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Intertwinings of Bessel Processes

By Marc Yor

1. Introduction.

In this paper, we study particular examples of the intertwining relation

(l.a) QtA = APt
between two Markov semigroups (Pt)t2o and (Qt)t2o defined respectively on (E,E) and
(F, F), via the Markov kernel:

A:(E,E) -* (F,F).

A number of examples of (l.a) have already attracted the attention of probabilists
for quite some time; see, for instance, Dynkin (1965) and Pitman-Rogers (1981).
Some very recent study by Diaconis-Fill (1990) has been carried out in relation with
strong uniform times.

In Chapter 2, a general filtering type framework for intertwining is presented which
includes a fair proportion of the different examples of intertwinings known up to now.

In Chapter 3, we prove that the relations (l.a) holds when Pt=P(d), Qt = p(d)
with 0 < d' < d, (p,(d)), resp: (p1(d')), the semi-group of the square of the Bessel process
of dimension d, resp: d', and A Ad'd is defined by:

(l.b) Af(y) = E [f(yZ)] where Z is a beta (ddd ) random variable2' 2

(in the sequel, we shall say that A is the multiplication kernel associated with Z).

The intertwining relation:

(1 .c) pt Ad',d = Ad'd Pt(d')
may then be considered as an extension to the semigroup level of the well-known fact
that the product of a beta (a, b) variable by an independent gamma (a + b) variable is a
gamma (a) variable

Changing the order in which the product of these two random variables is per-
formned, we show the existence of a semi-group (H-I'd,d) such that:

(l.d) ld'.dAd = AdPt(d) (O < d' < d; d. 2)
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where Ad is the multiplication kernel associated with a gamma ( d ) variable and fld.d2
is the semi-group of a piecewise linear Markov process yd',d taking values in ]R+.

In Chapter 4, it is shown that the yd,d processes possess a number of properties
which are reminiscent of those enjoyed by the squares of Bessel processes X(d').

In Chapter 5, we compare the intertwining relation (l.a) and the notion of duality
of two Markov processes with respect to a function h defined on their product space
(see Liggett (1985)). The intertwining relationships discussed in Chapter 3 are then
translated in terms of this notion of duality. Also, general questions concerning this
notion of duality are considered, such as some links with a generalized wave equation.

It would be very interesting to be able, in the examples of intertwinings discussed
in this paper (Chapter 3, in particular) to obtain a joint realization of the two Markov
processes (Xt) and (Ye), with respective semi-groups (Pr) and (Qt) which satisfy (1.a).
In many cases (see Siegmund (1976), Diaconis-Fill (1990)), there exists a pathwise
construction of Y in terms of X for instance (possibly allowing some extra randomiza-
tion). So far, we have been able to obtain such a construction of the yd',d process in
terms of X(d') only in the case d = 2.

It may well be that, if such a pathwise construction can be obtained for any d, then
most of the properties of the yd',d processes which are being discovered in Chapter 4,
mainly by analogy with their Bessel counterparts, will then appear in a more straight-
forward manner.

A summary, without proofs, of the results contained in this paper has been
presented in Yor (1989).

2. A filtering type framework for intertwining.

(2.1) The following set-up provides a fairly general framework for intertwining.
(Xt)t.o and (Yt)t.o are two measurable processes, defined on the same probability space
(Qi, F, P), taking values respectively in E and F, two measurable spaces; furthermore,
(X) and (Yr) satisfy the following properties:

1) there exist two filtrations (Ge) and (Ft) such that:
(i) for every t, G ' F ' F,
(ii) (Yt) is (Ge) adapted, and (Xt) is (F) adapted;

2) (X) is Markovian with respect to (F), with semi-group (Pt),
(Y) is Markovian with respect to (G), with semi-group (Qt);

3) there exists a Markov kernel A: E -< F such that for every f: E -e R+,

E[f(X)IGtI = Af(Y) for every t . 0.
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We then have

Proposition (2.1): For every function f: E - R+, for every u, s 2 0,

(2.a) Q. Af(Ys) = AP f(Y,)*
Consequently, under some mild (continuity) assumptions, one obtains the identity:

(2.b) QuA = APu (u 0).

Proof: The result (2.a) is obtained by computing

E [ f(Xu+s) I Gs ]

in two different ways.

On one hand, we have:

E [ f(Xu+s) I Gs ] = E [ E [ f(Xu+s) I GU+S Gs = E [ Af(Yu+s) I Gs = QuAf(Ys).
On the other hand,

E[f(Xu+s)IGsI = E[E[f(Xu+s)IFFsIGs = E[Puf(Xs)IGs] = APuf(Ys).

(2.2) We now present four classes of examples of intertwining where the
hypotheses made in (2.1) are in force.

1) Dynkin's criterion.

This is, undoubtedly, one of the best known, and oldest, examples of intertwining
between two Markov processes (see Dynkin (1965)). Here, we start with a Markov
process (Yt, t > 0) taking its values in a measurable space F; Y is Markovian with
respect to (Gt), with semi-group (Qt). We assume that there exists a measurable appli-
cation ¢: F - E such that for every measurable function f: E -+ RF, the quantity:

Qt(fo4) (y) only depends, through y, on 4 (y).

Now, if x = ¢(y), we define: Pt (x, f) = Qt(fo4)(y). It is now easy to see that the pro-
def

cess (Xt = 4 (Yr), t 2 0) is Markovian with respect to (Fr) -- (G), and has semi-group
(PI). Moreover, by definition of (Pr), we have:

QtA = APt, with Af(y) = f(q (y)),
so that the hypotheses in (2.1) are satisfied.

A particularly important example of this situation is obtained by taking Brownian
motion in Rn for (Ye), and Xt = I Ytl, the radial part of (Yr), so called: Bessel process
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with dimension n. Here, F = RW, E = R+ and 0 (y)= y 1.

2) Filtering theory.

Consider the canonical realization of a nice Markov process (Xe), taking values in
E, with semigroup (Pr), and distribution P,L associated with the initial probability meas-
ure p on E. Define

Pg = W 0P1

where W denotes the Wiener measure on C(R+, Rn), which makes (Bt), the process of
coordinates on C(R+, 1R), an n-dimensional Brownian motion. Next, define (on the
product probability space), the observation process:

t

Yt = Bt + ds h(X,)
0

where h: E - Rn is a bounded Borel function.

Define Gt = a{YY, s < t}, and the filtering process (1FQ) by:

fit(f) = Eg[f(X)IGtI.
Then, (1l19) is a ((Gt); P,) Markov process, with transition semigroup:

Qt(v; IF) = PV(HtlV E )
which satisfies the following intertwining relationship with (Pr):

(2.c) QtA = APt, where AO (v) = <v,4>.

Proof of (2.c):

QtA (v) = E,v [fl (v)] = Ev [4 (Xt)] = APt0 (v)

Note: For a more general discussion relating filtering theory and Knight's prediction
theory, see Yor (1977).

3) Pitman's representation of BES (3).

Consider (Bt, t 2 0) a one-dimensional Brownian motion starting from 0. In this
example, we take Xt = IBt 1, and Yt = I BtI + lt, t 2 0, where (l, t 2 0) is the local time
at 0 of (Bt, t 2 0). Then, it follows from Pitman (1975) that (Yt, t 2 0) is a 3-
dimensional Bessel process starting from 0, and a key to this result is that, if
Gt = a{Y,, s < t}, t 2 0, then, for every Borel function f: 1R -+ 1R+, one has:

1

E[f(Xt)IGt] = dxf(xYt).,
0
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1

so that the hypotheses made in (2.1) are satisfied with: f(y) = Jdx f (xy). Several vari-
0

ants of this result, in different contexts, have now been obtained, starting with Pitman-
Rogers (1981).

4) Age-processes.

Let (Xt) be a real-valued diffusion such that 0 is regular for itself, and let n be the
characteristic measure of excursions of X away from 0. Define
gt = sup(s < t: Xs = 01; At = t - gt (t > 0) is called the age-process.

(At) is a Markov process in the filtration Gt_ Fgt, and its semngroup Ilt (a, db) satisfies

[-tA = APt, where Af(a) = n (f(Xa) IV > a).
with V, the lifetime of the generic excursion under n. The identity:

E [ f(Xt) I Fgt] = Af(At)

(which corresponds to the third hypothesis in (2.1)) may be proved by excursion
theory. In the particular case where (Xt) is a Bessel process with dimension d < 2 and
index -v (the dimension d and the index v are related by d = 2(-v + 1), so that:
0 < v < 1), we shall now identify A.

We simply write g for gl, and define the Bessel meander of index v, (mv (u), u < 1),
by the formula:

1
mV(u) - A Xg+U(lg) (u < 1)

(this process is called the Brownian meander in the case v = 1/2). Then, we have the
following

Lemma: Let 0 < v < 1.
1) mv is independent of Fg:
2) Mv, the distribution of mv on C ([0,1];IR+), and P¶v), the distribution of
BES (d) on C ([0,1 ]; 1R+), satisfy the absolute continuity relationship:

___ l7'(1+ v)
(2.d) mv= PV), with cV =

X?v 2(1 +v)

As a consequence of (2.d), it is easily seen that the distributions Mv are all distinct as
v varies in (0,1), but that, nonetheless, the one-dimensional marginal X1 (Mv) does not

depend on v; we have:

X1 (MV,) (dp) - P (mV (1) E dp) = peP2/2 dp,



- 6 -

so that:

Af(t- g) = E[f(4~t-gtmV(1)) = dppep2I2f(\t-gtp)
0

co~~~~~~~

which yields: A f (a) =Jdp pe#12 f (Ni p).
0

(2.3) After the presentation of these four classes of examples, the following
instructive remark may be made: in the set-up of (2.1), it is wrong to think of (Yr) as a
(Markov) process which would carry less information than the process (Xi), so that
one would have:

(2.e) aT (Ysl, s < t) c cY (Xs.) s < t).

Indeed, in Example 1, it is X which, generally, carries less information than Y; in
Example 2, the natural filtrations of X and Y cannot, in general, be compared; in
Examples 3 and 4, Y carries less information than X. Instead of (2.e), the important
assumption in (2.1) is that X is Markovian with respect to (Fe), and Y is Markovian
with respect to (Gt), with (Gt) c (F); this is quite different from asserting (2.e).

3. The algebra of beta-gamma variables and its relationship with intertwining.

(3.1) The , - y algebra

In order to facilitate the reading of the main part (3.2) of this chapter, we need to
recall a few well-known facts about beta and gamma distributed random variables.

Let a and b be two strictly positive real numbers. We shall consider three families
of random variables, which we denote respectively by Za, Zab Z(2) and which are dis-
tributed as follows:

P(Za E dx) = Ya(dx) = xal-e-x dx (x >O)a IF~~~~~~1(a)

P(Za,be dX) = a,b(dx) = Xa- (1 - X)b-1 dx (O<X< 1)B(a,b)

P(Z( E dx) = fi2b(dx) = x 1dx (x>O)
(1 + x)a+bB(a,b)

(recall that: B (a,b) = rF(a) 17(b))
I?(a + b)

There exist important algebraic relations between the laws of these different variables.
We first remark that:

2)(d) Z,
(3.a) Za, = a,b

a,b
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The main relation is the following:

(d) z
(3.b) (Za,b; Za+b) ( Za ; Za+ Zb)

where, on the left-hand side, the two variables are assumed to be independent, while
on the right-hand side, Za and Zb are assumed to be independent (and, as a conse-

Zaquence of (3.b), _ and Za + Zb are independent).
Za+Zb

Here is an interesting consequence of (3.b): if Zab and Za+b,c are independent, then:
(d)

(3.c) Za,bZa+b,c = Zab+.

Proof of (3.c): From (3.b), the pair of variables (Zab; Za+b,c) may be realized as the
pair:

Za Za + Zb
Za+Zb' Za + Zb + Zc

with Za, Zb, Z0 independent; then:

(d) Za (d) Za (d)
Za,bZa+b,c, = = Zaj,+i

Za + Zb + Zc Za + Zb+c

We now remark that, as a consequence of (3.a) and (3.b), we obtain:
(3.d) (2) (d) Za

Zb
where Za and Zb are assumed to be independent.

Finally, we remark that: if Zab and Z+c are independent, then:
(d)

(3.e) ZabZ,c = Z2

Proof of (3.e): From (3.b) and (3.d), the pair of variables (Za,b,Z 2,c) may be realized
as the pair:

Za Za + Zb
Za+Zb' ZC

with Za, Zb, Zc independent. We then obtain:

(d) Za Za + Zb (d) Za
Za + Zb ZC zc
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0

(3.2) Notation.

All the intertwining kernels A which will be featured in this Chapter 3 act from R+
to R+, and are of the form:

Af(x) = E [ f(xZ) ]

for some random variable Z; it will then be convenient to say that A is the kernel of
multiplication by Z.

More precisely, we shall encounter the kemels of multiplication listed in the following
table:

Z 24d/2 Z d' d-d' l /2Zd-d' |T d-do'
2' 2 2 2' 2

A Ad Ad',d Ad-d' AV¶3-d'&

(3.3) Markovian extensions of the , - y algebra.

In this section, Pt(d) denotes the semigroup of the square of the Bessel process of
dimension d. Then, we have the following.

Theorem A: For every 0 < d' < d, and every t,

(3.0 p (d) Ad',d = Ad',d pt(d')

Remarks: 1) The identity (3.) may be understood as a Markovian extension of the
relation (3.b), since we deduce, in particular, from (3.), that,

Ad',d pt(d') f(O) = Pt( ) Ad,,d f(O)
which is equivalent to:

(3.g) E [ f(2tZd',2) = E [f(2tZdw2Z d' d- d')
2' 2

where, on the right-hand side, Zd42 and Zd' d-d' are assumed to be independent.
2' 2

The relation (3.g) is another way to write the following part of (3.b):
(law) d' d-d'

Za = Za,bZa+b3,for a - 2 and b = 2
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2) We have already encountered the relation (3d) in the particular case: d' = 1,
d = 3, in Example 3 of Chapter 2. 0

Proof of Theorem A: The identity (3d) may be obtained as a consequence of Proposi-
tion (2.1); indeed, if (Xt(d)) and (Xt(d-d)) are two independent squares of Bessel
processes, with respective dimensions d' and (d - d'), starting at 0, then:
X (d) = X(d) + X (d-d) is the square of a Bessel process of dimension d, and the
hypotheses which are in force in Proposition (2.1) are satisfied, with:

F= aYX(d'),X(d-d); S < t}, Gt = (Y(X(d) S < t)

Xt =Xt(), Yt t=x ) E

We consider again the relation (3.g) which we write in a more concise form as:

Ad, = Ad',d Ad.

Since kernels of multiplication commute, we also have:

(3.g') Ad, = AdAd,d

and this identity admits the following Markovian extension:

Theorem B: Let d . 2, 0 < d' < d. Define k = d- k'= d' Then:
2' 2 Thn

1) There exists a semi-group on R+, which we denote by (flndtd) such that:

(3.h) n1d',d Ad = AdP(d)

2) This semi-group is characterized by.

(3.i) Jn't (y, dz) (1 + Xz)-k = (1 + Xt)k

3) Let k > 1. Then, every Cl-function 4: R+ R+, with compact support, belongs to
the domain of the infinitesimal generator Lkc,k of (fl , k), and:

Lk,,k (y) = 4 (y) + -y dz (k - l)zk2 (f(zy) -_ f(y))
0

Comments:

1) The particular case d = 2 of the relation (3.h) was already encountered in
example 4) in Chapter 2 (up to some elementary modification, since in that example
we considered the Bessel process of dimension d', instead of its square). On the
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contrary, in the case: d > 2, we do not know whether the relation (3.h) may be
obtained as a consequence of Proposition (2.1) and our proof of (3.h) consists in show-
ing the existence of fld.d via (3.i). The relation (3.i) is deduced from (3.h) by apply-

ing both sides to the function (e 2 , y > 0) and using the relations:

Ad(e 2 )(Z) = (l + XZ)-k; p(d')(e 2 (Z) = (1 + t)k exp- X -Cd 0t Xp- ~~~~~2(1 + Xt)

2) The third part of the theorem follows from the second when one considers the
functions

OX(Z) = (1 + XZ)-k.

3) In the case d > 2, the following pathwise description of a Markov process Yd,d
with semi-group ntd'd is easily deduced from part 3) of the theorem.

We now discuss duality properties for the semi-groups (P(dl)) and (nId d), which will
be important in the sequel, both in order to discover some new intertwining relations
(see theorems C and D below) and also to express some results of time reversal for

Yd',d (see section (4.5) below). We begin by recalling the

Definition (3.1): Two Markov semigroups (Pa) and (Pr) on E are said to be in duality
with respect to a aY-finite positive measure p (in short: they are in p-duality) if: for
any pair of measurable functions f,g: E -- R+,

< Ptf,g> = < f, Pt >

We now have the following

Theorem (3.2): Let d' > 0, v' = -d - 1, and p (dx) = xv dx. Then:

a) p (d') is self-dual with respect to p;

2) Let d > 2, 0 < d' < d. There is a Markovian semi-group (flftd) on RF which is in
p-duality with (fltdd);
3) Every Cl-function uf: R+ .R with compact support belongs to the domain of the

d' dinfinitesimal generator Lk',k of (Iilt ), and we have:

=t, V-(' (y)+k-i Jdz (k - k)zk-k-l (Nf ( y) - (y))Lk',k Nf (Y) = _V' (Y) +
Y z

From Theorem (3.2), we easily deduce two other intertwining relations, namely (3.j)
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and (3.k) below.

Theorem C: Let 0 < d' < d, and d > 2. Then, we have:

(3.j) p(d_) Add' = Add' I-it
where A6g (y) = E[ g (y/ 2Z/2)].

Proof: We start from (3.h): I1I'd,d Ad = Adp(d), and consider the adjoint operators in
L2 (p), where p (dx) = xv dx, as in Theorem (3.2). We obtain:

A I d'd p (d') A
Adrlt' Ad

since P d') is self-adjoint with respect to p. It remains to compute explicitly Ad; one
finds:

A~g(y) 1-F(k -k')E[(/zi)Ad ()= 2 k E [g(y /2Z d-d' )] - k,'Ad-& g (y)d (Y) 2k'IF(k) 2 CkV

Theorem D: Let 0 < d' < d, and d > 2. Then, we have:

(3.k) n1d,d Ad,d3 = A (2) d'd,d

where Ad3_d, f(x) = E [ f(xZTdd- )
2' 2

Proof: Remark that, from (3.d): A42) =AdA&d' The result (3.k) now follows
immediately from the intertwining relations (3.h) and (3j). ]

As was already pointed out, Theorems A and B may be understood as Markovian
extensions of the relation (3.b). Likewise, the next Theorem E is a Markovian exten-
sion of the relation

(d)
(3.c) Za,b Za+b,c = Zab+c
with the notation of section (3.1).

Theorem E: Let 0 < d1 < d2 <d3, and 2 < d2 < d3. Then:

(3.1) d1_ ,d2A =A dld317 Ad2,d3 Ad2,d3rI
and

(3.m) ditdA AdAd1, d d1it d2-d1, d3-d 1d= d d3-d1
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where A8,,g(y) = E[g(y/Z 8, 8)] (O < B' <)
2' 2

Proof: 1) Since the kernel Ad3 is determining, it suffices, in order to prove (3.1), to

show the relation:

(3.1)' IIdl'd2Add Ad3 = Ad d1.d3Add .

Now, the left-hand side of (3.1)' is equal to: lit 1 2Ad2, with the help of (3.g) (or
(3.g)').

The right-hand side of (3.1)' is equal to:

Ad2,d3Ad3Pt(1) - Ad2 Pt(d) = 2Ad2d
using first Theorem B, then (3.g), and again Theorem B.

2) To prove (3.m), we consider the adjoint operators in L2 (j), where
. (dx) = xvl dx, of the kernels featured in (3.1).

By Theorem (3.2), the adjoint of Il-t i (i = 2,3) is nlt l, and it is easily shown that
the adjoint of Ad2,d3 is a multiple of Ad2d,,d-d,. The relation (3.m) is now proved. D

Remarks: 1) Assuming that the different intertwining relations obtained in this
chapter may be realized in such a way that they fit into the filtering framework dis-
cussed in section (2.1), Theorem E suggests that, for d' fixed, and as d increases, the
process (yd',d (t), t > 0) is Markovian with respect to a filtration (F (d),t 2 0) which
increases with d; roughly speaking, more information seems to be required as d
increases in order to construct Yd,d and the case d = oo corresponds to BESQ (d'); see
Theorem (4.6) for a more precise result formulated as a limit in law.

2) Transforming the relation (3.k) in Theorem D by duality with respect to the
measure . (dx) = xV dx does not yield any new relation since AASJ3d is its own adjoint
(up to a multiplicative constant) 0

(3.4) Explicit computation of the semigroup rld',d

We first reduce the problem to the inversion of a certain Laplace transform. Let

t, y be given, and define ax= t Then, from formula (3.i), there exists a measure
t+y

[la (du) on RF which depends only on a (and k, k') such that:

Ji1 &'9d(y;dz)f(z) = Jp.a(du)f((t + y)u)

and, from formula (3.i) again, [la is the only probability measure on R+ such that, for
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every >2 0:

(3.n) J ga (du) (1 + 2u)k (1 + ka)k-k
o ( + X)k

In fact, from the comments following Theorem B, we see that pa must be carried by

[0,1].
We shall then deduce from formula (3.n) the following Laplace transform identity:

1 r k-k'

(3.o) ap(du) 1 es(--) = 7r(k) [aX ,D(k,_k,k,;aS)
[0,1] Uk F1(k') s

where U = 1 - a = Yi, and D (a, b; z) is the confluent hypergeometric function
t+y

defined by:

(a,b; z) = (a) zk
k (bk k!1

where: (a)k = a (a - 1) ... (a - k + 1). The hypergeometric function

F (a)k (b)k zk
F(a,b,c;-z) =I k=0 (c)k k!

shall also play a prominent role in the sequel. Now, the key to the explicit computa-
tion of rd%d is the

Proposition (3.3): Let 0 < k' < k and k > 1. Then:

1) there exists a unique function gk' k: 1R -+* R+ such that for all s 2 0:
00

1 + du glk,(u)e " = 17(k) sv-k (D (k'-k k'--s)
0 17~~~IF(k')

2) the function gk'k may be expressed as follows in terms of F:

{c+uk-k-IF(k -k,1+k- k,k'; 1) (u > 1)
u

gk',k(u) = c_(F(2-k,k'-k+1,2;u) (u'< 1)

where

c+ = B(k',k-k') and c = (k- 1)(k-k').

It is now easy to express p' and [ Id (y; dz) in terms of gk',k. We obtain the:
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Theorem (3.4): Let 0 < k' < k and k > 1. Then:

g(du) = a-k 1(du) + [C]kkg (LXt du1pa(d)= a £1 (d) + [a|C gk',k au 2-k (° < u <
L J L au Ju

and the semigroup Il- ¶d (y; dz) is given by the formula:
J ld',d (y; dz) f (z)

k-k-P1 r k-k'
Li...ikk~ + r du I .z .1

[ t ++y) | U2-k L J

gk',k ( ( - 1) f((t + y)u).

For the sake of clarity, we have postponed the proofs of formula (3.o) and Proposition
(3.3) until now.

Proof of formula (3.o): If we apply the formula:

1 = 1 )|dxXk-1e-ax
ak IF1(k) JLIx

to a= 1 + ku, the left-hand side of (3.n) becomes:
00

1k j dSdga (u) Jdx Xk1 exXux
(k)[0,1 0

00

- I~~~~~~~~1 J
1 (k) 0 [01 1 d ukk-e .

We shall now identify the right-hand side of (3.n) as a Laplace transform in X. Since
formula (3.i) follows from (3.h), we know that:

(1 + XLt)k-k'(1 t+ )) = E [P (d) ((2y)Zk; e 2

where, keeping with our notation, Zk is a gamma variable with parameter k. We intro-
duce the density p (d) (a, b) of P d') (a; db) which is known to be (see Molchanov

(1967)):

(d')(ab\ - 1 b 2- a+b N
-

(3.q) Pt(a,b) 2t 2 ex

Making an elementary change of variables in (3.p), we obtain the identity:
00 Xz

= 2E[dz p d ) (2yZk; 2z) e t+y ] (recall: a t)
(1+XL)k 0

t t+y

= 2(t + y) JdteE[pt(d)(2yZk; 2(t + y),)]
0
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Comparing the new forms we have just obtained for the two sides of (3.n), we get the
identity:

(3.r) r(k) |dgi (u) kje4U = 2 (t + y)E [ p (d') (2yZk; 2 (t + y) , ]

Using formula (3.q), we obtain:

2 (t + y)E[pt(dI(2yZk; 2 (t + y)]

-1 E[(Z 2 exp-( )Ik-'1(1UXZk4)I
a(d) dw2

and, developing this expectation, we find that formula (3.r) may.be. written as:.

1
-

k-I
F(k) [0,11

1(a)2
2 6

2

da (u) 1 --I

I u

k'-r1
2 e-il/a IV 2

Now, with the help of the integral representation:

(a, b; z) _(b)ezz(1-b)/2 dt ett22(Da,.

F(b-a)
~j 24t

which is valid for: Re (b - a) > 0, I arg z I<i, b 0,1,2,... (see Lebedev (1972), p.
iirv

278) together with the relation: Iv (t) = e 2 jv (4 e 2), we find that (3.r)' may be
written as:

Fa(du)e-4uk =- F (k) f.- cc

[0,1] uk Fl(k') 4 ac

which is obviously equivalent to (3.o).

Proof of Proposition (3.3):

i) The case when k - k' is an integer n is easy, since then 4D (-n, k'; -s) is a poly-
nomial of degree n in s and the inversion of the Laplace transform:

S-n D k';

is elementary;

ii) It then remains to prove the Proposition when k > k' > k - 1, and then, when:
k - 1 > k'> k - 2, etc...

(3.r)'
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In fact, from the definition of gk',k as presented in part 1) of Proposition (3.3), we shall
deduce the recurrence relation:

(3.s) gk',k,(X) = -B(kk,) k-k't g)

(more precisely, assuming that g1+l,k exists, then if we define gk',k by (3.s), it
satisfies part 1) of the proposition).

On the other hand, we also show that the expression Of gk'k, as presented in part 2) of
Proposition (3.3) satisfies the same recurrence relation; consequently, using a
recurrence argument, it will be sufficient to prove the proposition in the case
k > k'> k- 1.

iii) We start with the proof of the recurrence relation (3.s). We denote by gkk (x)
the right-hand side of (3.s). We easily obtain the formula:

00 S

1 + |dugk(u) SU d vk-k + -dv(k + 1 -k,k' + 1;-v)o sk-'('1

and, in order to prove (3.s), it suffices to show that the right-hand side in the last
equality is, in fact:

17-(k) 1
17(k) 5k-k' 1(k' - k,k'; - s)

or, equivalently:

k-k's,D(k' - k,k';-s) = 1 + k dvD(k' + 1 - k,k' + 1;-v).
0

But, this follows from the identity:

dd± D (k'-k,k'; x) = k D (k' + 1 - k,k' + 1; x)

(see Lebedev (1972), formula (9.9.4), p. 261).

iv) We now prove the same recurrence relation (3.s) between gk'k (:the function
defined in part 2) of the Proposition in terms of F) and g'+ k. It is elementary to
transform the desired relation (3.s) between gk'k and gk'+,k into the following
equivalent relation:

1 1 1 y
(3.s) gkkk( ) = -1 (B(kk-k) k-k')dllke-2ye, yk -k-k')Jdknkrk gk'+,k(-)

Consequently, in order to prove (3.s)' for y < 1, we need to verify the identity:

F(k'-k,1+k'-k,k';y) = 1 + dB(k',k-k')(kk') JdrlF(l+k'-k,2+k'-k,l+k';vl)B(k'+ 1,)k-(k'+ 1)) o
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which follows from the classical identity:

d F(a,F(cz) = -F(a+1,f +1,y+1;z)dzy

(see Lebedev (1972), formula (9.2.2), p. 241) considered for: a = k' - k,
= 1 + k'- k, Y= k'.

At this point, it remains to verify the relation (3.s) between gk',k and gk'+1,k only for
x < 1. We write (3.s) in the equivalent form:

gk',k(=XkkX B 'k') + (k-k')J ek-k gk'+l,k(t))

which implies:
k-k'- 1 k-k'-

,k'(X) = gI,kk(x) - X___)x x

Since the value of gk,k(l) is known, the above differential equation determines g'
uniquely. Hence, all we have to verify is the following relationship:

c_ F(a + 1, , + 1,,y + 1; x)

= c (k-k-1) F(a, x) - (k -k) (k -l ) (k -kt - 1)F(a,p + 1y; x)
x x

where: c =(k - 1) (k - k'); a = 2 - k; f3=k'-k + 1; y= 2. This relationship is
equivalent to:

ax F(a + 1j, + 1,y+ 1; x) = -F(a,f3; x) + F(a,, + 1,y; x)
7

which is precisely formula (9.2.13), p. 243, in Lebedev (1972).
v) We finally prove the Proposition when k > k' > k - 1. Define a = k' - k; it

satisfies: a + 1 > 0 and 1 - a > 0. The first part of the proposition will now follow
from the relationship:

-d (s' (D (a, k'; -s)) = (-a) s"- (D (a + 1, k'; -s)ds

and the integral representations:
00 1 1

(1 - a)yal = Jdte-Ytt-a and D(a + 1,k';-y) = Jdteytt(1- t)k2-)
B(a+ I,k- 1) 0

We now obtain that part 1) of the proposition is satisfied with the function g = gk'k
defined by:

ug (u) = c(-a) h- )B(a+ I,k- 1)17F(1-a)h()
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uAl

where: h (u) = J dt ta (1 - t)k-2 (u - t)-a and c = r (k) The expression of h, hencewhere
o F (k')

Teepeso fh ec

of g, in terms of F, is then deduced from the integral representation:
1

F(c,4, y;u) = d1dtt1(1 -t)f l(1- ut)Y

which is valid for: Rey > Re,B > 0 and u < 1 (see Lebedev (1972), formula (9.1.4), p.
239).

4. Some properties of the Yd,d processes.

The family of the Yd',d processes enjoys a number of properties which are the
counterparts of properties of the squares of Bessel processes. In the eight following
sections, we shall compare such properties for both classes of processes.

(4.1) Absolute continuity relations.

Fix x > 0. As d varies in [2,oo [, the laws p(d) of BESQX (d) are locally mutually
equivalent. The following explicit formula holds:

xt V2 t dsd(4.a) =d (.....)/2 V2 dp(2(4.a)~~ Id)t ( t)exp(-_v ) P IFt (V 2 )x O s2

From this relation, one deduces the important formula:

(x )V/2E2) [exp_ v Jds|x= y] = p)(xy)
x

x 2 x~O p (2)(X,y)
which implies:

Ex2)[exp(-2iX)X = Y] I
O s 10 t

This formula plays a key role in the study of the winding number of complex
Brownian motion around 0 (see Spitzer (1958), Yor (1980), for instance). The coun-
terpart of (4.a) for the laws Ilk',k of the Yd',d processes starting from y is the following

y

Theorem 4.1: Let X > 0, kx = k + X, kx' (k; - 1) = kkx + (k - 1) (k' + X). Then, one
has:

i iGt = ( )t exp(-R - ) - flk|G, where , = x kII y YS~y y IGt k-1+
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(4.2) Time-changing

a) Here are two transformations of Bessel processes which are most useful in
some computations:

i) if (R)to is BES (d), with d 2 2, starting at ro > 0, there exists a real-valued
Brownian motion (lXt)o such that:

logRt = ((U + vu)I ', where v d
2

U= - 2

In the literature, this relation is also found in the form of a representation of the
geometric Brownian motion with drift v, i.e.: (exp (D3u + vu), u > 0), in terms of a
Bessel process with dimension d = 2 (1 + v), as follows:

u

exp (Iu + vu) = R(Jds exp 2 (D,5+ vS)), u 0.
0

(see, for example, D. Williams (1974(a)), and for some applications, Yor [(1992a) and
(1992b)]).
ii) for convenience, (RJ, (t), t 2 0) now denotes the Bessel process with index i. Let p

1 1and q such that: - + - = 1.
P q

Then, under suitable conditions on g and p, we have:
t

qRl/q (t) = Rq (Jds RSj72'P (s))
0

(see Biane-Yor (1987), lemma (3.1) and Revuz-Yor (1991), Chapter XI).

b) Here are some similar results for the Yd',d processes.

Theorem (4.2): i) If Y Yd',d starts from y > 0, and d' > 2, there exists a process
with stationary independent increments (E (u), u > 0) such that:

logYt = t(J-ds) (t . 0).
Os

The generator of t (u) -d',d (U) is given by:

Lkf,k ldz) =4(x) + (k - k') Jdy(k -1)e-y"1(k 4dox - y) - ()
0

ii) Let x> 0. Then:
t

Yk-Y (t) = Yk(a)P, kf((du axY)0
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k'l- 1 +1ank() +1
where: k(a) = + 1, and k() = k I + 1

Remarks: 1) Beware: the notation (k(a) ,k(c) has nothing to do with the notation
(l4kk) introduced in Theorem (4.1);

2) There are some similar results for the Y processes as introduced via Theorem
(3.2), the discussion of which is postponed until subsection (4.4).

c) In fact, both Bessel processes and the processes Y are examples of a particular
class of R+-valued Markov processes X which enjoy the following scaling property:
there exists a > 0 such that, for a 2 0, the law of (Xxt, t > 0) under Pa is that of

(kaXt, t 2 0) under P(aOW).
Lamperti (1972) has studied these processes, which he calls semi-stable Markov
processes and has shown that, if Pa a.s., (Xt, t > 0) does not visit 0, then one has:

logXt = d(Ju), t>0
0 Xu

(here, we have assumed, for simplicity, a = 1) for some process 4 with stationary
independent increments. Several studies of such processes have been made in recent
years.

(4.3) First passage times.

a) First passage times for BESQ (d).
If (Xi) denotes BESQ(d), we recall (Kent (1978), Getoor-Sharpe (1979), Pitman-Yor
(1981)) that:

4 (XXt) e-Xt is a local martingale, for 4 = 4+ or 4),

with

t+ (x) = x-v/2 Iv (4fi) and 4) (x) = xV/2 Kv (fi2).

This implies:

XTb 4(Xa) f4+ifa<b
Ea[e = ° (X) with 4 = lq) ifa>b

b) Intertwining and martingales.
The following lemma will be useful in the sequel:
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Lemma (4.3): Assume that QtA = APt. Then:

1) if 4 (Xt)e-t is a (P,,) martingale, for every x, then:

AO (Yt)e-t is a (QY) martingale, for every y,

2) More generally, if L, resp: L denotes the infinitesimal generator of X, resp: Y,
t

then: LA = AL, and: if fe D (L), then: Af E D (L) and f(X) - (Lf) (X.) ds is a Px"
0

martingale, while:
t

Af (Y) - Jds A (U) (Ye) is a Qy-martingale.
0

Remark: The first result may be understood as a particular case of the second one,
since the function 4 satisfies: L4p = X4, and hence: L (AO) = X (AO).

c) First passage times for yd',d-

From the above paragraphs a) and b), we deduce that:

Ad'd 4± (2Y) e-.t is a fd.d-mtfingale,

which yields:

D (k, k'; XYd)e- and ' (k, k'; X Yd)e- are ni d'd-martingales.

Hence:

(4.b) ed'd(e ) = H(k ,k;b),where H= v ifa>b.

In the particular case a = 0, b = 1, we obtain:
fj0d' d eAT1)n t, (e-l= 1 / D (kl, k'; X).

Hence, the function: log (D (k, k'; X) admits the Levy-Khintchine representation:

log¢ (k, k'; X) = c0 + dv (x) (1 - e"x),
0

for some measure v to be determined. Taking derivatives with respect to X, and using
the relations:

dk kkk(kk lk'+ 1;X) = D(k,k';X)+kkk D(k,k'+l;X)
(see Lebedev (1972), (9.9.13), p. 262), we obtain:

+ ( kk' ) ( (k, k'+1;X) c + dv (x) xe7x.
k 1D(k,k';X) 0
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From the asymptotic result (see Lebedev (1972), (9.12.8), p. 271):

(D(k,k';X) - Ck,ze kk) oo),

we deduce that c = 1 and there exists a probability g (dx) on 1R+ such that

(4.c) (D)(k,k'+ 1;X) - r(dx) e-x, and : (dx)= k ,)xv(dx).1D (k, k'; X) k-k'

Another interpretation of the probability g shall be given in section (4.7).

d) First passage times for td'%d
The results in this paragraph follow essentially from the absolute continuity relation
obtained in Theorem (4.2) for the 4 processes.

First, we have:

Eo [e4'= ew(°, where rf k-l+X a+=
and we have defined a = k - 1 and ,B = k - k'.

We then deduce from this (or we could appeal again to Theorem (4.2)) that, with the
notation 6a = inftu:-. = a),

Eo[ea] =-

where Nji-l (j) = - (a - f) + ((g - (a - J))2 + 4ap)1/2).2
It is interesting to study the LUvy-Khintchine representation of -:F1: we find

00

V-1~(pt) = g+ v (du) (1 -e-u), where:
0

(4.d) v (du) - i (2lau) e-(a+1)u.
u

Proof of formula (4.d): We first remark that:

( _ (aX _ )2 + 4ag = (g + a + p)2 - 4a.

We now seek a constant c and a positive measure v on JRF such that:
00

L- a + 3 + ((g + a + )2- 4afB)1'2 = 2(cp + v (du) (1 - egu)).
0

Taking derivatives of both sides with respect to i, we obtain:
00

1+ + a + ,8=2(c + |v (du) ue-9u)
((g + aX + ,p)2 - 4axp)1/2
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from which we deduce, by letting , - cc, that: c = 1. It remains to find the measure
v which is specified by the equality:

R+ a + ,8 -1 = 2 v (du)ue7gu.
((. + a + -)2_ 4ap)1/2 o

Making the change of variables: p + a + [ = 2aIl, and using the following rela-
tion, valid for il > 1 (see Feller (1966), p.414):

00

-r1_1 = JdxI1(x)e-llx

we obtain:
co

(($-+a + J- dx Ii (x) e711x
((p.+a+[)2 -4a[3)1a (1.12-1)1/2 0

co _ +a+ft_
- dxI1 (x)e 2

0
00

22 |JdyI1(2 4y) e7layet+Pl)Y
0

and formula (4.d) follows.

Note: These computations appear to be closely related to recent work by J. Pellau-
mail (1991) in Queuing Theory.

e) Laguerre polynomials and hypergeometric polynomials.

e.i) Let (X) denote the square of BES (d'), with d' = 2 (v' + 1). (Xi) may be
characterized (in law) as the unique solution of the martingale problem:

(4.e) for every X > 0, 0 (XX) e- is a martingale, where 4 (x) = Xiv'12 Iv, (42X).
We recall the hypergeometric functions notation (see Lebedev (1972), p. 275):

OF, (-, 1 +v; z) = F (V')z-V2 Iv, (2'E)
which implies:

(40) OF1(-, 1 + v'; 2) = CV4 (z), where c = F (V)2y'2.
'2

The Laguerre polynomials with parameter v':14. ) (x) may be defined as the
coefficients of the generating function:

00 (4y) (x) y"
0IF1,(1 +V; xy)ey =

n=0 (1 + V')n
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(see McBride (1971), p. 39).

It then follows from formula (4.f) that:

(4.g) cv,' (Xx) e -t - I 1 j*WV) )(-Xt)n = nPn(x, t)nV=O (1+v')n 2t n=_O

where we have defined:

P(x,t ~) n
_~) Ljv) 2x = ( t)n z(D_n,v'+ 1; 2t

since the expression of L (V) in terms of the confluent hypergeometric function (D is:

LV)(z_ v + 1 1(-n,v' + 1; z) (Lebedev (1972), p.273).

(we recall that, with our notation, k' = v' + 1). We deduce from (4.e) and (4.g) that:

xt
(4.h) for every n E N, (tnLnv) (2), t > 0) is a martingale.2t

e.ii) We shall now discuss similar results for the process Y = Yd',d This process
may be characterized as the unique solution of the martingale problem:

(4.i) for every X > 0, Ad [ 4 (X ) ] (Y) e-xt is a martingale.

Define Nf (y) = Ad 0(Y) = 1k Jdaak.ea~ y) (k =217(k) 2

1and Qn (y,t) -Ad (Pn(,t))(y)-
cv

It follows from (4.g) that:

(4j) cVvNf(ky)e-t = X knQ (y t).
n=O

We now identify Nf and Qn.

We remark that, in general, if F (z) = £ fp zP (with fp 2 0, for every p), then:
p=o

def 0o
F(d) (z) = Ad (F) (z) = £ (k), fp zP.

In particular, the application: F Ff(d) transforms pFq(oa1,%y; z) into:

p.1 Fq(k,ar,s; z).

Consequently, we obtain:

V (y) = AdF(y) = c F(-, k';-)(d)(z) (from (4.g))
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= D (k, k'; z)-

Likewise,

Qn (Y, t) = Ad(Pn(t)(Y)( -t=D (-n, k'; _)(d) (y)cv,cv n t

t-t) F (-n, k, k'; YX)
cv. n!t

Hence, the series (4j) may be written in the form:

(4.k) D (k, k'; ky)e-t - z -(-t)nF(-n,k,k'; Y.);

the polynomials F (-n, k, k'; y) are the so-called hypergeometric polynomials.

The assertions similar to (4.e) and (4.h) are:

(4.1) for every X > 0, D (k, k', XYt)e- is a martingale;

Yt(4.m) for every n e 1, tnF (-n, k, k'; t ) is a martingale.
t

e.iii) We have just seen that, in analytic terms, the intertwining of the processes
Xd and Yd' d with respect to the kernel Ad translates as the transformation of Laguerre
polynomials D (-n, k'; ) into hypergeometric polynomials F (-n, k, k'; - ) via the for-
mula:

F(-n,k,k';y) 1 Jdaak-le-aID(-n,k'; ay).

Likewise, the intertwining of the processes Xd' and Xd (d' < d) with respect to the
kernel Ad, d translates, in analytic terms, as the transformation of Laguerre polynomials
with parameter v' = k' - 1: L.')(x) into Laguerre polynomials with parameter
v = k - 1: L(v) (x) via Koshlyakov's fornula (see Lebedev (1972), p. 94):

1

LPr(x) - F (n + k) fdtt"-' (1 - t)k-k-1 v') (xt).
IF(k -k')]F(n+ k') 0

In the same spirit, the integral relation (see Lebedev (1972), p.277)

F(cz,f,y;z) = 1( Jdttc-(1 -t)-"IF(ox,P,c; zt)F(l"Y;z)

B(cyc) 00
may be considered as a translation, in analytic terms, of the intertwining relations
which hold between the different processes Yd, d (Theorem E above).
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e.iv) We now consider two other fundamental generating functions for (L(V") (x),
n . 0) and (F (-n, k, k'; z), n 2 0) respectively, which have a clear meaning in terms
of martingale properties of (Xd' (t)) and (Yd', d (t)). These generating functions are:

o0

(1_t)-(v'+ 1)e-x t1-t =: WV'We)()

(see Lebedev (1972), p.77 and 277 respectively).

Let t= ls,with s <1, x=-2 and u(X) =(1 + 41". The two left hand sides of

(4.n) become:Xs z~~~~~

u(X) (1 + A - Xs)-4'e 2(1 + (1 - s))

and

u()Q(1 + X - XS)k-k'(1 + X (1 - S + Z))-k.

both expressions played a key role in the explicit computation of IId', d (see formula
(3.i)). Indeed, these expressions are in fact respectively equal to:

u(XP{_ (e ) (z) Uu (X WVLn) ( 2 ) sn ,)nuQ(.)Pf,(e 2)(z)n=O0 2s 1+X
and

u (X) rln' d ((1 + y)k) (z) u(X) (k! F(-n,k,k; 2 n(
n=o0 ! 2s I

Now, replacing z respectively by Xd, (s) and Yd' d (s) (s < 1), we obtain two mar-
tingales which are in correspondence via the intertwining kernel Ad, since:

Ad(e 2 d= cd(l + t) k

(4.4) Time reversal.

In this section, we shall apply the following general result on time-reversal succes-
sively to X(d), a BESQ (d') process, and Yd,d, at their last exit time from b > 0, when
d'> 2.

Theorem (4.4): (Nagasawa (1964); see also Sharpe (1980) for another proof) Let X
and X be standard Markov processes in E, which are in duality with respect to g (cf:
Definition (3.1)).
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Let u (x,y) denote the potential kernel density ofX relative to p, so that:

Ex[Jf(X~)dt] = u(x,y)f(y)p(dy).
0

Let L be a cooptional time for X, that is a positive random variable satisfying: L < 4
and L o Ot = (L - t)+. Define X& by:

{X(Lt), on 0 <L < 00, for 0 <t < L
xt A, otherwise.

Then, for any initial law X, the process (Xt)to>, under Pk, is homogeneous Markov,
with transition semi-group (Pr) given by:

Pt (fv) (y) /v(y), if 0 < v(y) <0O
Pt f (y) 0 ifv(y=O or oo.

In case e= , v(y) = u(x,y).

For our application, we take: x = 0, d'> 2, L the last exit time from b > 0, for either
X(d) or Yd',d' and . (dx) = x" dx. Then, according to Theorem (3.2), p (d) is self-dual
with respect to p, and the semi-group (Ild' ) is in p-duality with (i d). Furthermore,
we remark that, in both cases, thanks to the scaling properties enjoyed by the
processes, we have: v(y) = c / yV, for some constant c.

Indeed, dealing with Y(t) Yd',-d (t), for instance, we remark that:
00 00 00 00

Eo [dt f(Yt)] = Eo [dt f (tY) = du f(u) Eo = dy yv (c

which yields the desired result.

We now have the following

Theorem (4.5): Let 2 < d' < d, and (X(d')) and (Yd',d (t)) start at 0; then, for b > 0:
(d)

a) (X d); t . Lb) - (Xt4 d); t < To)

(d)
b) (Yd',d (t); t < Lb) = (Y4-d',d+2-d' (t); t < To)

where, on both right-hand sides, it is assumed that the processes start at b.

Remark: The result b) is probably better understood by looking at the infinitesimal
generators L and L of, respectively, the left-and right-hand sides; one has:

k-k' 1

L (y) > (y) + - dz| (k- 1)zk-2 (f(zy) -f(y)
Y o
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and

L4¢(y) = -t'(y) + - dz (k - 1) zk-2 (f(Y)_ f (y))

and it is clear that this time reversal result could have been proved simply by consid-
ering the pathwise description given in the Comments after Theorem B.

(4.6) Some limit theorems.

In this section, we obtain several limit theorems concerning the processes Yd',d and

td%d, some of which are then applied to the study of the asymptotics of the functional
t

i ~d'd(s)',as t -> 00, when Yd,d (0) . 0.

In the sequel, we use the notation (fd) to denote the convergence in law of finite-
dimensional distributions of processes indexed by 1R+. Moreover, in this section, we
shall use the notation 8, instead of d, for the second "dimension" parameter of the
process Y, since, in integrals such as the one we have just written, d stands for the
differential in ds, as well as for the second "dimension" parameter in Yd'd(s), which
might create some confusion.

a) The main result in this section is the following

Theorem (4.6): Let O < d' < B, and 8 > 2. Define v' =.d 1 v=-6 -l, and let
2 2

(X (d), t . 0) denote a BESQ (d'), and (R, t . 0) a 1-dimensional BM. Then:
(fd)

i) for fixed d', (Yd', (8t), t > 0) e (Xt(d),t 2 0)
8-+0o
(fd)

ii) for fixed d', (&d'8 (8t), t 2 0) - (2 (Jt + v't); t 2 0)
d-o

iii) for fixed d' and 8 with 2 < d' < 8, , td,8( t) - -t
V

1 ~~~(fd) 2i1/2a t0)
iv) for fixed 8 > 2, (->7 2,8(Xt), t 2 0) -* ((-) 0)

Remarks: 1) The result ii) is in agreement with i) and the time-change formula (see
Theorem (4.2) in section (4.2)):

t

log Ydc, (t) = d',8 (J ds
h Yd',B (s)

hence, we have: log Yd',8 (8t) = ~d',8 (8Bj du )adw eakta h euti
0 Yd',B (8u) adwreaktathrsuti
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fits in well with the time-change representation of (log X (d), t 2 0) as:

logX (d) = 2(3 + v'u) t ds

jU=XJd

2) In the case where Yd,&S (0) = 0, the following scaling property holds:

(d)
(4.o) (Yd',a (Xt), t 2 0) = (XY&, 5 (t), t 2 0)

and we may write i) in the equivalent form:
(fd)

(Oyd',a (t), t > 0) - (X(d),t 2 o).

The result for one-dimensional marginals is easily understood; indeed, for t = 1, we

know that the law of Yd&, (1) is (-' 8 d ), hence:
2' 2

(d) Xfd')
= Xfd) + XfSd)

where X(d) and X(6-d) are independent BESQ processes with respective dimensions d'

and 8 - d'. We then deduce from the law of large numbers that d con-
Xfd') + Xf8d)

verges in probability to 1, as 5 -e oo, which implies the desired result.

3) iv) is obviously a refinement of iii) in the case d' = 2 (which implies v' = 0).

4) Inspection of infinitesimal generators easily yields the following identity in law:

1 (d)
(4.P) ( Xk',k (Xt), t 2 0) = ( (t), t 2 0)

where the couple (kxk',k) is defined by:

kx-kx' = k-k'; kx -1 = X(k-1)

or, in terms of indices instead of dimensions:

vx = kv and vx' = v' + (X -1)v.

The identity in law (4.p) allows to recast the limit results ii), iii), iv) in terms of t-
processes, both indices of which increase to -oo, as X+ oo, in the manner we have
just indicated.

Proof of Theorem (4.6): 1) The infinitesimal generator of (Yd',8 (St), t . 0), applied to
cE C1 (R+), is, in terms of k' and k:

k-k'2k(4(y) + Jdz(k- 1)zk-2(4(zy) - (y)
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00 _v

2k{ '(y) + k-k'jdve7'( (ye((y)),
yo0

after an elementary change of variables.

It is now easy to justify that, as k' is fixed, and k -+ oo, we may replace:
v

4 (ye k-1) - 4(y)
v ~~~2

by: yO'(y)(e k-i - 1) + y-"(y)(e k-i _ 1)2.
2

Then, the coefficients of 4' (y), resp: 4)" (y) converge, as k -* Cc, towards: d', resp: 2y,
which implies i).

2) The same sort of arguments may be applied to prove the results ii), iii) and iv).
We only give the details for ii):

The infinitesimal generator of (&d',& (at), t > 0), applied to o e Cl (R), is, in terms of k'
and k:

0

We then replace: 4 (y - u) - ¢(y) by: -u)'(y) + -- ¢ (y); then, the coefficients of
2

¢'(y), resp: ¢"(y), are:

k-i (k'- 1), resp: 2k(k-Ik)
and they converge, as k -* oo, to: 2v', resp: 2, which implies ii).

b) We begin by recalling the following asymptotic results for the BESQ (d') pro-
cess X(d ), when XSd) . 0:

t

ds(4.q) (lo t)0ds o(log 02 J x(2) to
where y = inf( t: Pt= 1), and , is a 1-dimensional BM starting from 0, and, when
d' > 2:

a.s.

(4q)' logt Jx(d) t- V1

We shall now prove similar results for the Yd,S processes:



- 31 -

Theorem (4.7): We consider the process Yd,a with d' > 2 and Yd,s (0) . 0. Then:

t 1
t

du ~~(d) v
i) if d = 2, 2 du v

(log t) o Y2,8 (U) - 2

where v = - - 1, and 6 = inf{u: ,= 1), with the same notation as in (4.q) above;
2

t as1I ds a..v 8d'ii) ifde'>2, I +--where: v=2--landv=-- 1.logt Yd',(s) to v 2 2

At least, 3 different proofs of (4.q) are known; they hinge respectively on:

a) Laplace's asymptotic method (Durrett (1982), Yor (1985), Le Gall-Yor (1986)),

b) a pinching argument (D. Williams (1974), Messulam-Yor (1982)), and, finally:
ds

c) the explicit computation of the law of x(2) (Spitzer (1958), ItO-McKean (1965),

Yor (1980)).

We shall now see that the 3 methods admit variants from which part i) of Theorem
(4.7) follows.

a) Laplace's method.

For simplicity, we write Y& instead of Y2,a, resp: 48 instead Of 42,a. From the formula:

log Y8 (t) = a (| y()'

we deduce:
t v

ydu ) = inf{v: Jdsexp(48(s)) > t).~Y8(u) 0

Let X = log t. We have after some elementary transformations:
t X2U

1 Yd(u) = inf{u: f log f dsexp(4 (s)) > 1)
0

(4.n) = inf(u: X log (X2 ds exp(kX-js(X2s))> 11.
0

Using part iv) of Theorem (4.6), we now deduce from (4.n) that:

1 du (d) 2 1/
(d) v

Iy) inf(u: (v1)1 u > 11 = (2)

which proves part i) of Theorem (4.7).
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b) Pinching method (D. Williams (1974)).

Let Ta = inf{t: Ya8(t) = a) and rb = inf{t:.8(t) = b). The main ingredients of the
proof are:

Tt ~~~(P)
(4.s) 1 du -+ O,

(log t)2t Ya (u) -

and

Ttd
I Y&(u) (log

The latter equality is immediate from the time change formula:

log (Ys (t)) = ts ( du ).
8&(u)

Moreover, from part iv) in Theorem (4.6), we obtain:

1 (d) V

(log t)2 (lt) t*oo22

(this could also be deduced from the explicit formula:

E [exp (-gtb)] = exp - - {g + (42 + 2v)1/2).
see subsection (4.3), d).)

It now remains to prove the convergence result (4.s). We have:
Tt T

d

du) 1| Y8(v)' where: Y8(v) = (tv),

which, thanks to the scaling property of Y6, converges in law, as t - oo, towards:
(Yg (v), v > 0), a Y8 process starting from 0. Consequently, we have:

Itdu (d) Idu j dv
t Y (u) t-*o Ys (V)

and the result (4.s) follows a fortiori.

c) Explicit computation.

In the Bessel case, this computation follows from the conditional expectation formula
given in (4.1), as a consequence of the Girsanov relationship (4.a). Likewise, for the
Yd, , processes, we deduce from Theorem 4.1 the following:

nkxbakc4O'kx (y, dz) = , k.',k[ exp (-p J ds)IY = z I (LZ) V4k',k (y, dz)t y
0 Y~~~s y

y



- 33 -

k'- 1 +XwhereA =X *

Then, using the explicit forms of the semigroups fl-¶1.d (y,dz) presented in (3.4), we
obtain a closed form expression for the above conditional expectation, from which one
should be able to deduce the limit results announced in Theorem 4.7.

(4.7) A Ciesielski-Taylor type theorem.

a) Let X(d) and X(d+2) be two squares of Bessel processes with respective dimen-
sions d' and d' + 2, with d'> 0, starting from 0. Let T(d) = inf(u: XOd) > 1) and

00

S(d&+2) = Jd u1 (+2) 5. Ciesielski and Taylor (1962) (see also Getoor-Sharpe (1979))
0

have proved that:
(law)

(4.t) T(d) = S(d+2).
For an extension of this result to a large class of functionals, see Biane (1985).

b) We shall now prove a result similar to (4.t) when the Bessel processes are
replaced by the processes Yd',d' with 0 < d' < d and d > 2.

Theorem (4.8): We simply note Y for Yd',d starting from 0, and define
Ty= inf{u: Yu . y}. Then:

a) E [ exp (-XTy) = 1 / (k, k';X y);
00

b) if k' > 1, E[exp-X ds1(yy)] = 1/<D(k,k'- l;Xy)
0

Consequently, for every y . 0, we have:

(law) °°
(4.u) Td,d dfdSI(ysd'+2dsy),

0

Proof: Part a) was already proved in subsection (4.3), c).

To prove part b), we may take y = 1, using the scaling property. We now remark
that, if there exists a Cl-function (u(x), x . 0) such that: Ld,d u(x) = X 1(x.1)u(x), then:

Ta

E[exp-_ dul(y.1)]= u(O)
0 -u(a)'

so that, letting a increase to +*o, we obtain:
00

(4.v) E[exp-X dul(Yul)" = u(oo)-
0 oo
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(D (ki, k'; kx) (x < 1)
The function: u (x) = ĵC+,xl-k' (x > 1) satisfies:

Ld&,du(x) = X l(x,1)u(x) on ]0,1 [ and ] 1,oo[.

It remains to find a and , such that u is C1. This will be so iff:

cc + =D((kg V%X)
(4.w) kk

(1 - k') X-= TX D (k + 1,k' + 1;X)

where, in order to find the second equality, we have used:
d k-d (k, k',x) = - (k + 1, k' + 1; x)
dx k'*

(see Lebedev (1972), (9.9.4), p. 261). The solution of the system (4.w) is:

k=k-k (D (k+ l,k + 1; X)g cx='D(k3,k; k'(k'- 1)k(k+ 1,k+ 1;X).

Hence, we have: u (0) = 1, u(oo) = ax, so that, from (4.v):
00

E[exp-X dul(y.<1)] = 1/ aX.
0

We shall now show, with the help of the recurrence relations satisfied by CD, that
ax = D (k,k' - 1; X), which implies b). Indeed, we find in Lebedev (1972), (9.9.12),
that:

- ¢(k+ 1,k'+ 1;X) = 'D(k+ 1,k';X) - 0 (k,k ?L)k'

whence:

=x=D (k,k';X)+ k (D(k+l,k X̀)-'D(kgk';X)}

- k' -1 ({kD(k + 1,k';X) + (k'- k-1)D(k,k';X))

- 1(k,k'- 1; X), from Lebedev (1972), (9.9.6)

We now remark, using jointly parts a) and b) of Theorem (4.8) that:
00

II d+2,d (exp - X ds 1(Y3.y)) = 1(k,k'+ 1y)
y (ys<y)0 ID(k,k';y)

so that the probability measure g defined in subsection (4.3), c) now appears as the
00
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Again, there exist similar results for Bessel processes (see Pitman-Yor (1981), Getoor-
Sharpe (1979)) and Bessel functions (see Kent (1978)).

Note: An explanation of the Ciesielski-Taylor identity (4.t) is given in Yor (1991),
using jointly Ray-Knight theorems for local times of Bessel processes and a stochastic
integration by parts formula.

It would be interesting to attempt such an approach to explain the identity in law (4.u).

(4.8) Affine boundaries.

a) Let d' >O, and consider Tc = inf(u: X(d) = c(1 + u)}, where X(d) is a
BESQa (d'), with a < c.

Following a method due to Shepp (1967) in the case d' = 1, it has been shown

in Yor (1984) that:

1 (a, k; a)
(4.x) E(d)[(1+Tc)I = 2

D (a, k'; c)
'2

Remark: It may be interesting to compare this formula with:

(4.y) da (e C) D(k,k'; Xc)

a formula obtained in the above subsection (4.3), c.

b) We shall now obtain a formula similar to (4.x) for

Tc = inf(u: Yd'd(U) = C(1 + u)), when Yd'd(0) = a, and a < c < 1.

Under these conditions, we prove the formula:

(4.z) I-I,da ((1 + Tc)a) = F (a, k, k'; a)
a ~~~~~F(a, k, k'; c)

Proof: Following Shepp (1967) again, we use the two next arguments jointly (we drop
the superscripts (d', d) since there is no risk of confusion).

i) cD (k, k'; %Y))e- is a martingale;

ii) F (a, k, k'; y)= daIjdXXal e- D(k k';X y)

From (i), we deduce:

la (D (k, k'; Xc (1 + T,)) e XTC) = (D(k, k'; Xa)
darand then, integrating both sides with respect to XX1e-X, we obtain:-

17(a)



- 36 -

00

fa( 17(a) jea-eX(l+Tc) D(k,k';7x(1 + Tc))) = F(c,,k,k';a)

Making the change of variables 4 = X (1 + T,) in the above integral in (dx), we obtain
formula (4.z).
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5. Some general remarks about duality and intertwining.

(5.1) g-duality and h-duality.

There are presently, in the Markovian literature, two notions of duality which have
little in common, they are:

a) the notion of duality of two Markov semi-groups (P1) and (P1) on E, with
respect to a a-finite measure ,u on E:

this notion, which has already been presented in Definition (3.1) above plays, as we
have seen in section (4.5), a crucial role in time reversal;

b) the notion of duality of two Markov semi-groups (R1) and (St) on E and F
respectively, with respect to a function h: E x F -+ RF; we borrow this notion from
Liggett (1985): (R1) and (St) are said to be in h-duality if: for every (4, Ti) E E x F,

(5.a) Rt(hn)(4) = St(h4)(Ti)
where: h, (4) = h4 (TI) - h(t,r).

(5.2) Comparison of intertwining and h-duality.
The following proposition shows, under adequate assumptions, the equivalence

between a property of intertwining and a property of h-duality.

Proposition (5.1): Suppose that the semi-groups (St) and (St) are in j-duality. Then:

1) if the semi-groups (R1) and (St) are in h-duality, then:

RtHg = H gSt;

2) conversely, if Rt A = ASt, with Af(t) = Jd (Ti)X(I Ti)f(Ti), then (R1) and (S)
are in almost k-duality.

6. Temporary conclusion (August 1992).

A more complete list of intertwinings of Markov processes has now been esta-
blished in joint work with Ph. Carmona and F. Petit (1992), making important use of
the reflecting Brownian motion (I Bt1, t 2 0) perturbed by a multiple of its local time

(1°,t 2 0) at 0, i.e: (IBtI - X10, t 2 0), for some X > 0.
The new Markov processes are constructed explicitly in terms of this perturbed
reflecting Brownian motion, which gives more hope that the intertwining relations
described in the present paper and in Carmona-Petit-Yor (1992) may have a pathwise
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interpretation.
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