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ABSTRACT

We characterize those vector-valued stochastic processes (with a finite index set and defined on an

arbitrary stochastic base) which can become a martingale under an equivalent change of measure.

This solves a problem which arises in the study of finite period securities markets with one riskless

bond and a finite number of risky stocks. In this setting, our characterization provides necessary and

sufficient conditions for the absence of arbitrage opportunities ("free lunches"). This result can be

interpreted as saying "if one cannot win betting on a process, then it must be a martingale under an

equivalent measure", and provides a converse to the intuitive notion that "one cannot win betting on a

martingale".
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1. INTRODUCTION

Classical martingale systems theorems (Halmos (1939), Doob (1953)) fornalize the intuitive idea

behind martingales, namely that "one can't win betting on a martingale". More precisely, using

Burkholder's martingale transforms (Burkholder (1966)), we have the following. Let

X = (X : t=, I ,..., T) be an Rd-valued martingale (I 5 d < co) on some stochastic base (D, F, P) and

let V = (VI t = 1, 2 ,..., T) denote an Rd-valued F-predictable stochastic process ("betting strategy").

Then the martingale transform V o X = ((V o X), : t =, ,..., T) of V with respect toX is defined by

I
(V oX), =VI Xo + £ V (X5 -X5 l)

s-i

where (V o X), represents the "accumulated gain up to time t" when following the strategy V (V * X, is!

the euclidean scalar product of the vectors V, and X.). If V o X is integrable then classical martingale

systems results show that V a X is again a martingale with respect to P and F. Thus there are no

"smart" betting strategies which can change the character of the fair game X in favor of the gambler.

Put differently, ifX and V are as above then the following condition (1.1) holds.

(1.1) for t = 1, 2,...,T and for F-predictable V,

VI *(X,-XI1-) 0 P-a.s. => V, (X, - X,,) = OP -a.s.

Observe that (1.1) still holds if P is replaced by an equivalent probability measure Q on (Q2, F) (i.e. P

and Q have the same null sets), but that the martingale-property of V o X (under P) will in general be

destroyed when P is replaced by Q.

In this paper, we show that condition (1.1) is not only sufficient but also necessary for a process X to

be a martingale under an equivalent probability measure Q on (D, F); such a Q is called an equivalent

martingale measure for (F, X). The results in this paper can thus be viewed as a converse to the classical

martingale systems theorem and can be interpreted as saying: "if one can't win betting on a process then

it must be a martingale under an equivalent change of measure". Our approach is based on a pathwise
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analysis of condition (1.1) and extends two recent developments in this area: (i) a similar but more

elementary sample path investigation of (1.1) when there are only finitely many states of nature (see

Taqqu and Willinger (1987)), and (ii) an analysis of the same change of measure problem in the case of a

single-period random process X (see Willinger and Taqqu (1988)). Willinger and Taqqu (1988) have

also solved the problem of existence of a unique martingale measure. Whereas the uniqueness problem

can be solved using only elementary probability tools, our extension relies on some abstract measurable

selection theorems. Our results also include the special case d = 1 studied by Back and Pliska (1987).

Their proof, however, does not generalize to higher dimensions.

Characterizing stochastic processes which can be transforned into martingales by means of an

equivalent change of measure is of particular interest in the analysis of stochastic models of securities

markets (see, for example, Harrison and Kreps (1979), Harrison and Pliska (1981), Taqqu and Willinger

(1987), Back and Pliska (1987), Willinger and Taqqu (1988)). In this setting, our results (in particular,

Theorem 2.9) extend those of Harrison and Pliska (1981)-and Taqqu and Willinger (1987) who consider

finite-period, frictionless securities market models when there are only finitely many states of nature.

Here we allow an arbitrary probability space and show that the economically meaningful assumption of

"no arbitrage" is both necessary and sufficient for the existence of an equivalent martingale measure for

the securities price processes (modelling the prices of one riskless bond and 1 < d < co risky stocks over

time). Intuitively, an arbitrage opportunity ("free lunch") represents a riskless plan for making profits

without initial investments and, therefore, has to be ruled out for an economic equilibrium to exist.

The problem of proving the existence of an equivalent martingale measure for geneml securities price

processes defined on a general stochastic base from such primitive economic considerations as "no

arbitrage" was posed by Harrison and Pliska (1981) (see also Hanison and Kreps (1979)). The work of

Back and Pliska (1987) solves the one-dimensional finite period case (i.e., one risky stock and one

riskless bond). Although their method of proof does not generalize to higher dimensions, they

conjectured that the same result holds for finite-period, vector-valued securities price processes. This
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conjecture is proved in our Theorem 2.9. Also note that Back and Pliska work with a more restrictive

class of "feasible" trading strategies than we do (we impose no "positive wealth constraints", see

Section 3.1); in the present finite-period setting, it is easy to see that this restriction is not essential.

A pathwise analysis along the lines suggested in this paper of the no-arbitrage assumption for

continuous-time price processes, where trading in stocks and bonds can take place continuously in time,

remains an open problem. See, however, Harrison and Pliska (1981) and Back and Pliska (1987) for

examples of what can go wrong when trading continuously.

The paper is structured as follows. In Section 2 we prove that condition (1.1) is necessary and

sufficient for the existence of an equivalent martingale measure Q for X and briefly mentdon the known

results conceming uniqueness of such a Q. In Section 3 we apply our results in the context of stochastic

modelling of finite-period, frictionless securities markets and show how the existence of an equivalent

martingale measure for the securities price process is related to the economically meaningful "no

arbitrage" assumption.

2. NECESSARY AND SUFFICIENT CONDITIONS FOR THE EXISTENCE OF AN EQUIVALENT

MARTINGALE MEASURE

The purpose of this section is to give necessary and sufficient conditions under which a discrete-time,

Rd-valued process with finite time horizon has an equivalent martingale measure. We first show that

condition (1.1) is sufficient for the existence of an equivalent martingale measure for a "one-step"

process X = (XOT, X1). This special case contains most of the technical difficulties and the problem of a

finite-period process X = (X,: t = 0, I ,..., T) follows as a coroUary of the results for the "one-step"

process. Our proofs are essentially self-contained, using only standard results from convex analysis, and

some general results conceming measurable selection. In particular, the proofs do not rely on results of

the finite-probability space setting (see Taqqu and Willinger (1987)), nor on the one-dimensional result of

Back and Pliska (1987). Both are special cases of our proof, but a reader only interested in these settings
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should consult these references. (Note that Back and Pliska (1987) assume integrability of the process, an

apparendy umatral condition since it is not preserved under a change of equivalent measure; see,

however, Remark 3.4).

We would like to point out that most of the technical difficulties in our proof come from the fact that

with d > 1, an explicit construction as in Back and Pliska (1987) is no longer feasible. However, if in

addition the process were assumed to be bounded, a discrete approximation argument as in Willinger and

Taqqu (1988, Theorem 2.3. 1), together with appropriate use of measurable selection would be possible.

2.1 The one-step case

Let (fl, F, P) be a (complete) probability space. If P is a probability measure on (D, FO, then P and

P are equivalent (on F) provided for all F e F, P(F) = 0 if and only if P(F) = 0. Note that if G is a sub

a-algebra of F, then P and P may be equivalent on G but not on F. When P and P are equivalent,

dP/dP denotes the Radon-Nikodym derivative of P with respect to P. In this case, dPidP > 0, P - as.

In order to simplify the notation, the expectation of Y under the probability measure P will be

denoted P (Y) and the conditional expectation of Y given G will be denoted P (Y I G ). If P and P are

equivalent on F and Y is P-integrable, recall that

d d~(2.1) i(Y5)=P(Y -G)/P( -G).dP dP

The set Rd with its euclidean nonn jj * will be equipped with its usual topology and its Borel a-

algebra B (Rd). We will add to Rd an element o, and set Rd - Rd u (a}. If the open neighborhoods of

are the complements of compact sets then Rd is compact and metrisable. We equip fd with this

topology.

Given two elements x, y e Rd, x y will denote their euclidean scalar product. Each a e Rd defines

a hyperplane H'= {x e Rd: a x =0). We also define H =(x e Rd: a x >0O,

= (x e Rd : a * x > 0). H a and Hs are defined analogously.
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The following lemma gives a slightly sharper result than Theorem 2.3.1 of Willinger and Taqqu

(1988); indeed, it is not difficult to see that the two statements would be equivalent if the function g

below were only required to be measurable instead of continuous.

2.1. Lemma. Let v be a probability measure on Rd with bounded support (i.e. v(K) = 1, for some

compact set K). Then the following two statements are equivalenL

(a) For alla Rd, v(Ha)= I implies v(Ha) = 1.

(b) There exists a continuous (strictly positive) function g: Rd . (0, 1] such that

xfgxg(x) v(dx)=O.

Proof. We do not need the implication (b) => (a), so its easy proof is omitted (it is similar to the firt

few lines of the proof of Theorem 2.6). So suppose (a) holds. Then for each a e Rd, we have either

v(Ha)= I or

(2.2) v(Ha) < 1 and (v(H,) > 0 and v(H<) > 0) .

Now if v(Ha) = 1, define two functions g ca and g a by

4(x)= 1, g (x) = 1, forall x E Rd.

Ifv(H1) < 1, then by (2.2),

JR4(a x)IR (x)v(dx)>O andJR(a*x) IH- (x)Ov(dx)<.

Approximating the indicator function IH (resp. 1Hi) by piecewise-linear continuous functions, we see

that there is a function g Rd -e (0, I] (resp. ga Rd - (0, I]) such that

f (a x) g a(x) v(dx) > 0 (resp. k (a x) g (x) v(a) < 0).

Regardless of the value of v(H1), we set
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min = xX g a(x) v(dx), m x g '(x) v(dx)

(observe that since the support of v is bounded, m a and mi are (finite) elements of Rd). Consider

M = {m' :aea Rd u {ma : as Rd}.

Recall that a set C is properly separated from the origin by a hyperplane Ha provided H2 contains C

but Ha does not. The set M has the following property: no hyperplane properly separates M from the

origin. Indeed, if 13 e Rd is such that v(H ) = 1, then for all a E R,

5 Ma=IR' g1X)8(X) v(dx)=O.
and similarly *m = 0. Thus M would be included in HO, and so HP would not properly separate M

from the origin. On the other hand, if v(H ) < 1, then by the definition ofg<

<i*m =|'(x) g 5(X) v(dx) < 0,
so HP does not contain M.

Since no hyperplane properly separates M from the origin, the same holds for the convex hull

conv(M) ofM. By Theorem 11.3 of Rockafellar (1970), the origin belongs to conv(M). This means that

there are finitely many points m 1 mt E M and real numbers l> ,...,k > such that XI +...+Xk = I

and I mI1 +...+Xk mk = 0. Now set g(x) =X1 gI(x) +...+Xk gk(x), where gi is the continuous function

which defines mi e M (i = 1, 2 ,..., k). Then g is continuous, 0 < g (x). 1, V x e Rd, and

k

JRx g (x) v(dx)=I i mi =0.
i-l

Thus (b) holds, and the proof is complete. M

2.2. Theoremm Let v be an arbitrary prc oabllity measure on Rd. Then the following two conditions are

equivalent.

(a) For alla e Rd, v(H2 ) =1 implies v(Ha) = 1.
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(b) There is a continuous function g :Rd - [0, 1], such that g(x) > 0, V x E Rd, and

R11 x 11 g(x)v(dx)< +oo and J x g(x)v(dx)=0.

Proof. Again, we do not need the implication (b) => (a), so its easy proof is omitted. So we show that

(a) implies (b).

Define a one-to-one tmnsformation vi: Rd -- B (0, 1) (the open unit ball centered at the origin) by

Wji(x)=x/(l + || x|l), and let v be the image of v under this transformation. Then vs defines in fact a

probability measure on Rd with bounded support, and v satisfies condition (a) in Lemma 2.1. So let

gj: Rd -4(0, 1] satisfy condition (b) of Lemma 2.1, and define g : kd - [0, 1] by

g(x)9 =j((x)) / ( + 11 x 11 ) if x *o,

and g (o) =0. This fumction satisfies all the required condidons, since

,IXi g(x)v(dx)=J ii fy(x,)l g((x))v(dx)

= R 1X 11 i(x) A(dx)
< c,

and

1x g(x) v(dx) = R'V(x) j(V(x)) vdx

xJRX )(dx)
=0. U

2.3. Remark. The function g need not be a density, since its integral with respect to v need not be 1.

We could of course rescale g appropriately, but it is the theorem as stated which will be useful in the

sequel.

Let G be a sub a-algebra of F. Recall (see, for example, Ash (1972)) that Y has a regular



conditional probability distribution given 5, that is, there exists a function ji: Q x {B (1d ) -- R such that

(a) 0 -+ p(o), B ) is G -measurable, V B e B (le);

(b) forP -almost all Co e Q, B -- .(w, B ) is a probabiity measure on (Rd, B (Rd));

(c)(p,B)=P(Ye BI 9)a.s.,VB e (Rd).

2.4. Lemma. Let Y be an arbitrary Rd -valued random variable. Then the following conditions are

equivalent:

(2.3) For all G -measurable Rd-valued random variables Z,

Z Y>O P-a.s. => Z Y=O P-a.s.

(2.4) For almost all oe n,for all a e Rd, (o,H )I= => (c,H')= 1.

In order to prove Lemma 2.4, we need the following technical result.

2.5. Lemma.

(a) Let (S, S ) be a measure space. Suppose F : n x Rd xS - R is 9 x B(Rd) x S -measurable

and non-negative. Then the map F* : nl x S - R+ u (+ J) defined by

F*(O, s)=JR F(o,x, s) p(Co, dx)

is G x S -measurable.

(b) Suppose h : nl -+ s is G -measurable. Set U(c) = F(co, Y(w), h (co)) and V(co) = F*(, h (c)).

Then V is P -integrable if and only if U is, and inthis case V = P (UI G ) a.s.

(c) For K cf xRd, set KX = (x e Rd : (o, x) e K).Now suppose K eG x B(Rd). Then the

map Co -+ .(, K) is G -measurable and

P{ceo :Y(l w))e K =JIQ(m, K ') dP ()).



- 9 -

Proof. Statement (c) is a special case of (b): just set F (o, x, s) = IK (o, x). So we prove (a) and (b).

Suppose F(,x,s)= @I()IB(x)IR(s), whereG G ,B e, B (d), andR e S. Then

F *((o. S ) = IG ((o) 11((% B ) IR (S ) ,

which is G x S -measurable. Furthermore, U (c) = IG (co) I (YE 8) (o) IR (h (0))), SO

P (UI ) (O) = IG (O) g(w,B ) IR (h (o)) = F *(co, h ((o))

Thus (a) and (b) hold for these special F, and so by applying the Monotone Class Theorem (see

Dellacherie and Meyer (1978 Th. 1.19)), (a) holds for all bounded G x B (Rd) x S -measurable functions

F. The following truncation argument will yield (a) and (b) as stated. Set F,, = min(F, n), U,, (0) =

F,,(co, Y(o)), h(0)), F,*(co, s) =J F,,(o, x, s) J(0) dx), and V, =F,,*((, h(o)). Then F,, is bounded

and 9 x B(Rd)xS -measurable, and F,, TF, U, TU, and V,, Tv, as n - oo. By the above,

',, = P (U,, G9). Since the monotone convergence theorem for conditional expectations of increasing

sequences of non-negative random variables holds whether or not the variables have finite expectations

(see Ash (1972, Theorem 6.5.3)), we get V = P (U 9 ). Using Theorem 6.4.3 of Ash (1972), tfiis shows

that U is P -integrable if and only if V is and completes the proof of (a) and (b). U

Proof ofLemma 2.4.

(2.4) => (23). Let Z be an Rd-valued G -measurable random variable such that Z * Y 0O P-a.s.. Note

that

{Z * Y >0) = ({ e Q: Y(0) e HZ("))

{Z Y=0) ={ e(cm=lY(o.)),e HZ((0)1.

Using Lemma 2.5(c) we see that

1 =P {Z *Y > O) =Q g(c,Hz(")) dP(Q,
and so ±(w,Hz('))=l, for we (iQW, where N is a P-null set By (2.4), for almost all 0)E nWN,
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g(c, HZ()) = 1. Thus by Lemma 2.5(c)

P(Z .Y=O)=IQ g(o,HZ(O) dP((o)=1.

This proves (2.3).

(2.3) => (2.4). Set

U =[(o,a)e LIxR :1(co H I= and g(o) Hc)< 1)

ThenUe G x B(Rd).

Let pr: L X Rd 4 (l be the canonical projection: pr (o, x) = co. To prove (2.4), we must show that

pr(U) has P-probability zero (since (Q, F, P) is complete, U is F-measureable: cf. Dellacherie and

Meyer (1978, Theorem III. 44-45)).

Suppose P (pr (U)) > 0. We shall show that this leads to a contradiction. Using measurable selection

(cf. for example, the theorem of Dellacherie and Meyer mentioned above) we see that there is a -

measurable Rd -valued random variable Z such that

P (coe n: (o, Z(Qo)) e U) =P(pr(U)) > 0.

Set Z(co) =Z(O) if (co, Z(Q)) e U, Z(Q) = 0 otherwise. Now we shall show that P (Z * Y 0) = I but

P {Z * Y = 0) < 1, contradicting (2.3). Indeed, we have

P (Z * Y 2: O) g(cogI=|fZ dP (1)

Ip(U) I dP @+ t,(U)Y I dP(w)

but
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P(Z *Y=O) =JL(e HZ(¢)dP(o)

Jpr(U) ±(o Hz(0) dP (0) + I d ())1)
< P(pr(U)) + P((pr(U))c)

=1E

2.6. Theorenm Let 9 cH be two (complete) sub a-algebras of F, and let Y be an arbitrary H-

measurable random varable. Then (2.3) is equivalent to the following: there exists an X-measurable

real random variable D such that O< D 1 a.s., P(II Y 11 D) < + odand P(Y DI G)=O.

The proof of this theorem uses the following technical lemma.

2.7. Lemma. Let C [Rd] be the space of continuous real functions on Rd, with the norm

g II = sup., ,, g (x)j , and let B (C [Rd]) be its Borel a-algebra. Then the following properties hold.

(a){g e C[Rd]: O<g(x)1,Vxe R) e B(C[Rd ]).

(b) The map (x, g) -4 g (x) is B (Rd) x B (C [Rd ])-measurable.

(c) Suppose F : Q x Rd x C [Rd ] - Rd is G x (Rd) x B (C [Rd ])-measurable. Set

F*(CO9 g) = I11 F(co,X,g)II g(co,dx),
and

F*(co,g)={J|F(), x,g)IL(co dx) , if FP(. g) < +oo

I0 ,otherwise.

Then F* is G x B (C [Rd ])-measurable.

(d) Suppose h :SL C [Rd] is 9-measurable. Set U@) =F(o, Y@.), h (cO)),

V((O) =F*(oh@.o(h)),L(co)=ll= F(co, Y(,), h(cw))jj, Wo) =F*(, h(()).

If Vis P -integrable, then U and V are P -integrable and V = P (UI G ) P - a.s..
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Proof. To see (a), it is sufficient to observe that

{gC[Rd]:O< g(x).1, Vx eR =)=N (i (geC[d]:r<g(x).l)
NeN rleQ XEQ'

where Q is the set of rational numbers and Q+= {r e Q: r > 0). As for (b), note that (x, g) -+ g(x) is

continuous for the product topology on Rd x C [Rd], hence measurable with respect to the Borel a-

algebra of the product topology. But this a-algebra coincides with B (Rd) x B (C [1d]), since both Rd

and C [Rd] are separable (see Billingsley (1968, App. II, p. 225)). This proves (b).

If 11 F 11 is bounded, then a Monotone Class argument similar to that of Lemma 2.5 yields (c) and (d).

Now if Vis only P -integrable, then Lemma 2.5(b) implies that 11 U ii = Uis P -integrable, so a dominated

convergence argument completes the proof. U

Proof of Theorem 2.6 Suppose there exists a random variable D with the properties stated in the

theorem: we show that this implies (2.3). Indeed, let Z be an Rd-valued random variable such that

Z *Y20 P -a.s. We must show that P(Z *Y>0)=0. Now if P(Z *Y >0) >0, we would have

P(Z (DY) > 0) > 0, and thus

O < P (Z * (DY)) =P (Z *P (DYI G))=O,

a contradiction.

Now suppose (2.3) holds, or equivalently, by Lemma 2.4, that (2.4) holds. We shall prove the

existence of a random variable D with the desired properties.

SetF(a,x, g)=x g(x),F(o,x, g)= 1 xli I g(x) . UsingLemma2.7, we see that the set

H =((o, g) e Q XC[RdI: 0 < g(x)S 1, Vxe Rd, and

R 11gli(X)g(). dx)d J X 8g(x) L(Q% di)=0

is 9 x eB (C [Rd D)-measurable. Since (2.4) holds, we use Theorem 2.2 to see that for P -almost all co E n,

there is a g ,)e C[Rd] such that (co,gJ)e H. This means that the projection of H on nL has P-
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probability one.

Now since fd is compact and metrisable, C [Rd ] is a separable and complete, and thus we can apply a

measurable selection theorem (see, for example, Dellacherie and Meyer (1978, Theorem III. 44-45)) to

get a G -measurable map G : Q - C [1d] such that (o, G (o)) e H for P -almost all () E Q. We write

G(co, x) instead of G((o)(x). The map (o,x)
-+

G(o), x) is 5 x B(Rd)-measurable, since it is the

composition of the two measurable maps (co, x) -+ (x, G (co)) and (x, g) -* g (x) (see Lemma 2.7 (b)).

Set D (c) = G (c, Y (co)) : D is f-measurable (again since it is the composition of two H-measurable

maps), and 0 < D s 1 a.s. Furthermore, since

FG*(o ))=J F(o, x, G(co)) (co, dx)= 1x 11 G (co), x) gL(co, dx) < I

LQ) = F(co, Y(wo), G (co)) = ii Y(w)jI D (c) is P -integrable and since F *(co, G (co)) =0 P -a.s., Lemma

2.7 (d) with U (co) = F (co,Y(co), G (0))) = Y(a)) D (0)) implies P (YD I g ) =0. This concludes the proof. U

2.2 Discrete time, finite horizon

Let (Qa, !FT P ) be a complete probability space, F = (Fk : k = 0 ,..., n ) a filtration, that is, each !Fk is a

complete sub-a-algebra of F and YFk chF+i, k =O,...,n - 1. Let X = (Xk : k =O,..., n) be an R -

valued stochastic process which is adapted to (FT,k =0 ,..., n), that is, Xk is F* -measurable,

k =O ,...,n.

Recall that i is called an equivalent martingale measure for X if I1XkI is P-integrable

(k =,1,..., n) and P(Xk+il IFk)=Xka.s. (k =, 1,...,n -1). A consequence of Theorem 2.6 is a

necessary and sufficient condition for the existence of an equivalent martingale measure for X.

2.9 Theorem The following two conditions are equivalent.

(2.5) For k = 1 ,..., n, for all Fk-l-measurable random variables Z,

Z * (Xk -XXk-) 2 0 P-a.s. => Z * (Xk -X k-1) = 0 P-a.s.
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(2.6) There exists an equivalent martingale measure Pfor X.

Proof. The implication (2.6) => (2.5) is an immediate consequence of Theorem 2.6. Before proving the

converse implication, recall that standard properties of conditional expectation for real random variables,

such as P (D1 D21 )= D P (D21 G) when D I is G -measurable, or P (P(D I 9W G) =P (DI G) when

Hfc q, are valid when P (D1 Di), P (Di) and P (D) exist, but are not necessarily finite (see Ash (1972,

Theorems 6.5.12 and 6.5.10)); in particular, they always hold when D 1, D2 and D are non-negative.

Now suppose (2.5) holds, and set F.+1 = [FM, X,,+1 = X,|, Dn+1 = 1, Y. +1 = 0. Fix k . n and suppose

by backwards induction that we have defined Dk+1 ,..., D.,1 and Yk+I Y,+, in such a way that for

k+1luln+1

(2.7) D, is Fi-measurable and 0 < D, S 1 P-.s.,

and for k +1 1 . n

(2.8) Y, =(X, -X,-1)P (DI1+ ... D,+11 [Fi) P-a.s.,

and

(2.9) P( Y11 DI) < +oandP(Y, DII F,-)= 0.

Using Theorem 2.6, we then construct an Fk-measurable random variable Dk with 0 < Dk S 1 P - a.s.,

in such a way that if Yk is defined by (2.8) with I = k, then (2.9) holds with I = k. Indeed, since

O < D 5 1 P - a.s., we have 0 < P (Dk+l ... D,+i [Fk) 5 1 P - a.s., and so by (2.5), Yk satisfies (2.3).

Since Yk is [Fk -measurable, Theorem 2.6 implies the existence of an [Fk -measurable random variable Dk

such that (2.9) holds with I = k.

By backwards induction, we thus have defined random variables DI ,..., D,,+ and Y1 ,..., Y+,, such

that (2.8) and (2.9) hold for 1 < 1 < n + 1. Finally, we set Do= 1/(1 + || Xoll ), and D =Do ... D,+I.

Observe that 0 < D 5 1 P - a.s. Let P be the probability measure which is equivalent to P and whose

Radon-Nikodym derivative dP/dP equals D. We shall show that P is a martingale measure forX.
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Indeed,

All Xoll ) =P(Il XO| D)=P(ll X0ll Do ... Dn+)

< P (|| Xoll D <! I,

and

Pi(li XI - XI,_11 P (11 XI - XI,_ 11 D ) = P (Do ... D, || XI. - XI,_ 11 DI,+.. DR+,)

=P(Do...D, llY,l)

.P(Dj11 Y,l)
<+00

by (2.9),11 <. n. Thusl X 11 is P-integrable, 0 .lIS n.

Finally, to check P(X1 FF-lI =X1_., it is sufficient by (2.1) to show that P((XI -XI-,) D | fT-0) 0.

Now

P((X -X,_j)D I F_ =Do.. DI-, P((Xl -XI-,)DI ...Dn+I IF1-l

=DO...D,I-,1P((X, -X,I-,)D, P(D,j1 ...D+l IT)lFTF-1)

=Do...DI-,1P(DIY,l F1-1)
=0

by(2.9),11.<n. U

2.10. Remark. In the case of a discrete-time stochastic process X = (Xk: k e N) with infinite time

horizon, condition (2.5) of Theorem 2.9 does not necessarily guarantee the existence of an equivalent

martingale measure P for X. This is illustrated by the following simple example. Suppose

Xk = Yl+...+ Yk where for some 0 < p < 1, p * 1/2, (Yk : k E N) is a sequence of i.i.d. random

variables with P (Yk = 1) =p, P (Yk =-1 = I -p. Set hFk = (Y1 ,..., Y09 k e N. It is then easy to

see that if P is a martingale measure for X which is equivalent to P, then P(Yk = 1) = P(Yk 1) = 1/2.

But then the strong law of large numbers shows that P and P are not equivalent on F = a(u F) (in
I O
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fact, they are mutually singular).

For the purpose of being complete, we finish this section by summarizing the results obtained in

Willinger and Taqqu (1988) concerning the uniqueness problem of an equivalent martingale measure P

for X. In contrast to the existence problem, Willinger and Taqqu (1988) show that uniqueness can be

dealt with using elementary probability techniques for it requires an essentially finite and rather restrictive

probabilistic setting. More precisely, they proved the following

2.11. Corollary. The following two conditions are equivalent.

(2.10) Fork =0, 1 ,..., n -1, there exists a finite minimal partition XPt offnwith Ftk =(Ptk) (up toP-

null sets) and such that for all A e Pt, dim (span ((Xk+l() - X* (mo): co e A ))) = cardinality

(A' e Pt+1 :A'(a A) - 1 where without loss of generality, we assume P (A ) > Ofor all A e !P.

(2.11) There exists a unique equivalent martingale measure i forX.

Whereas Theorem 2.9 imposes no restrictions on the underlying filtration F and is exclusively

concemed with the proper "geometry" ofX, Corollary 2.11 explicitly depicts the fundamental role of the

fine structure of F. In fact, Corollary 2.11 not only implies that if P is unique then F is necessarily

minimal (i.e., F=Fx =(..x.Xk =0,1 ,...,n) with FX=a(Xo,X1 ,...,Xk), 0.k Sn) but it also imposes

stringent constraints of the form (2.10) on the relationship between X and F. It is this lack of a tight

control on X and F that requires the use of measurable selections in the general case (see Theorem 2.6).

3. The analysis of finite-period stochastic securities markets

In this secdon we illustrate the main results of Section 2 in the context of a stochastic model for the

buying and selling of securities in discrete and finite time. The model was introduced by Harrison and

Pliska (1981) and further discussed in the setting of finite probability spaces by Taqqu and Willinger

(1987). Here we show that condition (2.5) of Theorem 2.9 arises naturally from and is equivalent to the

economically meaningful assumption of "no arbitrage". Moreover, uniqueness of an equivalent
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martingale measure for the underlying securties price process is related to the so-called

"completeness"-property of the market which enables one to uniquely price any financial instrument in

the market.

3.1 The stochastic model

For a fixed time horizon T <co (terminal date of all economic activities), consider an Rd+l-valued

(1 d < c) stochastic process S = (SI t =0, 1 ,..., T) defined on some complete probability space

(Q F, P). Each component-process S =(S": t=0, 1,..., T), 0 k . d, is assumed to be strictly

positive so that Sf(o)) can be interpreted as the price of security k at time t if Co e n represents the true

state of nature. The 0t' security is called the bond and without loss of generality (see Harrison and Kreps

(1979)), we set Sto 1 for all t; that is, we assume that the stock prices have been discounted by the price

of the riskless bond. S is also assumed to be adapted to a given filtration F= (F : t = O, I ,..., T ) and

for convenience, we take FT = F. F describes how informadon is revealed to the investors when

securities are taded over time; starting with an initial knowledge Fo about the true state of nature,

investors leam without forgetting (.Ft . F1+.1 t = 0, 1 ,..., T - 1) until they have complete infonnation

by time T (T= F).

The buying and selling of securities over time must be done according to certain trading strategies. A

trading strategy is an F-predictable, Rd+l-valued stochastic process 0= : t = 1,2 ,...,T) with

components 0,9 ,td..., *(.o,) represents the number of shares of stock k held by an investor between

dmes t - 1 and t, namely during the time period [t - 1, t) if Xo e QL occurs. Thus, the vector ¢, denotes

the investor's portfolio at timne t and the components of ¢t may assume posidve as well as negadve

values. When investors readjust their portfolio ¢, at time t, that is, buy and sell securides so as to forn a

new portfolio ++, they must do so without any knowledge of the future since 0 is required to be F-

predictable (i.e., +1 e TF). The value-process V() = (VI (O) t =0, 1 ,..., T) associated with a trading

strategy ¢ is defined by
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d
4y'So = OSo if t =O

k=O

VI (O = P - a.s.

X,OS,=St oSs otherwise,
k=)

Thus, V, (0) represents the value of the portfolio 0, at dme t and before any changes are made at that

time. A trading strategy 0 is called self-financing if all changes in the value of 0, are due to net gains

realized on investents; that is, if

ol *St = Ot+1 *SI P - a.s., t =1 ,.T-1I.

We denote by 0 the set of all self-financing trading strategies.

Finally, we state the following assumpdons commonly found in the economics literature: (i) there are

no transaction costs, (ii) all securities are perfectly divisible, (iii) the securities do not pay dividends in

[0, T], and (iv) short sales of all securities are allowed without any restrictions. Subsequently, the

stochastic model corresponding to the stochastic base (Q, F, P), the price process S, and the set 0 of

allowable trading strategies, and satisfying conditions (i) - (iv) will be denoted by (T, F, S) and called a

(finite-period, frictionless) securities market, where T = (0, 1 ,..., T } denotes the set of all trading dates.

3.1. Remark. We do not impose any kind of wealth constraint as, for example, in Harrison and Pliska

(1981) or Back and Pliska (1987) but allow for unbounded short sales. In discrete time, restrictions on

short sales have little effect on subsequent results and are not needed from a mathematical point of view

(see also the comment in Back and Pliska (1987, p.3)).

3.2 The "no-arbitrage-assumption" and the martingale-property

An arbitrage opportunity ("free lunch") represents a riskless plan for making profit without any

investment Prohibiting arbitrage opportunities is, therefore, economically reasonable and is necessary

for any kind of economic equilibrium to exist. More formally, we have
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3.2. Definition. An arbitrage opportunity is a self-financing trading strategy X e 4) such that VO(O) =0

and VT() > 0 with probability one, and VT(0) > 0 with positive probability. The market model (T, F, S)

is said to contain no arbitrage opportunities if for all 0 E O with Vo(O) =0 and VT() > 0 P - a.s., we

have VT( =O P - a.s.

Although an arbitrage opportunity as described above is defined "globally" (that is, it involves the

trading dates 0 and T only), "no arbitrage" also holds "locally", namely at any trading date

t = 1, 2 ,..., T, as we will see below. In addition to illustrating this pathwise nature of the "no-

arbitrage -property, Theorem 3.3 below relates "no arbitrage" to condition (2.5) of Theorem 2.9 and

hence to the martingale property of the price process S under a new equivalent probability measure P.

Let P denote the set of all equivalent martingale measures for S and let S= (S, t = O, 1 ,..., T) be the

Rd-valued, F-adapted process obtained from S by deleting the 0th component-process S, a I (i.e.,

S =(1,,0).

3.3 Theorem. The following three conditions are equivalent.

(3.1) The market model (T, F, S) contains no arbitrage opporunities.

(3.2) For all t E ( 1, 2 ,..., T) and a Rd-valued Fi-.1-measurable random varables a,

a (SI - SI,_) 2 0 P - a.s. => a * (SI - SI,_) = O P - a.s.

(3.3) P * 0; that is, there exists an equivalent martingale measure P for S.

Proof.

1) The proof of (3. 1) => (3.2) is similar to that of Taqqu and Willinger (1987, Lemma 3.2) except

that the probability space is no longer finite. Assume that there exists t e (0, 1,...,T - 1) and

a=(al,a,...,a2 )e F, such that a(S,+I-St)>0 P -a.s. and a(S1+1-S )>0 with positive

probability. Set W = {o e 52: P (a. (St+, - S,) > 01 Ft) (c) > 0) and note that, by assumption,

P (W) > 0. We will construct a trading strategy X e 4 with VO(O)= 0 and VT(0 2O P - a.s., and such
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that VT(O)> 0 with positive probability; that is, , defines an arbitrage opportunity, contradicting the

assumption that the marcet model (T, F, S) is "arbitrage-free".

In order to construct 0 with the desired properties, define 0, at every point in time and for each co e Q

as follows:

for s .t : ,(co)=O forall coe Ql,

a[ (o) if k e(1,2...,dJ,
for s= t +1 on W, set t*At(4)=J d

a, (@) Sk (j) if k = O,
k=1

andon Wc, set 0t+l(o)=°

fVk+1(.)(V+ ) if k =O and (o E W
for t + 1 < s < T A0(s°) =l O otherwise .

Clearly, + is F-predictable. To see that is self-financing, we check the relation S, = S, which

clearly holds for s < t and s > t. For s =t, we have 1, (o) * SI (o) = Ofor allU e fl; for oe W,

- ~ ~ ~~~~~~~dd

1 +I((1) * St ((@) a, s,5 (()) + (£ aM(() Stk((@) =o .
k=1 k=1

Since 0t+, * St =O On Wc,Ot+l SI = S holds tue for all o f.

Next observe that VO(O)=0 P - a.s. and VT(O) O P - a.s. In fact, for all s > t + 1,

(o)) = a(o) * (St+I(c) - S 0(Cd)) > O if co e W,
V( (o)' l 0 otherwise,

and hence,

P (VT(O > ) = P (a (S+l -S,)>O)=.

Moreover, by the definition of W,
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P{VT(¢) > 0) = P((VT(O > 0) rIW)

=P(lwP(a(S,+l-S1)>0I 1FJ))>0,

which shows that + is an arbitrage opportunity.

2) The equivalence (3.2) <=> (3.3) holds byTheorem 2.9.

3) Finally, in order to prove (3.3) => (3.1), let es P and let + e 0 be such that VO(O)=0 and

VT( Z) 0 P - a.s. Then VT(O)=0 P - a.s. because repeated applications of (i) the properties of

conditional expectations mentioned at the beginling of the proof of Theorem 2.9 (recall that S is

positive), (ii) the martingale property of S under P, and (iii) the self-financing property of 0 e 0P enable

us to write

P(VT (O) =P(VtV ) = ° U

3.4. Remarks. 1) To our knowledge, Theorem 3.3 is the first of its kind that proves the existence of an

equivalent martingale measure for a given finite-period, Rd-valued process from such primitive economic

considerations as "no arbitrage". In particular, we make no assumptions conceming the integrability of

S under P. On the one hand, such a requirement seems somewhat unnatural since (i) it is, in general, not

preserved under an equivalent change of measure, and (ii) for the formulation of an arbitrage opportunity

(see Definition 3.2), integrability of S under P is irrelevant. This absence of integrbility assumptions on

S is in contrast to existing results (see, for example, Harrison and Kreps (1979) who require square-

integrability of S, or Back and Pliska (1987) who assume P-integrability of the one-dimensional price

process which tuns out to be crucial for proving their one-dimensional version of our Theorem 3.3). On

the other hand one can always assume the existence of an equivalent probability measure P' on (D, F)

with bounded Radon-Nikodym derivative dP'/dP such that S is integrable under P' (see Dellacherie and

Meyer (1982, Thm. VII. 57)). Assuming integrability of S underP thus becomes a modeling issue and is.

not necessary from a mathematical point of view.
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2) Theorem 3.3 not only provides a probabilistic characterization (condition (3.3)) but also a

geometric characterization (condition (3.2)) of "no arbitrage". Indeed, condition (3.2) states implicitly

that along almost all sample paths of S (or S), the support of the conditional distribution of the increment

S~+-+S1 given Ft cannot be concentratAd on only one "side" of any Ft-measurable hyperplane in Rd

(or Rd+l)

We conclude this section with a brief discussion concening the question of uniqueness of P and its

economic interpretation. To this end, let X denote a non-negative, .F-measurable random variable

(contingent claim) and interpret X as representing a contract that pays X(Qo) dolars if, at time T, 0o E Q

denotes the true state of nature. We would like to know what prices at time zero are "reasonable" forX

if the market model (T, F, S) contains no arbitrage opportunities. Clearly, ifX is attainable; that is, there

exists + e 0 such that X = VT(0) P - a.s., then "no arbitrage" implies that the (time zero) price ic(X) is

given by r(X) = VO(O). But which claims are atainable? The market model (T, F, S) is called complete

if an contingent claims are attainable. The following characterization of the economically desirable

completeness-property of the market model (T, F, S) is an immediate consequence of Corollary 2.11 and

the finite securities market analysis in Taqqu and Willinger (1987, Section 4).

3.5. Corollary. If the market model contains no arbitrage opportunities (or, equivalently, P * 0) then

the following are equivalent.

(3.4) The market model (T, F, S) is complete.

(3.5) For every t = 0, 1 ,..., T -1, there exists a finite minimal partition X, of Q with Ft =a(P,) (up to

P-null sets) such that for an A e P , din(span([S,+1(co)-St(o): o.e A }))= cardinality

(A 'e Pt+,l: A*' A) -1 (where without loss of generality, we assume P (A ) >0 for an

A Pt., O.t <T).

(3.6) PI = 1, that is, there exists a unique equivalent martingale measure P for (F, S).
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For further discussions concerning complete markets, we refer the interested reader to Taqqu and

Willinger (1987) where, among other things, completeness of (T, F, S) and uniqueness of P e P are

treated as a family of primal-dual pairs of linear programs.

Acknowledgment. Freddy Delbawn suggested to one of us the use of continuous densities in relation

with Measurable Selection.
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