d. standard normal random variables and 101 is no larger than
1 - e, for some small positive e. Suppose the learning sample is Yn = (X1,... , Xn)
and the goal is to predict X = Xn+. Let on denote the least squares estimate of 0
based on Yn, clipped so that I on I does not exceed 1 - e:

n-1 n-i
= max {min{( XiXi+J/ .£ X%i - e}, -1 + el. (1.4)

Let 1D denote the standard normal cdf and let za = 1-1 (a). For the one-sided
prediction interval

Dn=( Za + OnXn] (1.5)

the conditional coverage probability is

CP(DnIYn,)0) = DIIZa + (on 0)Xn] (1.6)

because the conditional distribution of X given Yn is N (0 Xn, 1) here. Since on is a
consistent estimate of 0, both CP (Dn I Yn, 0) and CP (Dn I 0) converge to a as n
increases, the former in probability.
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On the other hand, for the alternative one-sided prediction interval

D ( z(1 e2)-1/2 (1.7)

the overall coverage probability tends to ax as n increases, because X has a
N (0, (1 _ 02)-i) distribution. However

CP (D. I Y., 0) = [Za (l )1/2 - XO ] (1.8)

does not converge to oa, because in the limit it is distributed as
d [ (Za _ 0 Z) (1 - (2)-1/2 ], where Z is a standard normal random variable.

This paper presents methods for controlling simultaneously the overall coverage
probability and the conditional coverage probability of a prediction region. Both goals
are important. Several recent authors, including Cox and Hinkley (1974), Cox (1975,
1986), Atwood (1984), Bai and Olshen (1988) have emphasized overall coverage pro-
bability. Other recent authors, including Guttman (1970), Butler and Rothman (1980),
Butler (1982), Stine (1985), have discussed conditional coverage probability as well.
Terminology varies greatly in the works just cited.

The main findings of this paper are as follows. For a natural construction of the
prediction region Dn, the overall coverage probability CP (Dn I 0) converges to a at rate
n7" while n1/2 [CP (Dn I Yn, 0) - ca] has a normal limit law with mean zero and vari-
ance c2 (0). Appropriate calibration of Dn makes the overall coverage probability tend
to cc at rate n-2, without affecting the normal limit law for the centered conditional
coverage probability. At the same time, the asymptotic variance a2 (0) can be minim-
ized by the construction, without affecting the n-1 or nf2 rate of convergence for
overall coverage probability. Sections 3 and 4 give details.

The calibration operation mentioned above is introduced in section 2. In the sim-
plest examples, the calibration of Dn can be done exactly. In a larger class of exam-
ples, an asymptotic approximation is available for the calibration operation. This
approximation is linked to ideas in Cox (1975). In general, a bootstrap Monte Carlo
algorithm accomplishes the calibration, without bogging down in complicated algebra.

2. CONSTRUCTIONS
An extension of the classical pivotal method generates a prediction region Dn

whose conditional coverage probability and overall coverage probability both converge
to cx as the size of the leaming sample increases. Calibration of the critical value of
Dn seeks to reduce error in overall coverage probability without increasing the disper-
sion of the conditional coverage probability. Monte Carlo approximations are avail-
able for the critical values and calibrated critical values of Dn.
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2.1 Constructing Dn
Let Rn = Rn (X, Yn) be a root for the prediction region - a function of X and Yn

which will be referred to a critical value in order to generate the desired prediction
region Dn for X. Let An ( , 0, Yn) be the conditional cdf of Rn given Yn. Assume this
cdf to be continuous. Suppose On = en ( Yn) is a consistent estimate of 0 based on the
learning sample. The plug-in estimate of An ( , 0, Yn) is then An ( , On, Yn). Define
the prediction region Dn by referring Rn to the largest ath quantile of An ( , Ong Yn):

Dn= {x: Rn(x,Yn) < An-' (a,On,YYn)
= {x: An[.Rn(xYn),OwYn < a).

This construction is motivated by prediction interval (1.5) for Example 1.

The conditional coverage probability of Dn for X is

CP(DnIYn,0) = An[AK1 (acz, O 0,Y]. (2.2)

Under regularity conditions, such as those to be discussed in section 3, both
CP (Dn I Yn, 0) and CP (Dn 10) converge to a as n increases, the former converging in
probability.

Example 2. Suppose X and the elements of Yn = (X1,.. . , Xn) are i.i.d. N (pg, Y2)
random variables, the parameter 0 = (g, a2) being unknown. Let on = (Xn, sn) denote
the usual unbiased estimate of 0 based on Yn. A classical root for this problem,

Rn (X, Yn) = (X - Xn) / [Isn ( + n1l)1/2 ], (2.3)

generates, through (2.1), the one-sided prediction interval

n= ( X,x + SnZa] (2.4)

It is easily seen, in this case, that both CP (Dn I Yn, 0) and CP (Dn I 0) tend to a as n
increases, the first convergence being in probability. Nevertheless, prediction interval
(2.4) is disappointing in two ways. First, the simpler root Rn (X, Yn) = X yields the
same prediction interval by construction (2.1). Secondly, the classical interval for this
problem replaces za in (2.4) with (1 + n-l1)12 times the ath quantile of the t-
distribution with n - 1 degrees of freedom. This substitution produces a prediction
interval whose overall coverage probability is exactly a and whose conditional cover-
age probability still converges to a as n increases. The possibility of reducing the
coverage probability error of Dn in general models is the subject of the next section.
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2.2 Calibrating Dn
Let Hn( ,0) denote the cdf of the transformed root An (Rn, On, Yn). By (1.2) and

the second line of (2.1) respectively,
CP (DnI0) = EeCP (Dn I Yn 0)

= Hn (a, 0) (2.5)

Both expressions for overall coverage probability of Dn = Dn(a) will be used in the
sequel. Suppose Hn ( , 0) is continuous at its ath quantiles and Hn- (a, 0) denotes the
largest ath quantile. If 0 were known, replacing prediction region Dn (a) with
Dn [I11 (a, 0) ] would yield a prediction region whose coverage probability is exactly
a. Since 0 is unknown but has an estimate On) it is natural to consider the calibrated
prediction set

Dn 1 (a) = Dn [Hn1 (a, on)] (2.6)

It will be shown in section 3 that CP (Dn 1 1 0) typically converges to a at a faster rate
than CP (Dn I 0). On the other hand, CP (Dn,1 I Yn, 0) converges in probability to a at
the same rate as CP (Dn I Yn, O).

Example 2 (continued). Both the root Rn = X and the root (2.3) yield the one-
sided prediction interval (2.4). By (2.2),

CP(DnIYn,0) = 'I[Za + aS1 {(sn-aO)za + (Xn- )]
- a + Op (n71/2). (2.7)

Let Jr denote the cdf of the t-distribution with r degrees of freedom. Since

Hn (x, 0) = Jn-l [ zx (1 + n-)112], (2.8)
it follows by the second line of (2.5) that

CP (Dn 0) = J1 I[Za (1 + n-l)-l2]
= a - (4n)-1 (Za + 3Za) 4 (za) + O(n-2). (2.9)

From (2.8),

Hn1 (a, 0) = D [ Jn-11 (a) (1 + n-1)/2] (2.10)

Consequently, the calibrated prediction interval is

Dn1(a) = (-oo, X,n + Sn(1 + n-"1)1/2J1 (a)], (2.11)

the classical answer in this situation. Clearly CP (Dn1 I 0) = a and

CP (Dn,1 I Yn, 0) = a + Op (n-1/2) (2.12)
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by extending the reasoning for (2.7). In fact, both n12[CP (D Yn,0) - a] and
n1/2 [CP (Dr I Yn,0) - a] converge weakly to the same normal limit distribution.
This phenomenon will be explained more generally in section 4.

2.3 Monte Carlo Approximations
In a few cases, such as Example 2, Dn1 can be constructed analytically. In a

larger class of problems, it is possible to approximate Dn1 by using asymptotic expan-
sions for HE (-,On) and, if necessary, for An( ,Qn,YY). The most general approach
approximates the first or both of these cdf's by Monte Carlo methods. Algorithm 1
below assumes that An ( -, Ong Yn) can be found analytically and gives an approximation
for Hn( ,On). Algorithm 2 provides approximations for both cdf s. Both algorithms
are bootstrap algorithms in the sense that they rely on sampling from fitted models.

The following representations for H (. ,On) and An( ,Ow,Yn) underlie the two
algorithms. Let X be a random variable whose conditional distribution, given Yn, is
P6(I Yn). Then

An (x, On Yn) = Pr [ Rn (X, Yn) . x IYn (2.13)
Let (X*, Y ) be random variables whose conditional joint distribution, given Yn, is

P6,,. Let On = On(Yn). Then

Hn(x, n) = Pr[An{Rn(X*Yn)gOYn, } < xIYYn (2.14)

Let X* be a random variable whose conditional distribution, given X*, Yn* and Yn, is

PO*n ( * Yn ). In view of (2.13),

An [PrRIn (X,Yn Yon XYn]= P[Rn (X yYn ) < Rn (X*, Yn)IX*, Yn Yn]. (2.15)
Representation (2.14) is the basis for the bootstrap Algorithm 1 below. Representa-
tions (2.13), (2.14) and (2.15) are the foundation for the double bootstrap Algorithm 2.

Algorithm 1. (An is known, Hn to be found). Draw J bootstrap samples
((Xi" Yn*) 1 s j < J} from the fitted distribution Pn for (X, Yn). These bootstrap

samples are conditionally independent, given Yn. For each j, calculate 0j = O(Y*)
and *j= Rn (Xi,YnY). The empirical cdf of the values {An (Rj,OnJ Yn*):
1 < j < J} approximates Hn ( , On) for sufficiently large J.

Algorithm 2. (Both An and Hn to be found). Draw K bootstrap variables {Xk:
1 s k < K) from the fitted conditional distribution P6 (-I Yn) for X. These bootstrap

variables are conditionally independent, given Yn. The empirical cdf of the values
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{Rn(Xk, Yn): 1 < k < K) approximates An ( Ong Yn) for sufficiently large K.

Draw J bootstrap samples {(X * Y*.): 1 < j < J} as in Algorithm 1 and calculate
* *.

n

enj=en(Ynj) for each j. Then, for each j, draw K bootstrap variables tAk :
1 < k s K) from the fitted conditional distribution Pz*( IY). These bootstrap vari-
ables are conditionally independent given Yn and the {(Xj*Yn*)). Let be the pro-
portion of the values {Rn(XZ,,Yn*): 1 < k < K) which are less than or equal to
Rn(X,Ynj). The empirical cdf of the {Zj: 1 < j c J} approximates Hn(O,n) for
sufficiently large J and K.

A SUN 3/140 workstation suffices to carry out Algorithms 1 and 2 for J and K
near 1000 and modest sample size n. Both algorithms rely on simple random sam-
pling with replacement. More efficient algorithm based on importance sampling are
likely future developments.

Example 1 (continued). Table 1 reports some results from a simulation study of
three prediction intervals in the gaussian autoregressive model (1.3). For the root
Rn = X, the prediction region Dn defined by (2.1) is simply the one-sided prediction
interval (1.5). The corresponding conditional cdf An (x, on Yn) has the analytical
expression (3.5). Algorithm 1 produced the bootstrap approximation to H;'l (a, on) that
is needed to construct the calibrated prediction interval Dn1. The third prediction
interval considered was

D (a) = Dn[c+(2n)1za4(za)] (2.15)

This interval is an analytical approximation to Dn1 for this example, as will be
explained in section 4.

In the study comparing Dn, Dn1 and Dn', the value of a was .90 and On was
defined by (1.4) with e being 107. The numerical entries in Table 1 support several
conclusions:

(a) For each 0, the overall coverage probability of Dn,1 or Dn' is closer to a than
is the overall coverage probability of Dn. All three overall coverage probabilities con-
verge rapidly to a as the size n of the learning sample increases.

(b) For each 0, the standard deviation of the conditional coverage probability is
nearly the same for Dn, Dnij and Dn'. All three standard deviations tend to zero as n
increases.

Asymptotics supporting these conclusions are developed in the next two sections.
Of course, the asymptotics do not fully explain the remarkably good small sample per-
formance of DnI and Dn,1 in Example 1.
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Table 1. Overall Coverage Probabilities and
Standard Deviations of Conditional Coverage

Probabilities for Dn, Dn 1 and Dn' in Example 1.

CP (0) for S.D. of CP(I Y 0) for

n 0 Dn,D Dn D Dni D

.9 .876 .902 .916 .110 .102 .097

.5 .858 .889 .899 .149 .142 .130

.1 .851 .882 .892 .167 .162 .147
3 0. .850 .881 .891 .169 .164 .149

-.1 .850 .881 .891 .169 .164 .149
-.5 .856 .887 .897 .150 .144 .131
-.9 .878 .904 .918 .102 .092 .088

.9 .884 .897 .907 .081 .076 .074

.5 .875 .892 .898 .116 .113 .106

.1 .874 .894 .897 .122 .118 .113
5 0. .874 .893 .897 .122 .119 .112

-.1 .874 .894 .897 .121 .118 .112
-.5 .875 .893 .899 .113 .110 .103
-.9 .885 .898 .908 .081 .076 .072

NOTE: The intended coverage probability is .90. Dnb1 uses 999 bootstrap samples.
The table entries are calculatedfrom 2500 Monte Carlo trials.
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3. CONVERGENCE OF COVERAGE PROBABILITIES

This section establishes conditions under which the conditional and overall cover-
age probabilities of Dn and Dn1 converge to a, as the size of the learning sample
increases. The first restriction is to assume that

CP (D, l Y,, 0) = C (a,),0 On, UJ), (3.1)

where the function C does not depend on n and Un = Un (Yn) is a statistic. This situa-
tion arises frequently in examples, as will be shown later in the section. Suppose the
parameter space is metric. Let C (0) denote the set of sequences {I n: n > 1 }.in the
parameter space such that On converges to 0. Let L (Un I 0) stand for the distribution of

Un under Q(.

Proposition 1. Suppose (3 1) holds, C (a, 0, t, u) is continuous in (0, t, u) at points
where t = 0, and C (ac, 0,0, u) = a for all possible values of (0, u). Suppose that for
every sequence IOnI in C (0), On -e 0 in Qoen probability and {L (Un IOn)) is tight.
Then, for every sequence {Ion in C (0),

CP (Dn I Yn, 0n) -e a in Qo.,n probability (3.2)

and

CP (Dn I On) a. (3.3)

These conclusions also extend to Dn,1 if C (a, 0, t, u) is continuous in (a, 0, t, u) at
points where t = 0.

The proof of this result is in section 6. The uniformity of convergences (3.2) and
(3.3) over compact subsets of the parameter space enhances their trustworthiness. The
following examples illustrate the scope of Proposition 1.

Example 1 (continued). Suppose the root for prediction in this autoregressive
model is

Rn (X, Yn) = X. (3.4)

The conditional cdf of Rn given Xn is

An(x, 0, Yn) = (D)(x-0Xn). (3.5)

Let On be the consistent estimate of 0 given in (1.4). The prediction region Dn defined
by (2.1) coincides with the one-sided prediction interval already described in (1.5).
Proposition 1 is applicable with Un = Xn and
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C (x, 0, t,u) = D [ -1 (x) + (t - 0) u]. (3.6)

A two-sided prediction interval for X can be obtained in two ways: Combine the
one-sided interval (1.5) with the analogous one-sided interval based on the root -X,
each of nominal coverage probability (1 + a) /2; or use in (2.1) the root

Rn(X,Yn) = IX-OnXnl (3.7)

where onXn is the usual point predictor of X. Let T' (x) = d1 (x) - C (-x) be the cdf of
the folded-over standard normal distribution. Because the model is gaussian, both
methods just described yield the prediction interval

Dn= [0nXn - '-W(a), (nXn+'W-1(a)] (3.8)

Proposition 1 is again applicable, this time with Un = Xn and

C(x,0,t,u) = (D [W-1(x) + (t - 0)u] - (D[-P-1(x) + (t - 0)u]. (3.9)

Example 3. Suppose the learning sample Yn = (X1,... , Xn) follows the linear
model

Xi = fci + Ei, (3.10)

where the {ci) are known constants. The goal is to predict

X =[c + E, (3.11)

given Yn and the assumption that the errors E, (Ei} are i.i.d. with continuous cdf F,
which has mean zero and finite variance. The unknown parameter 0 = (,BF) is
estimated by On = (f3on, Fn), where o3n is the least squares estimate of [ and Fn is the
empirical cdf of the residuals {Xi - [nci: 1 < i <n}

The root

Rn (X, Yn) = X (3.12)

in (2.1) generates the one-sided prediction interval

D = (-oo,F (a) + pc] (3.13)

for X. Define the distance between 0 = (, F) and the element t = (b, G) of the param-
eter space by

d(t,0) = lb -[I + m(G,F), (3.14)
n n

where m is bounded Lipschitz distance. Assume max0c,/10ci tends to zero and ZO
i I 11 1

tends to infinity as n increases. Then the estimate On described above is consistent for
0. Proposition 1 is applicable with
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C (x, 0, t) = F [ G-1 (x) + (b - ,B) c]. (3.15)

The continuity required of the function C is immediate here because weak convergence
of cdf's to a continuous cdf implies uniform convergence.

The root

Rn(X,yn) = IX-fncl (3.16)

in (2.1) yields the two-sided prediction interval

Dn= [3nc- Gn (a), 3nc + Gn (a)], (3.17)

where G. (x) = Fn (x) - Fn (-x) is the estimated cdf of I E 1. The application of Propo-
sition 1 to this case is similar to that of the previous paragraph.

4. FURTHER ASYMPTOTICS
The asymptotic distributions of CP (Dn Yn, 0) or CP (Dn,1 I YnI 0) and the rates of

convergence to a of CP (Dn I 0) or CP (Dn1 10) are the topics of this section. Attention
is focused on the simplest case: the learning sample Yn and the variable X to be
predicted are independent. The distribution of Yn is Q0n and the distribution of X is

P0. The prediction root has the form R (X, On), where On = On (Yn) is a consistent esti-
mate of 0. The parameter space in the exposition will be an open subset of the real
line. The extension to Euclidean parameter spaces is straightforward, but requires
heavier notation.

In this setting, the conditional cdf of the root R given Yn is

A(x,0,On) = P0[R(X,On) ' x], (4.1)
where en is held fixed on the right side. The conditional coverage probability, given
Yn, of the prediction region Dn generated by (2.1) is thus a function C (a, 0,t n), which
is explicidy A [A-1 (a, n, 0n)(In0]. Note that C (a, 0, t) is a cdf in its first argument.
It will be assumed throughout that

C (a, 0, 0) = a (4.2)

for every possible 0. This occurs, in particular, when A (x, 0, t) is continuous in x.

4.1 Coverage Probabilities of Dn
The asymptotic behavior of CP (Dn I Yn, 0) and CP (Dn I 0) can be studied by

developing expansions for these two quantities. In the discussion, notation like
f(ij,k) (x, 0 t) represents the partial derivative ai+J+k f (x, 0, t) / ax1 aOi atk. Let C1 (0)
denote the class of all sequences {On) in the parameter space such that {n1/2 (On - 0))
converges to a finite limit. Let < x > denote the integer part of x. The following
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assumptions describe the leading case.

Assumption A (r). For 1 < j < r and r an even integer, there exist functions
(aj,k (0)) such that, as n increases,

r/2
nr/2 [E0, ( - 0n) - n-k aJ,k(0) I 0 (4.3)

k=< (0+1)/2>
whenever {(n) belongs to C1 (0).

Assumption B. If {0(n belongs to C1 (0), then the distribution of n2(0n-0n)
under Q0., n converges weakly to the N (0, a2,1 (0)) distribution.

These assumptions are satisfied, for example, when {Q n} is a smoothly
parametrized exponential family and on is the maximum likelihood estimate of 0. In
this situation, on is a smooth function of a sample mean and (4.3) follows by a Taylor
expansion argument (compare Theorem 5.1 on p. 101 of Lehmann, 1983). The asymp-
totic normality of Assumption B is a consequence of the central limit theorem.

Proposition 2A. Suppose Assumption B and (4.2) hold. Suppose C(0)(a, O, t)
exists and is continuous in (0, t) at points where t = 0. Then, for every sequence {0In
in C1 (0),

L[n1/2 {CP(Dn1Yn,0n)-a) 1n0] > N(O,&2(0)) (4.4)
where

2 (() = [C(0'01) (a, 0,0) ]2 a2,1 (0) (4.5)

In the extension of Proposition 2A to vector parameter 0, C(°° )(a, 0, t) is a
column vector, a2,1 (0) is a matrix, and

o2 (0) - [C(0,0'1) (a, 0, 0) ]' a2,1 () [ C(0'01) (a, 0, 0)] (4.6)

Proposition 2B. Suppose Assumption A(2) and (4.2) hold, and a2 1 (0) is continu-
ous in 0. Suppose C(0,02) (a, 0, t) exists, is bounded in (0, t), and is continuous in (0, t)
at points where t = 0. Then, for every sequence I(n) in C1 (0),

n [ CP (Dn I On) - a - n-1 b, (a, On) -* 0 (4.7)

where
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2
bi (a, 0) = 1 aj,1 (0) C(°N) (a, 0, 0) /j! (4.8)

j=1

Propositions 2A and 2B are proved in Section 6. The following example illustrates
their content.

Example 2 (continued). In this example, the parameter 0 = (Y,02) is two-

dimensional, t = (m, s2) and C (a, 0, t) is

C(ac0,t) = O[za+a 1{(s-a)za + (m-A)}]
- a+ (Za) + 2-1624%Z (4.9)

where

6 = r5-11[(s-Ca)za + (m-g)] . (4.10)

and z lies between za and za + 6. The reasoning for Proposition 2A and 2B applies,
with en = (Xe, S 2). Thus, CP (Dn I Yn, On) = C (a, On, 0n) is asymptotically normal as in
(4.4) with

(02(0) = (2-1Z2+ 1)42(za) (4.11)

Moreover, taking expectations through the expansion for CP (Dn I Yn,On) implied by
(4.9) establishes conclusion (4.7) with

b1(a,0) = -4-1 z 0 (za) + 2-1 (2-1z+l)42(za)
= 4-1 (za + 3za) (j (Za). (4.12)

This argument is an alternative derivation for (2.9).

The next two examples illustrate what can happen in situations where the reasoning
for Proposition 2A and 2B does not apply, in some respect.

Example 1 (continued). For root (3.4) in this AR(1) model, the expression (3.6)
entails

CP (Dn I Yng n) = I[Za + (on-On) Xn]
= a+6n4 (za) + 21 26 (Zn) (4.13)

where 6n represents (An - On) Xn and zn lies between za and Za + 8n. Proposition 2A
does not apply to this example. Indeed, if {0n} lies in C1 (0), then
nla2 [CP (Dn I Yn, 0n) - a] converges weakly to the product of two independent N (0, 1)
random variables and 4 (za).
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On the other hand, taking expectations through (4.13) establishes

CP (Dn I On) = a - (2n)Yza1(za) + o(n) (4.14)

By symmetry, the expectation of 8n is zero in this gaussian model. While Proposition
2B is not applicable to this example, conclusion (4.14) is analogous to (4.7).

Example 4. Suppose X and the elements of Y = (X1, . ., Xn) are iid random
variables with unknown continuous cdf F. This cdf, which is the parameter 0 here, is
estimated by the empirical cdf. Let X(1) < X(n) denote the order statistics of
the leaming sample. Define X(n+1) to be oo. From the root Rn = X, definition (2.1)
generates the one-sided prediction interval

Dn = (X(<an+l>)] (4.15)

where < > is the integer part function. Evidently, CP (Dn I Yn, 0) equals
F(X(< 1>)) for every continuous F. Since the ith uniform order statistic has a

Beta(i, n - i + 1) distribution, it follows that

n"2[CP(Dn Yn,0) - a] = N(0,a(1 - a)) (4.16)

and

CP(DnI0) = (n+ 1)-1<an+ 1>

= a + O(n-1) (4.17)

Both convergences are uniform over all continuous F. These conclusions parallel Pro-
positions 2A and 2B, though for different reasons.

Proposition 2B has several implications and extensions:

(a) Two plausible estimates for CP (Dn I 0) are the plug-in estimate CP (Dn I on) and
the naive estimate CP = a. Under the assumptions of Proposition 2B,

n[CP(Dl0~) -a-n-b(, ) 40 (4.18)n [ CP (Dn I On) ~ - l(,On) ]<°(.18
in Q9n probability. Consequently,

n [ CP (Dn IIn) - CP (Dn In)]-n 0 (4.19)

in Q9nn probability, provided b, (a, 0) is continuous in 0. By contrast, the naive esti-
mate satisfies

n[CP - CP (Dn In)]-n -b(a,0), (4.20)

and so is less efficient than the plug-in estimate. This fact and (2.5) are the bases for
the calibration procedure which generates Dnj from Dn.
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(b) Suppose C(02)(a, 0, t) is bounded in all three arguments and continuous at
points where t = 0, in addition to the assumptions of Proposition 2B. Suppose also
that b, (a, 0) is continuous in both arguments. Then

n[H1'(a,On- a + n-1b1(a,On)] - 0 (4.21)

in Qenn probability, for every sequence {0In) in C1 (0).

(c) Higher order expansions for Hn (a, 0) and fT-l (a, 0) exist under stronger regu-
larity conditions. For example, suppose Assumption A(4) and (4.2) hold, a42 (0) is
continuous, and C(04)(a, 0, t) is bounded in all three arguments and is continuous at
points where t = 0. Then, for every convergent sequence {an} in the unit interval and
every sequence {(O} in C 1 (0),

2

n2[Hn(aw,(n) - an - .£n bi(ao,0n)]-n 0 (4.22)

where b1 is given by (4.8) and
4

b2(a, 0) = aj,2 (0)C'(0'0j) (a, 0,0) /j! (4.23)
i-i

Moreover, if b2 (a, 0) and the derivative bf1 °) (a, 0) are continuous in both arguments,
then

2
n [n(a,,On)- a - zn- ci(a,On)] - 0 (4.24)

in Q0.n probability, where

c1 (a, 0) = -b1 (a, 0)

c2 (a, 0) = b (a, 0) bf °0) (a, 0) - b2 (a, 0). (4.25)

4.2 Coverage Probabilities of Dn 1

From the definition (2.6) of Dn1, it is immediate that

CP (Dn,j I Yn, 0) = C [Hn (a, On), 0, On] (4.26)

Consequently, the behavior of Hfl (a, On) strongly influences the conditional and
overall coverage probabilities of Dn,1. The discussion surrounding (4.21) and (4.24)
motivates the assumptions made about lf-l (a, On) in this section.

Proposition 3A. Suppose Assumption B and (4.2) hold. Suppose C( (a,o, t)
exists and is continuous in all three arguments at points where t = 0. Suppose that

n [ ff.-l (a, 0,I) - a ] -+ 0 (4.27)



- 15 -

in Qo n probability for every sequence {(On) in C1 (0). Then

L[n"2{CP(Dn,1jYnI,n)-aa}IOn] > N(O,a2(0)) (4.28)

where c2 (0) is defined by (4.5).

Comparing Propositions 2A and 3A reveals that both CP (Dn I Yn, (0n) and
CP (Dn,1 I Yn, On) have the same normal limiting distribution whose asymptotic variance
is proportional to the asymptotic variance of On. Thus, the estimate On should be
asymptotically efficient to minimize the asymptotic dispersion about (X of
CP (Dn I Yn, 0) or CP (Dnj I Yn, 0). This statement can be formalized in a lower asymp-
totic minimax bound and in a convolution theorem, which will be presented elsewhere.

As the next result shows, calibration of Dn achieves a bias correction of order n-1
in the conditional coverage probability of Dn. Let

rn (a, 0) = n2[H-1(a,H) - a+n-1bj(a,0)] (4.29)

for b, defined as in (4.8).

Proposition 3B. Suppose Assumption A(2) and (4.2) hold. Suppose
c(1 °°) (, 0 ) C(1. °) (a 0, t), C(2.0) (a, 0, t), bf(0'1) (a, 0), bf0'2) (a, 0) exist and are
bounded in all of their arguments at points where t = 0. Suppose that for every
sequence (on} in C1 (0),

lim sup I rn (a,)I < c (4.30)
n-->-

and

lim sup Eon I rn (a, On) I < °°* (4.31)
n--oo

Then

CP (Dn 1 1 (n) = a + 0 (n72). (4.32)

Propositions 3A and 3B are proved in Section 6. Some extensions are possible:

(a) A plausible analytical approximation to Dn1 is the prediction region

Dn" (a) = Dn [ a - n71 b, (a, On)] (4.33)

If (0on is any sequence in C1 (0), it follows from the proofs for Propositions 3B and
3A that

CP (Dn' I On) = a + 0 (n-2) (4.34)
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and

L [ n12 (CP (Dn' I Yn, On) - a) I On ] - N(O,(0)), (4.35)

like prediction region Dnm1. Nevertheless, as shown below in the discussion of exam-

ple 2, prediction regions D.1 and D ' can still differ significantly. The analytical cali-
bration idea that underlies Dn' is related to Cox (1975).

(b) Calibration of Dn can be iterated. Let H., (a, 0) = CP [ Dn,1 (a) I 0 ] and define

Dn 2 (a) = Dn,1 [Hfl (a,0)]
= Dn{Hn-l [Hnsl (a0n)X(3n]} (4.36)

Under stronger regularity conditions, the conclusion of Proposition 3A extends to
CP (Dn.2 I Yn, On) and

CP (Dn21On) = a + 0 (n-3). (4.37)

In other words, D.2 achieves a second-order bias correction to CP (Dn Yn, On). A
nested double bootstrap Monte Carlo algorithm can be used to approximate H,,,, (a, on)
and so the critical value of Dn,2.

Thus, for all sufficiently large n, the coverage probability of Dn,2 is more accurate
than that of Dn1, which in turn is more accurate than the coverage probability of Dn.
For fixed n, calibration and iterated calibration may or may not improve coverage pro-
bability. Examples 1 and 2, the numerical study reported in section 2.3, and experi-
ence with asymptotic corrections in other problems suggest that at least one round of
calibration is often worthwhile. On the other hand, the discussion below of example 4
shows that regularity conditions are essential for the success of calibration.

Example 2 (continued). In this normal location-scale model, the function b1 (a, 0)
is given by (4.12). Let

an = a + (4n)-1 (z3 + 3za), (za) (4.38)

so that Dn is just Dn (an). From (2.9) it is immediate that

CP (Dnt'IO) = a, _ 4-1 n-1(z3 + 3za) 0 (z.) + O(n-2)

= a + O (n-2) (4.39)

uniformly in 0, as expected. However, in this example CP (Dn1 0) equals a exactly,
as discussed after (2.11). Both n1/2 [ CP (Dn I Yn, 0) - a] and
n1/2 [ CP (Dm 1 Yn, 0) - a] converge weakly to a N (0, aY2 (0)) distribution, the variance
being given by (4.11). This example illustrates the extension of Propositions 3A and
3B to vector 0 and to Dn'
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Example 4 (continued). Success of the calibration adjustment requires continuity
of Hn (a, 0) in a. Such continuity is missing in example 4, where by (4.17),

Hn(a,0) = (n+1)1<an+1>,
the discrete uniform distribution supported on the values {n1 j: 0 . j < n}. In this
instance,

Hn1(cc,0) = nl< a(n+ 1)> if O < a 1
= oo if a = 1. (4.41)

Consequently, for a less than 1,

Dn, = (,X(p)], (4.42)

where f8 is < c (n + 1) > + 1. It follows that

nl'2 [ CP (Dnl I Yn, (3) - a] N (O, a (1 - a)) (4.43)

and

CP (Dn,1 10) = a + 0 (n-1) (4.44)

uniformly over all continuous F. In this nonparametric case, Dni is no better than Dn,
in either conditional or overall coverage probability.

Example 1 (continued). For the gaussian AR (1) model, with prediction root
Rn = X, the coverage probability calculation (4.14) and the reasoning behind (4.33)
yield the analytically calibrated prediction interval.

Dn' (a) = Dn[ca + (2n)1 za4) (Za)] (4.45)

where Dn is given by (1.5). By direct arguments based on (4.14), both CP (Dn1 n)
and CP (Dn' I 0n) equal a + o (n-1) while CP (Dn I On) is cc + 0 (n-1). Moreover, the
asymptotic variance of n1/2 [CP ( IYYn On) - a] is 42 (Za) for each of the prediction
intervals Dn, D,,1 and Dn'. These asymptotics are consistent with the simulation
results reported in section 2.2. They indicate that calibration works beyond the setting
of Propositions 3B and 3A.

5. PROOFS
This section proves the Propositions stated earlier in the paper.

Proof of Proposition 1. Suppose (3.2) does not hold. By going to a subsequence
assume without loss of generality that

Qen,n[ICP(Dnlyn,0n)-al >e] > 8 (5.1)
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for some sequence (n) E C (8) and some positive (e, 8). By going to a further subse-
quence, assume without loss of generality that On - 0 in Qo n probability and that Un
converges weakly under QO n to a random variable U. For Skorokhod versions of the

random variables involved, (On,Un) converges almost surely to (0,U), by Wichura
(1970). From this and the assumed properties of C, it follows that
C(a,o,Ow,Un) -* cc with probability one. This contradicts (5.1) because of (3.1).
Hence (3.2) and (3.3) hold.

The argument for the coverage probabilities of Dn1 is analogous and uses 'two
additional facts: In view of (3.3), which holds for every possible a, and (2.5), it fol-
lows that {1n- (a, On) converges to a whenever I8n} belongs to C (8). Moreover,

CP (Dn,l I Yn, On) = C [EIn1 (c, On), Ong On, Un. (5.2)

Proof of Proposition 2A. It follows from (4.2) that

CP (Dn l Yn, On) = C (a, On, on)

=a + (on - On) C0'0)(1)(a ) (5 3)

where On lies between On and On. Assumption B implies that (On0n) converges to
(0,8) in Q0,n probability. The asymptotic normality (4.4) thus follows from (5.3),

Assumption B, and the continuity assumption on C(0 01) (al, 0, t).

Proof of Proposition 2B. In this case, it follows from (4.2) that

CP (Dn I Yn, On) = a + (On - On) (cx,)(a on on)
+ 2-1 (On -On)2 C(0'002) (acx On, n) (5.4)

where On lies between 0 and 3On. By Assumption A(2),

E0 (on - On) = n a1,1 (On) + o (n71) (5.5)

EO (on - On)2 = n1 a2,1 (On) + o (n-1).

The second line in (5.5) and the continuity assumptions on C(0,0,2) (a, 0, t) and a2,1 (0)
entail

n (on - On)2 [nC(°'0'2 (a, 0n, On) - O (a, On, On)] 4 0 (5.6)
in Q( nn probability. A uniform integrability argument using the boundedness of

C(0,0,2) and the continuity of aZl (8) shows that convergence (5.6) also occurs in expec-
tation. The conclusion (4.7) follows from the facts just established, by taking expecta-
tions through (5.4).



- 19 -

Proof of Proposition 3A. It follows from (4.2) and (4.26) that

P(D IIYn 0n) = nl; (a,0n) + (n - On) I];,[l (a On) H 0 (5

where On lies between On and On. In view of (4.27), the result follows by the reason-

ing for Proposition 2A.

Proof of Proposition 3B. Let {0)n be any sequence in C1 (0). Write Kn for the
quantile function HII; and define

Kn0(a, 0) = a - n-1 b (a, 0). (5.8)

By Taylor expansion,

C[Kn (a, n), Ong (Qn] = C[Kn,o (a, 3n), On, On] +n2 rn (a, On) C(1 00) (kn, Ong On) (5.9)
where kn lies between Kn (a, On) and Kn,0 (a, On). Since C(1 00) is bounded, it follows
from (4.26) and (4.31) that

CP(Dr,1IOn) = Ee,C[Kn,o(a,On),0ni,n] + O(n2). (5.10)

The following three Taylor expansions hold:

Bn - oKn (a, on) - Kn,o (a, (n)
-n1(03 -o n) bf°") (a,QOn,1) (5.11)

= -n7 [(on - On) b0'1) (a, (n) + 2-1 (Q n- 0)2 b 0,2) (a, O2)]

where On,1 and On,2 lie between On and On. Also

c [ Kn,0 (a,) (n)?(3ng(3n] C1[Kn,o (a,9n) 3ns on ]

+ ant C(1'0'0) [IKno (a, 03n) Ong on ] + (n- n) ' [Kmo (a, On), Ong en3 ] } (5.12)
+ 2-1 82c(2,0,0) O Q)

where kn lies between Kn,o (a, on) and Kn,o (a, on) while (n.3 lies between O3n and On.
From Assumption A2, (5.10), and the boundedness of the derivatives in (5.11),

(5.12), it is apparent that

CP(Dn,On) = EonC[Kn,o(a,0n),On,0n] + O(n2) (5.13)

On the other hand, (4.30) and an expansion analogous to (5.9) establish

EC[ Kno (a,On) i On On] = EonC[ Kn (a, n), On OnI + O(n2) (5.14)

= a + O (n-2).

The second line in (5.14) relies on the continuity of Hn(a, 0) in a, itself a conse-
quence of (2.5), the first line in (5.3), and the boundedness of C(100). Combining
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(5.13) with (5.14) completes the proof.
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