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Abstract

We develop inequalities for the concentration of bandlimited func-
tions to sets of small density. The L2 inequality implies that wideband
signals concentrated on sets of density < 1/6 can be reconstructed sta-
bly from low-cut filtered data containing noise, provided that the noise
is small in L2. The L1 inequality implies that a bandlimited function
corrupted by impulsive noise can be reconstructed perfectly, provided
the noise is concentrated on a set of density < 1/(2 + yr).
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1 Introduction
In an idealized model of exploration seismology one probes the Earth acous-
tically and interprets the reflected signal. For practical reasons, the source
contains essentially no energy in the low frequency band 0-10Hz. However,
for recovery of the acoustic impedance profile, the missing low frequency
band is of considerable importance. Recently, researchers have developed
nonlinear techniques which, in certain examples, are able to use bandlimited
data to recover the original signals over the full range (0, Nyquist) (Levy and
Fullagar [5], Walker and Ulrych [12]).

A naive application of information theory concepts might suggest that
this is impossible: the missing frequency band was not measured, so infor-
mation about it would seem to be unavailable. However, there is a piece of
side information-the signal to be recovered is sparse (i.e. zero most of the
time)-which all successful algorithms use in some way and which all the
dramatic examples exhibit.

Santosa and Symes [11] came up with a mathematical proof that extreme
sparsity allows recovery of the wideband signal in the noiseless case. Donoho
and Stark [2] derived their result, as well as some stability results in the noisy
case, from generalizations of the uncertainty principle of Fourier analysis.
The basic phenomenon can be summarized as follows. Suppose the set of
missing frequencies is W = [-rQ, rQ] and the set T supports the signal
to be recovered. We do not k-now T a priori, but suppose we do know an
a priori bound on the measure ITI. If this bound implies QITI < 1/2 then
stable recovery of the full wideband signal is possible. In general the recovery
method is nonlinear.

This result, while it goes in the right direction, falls short of practical
application. The sets T of interest in practice are those whose density is a
priori small, but whose total measure ITI is large. (Think of a long train
of "events", each of brief duration, only a few events per unit time, but
continuing persistently, so that the total duration of all events is great.)

In section 2 we show that when W is an interval of low frequencies W =
[-ire, ire], the density of T, rather than the total measure, controls the
ability to stably recover the missing frequency band. Define the maximum
density of T

p(T,Q) -- Qsup Tn [t,t+]+
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We show that if p(T, Q) is known a priori to be less than 1/6, i.e. if T has
small mass in every interval of length 1/Q, then stable recovery is possible,
with explicitly given bound on the noise amplification. The constants we
get can certainly be improved (i.e. the 1/6 could conceivably be replaced by
something near to 1/2), but at least the principle is established.

The result just stated depends on Theorems 1 and 2, which do not men-
tion signal recovery at all. Instead, those theorems make statements about
the fraction of a function's L2 norm which can be concentrated on sets of
low density. Such results have analogs in Ll-norm, which are developed in
section 3.

The L1 results also have applications in signal recovery. Logan [6] dis-
covered an interesting phenomenon. Suppose we get noisy measurements of
a bandlimited signal that is in L1. We know nothing whatever about the
noise, except that the measure of its support is small and it has finite L1-
norm. Then, Logan showed, we can recover the original bandlimited signal
perfectly, without error, provided only that the support of the noise satisfies
ITIQ < 1/2. The inequalities we develop in section 3 on L1 concentration
show that the same phenomenon occurs even if we only suppose that the
density p(T,Q) < 1/(2 + 7r). In other words, the noise can be persistent,
even supported on a set of infinite measure, yet the original bandlimited
signal may be recovered perfectly. Again, the constant should be improved
from 1/(2 + r) to something larger, perhaps approaching 1/2. (It cannot be
better than 1/2).

In section 4, we discuss versions of these results for discrete-time signals.
In section 5 we discuss the possibility of improving the constants in these
relations.

An interesting aspect of our approach is that we rely on versions of a
family of inequalities developed in number theory which Montgomery [7]
calls "the analytic principle of the Large Sieve". The large sieve is in some
sense about the concentration of bandlimited functions to thin sets when the
frequency space is a discrete set. As we show, a version of the large sieve
due to Bombieri makes this connection transparent. Considerable work on
best constants in the large sieve has been done. This makes our L2 result on
concentration of bandlimited functions, via the large sieve, somewhat sharper
for our purposes than the classical work of Plancherel and Polya, Boas, and
Nikolskii, which use complex variable techniques.
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2 Concentration in L2 Norm

We briefly discuss signal recovery. Suppose we observe the signal r defined
by

r = (I-Pw)s + n

where r, s, and n are L2 functions, I is the identity operator, and Pw is
the operator that bandlimits to W. We would like to have measured s, but
instead we get the noisy, data r missing frequencies in W. Suppose that
T = supp(s) belongs a priori to the class T, and let T2 denote

T2= {T1 U T2 : T E T}.

Define
Ao(TI1Q)- IIPTPWIlI

where PT is the operator (PTf) = f ltET that sets f to zero off T. Donoho
and Stark [2] show that if

A(T2jQ) sup Ao(T, Q) < 1,
TET2

then stable recovery of s from r is possible even though T is unknown
(except for T E T)-with stability coefficient 2(1 - A)-1. The uncertainty
principle they develop gives, in the notation of this paper,

Ao(T,Q) <. ;

therefore, if T {T TI < 12}, we have A(T2, Q) < I < 1, and the result
mentioned in the introduction.

We now develop bounds on A(T, Q) when W [-irQ, ire] is an interval
of low frequencies, for sets T which are of low density. The ideas are clearest
for thin, periodic sets.

Theorem 1 Let T be a periodic set: T = T + 1/Q. Then

A\o(T,Q)-= R) (1)
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Proof. Let B2(irQ) be the set of bandlimited functions with finite L2
norm, i.e.

B2(7rf) = {f: f = L eiwtf(w)dw with If112 < 00}.

Now

IIPTPWII = supfIEL2 lIIfIl
sup IIPTPwfII (as IIfH12 > IIPwfII2)

fEB2(lrf) IIPwf II

= sup IIfII
Now the rescaling

f(t) = f( t Q1/2

maps B2(7rQ) in a one-to-one fashion onto A2(ir), preserves concentration:

ft If 12 fT If 12
f Ifl2 f IfI2 '

(2)

and preserves density: p(T, Q) = p(T, 1). Therefore
Q = 1, it is true for all positive Q.

For f E B2(7r), the sampling theorem says that
00

lIfIl2 = f2(k + h)
k=-oo

for any h E R. Thus
00

IT kE JTnrk,k+l] f2(k + h)dh

= f kEf2(k + h)dhJTro,oi] 00

n[o,II (by3)
= IfII2 ITn [0,1]1.

if the result is true for

(3)

(Fubini)

(4)
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Hence
IIpTf 112

=
Tn [t,t+ 1]1=p(T,1)

lhf 112
for every f E B2(ir), and this establishes the proof.

Theorem 1 gives simple examples of sets T of infinite measure on which no
W-bandlimited function can be highly concentrated -simply pick the density
of T small.

For aperiodic T, we rely on the large sieve. See the excellent article of
H.L. Mongtomery [7] for a general survey, and, on page 562, reference to the
following:

Bombieri's Large Sieve Inequality. Let S(cx) = Zk+l ake2:ikG be
a trigonometric polynomial of degree n and period 1. Let p be a measure
supported on [0, 1]. Then

1 Sa12+6 m+n
12

101 IS()I'dp < (n +2v1)(supj dp) EIakm+ (5)°1 Z_aak=m+(

The large sieve may be viewed as a substitute for the sampling theorem
(3) for non-equispaced sequences, as we explain later. With it, we prove

Theorem 2 Let T be arbitrary measurable.

Ao(T, l) < 2 + l/c p(T,T) (6)

Proof. As in Theorem 1, we may prove the result just in the case =
1. Assume that f E B2(7r) is not identically zero and has f(w) uniformly
continuous on [-7r, ir]. We will show that

T if 12 < (2 +l/c) p(T, cfl). (7)

An easy approximation argument extends this inequality to all f E B2(r),
hence (6).

Define

fN(t) = E f(N)e"v. (8)
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We claim that fN is an excellent approximation to f on [-N, N], and will
show later that

fTn[-N,NBIfN(t)Idt T If(t)I2dt
f[-N,N] IfN(t) 12dt fw if(t)1l2dt

Note that fN(t) is a trigonometric polynomial with period 2N. Also,
S(a) = fN(-N + 2Na) is a trigonometric polynomial of degree n = 2N + 1
and period 1. Put A = (T + N)/2N n [0,1]; then

fA IS(a)12 fTn(-N,N] IfN(t) 12dt

fo IS(a) 12 J[_NN] IfN(t)12dt
We use (5) to bound the left hand side. We have S(a) E,+n ake2'ika

with ak = f( N)()N, m -N - 1. Put p(c,a + 6] = IA n (a,a + 6]j
Bombieri's inequality gives

I IS(a)12 < (n + 26-1) (sup JA n (a, a + 6]1) j lak.2.

By orthogonality of e2rika and e2rila on [0, 1] when k # 1, fJO IS(a)12da -
EIakI2. Hence

A IS,(a)12 < (n + 26-1)p(A, -1). (10)
£ IS(a)12

Put c-1 - 2N6, and note that

p(T n [-N, N], c) = p(A, 6-1).
Then n6= (2N + 1)- c- +6, and

(n + 26')6p(A, 6') <(c-'(1 + 1+ 2)p(T, c). (11)
2N

The theorem follows from (10)-(11) and our claim (9).
To prove (9), note that f is uniformly continuous, so the Riemann Sum

2N ENN f( ' )ei"Nrt converges to the integral 1 f f (w)e"wtdw, i.e.

fN(t) -- f(t) for each t. (12)
Similarly, If(w)12 is uniformly continuous on [-ir, ir] and so

i N )rk 2 IA(W)12dW (13)
2N-N N
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By Parseval's relation, this implies

,N 00

N
IfN(t)I2dt J0 If(t)12dt (14)

Define gN(t) - IfN(t)212ltl<N and g(t) = If(t)12. Then (12) says that gN(t) --

g(t) pointwise, and (14) says thatf gN-+ f g. As gN > 0 and g > 0, Sheffe's
lemma says ff. IgN -91 -O 0. In particular, fT 9N -- fT 9. Combining this
with (14) and the fact that g is not identically zero gives (9).

Putting c = 1 in (6) gives

Corollary 3 Let T be the class of sets T with p(T, Q) < I < 1/6. If it is
known a priori that supp(s) E T then stable recovery of s from r (I-
Pw)s + n is possible. There is a nonlinear mapping s(r) with

Is -s(r)II < 2(1 - 61)l1/21In|1 (15)

Putting c > 1 shows that stable recovery is possible with even higher
density than 1/6, provided the density is measured on sufficiently short in-
tervals.

There are many ways to prove results analogous to Theorem 2, only with
worse constants. Our early attempts in this direction used inequalities on
entire functions developed by Plancherel and Polya [10] and by Boas [1].
These inequalities allow one to prove (6) in the case c = 1 with the constants
4.23794 and (7 + ;4) rather the constant 3. Our next attempts used an
inequality of Duffin-Shaeffer from the theory of nonharmonic Fourier series,
which allowed us to get the constant 1 + ir. We later learned of work by
Nikolskii [8] which we used to give the same constant, 1 + ir, but by a different
and perhaps simpler argument. Our best result not using the large sieve is
based on an idea like that in section 3 below, which allows us to get the
constant 1 + . This is still considerably larger than V23 for our purposes.

The reader may wonder why the large sieve is useful here. Consider
another version, see [7], Theorem 3

Standard large sieve inequality. Let (ai) be a sequence of points
in [0, 1] which are well spaced: Iai- ajl > 6 for i =# j. Let S(a) be a
trigonometric polynomial of degree n and period 1. Then

E IS(aj)I2 < (n - 1 + 6-1) E IakI2. (16)
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This inequality has a long history - see Montgomery [7]. This particular
form, with coefficient n - 1 + 6-1, is due to Selberg. It is closely related to
Bombieri's inequality (5), and in fact easily implies

|IS(a) 12dA < 2(n-1 + -1) (s f ds) E lak12 (17)
which is (5) to within a factor of 2.

Equations (16) and (17) allow us to see that Theorem 2 really does have
the same logical structure as Theorem 1. If the ai were equally spaced in
(16), then we would have, by a discrete form of the sampling theorem (3),

n-1 m+n

E IS(ai)l2 = n E lak 12 (18)
i=O k=m+l

Hence the large sieve (16) says that the sampling theorem holds approxi-
mately, for well-spaced sampling points.

In fact, the derivation of (17) from (16) will seem familiar to the reader
who has studied Theorem 1. Suppose that ai is the point at which IS(a)I
attains its maximum value in the interval [Si, S(i + 1)]. Then

J IS(a)I2dy < Ez S(aj)j2i(bi,b(i + 1)] (19)
i

< ( IS(a)12) max(i, (i + 1)] (20)

Now ai+2 - ai > S and so by (16)

Z IS(ai)l2 < (n - 1 + 5-1)Z IakI2 (21)
i even

Z |S(a,i)I2 < (n - 1 + 6-1) E lak12. (22)
i odd

Combining (19) and (21)-(22) gives (17). Just as in Theorem 1, the key
ideas are a 'sampling theorem' and the partitioning of the range into equal
subintervals.

While similar in form to (5), (17) only gives Ao(T, Q) < + 2/c p(T, cQ).
For moderate c this is better than any non-sieve result we have been able to
get; e.g. for c = 1 it gives the constant 2 < (1 + r). But when c = 1 (17)
leads to a requirement of density below 1/8 for stable recovery, whereas the
inequality (5) leads to 1/6.
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3 Concentration in L1 norm

We turn to results for L1 concentration. Let B (irQ) denote the entire func-
tions of type xrQ that are in L1 on the real axis. Then define

Ao(T4Q) sup IIPTf Ii
fIEB1(ir) Ilfili

and also
M(T, Q) _ sup 1uo(T, Q)

tET
We briefly describe an application of M. Suppose we observe a signal

s E Bi(irQ) with impulsive noise, so that

r = s + n

and we know a priori that the noise is zero except on a set T which is unknown
to us, but which is known to have small measure. Logan [6] showed that if
QITI < 1/2 then s can be reconstructed perfectly from r provided only that
llnlll < oo. See [2] for extensions to the case where W is an arbitrary
passband rather than an interval.

Actually, when W is an interval of length 2irQ, Logan's phenomenon is
implied by the inequality M(T, l) < 1/2. Thus bounds on M(T,Ql) using
p(T, Q) would be a considerable improvement on the condition QITI < 1/2.
We begin with a result for periodic sets.

Theorem 4 Let T = T + a. Then

po(TjQ) < 2 p(T, Q) (23)

Proof. Suppose we have a function g E L1 with the reproducing prop-
erty: g * f = f, whenever f E B1(r). Any function in L1 with 4(w) = 1 for
w E [-ir, ir] has the reproducing property. Then

IT If(t)Idt = IT Jg(t - u)f(u)duldt
< If(u) I lg(t - u)jdtdu

< llflli supJ g(t - u)Idt.
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Now

Ig(t - u)Idt E Tn(k,k+l] lg(t - u)Idt
n[J 1]E jg(k + h - u)Idh

< ITn [0,1]1 supkg(k+h -u)I
h k

p(T,1)jIgII,1iX
where we define IlgK = SUPh Ek Ig(k + h)j.

Therefore, (23) is implied by the assertion that for some g with the re-
producing property, Igi KI < 2. This is proved in the following lemma.

Lemma 5 Let g(t) = 2 2t)-2sin . Then g has the reproducing property
for Bi (r) and I Ig I < 2.

Proof Note that '(W) = A2(W) - (w) where

A2w(W)= (2_I-1)+
Axr(S)-(1 - 17r )

are triangular functions of heights 2 and 1, with supports [-2w,,2w] and
[-x, w] respectively. (This may be checked by noting that each of these
functions can be expressed as a convolution of boxcars,

A2r(W)= 1 * Xir

A 7r(S) 1 Xir/2 * Xir/2

where X./2(w) = I{IwI<,/2} etc. One then uses the formulas for the transform
of a boxcar.)

From this representation, the reproducing property is immediate, since
the graph of g is the difference of two triangles, and hence is trapezoidal,
with height 1 on [-r, 7].
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It remains to check the size of the norm.

21
EIg(k + h)I 72 E (k + h)2 akm42, h
k

where ak,h = Isin2(ir(k + h)) - sin2( 2-(k + h))I. Using the identity

' Z (x - k)-2 = cosec2(irx)
k=-oo

(Gradshteyn and Rhyzhik 1.422.4.), we have that

2 E (k + h)2akmod2 h =1 1 ak,hcoseC ( -(-k -h))~~2(kh)2 ~~2 k=O 2

-1 ±isin2(lr(k + h))
2k__ sin2(!2(k + h))

Experimenting on the computer, the expression clearly has its maximum at
h = 0 where it takes the value 2.

Theorem 4 shows that there are sets T of infinite measure and density
nearly 1/4 for which Logan's Phenomenon occurs. Thus Logan's condition
fQITI < 1/2 does not exhaust the occasions when this interesting phenomenon
happens.

For aperiodic T, we again turn to large sieve ideas. Montgomery [7]
gives a large sieve inequality developed by P.X. Gallagher using the following
Sobolev-Type inequalities.

Lemma 6 Let f and f' be continuous on [0, 1]. Then

If(t)I < f + j If'I for all t E [0,1] (24)

If(1/2)1 <X IfI + 2 If (25)

The proof is based on the identity

f(t) = j f(u)du + j ufi(u)du + j(1 - u)f'(u)du. (26)
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These inequalities easily allow us to establish that, even if T is aperiodic,

PO(T, Q) < (1 + ir)p(T, Q). (27)

Letakbe a maximizer of If(a)I for a E [k, k+ 1]. Then fT IfI <E If(ak)I ITn
[k, k + 1]l < p(T, 1) Ek If(ak)I. By the lemma,

If(ak)I . Ik+ Zl fk+I
= llfIliI+llf'll.

S.M. Nikolskii [8] has shown that if f E Bl(irQ) then

lIfIl <.QrIIfIli (28)

and, using this we get fT If .< p(T, 1)(1 + ir)llfIIi - i.e. (27).
This simple proof gives a much better constant than an approach based

on standard inequalities for entire functions. The results of Plancherel and
Polya and of Boas, give the constants 6.18 and 7+V The particular constant
in (27) could, however, be established using work of Nikolskii [8], who used
an idea slightly different from (24).

Inspection of (24)-(25) might suggest that (24) gives away a factor of 2
on the f If'l term, unnecessarily. By using (26) and an idea similar to the
proof of Theorem 4, we are able to get the best constant known to us.

Theorem 7
so(TjQ) < (1 + 2r)p(T, Q) (29)2

Proof. As before, we assume Q = 1. Let t E [0, 1]; by (26), if t E [h, h+1),

th+1 rh+1
f(t) =Jh f(u)du + Jh f'ct,h(u)du

and so if we average over h E [t - 1, t) we get

fh+jfh+j
f(t) =Aveh ff(u)du + Aveh J f Ct,h(U)du
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Defining
t

71(t; U) 1f [h,h+l](u)dh

772(t; U) |f (t,h(U)1[h,h+1](u)dh

we get, by a calculation,

r71(t; u) = (1 - It - uj)+
772(t; U) = (1 - It - uI)2/2

and the 'reproducing identity'

f(t) = J 71(t; u)f(u)du + Ji72(t; u)f'(u)du.
Actually, using the formulas for r71 and rq2 as definitions, we see that the
identity is valid for all t.

We have

IT If . I ff(u)77(t; u)duIdt + J J f'(u)72(t; u)duldt
. If(u) I l (t; u)dtdu + Ijf'(u) 172(t; u)dtdu
< I If Ilisup ru7 (t; u)dt+ IIf'I supJT 2(t; u)dt

In the last step we have used (28). The theorem now follows by applying the
following lemma, with dp(t) = lTdt.

Lemma 8 Suppose that p is a positive sigma-finite measure, and that

sup1u(t, t + 1) < p. (30)

Then
J riu(t;u)dii(t) < p for all u (31)

J r2(t; u)d,tz(t) < p12 for all u (32)
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Proof. The two statements being proved similarly, we prove the second
one, which is more surprising. As 772(t; u) just depends on t - u, and as the
condition on p is translation invariant, it is enough to prove (32) for u = 1.
Put iq(t) = q2(t; 1) for short. Now q vanishes for t outside [0,2], and is
continuous. Therefore, integration by parts gives

77= - 2 !z,!

where we take it(c) _ i[0, c]. Now

){-(2 -t) dt t >1

so

J2 4 1
| 7dy = p(t)(-t)dt + (1 - t)p(t + 1)dt

- j(1 - 2t)Iu(t)dt + (1- t)(Ia(t + 1) - Iu(t))dt

Now p is nondecreasing. Hence

j(i - 2t)Iu(t)dt <
J1/2 1
0 (1 - 2t)p(1/2)dt + /2(1 - 2t)a(1/2)dt

=0,

and

< 1
< p (1 -t)dt=p/2.

15
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Before proceeding, we mention that we only used the fact f E B(r) in
the above proof for the inequality IIf'II < irIIfII. If we had assumed instead
that f E B1(irQ) we would have arrived at the inequality so(T,l) < (1 +
Xi)p(T, 1). By a rescaling argument, this proves: A Sieve-Like Inequality
for B1. Let f E Bj(irQ). Then

ifIfd <.(C1+7rQ/2)(supj dq) fIIl. (33)

The parallel with Bombieri's inequality (5) should be apparent, with c playing
the same role as b and xrQ/2 the same role as n.

Corollary 9 Suppose that r =s + n, s E B1(rQ), and that supp(n) = T has
density p(T, cQ) < 1 Then the minimum Ll -recovery technique recovers
the signal s perfectly.

Thus, fixing a condition on the density over intervals of length (c2)-',
with c large, we can get perfect recovery of the signal with noise densities
approaching 1/2 on short intervals.
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4 Discrete Time
For some readers, such as those interested in the geophysical prospecting
problem mentioned in the introduction, it might be useful to have analogs of
the above results for discrete time. In this section we describe two variants.

4.1 The 12 setting
Suppose that r = (rt, t = ... ,IN - 1) is a measured discrete signal. It
contains noise and is missing low frequency information; thus r = (I-Pw)s+
n where n = (nft, t =,,.. . , N - 1) is a noise sequence, and Pw is a circular
bandlimiting operator, the matrix that operates as least squares projector
onto the span of the sinusoids with frequencies in W ={ : 2K <1 K}
see [2] for details.

Defining, in the natural way, Ao(T, K) and A(T, K), by arguments in [2]
we have that A(T2, K) < 1 implies that stable recovery of s from r is possible.
If, for this setting we define the discrete density

p(t, Q) = Q sup #(T n [t, t + Q-1]) (34)
t

then we can use the large sieve (5) to get

Theorem 10

Ao(TIfK) < V(3 + 11K p T, Y)
The argument is as follows. If (Xt, t = 0, . . ., N - 1) is a discrete sequence

bandlimited to W, then, for appropriate coefficients (ak),

K/2
Xt = E ake2riktIN

k=-KI/2

Put n = K + 1, m = -K/2 - 1, etc. Then, with S(a) defined as in (5),
S(N) = Xt. Let v,,J denote the unit Dirac mass at a, and put p = EtET Vt/N-
Then

J IS(a)I2dp EZ xtI2
tET
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and
a+6

sup d = sup #(T n [t, t + NE]).
cxa ~~~~~~t

By Parseval's relation for the finite discrete Fourier Transform, Eor ixt12
NEk lak12. Using these with (5) gives

ZNE1 tj2 < (K + 1 + 2b-1) N sup #(T n [t, t + NE])

Choosing h-1 = K gives

Ao(T, K) < (3 + 1/K) p(T, N

and completes the proof.
It follows that if T is the class of discrete sets with density < I < 1/6,

stable recovery of the missing frequency band j i {I2, ..., '} is possible.
For this problem, of course, Ao(T, K) is the top singular value of a finite

matrix, and the computer may be used to explore the sharpness of (35).
Figure 1 displays the results of calculating A0 for a few hundred different
combinations of T, K. The display shows that the inequality (35) is somewhat
pessimistic.

4.2 The 11 setting
For variety, we consider a different discrete time setting, with the time index
being all integers rather than the integers mod N. Let bi (ira) be the set
of discrete bandlimited sequences: sequences in 11 whose Fourier transform
k(w) = r xte-iwt vanishes for w outside of [-irQ, ire]. Here we must
have the bandlimit Q < 1; in fact Q << 1/2 in order for the setting to be
interesting. We continue to use the definition (34) for the discrete density.

Theorem 11 Pick 6 > 0 so that S > 2Q and 6-1 is an integer. Then if
(xt) E bi (Q)

tETIXI.l- (1 + -b )p(T, Omega) (36)
Z1-0 IxtI1 2
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Proof. Under the hypotheses of the theorem, we may use Lemma 12 to
show there exists f E B1(2) with f(St) Xt. Then

00 ks- 0

E lxtl = : if(bt)l = 1: E If(k + j)I.
-oo j=1 k=-oo

Now lemma 12 below establishes an analog (39) of the sampling theorem
for 11. Putting h = Sj, we conclude that

1: lxtl > 3<-b 1 If(t) I (37)

Now
E IXtI1T(t) = E If(t6)I1T(t) = J If(u)Idi(u)

with p[u, u + c] - #(ST n [u, u + c]). Also,

fU+C
sup] d1z = (c/6)p(T,S/c).

Using the result (33) with (37) we get

E lxtl = I If(u)Ids(u)
tET

< (C' + L)(c/6)p(T, 6/c) If(t)I4

< -(1 + 7)p(T, 6/c) 1j Ixtl

The theorem follows upon setting c = 6/l.
It remains to prove the following:

Lemma 12 If f E Bl(ir/2) then

2/31 If(k)1 <. If(k+h)1 < 3/2EIf(k)l, hE [-1,1]. (38)

2/31ifII < Z if(k + h)I < 3/21IfII. (39)
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Proof. We only prove the first inequality; the second follows immediately.
If f E B1(jr), then f is a continuous function with support in [-r/2,r/2].
Note that (f(k)) is the sequence of Fourier coefficients of f, viewed as a
function on [-ir, r], and that (f(k+ h)) is the sequence of Fourier coefficients
of eiwhf(A)

Define

This is equal to eiwh on [-r/2, r/2] and goes to zero at -,r and ir. Let
(g(h)) denote the Fourier coefficients of G(h). Then, as we will see below,
E Ig(h) I< oo, and so the identity

f(k + h) Eg(h)f(k-m)
m

holds. This expresses (f(k + h)) as the convolution of (gh)) uwith (f(k)).
Now 11 is a convolution algebra, so

Iif(k + h)1III < I lg(h)IIIf(k) I111.
On the other hand,

f(k) E g($h)f(k + h -m)
m

so

Iif(k)1I,, < llghlllIlf(k + h)1J11.
The Lemma now follows from the inequality

jlgjhlll1 < 3/2 for all h E [-1,1]. (40)

Note that the ordinary Fourier transform of G(h) (w) is just g(t - h), where
g(t) = (42-4) . Moreover, in the language of Theorem 4, (40) is
equivalent to the statement that

IlglGll,l < 3/2. (41)

This may be verified by computations completely analogous to those of
Lemma 5.
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The basic argument of the lemma goes back to Wiener's memoir on
Tauberian theorems ( Wiener [13]; see also Katznelson [4], section VIII, p.227).
Plancherel and Polya [10], and Boas [1] have given explicit constants by Com-
plex variable methods; however the value 3/2 obtained here is numerically
somewhat better than these. For example, a direct adaptation of Wiener's ar-
gument, explained to us by Ytzhak Katznelson gives the constant 3; we have
taken the approach a bit further to get the constant 3/2. Boas' argument
gives the constant 7 + 4/7r2.
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5 Improvements

5.1 Increasing the Density Limit
While the inequalities we have given establish the basic principle that the
density p(T, Q), rather than ITIQ, is the controlling factor in signal recovery,
we believe that much better results are possible. In the L2 setting , we ought
to have

"sup p(T, Q) < 1 implies sup Ao(T, Q) < 1".
T2 2

For the case T periodic, Theorem 1 establishes this. But Theorem 2 ceases
being effective for supT2 p(T, Q) greater than 1/3. We indicate two reasons
we believe such a better result should hold.

First, there is the example of the Loo norm.

Theorem 13 Let f E BOO(ir). In order that

sup If(t)I . eIIfIIl,
tETc

it is necessary that T contain an interval of length

This implies that the Loo analog of AO and li0:

7oEi- sup IIPT.fII
fEBoo7rfl) IIf IIloo

satisfies
'7o <. P(T, 0),

which is effective for values of p as large as .81.
Proof of Theorem 13. Without loss of generality, suppose f attains its
maximum in T at the point x, so f(x) = If oo and f'(x) = 0. Let y E Tc.

f(y) = f(x) + LY L f"(u)dudv.
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Now

f"(u)dudv < llf IIi )2

But by Bernstein's inequality [4]

llf"lloo < 7g21flff
Thus

f(y) > f(X)- 2(y_ I)2lfii1
- lfilK(1 2(y - X)2 (42)

So in order that
sup If(Y)l < ellfll ,
YETC

we must have
lY - XI > 1\21 E

for every y E TC.
A second piece of evidence is the following result of Paneyakh [9] . If the

asymptotic density

3(T) = msup IT n [t, t + n]l/n1)n--oo t

satisfies p(T) < 1 then Ao(T, Q) < 1 for any Q < oo. This result is too weak
to imply the principle stated above, however: it is not uniform in T. That
is, we do not know from this result that there exists a constant less than 1
bounding AO for all T with density < .95, say.

5.2 Two Optimization Problems
Our method in section 3 can be abstracted as follows. If T is periodic, then

1o(T, Q) < cop(T l)
where co solves the optimization problem

cO = inf{jlgII ,1 : A(w) = 1 for all w E [-ir,7r]}.
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Here jj * I denotes the norm introduced in the proof of Theorem 4. Thus,
co is the minimal norm of any kernel g which is reproducing for Bl(ir), i.e.
which satisfies f * g = f for all f in Bl(7r).

If T is aperiodic, then

p (T, Ql) < el p(T, Ql)
where cl solves the optimization problem

C= inf{II Ig I*: g(w) = 1 for all w E [-ir,w]}.
Here II * denotes what we call the Dual-Density norm

11g11*=sup{J jgjdp : d/l > 0 , y(t,t + 1) < 1}.

This is, roughly, the dual norm of the so-called "translation-bounded mea-
sures" norm; see Fournier and Stewart [3]. It is within a factor 2 of the
norm

00

Ilgill,o= Z sup g(k + h)J.
k=_oo h

Thus, cl represents the smallest Dual-Density norm of any reproducing kernel
for B1(r).

Evidently, in section 3 we have simply exhibited two particular reproduc-
ing kernels - the trapezoid and Aveh{(t,h(u)} - and calculated constants for
those kernels. The solution of the problems just mentioned here would lead
to better constants.
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