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1. Introduction.

Let (Nt,Ft, t > 0) be a (univariate) point process. The intensity (Xt, t 2 0) of N is
assumed multiplicative, in the sense that

(1.1) Xt= a7-

Here Zt is a non-negative adapted process and a E A, an infinite dimensional collec-
tion of a non-negative right continuous (non-random) functions on [0, Co) satisfying
t

as ds < oo. The parameter a E A is unknown, and the statistical problem, roughly
0

t

speaking, is to estimate the integral as ds on some interval, say 0 < t < 1. See sec-
0

tion 2 for a more precise description; see, e.g., Jacobsen, 1982, for basic facts about
this multiplicative intensity model.

t

The Aalen estimate of A(ao; t) Ja ds is the process
0

t

(1.2) A(t) = f(Zo-1I(Zs > O)N(ds), 0 < t < 1
0

These estimates are attractive because of their asymptotic normality and their easy
computability. There is some work (Jacobsen, 1982, p. 148ff and Karr, 1988) to show
that they are similar to maximum likelihood estimates. The present paper shows that
they are also quite similar to the empirical cdf as it is used in problems involving iid
observations.

The MLE in classical parametric problems, and the empirical cdf, share an asymp-
totic optimality called the local asymptotic minimax (LAM) property. In the
parametric case this property roughly amounts to the assertion that, among all possible
estmates of the parameter, the MLE has smallest asymptotic variance. The assertion
for the empirical cdf is analogous: among all estimates of the underlying cdf, the
empircal cdf has the "smallest asymptotic risk". Thus LAM is an efficiency pro-
perty. In section 2, we prove that, in an appropriate framework, the Aalen estimators
are LAM in a sense very close to that of the empirical cdf.

The MLE's in classical parametric problems and the empirical cdf, share another
efficiency property, called a convolution theorem. In the MLE case, this asserts essen-
tially that the asymptotic distribution of the MLE is always "less spread out" than the
asymptotic distribution of any other regular estimate of the parameter. A similar
result, due to Beran 1977, holds for the empirical cdf. In section 3, we prove under
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suitable conditions that a convolution theorem holds for A.

The empirical cdf can be used to construct confidence bands for the underlying cdf.

One would like to use A similarly to construct confidence bands for A (a; t) Ja ds.
Such bands could then be used, e.g., for goodness of fit tests. The construction of
such bands in the cdf case is eased considerably by the fact that the Kolmogorov-
Smirnov statistic is distribution free, a convenience not shared by the present situation.
None the less, in section 5 we provide two methods for constructing confidence bands
for A (a; ) which have correct asymptotic level. These bands are also shown to have
an asymptotic efficiency property; this development utilizes a kind of LAM property
for set valued estimates developed in Beran, Millar, 1985.

In a multiplicative intensity model it is often possible, as shown by Jacobsen, 1982,
section 5.3, to construct estimators of the product limit type. The development of this
paper automatically provides LAM results, a convolution theorem, and optimal
confidence band constructions for these estimates as well. These results follow easily
from more general results concerning the estimation of 4 (A (a; )) where 4 is a
"differentiable" functional. Our development is designed to show the applicability of
our results to the problem of optimally estimating A (a; ) when a is constrained
e.g., assumed to be an increasing function. Section 4 gives two applications of our
results to the problem of constrained estimation.

This introduction has emphasized the similarities between the problem of estimat-
ing a cdf and that of estimating A (a;-). On the other hand, there are important
differences other than mathematical complexity. Perhaps the most interesting
difference is that, properly formulated (see section 2), the Aalen estimators in general
estimate random functions, not deterministic ones. Such an estimation problem cannot
fit into the Le Cam theory of experiments, (Le Cam, 1988) and, hence optimality
results derived under that theory do not typically extend to this more general frame-
work. The method described here (cf section 2) is to make the randomness in the
effective parameter disappear asymptotically; such a phenomenon holds in a number of
practical examples. On the other hand, this device is far from being generally satisfac-
tory. Indeed, the development of a general LAM theory for optimally estimating ran-
dom parameters is an important problem which will be discussed elsewhere.

The developments of this paper require several results from the theory of Aalen
processes, and a good deal of abstract LAM theory for infinite dimensional parameter
sets. To shorten the exposition, we shall refer the reader to the appropriate sections of
Jacobsen, 1982, for the former, and to sections in Millar, 1983, for the latter. The
recent monograph of Karr, 1986, could also be used for background on Aalen
processes.
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2. LAM property.

Let (Nn,tFt,,O < t < 1), n = 1,2,..., be a sequence of (univariate) Aalen processes;
the intensity of Nn is then of the form

(2.1) kmt = xt n,t
where a e A, and, for each n, Z4, satisfies the conditions given on pp. 115-116 of
Jacobsen. In many applications, Nn is the sum of n iid copies of a given process, in
which case Z7,t is then a sum of iid processes. We shall, however, not make the iid
assumption.

The Aalen parameter a e A does not completely specify the distribution of the
process N,t, t . 0). Let 1 be another parameter with values in a normed space. We
assume that the pair (a, P) determine the distribution of Nn. The necessity for intro-
ducing 1, as well as an instance of such a 1, are apparent in Example 4.2; see also
Illustration 5.1. Let

(2.2) p = law of Nn,t.,< t < 1)

when the intensity is given by (2.1). Expectation under Panp will be denoted by Ea.
This section develops a LAM result in the neighborhood of a pre-selected point

(ao, 0o). In this development, the parameter 13 can be ignored, so throughout this sec-
don and section 3, we shall for simplicity write Pa for Pajo0 and Ea for E(n0. In
section 4, the role of 13 becomes crucial, and so the notation (2.2) will resurface there.

Define for a E A

0 t

An(a; t) = JaI{Zns > 0)ds.
0

The estimation problem is then usually defined as that of estimating the random pro-
0

cess An(a; t) on some interval, which we henceforth take to be [0,11. Under the

hypotheses given below, it turns out that An (a; t) is asymptotically equivalent to
t

(2.3) A(a t |asI{EanZ,,s > 0ds,,
0

a non-random function, and so we shall deal with An (a;-) throughout instead of An.
Justification for this appears in the proof of theorem 2.1. The reason usually given for

0

estimating An instead of An(a; *) is that it is impossible -to make inference about a
on the set of time points s where Zns = 0. The Aalen estimator An ( ) is given by

t

(2.4) An (t) = I(Z,.T1I(Zms- > 0) Nn (ds).
0
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To formulate the LAM property, note first that A. (a; ) and An() both have
values in the Banach space L,. ([0,1]), the bounded real functions on [0,1] with
supremum norm. Denote the norm of L., by 11 -II. Let I be a non-negative subconvex
function on L., such as I (x) = lix 11 1 a, x E L... Let Tn be an estimator of An(a; )
available at stage n; it is assumed that T. is an LO.-valued random variable. If a E A,
then the risk at a, if Tn is our estimate, is

(2.5) Ea -(Tn-An(a)))

Here {all} is a fixed sequence of numbers, an < an+,n; in many examples, an = nla. For
convenience, assume from now on that I is bounded and continous; this assumption is
easily removed by familiar arguments.

To formulate the LAM result, fix aoc e A and define D(n,c) = D(n,c,a0) = (a e A:

An (a) - An (ao) II < ca;'). Let Tn denote the collection of estimators of An(a)
available at stage n.

THEOREM 2.1. (LAM) Assume (2.7) - (2.12) below. Then, if An(-) is the Aalen
estimate,

litm lim inf sup: Ea,n I {an (T-An (a)))}

= limlim sup Eaanla(An-A (a))}
cTo n-*@aeDni,c)

The common value of the limit is characterized in proposition 2.1.

Here are the assumptions for theorem 1, formulated for the fixed (X above. The
first two assumptions are triangular array variants of those in Jacobsen, sec. 5.2 (except
we do not assume a product model); these two assumptions ensure the asymptotic nor-
mality of An. To formulate them, let oan denote a sequence in A such that for some c

t

(2.6) sup IJan,ds -An(ao; t)I < can .
o_.t<1 o

Then we assume:

(2.7) there exists a non-decreasing continuous function (D (depending on ao) with
(D = 0, such that for each t, 0 < t < 1

t

aOnlsan:Znss)-1I[Z.,s>0)ds -+ Dt
0

in PX probability, whenever an satisfies (2.6).

(2.8) for all £ > 0, all t e [ 0, 1 ], whenever a% satisfies (2.6),
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limE fnO6 an (Zs)-' If(0 < Z, s < an1} = 0n O

Introduce a third assumption:

(2.9) whenever an satisfies (2.6)
1

lim an ans I(E n Z,. > °} PaQ(Zns = } ds= 0.n~~~a
0

This assumption permits us to replace An(cyj) by An(cy;') in the asymptotic
arguments, as described earlier in this section.

Here is the fourth assumption:

(2.10) there is a real function q, on the interval 0 < s < 1, such that
t t

(i) an ocu (Zns)-'I{Zns > 0)ds aosa5(q)-'IsIds -Dt
0 0

and also
t t

(ii) an2 am Zn,s I{Zns > 0) ds oJs qs Isdsd s--s
0 0

where I = 1 if %>0, IS=0ifq=0.
The convergences above are in P(W probability. Assumption (2.10i) merely nar-

rows (2.7) a bit. Part (ii) guarantees convergence of (in the sense of Le Cam) certain
statistical experiments, and the 'symmetric' nature of the two limits allows one to
relate this convergence to that of the Aalen estimator. In case Z4 is the sum of iid
copies of Z and an = n, one gets qs = EZS by the law of large numbers, and so (2.10)
holds under modest integrability conditions.

Our fifth assumption is:

(2.1 1)whenever an satisfies (2.6)

timf[I(Ea,Z,s >) - Is]2aos (qs) IS ds = 0.n o

This assumption is technical: it allows locally the replacement of
t t

An (a) = J as I( Ea Z,s > 0) ds by fa, I, after certain preliminary reductions.
0 0

The final assumption is that co% be a radial point of the parameter set A. To
describe this concept, let H be the Hilbert space of real functions on [ 0, 1 ] with the i3
norm given by the measure ocx(s)ql Isds, so if h H, Ih 12 = Jh(S)20Co(s) [q(s)f1
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I(s) ds. In particular h(s) = h(s) I(s), as elements of H. Then A is radial at co E A if,
for each h in a dense set Ho c H, the function ao (s) + ao (s) a;' h (s) q (s)-1 I(s)
belongs to A for all sufficiently large n. This property asserts a sense in which %o is
not a "boundary point" of A; it also ensures the "infinite dimensionality" of A.
Thus, the final assumption is

(2.12) ao is radial in A.

Remark. Assumption (2.6) can be weakened. An LAM result like Theorem (2.1) can
be proved if, in (2.6), only cn of the form cn = (k + %hqIan j are used.

Having given the basic assumptions, we may now characterize the LAM lower bound
in theorem 1.

Proposition 2.1. Under assumptions (2.7) - (2.12), the common value in theorem 1 is

El (X)

where X=Xti,0<t. 1), Xt=Wo Dt, andW ={Ws, s . 01 is standard Brownian
motion on the line; ZD was given in (2.7).

This proposition is immediate from the following

Proof of theorem 1: We first check that the second expression in theorem 1 is equal
to El(X), defined in Proposition 2.1. Let cn E A satisfy (2.6). By (2.7), (2.8) and
Rebolledo's CLT (Rebolledo, 1978; see also Jacobsen, p. 163) we find that

an[An(t) - An(an; t)], 0 < t < 1

converges in Lo, [ 0,1 ] to (Xs,0 < s < 1). Next, note that

a lA0 (Otn'-) An(an; )1 0
since this last display equals

1

anJan(s)I [Zs = O I(EnZs> O)ds
0

which goes to zero by (2.9). Thus for every cn satisfying (2.6)

an[An(-)-An(an; )-] - X.

Since ca could have been chosen to achieve the supremum over D (n,c), it follows that
the second expression in theorem 2.1 is El (X).

To finish the proof, it suffices to show that the first expression in theorem 1
exceeds El (X). Let H be the Hilbert space of real functions on [0,1] introduced



- 7 -

t

before (2.12). Define a mapping t: H -+ C [, 1 ] by (rh) (t) = Jh(s)oco(s) q1 (s)ISds.
0

If t* is the adjoint of t, then integration by parts shows that if m e C* [0, 1], dual of
C[O, 1], then (t*m)(t) = m(It, 1]); thus, l*mI1

1~~~

= fm [s, 1 ]2asq;'Isds
0

- IIff[ S, 11(u) I[ s, 1 1 (v)aos qs1 I4 dsm(du) m(dv)
UAV

= ||ff aos qs-1 Is ds m(du) m(dv)
0

= JJ04 m(du) m(dv)

by (2.lOi). Thus (t, H,B), B = tH (closure in C [0, 1 ] of the image of H under t) is
an abstract Wiener space, and the standard normal QO on B is the law of
X = (Xt,O < t < 1); see Millar, 1983, Chs V, VI.

Let (Qh,h e H) denote the Gaussian shift experiment for ('r,,H,B). Then, for exam-
ple, under QO,

log(dQn /dQo )(x) = fh(s)dx(s) - 1/21hI2, x E B.o~~~~0

Next, consider the experiment (Qn, h e H), defined as follows. QW is the distribu-
tion of (Nnt,0 < t < 1) under P n when an has the form

(2.13) c° = xos[1+hsq;1Isa;', 0<s< 1.

We shall argue that the experiments (Qh, h e H) converge, in the sense of Le Cam, to
(Q, h e H); see Millar, 1983, Chll for an exposition of this notion of convergence
that is easily applicable to the present situation; a deeper development is Le Cam,
1986.

By (2.1Oii) and Rebolledo's CLT,
t

(2.13) a;{Nnt- aosZn,sds; 0 < t < 1) * (Yt,O < t < 1)
0

where Yt = W o N1t. and P was defined in (2. 1Oii). Let
a, = oc. + ocohIq71 a;1 = co + a0x1l a,1. Then using the form of the likelihood ratios
for Aalen models (cf Jacobsen, ChIV), we find log dQh / dQo' = log dP n /dP n

1 1
- -a;' faosaj,lSZs ds + flog [ I + a;1alS]dN]S

0 0
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1 1

- anlJzs[dN s-N cos,ZsdsI - 1/2Jan2(ais)2dNn's.
0 0

Because of (2.13), this converges to

11 1|alsdYs 1/2 (als)2dTs
o o

- Jh(s) [q(s) ]-1 IsdYs - 1/2 [h(s) /q(s) ]2dT's
o 0
1 1

- Jh(s) dX, - 1/2[ h (s) ]2d(Ds,
o 0

using, e.g. Doob, 1953, p.

Thus the log likelihoods of (QW, h e H) converge to those of (Qj°,h E H). Since
the likelihoods are asymptotically quadratic in the parameter h, this implies that the
experiments converge in the sense of Le Cam.

The form of the LAM lower bound can now be deduced from the Hajek-Le Cam
theorem (Le Cam, 1972; Millar, 1983, chI). Indeed, since ao is radial

D (n,c) ' Do (n,c)

where Do(n,c) consists of all a of the form (2;13) having Jao I hs Iqs Is ' c, h e H0.
0

Moreover, for a of the form (2.13), hypothesis (2.11) implies that

An(ac na;A n1ao,h.qslIsI[En, Z. > dsA~~(a;) = (a;-)+a- (

An(ao -'-) + a;1,rh + ofa)

Therefore

TinTfSDUg [ an(TAn (a;, dpnwinf supr1 a

. inf suXJlI [an(T - A~(;)]P
TET.aE bo_n c)|[an(-n (a )]dPn

. inf sup J1[T - hIdQj. + o(1).
TET. h: Ith 1:c

By the asymptotic minimax theorem and the minimax value for a Gaussian experiment
(e.g., Millar, 1983, chVI, p. 133), this last expression above is minimized in the limit
(as n - oo and then c t oo) by El (X). (A completely detailed proof would use the
argument on p. 147 of Millar, 1983, to justify interchanging lim and lim.) This com-

c n
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pletes the proof.

3. Functionals of the integrated Aalen parameter.

Let 4 be a mapping defined on L,. [0, 1 ] with values in some Banach space B2.
0

The task is to estimate 4 (An (a;- )) (or 4 (An (a; ))). Under regularty conditions on

we show first that the natural estimator t (An), where An is the Aalen estimate of
section 2, is LAM (Proposition 3.1) and efficient in the sense of a convolution theorem
(Proposition 3.2). These results are then applied to show that the "product limit" esti-
mators associated with multiplicative intensity models are also LAM and convolution-
efficient. The next section presents some illustrations of estimation problems when the
Aalen parameter is subject to constraints.

To give the required smoothness property for 4, fix a0, and bring in the Hilbert
space H of section 1. Again assume that a0 is radial, and let HD be the subset of H
given in the definition (cf., (2.12)). Define t to be HO-differentiable at ao if, for each
he Ho
(3.1) an[(An (ah)) - (An (ao))]

= 0'Oh + o(l)

where 4' is a continuous linear map of Lo,o[, 1 ] to B2 (depending on aco only), and
where ah is an Aalen parameter of the form

(3.2) ao + ao hq7l Ia-j.

This differentiability condition is much weaker than Frechet differentiability; how-
ever, the latter will suffice for the examples discussed in the next section. Let Tn
denote all estimators of &,(An(a)) available at time n, and let 1 be bounded and sub-
convex in B2.

Proposition 3.1: LAM. Assume the hypotheses of theorem 2.1, and that 4 satisfies
the differentiability hypothesis (3.1). Assume also that the range of 4' is dense in B2.
Then

lim lim inf sup fI [ an (T - (An(a)))]dPn . E I (' o X)
ctoo n- TeTE aED ,c)

where D(n,c), X are as in theorem 2.1. If

(3.3) an [(An) -4 (An (an)) ] => "
0X0

under Pnan whenever (an) is an arbitrary sequence such that an e D(n,c), then 4 (An) is
LAM in the sense that
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lim lim sup J [ an (t (An)- (An (a))) ] dPa = E I (41 o X).
cTooh-*- aeD(xc)

The proof of proposition 3.1 appears in section 6.

Remarks 3.1. (a) The condition (3.3) is obviously satisfied if 4 is Frachet

differentiable, or even compact differentiable (cf., Reeds, 1976). Condition 3.3 does

not follow from the condition (3.1). As is familiar from experience, and as Reeds

pointed out at some length, studying the differentiability properties of t will often not

be the best way to establish (3.3).

(b) The requirement that the range of 4' be dense in B2 can be weakened. One can

assume this range to be a complemented subspace of B2, where the associated projec-
tion x onto this range has norm < 1. In this case assume in addition that
1 (x) = g(lI x 11) where g is an increasing function, and 11 11 is the norm of B2. Then the

LAM lower bound becomes El [ X o &'o X ], and the LAM estimate, under regularity
assumptions on 4, becomes x o t (An).
Let us turn next to a convolution theorem. Again fix the radial point co and bring in

Ho. Define an estimator Tn of 4 (An (a)) to be HO-regular if there is a probability Go
on B2 such that for every h e Ho:

(3.4) an [Tn-4 (An (an,h)) ] Go,

convergence in distribution under Qhn. Here anh is defined by (3.2). Let

(3.5) v0 distribution of 4' o X

where X is defined in proposition (2.1).

Proposition 3.2: convolution. Assume the hypotheses of theorem 2.1, and that ,
satisfies the differentiability hypotheses (3.1). Assume also that the range of t' is
dense in B2. Let Tn be an H0 a regular estimator with limit distribution Go, as given
by (3.4). Then there exists a probability g on B2 such that

G = * v0.

If, in addition, (3.3) holds, then 4 (An) is an Ho regular estimate, and is efficient in the

sense that its . is unit mass at 0 E B2.

The proof will be given in section 6.

Remarks 3.2. (a) Under the assumptions of Proposition 3.2, An is a regular estimate
of J oa; * ), and so is efficient. Thus, the "convolution-efficiency" of n(As) hinges
on properties of t only - see Remarks 3.1, (a).



- 11 -

(b) If 4' is not one-to-one, it is possible to get by with an even weaker notion of regu-
larity. Let Hoo be a subspace of Ho, and define Hoo-regularity analogously to (3.4).
Let 4 be differentiable with respect to Hoo (i.e., replace Ho by Hoo in definition (3.1)).
Let T-L1 be the null space of the mapping 4' o t, and assume Tll D Hoo. Then the con-
clusion of proposition 3.2 continues to hold.

The foregoing results provide a simple way to establish the asymptotic optimality
of the so-called product limit estimators. To see this, take ,: Loo [ 0,1] L [ 0,1 ] as
follows: if g e LOO [ 0, ],

(3.6) (g)(t) = exp(-g(t)), tE [0,1].

Then , is differentiable (in the sense of Frechet), with derivative at go e L,, given by

(3.7) 4' (g) (t) = 4' (go; g) (t)
= -g(t)exp(-go(t)} t E [O,1].

The statistical problem addressed here is the estimation of

(An (a; ))

as an element of L. ([0,1]). By propositions (3.1), (3.2), an optimal estimate is
t (A,). On the other hand, a currently popular estimator, based on an extensive history
dating at least to 1957, is the product limit estimator defined by

(3.8) Gn(t) = II [ 1-(ANns/Zns)IIIZ4s > 0)].
SSt

Thanks to work of Jacobsen (1982, section 5.3), it is easy to see in our development
that these estimators are, under suitable conditions, also optimal.

To set this up, assume the hypotheses of Theorem 2.1, with xo fixed. Define
t

(3.9) G(caO; t) = exp(-JaoIsds}
0

and let (Y, 0 < s .1 ) be the process

(3.10) Ys = XsG(c(; s)

where (Xsj was defined in section 2. Let now Tn denote all estimators available at
time n for the parameter , (An (a; - )).

Proposition 3.3. Assume the hypotheses of theorem 2.1. Assume in addition the
hypotheses of Jacobsen's corollary 5.3.9, in triangular array form as exemplified by
(2.10). Assume that Jacobsen's * (Jacobsen, p. 181) satisfies lim Pa Ita* 2 1) = 1.

ThnG~iaLM simtnL01
Then Gn is a LAM estimate on L.. [ 0,1 ]
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lrn lrn inf su [nTjl(A 0 Id
ctoon-3oTeT. D(aEc) a[an(Tn- (An(a))} ]dPn

(3.11) =on'~ -lim lim su fI anG -(An(a))f dPn
cT-o n-oC* acEDnc)na

- El (Y).

In addition, a convolution theorem holds: if T' is any Ho regular estimate of t (An (a))
(cf. (3.4) above), then

(3.12) ITn-(An(an)=I Y' + Y

under POW; here Y' is an L.. [ 0,1 ] random variable independent of Y.

Proof of Proposition 3.3. Since in the present case t is Frechet differentiable, we
may apply propositions 3.1, 3.2 and the differentiability of 4 to deduce that the LAM
lower bound is El [ 4' (X) ]. The form of 4' ensures that 4' (X)(s) = Y, as defined in
(3.10). On the other hand, Jacobsen's result 5.3.9 (when put in triangular array form)
ensures that the product limit estimator Gn(s) has the limit Y. (in distribution on
Lo. [ 0,1 ]) and this completes the proof.

Remark 3.1. The foregoing results imply that, from the point of view of asymptotic
optimality, there is no reason to consider the P-L estimators superior to the obvious
transformation of the Aalen estimators. The Aalen estimators have in addition, a
rather simpler asymptotic theory and they generalized easily to higher dimensions. On
the other hand, there appear to be no systematic studies comparing the small sample
behavior of these two competing estimates. The P-L estimate (like the empirical cdf)
has a characterization in terms of MLE concepts; according to Karr (1988), however,
the Aalen estimator also has an MLE interpretation (at least asymptotically). In any
case, the ML property is not generally regarded as an "optimality" property, from the
point of view of standard decision theory.

Let us now turn to some examples of the use of this development.

4. Aalen parameters with constraints.

This section addresses the question whether the Aalen estimate of An(a; ) loses
efficiency when the Aalen parameter a is subject to "constraints". This, of course, is
a complicated question; we address it here in the context of two substantive examples,
where the kind of "constraint" often has a transparent physical interpretation. Our
goal here is to indicate the scope of the abstract results of previous sections. In these
illustrations an = n
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Example 4.1: hazard functions under a monotone constraint.

Let xl,... , xn be i.i.d. non-negative random variables with c.d.f. F. Assume that
n

F has density f, and that F(1) < 1. Let Nnt = I( xi t); henceforth we delete the

subscript n. As is well-known, this point process may be formulated as a multiplica-
tive intensity model with a (t) = f(t) / F (t) and Znt = n - Nt_. Here F (t) = 1 - F (t).

For unknown F let us consider the problem of estimating on [ 0,1] the integral of
the hazard function a f/ F, under the assumption that a is known to be an increas-
ing function. (In the theory of reliability, this constraint is called "increasing failure
rate" and is usually denoted by "IFR".). Thus, in the notations of section 2,
A = (increasing hazard functions). Although the elements of A are subject to a con-
straint, we shall permit the use of any estimator of An (a) at all even if it does not pre-

0

cisely have the form d, d e A. The Aalen-Nelson estimate for An(a, t)
t

J (s) I(Ns_ < n) ds is
0

t

An (t) = f(n - NS.)-1 If N,- < n) N(ds)
0

N,An
= I [n-(k- 1)f1.

We shall argue first that An(a, t) is a LAM estimate of An(a, t) at ao E A, whenever
ao is "radial" in A.

To set this up, let us define for a e A, the corresponding cdf Fa by
t

1 - Fa (t) = expffa ds). Fix aO e A, and abbreviate Fc, by Fo. By the law of large
0

numbers -Zn Fo; since Fo(1) < 1 by assumption, one then identifies the function qs

of section 2 as q=Fo(s), and Is there is given by Is - 1 (O < s < 1). The hazard
function a0 will therefore be radial if n112 ao (s) h (s) / Fo (s) + ao (s) is an increasing
function for a dense set of h in H (cf (2.12)), at least for all sufficiently large n. (The
size of n in the previous statement can depend on h). The hazard function
a0O + n1/2aOh/PF will be increasing if its derivative is positive; this leads to the condi-
tion that n-12 (h' Fo + hf)ao / Fo + [ (n71/2 h IFO) + 1 ]a' be non-negative. Thus if ao'
is positive, and bounded away from 0 on [ 0,1 ], it is easy to see that the hazard func-
tion aO + n1/2 aoh / Fo will be increasing for large n, if h and h' are bounded on
[0,1]. Such h give a dense subset of H, so a0 is radial in A provided only that
inf a0'(s) > 0. The triangular array assumptions of section 2 can be checked in the

0<S:51
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present situation by using familiar triangular array results for empirical processes (cf
Beran and Millar 1986, section 4, for example). The mapping 1), which determines
the asymptotic distribution is Dt Fo(t) / FO (t) (cf (2.7). Since the other assumptions
in section 2 are readily verified, we find by theorem 2.1 that the Aalen-Nelson estima-
tor is LAM at each hazard function oc% in the collection of increasing hazard functions,
having derivative bounded away from 0 on compact intervals: i.e. at every ao that is
strictly increasing and differentiable.

Similar LAM results can be established for other collection A of hazard functions.
For example, one may take A to consist of all hazard functions which are decreasing
(DFR in reliability terminology) or A could be the collection of all convex hazard
functions, and so forth.

Next, consider the functional t: A - C(R') given by
t

(a) (t) = 1 - exp-Ja (s) ds). If A is regarded as a subset of L. (R'), then each
0

a e A yields an integrated Ja which is in C(R). Therefore we may regard 4 as a

map of C (R) -e C(R), using the recipe (c) (t) = 1 - exp(-c(t)). if
t

co (t) fa0(s) ds, then 4 is differentiable at co, with derivative &'(c) _ (co; c) given
0

by (cf., (3.7)):

4'(cO; c) (t) = Fcxo (t) c(t).

Of course , (Ja) = Fa. We therefore may estimate Fx, for unknown a e A, where
A = [increasing hazard functions), by using , (An), where An is the Aalen-Nelson esti-
mator. Proposition 3.1 then shows that this estimator is a LAM estimate of Fo Fao at

any ao radial for A, and that the limit distribution is &'(X) where X = B o I,
'D (t) = Fo (t) /Fo (t). The form of 4' then guarantees that &'(X) is the usual Brownian
Bridge: the mean 0 gaussian process with covariance Fo (s A t) - Fo (s) Fo (t). Let Fn
be the empirical measure of xl, . . . , x; then 4in(Fn - Fo) has the same asymptotic
behavior as n112 [ (An) - 4 (A (ao)) ] and so Fn is a LAM estimate of Fa., EoE A also.
For the case A = (increasing hazard functions) this latter result was established, in
slightly greater generality, in Millar, 1979.

Example 4.2: Censored data, with constraints. Let xl, . . . , xn be non-negative iid
random variables with common cdf F, and let y1, . . . , yn be iid non-negative random
variables, independent of [xi, 1 .i . n), and having common cdf G. Let

mj= min(xj,yj) 8j = I(xj3< yj) and set Nt= II(mj < t,j= 1). Assume F has a
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density f, and that F, G have common support that strictly includes the interval [0,1].
The foregoing is well known to be an Aalen model with a (t) = f (t) /F(t),

n

Zn= I(mi t). Since Znt/n - F(t)AG(t), the special functions q, and Is of sec-

tion 2 can be identified as Is = 1, 0 < s < 1 (since F(1) A G(1) < 1) and
q=F(s)A G(s).

As in Example 4.1, let us consider the problem of estimating the indefinite integral
of the hazard functions a, under the constraint that a be increasing. We shall again
argue that the Aalen estimate of the integrated hazard function is LAM at any
oco E A = (increasing hazard functions) which radial for A.

To set this up, fix ao0 fo/FO and Gos. For oco to be radial in this case, the hazard
ao + ni112 a0h / Fo A Go should have a positive derivative for a set of h that are dense
in the relevant Hilbert space H of section 2. Considerations exactly as in example 4.1
show that ao will be radial in direction h if h, h' are bounded, and if inf ao' (s) > 0.

Thus, ao is radial in A if only inf ao'(s) > 0. Theorem 2.1 then implies that the

Aalen estimate of the integrated hazard function is LAM at any a0 e A that is radial
for A, as claimed.

Proposition 3.3 then shows that the associated product limit estimator for this
example is also LAM, even under the constraint that the hazard function be increasing.
Here this P-L estimator is, of course, more famously known as the Kaplan-Meier esti-
mate. For this estimator, Wellner (1983) has proved its LAM character (by a different
method, and with no constraints on the hazard function); thus the present example
extends slightly the work J. Wellner.

5. Confidence Bands.

Previous sections have discussed optimal estimation of An(a; ), the integrated
Aalen parameter. This section considers construction of optimal confidence bands for

An (a; ) (on [0,1], say), and for exp(-An(a; )). The main development in this
section, carried out in subsections (5.A), (5.B)) constructs these confidence sets using a
bootstrap method. Asymptotic "plug-in" methods are briefly described in
section(5.C), which in addition contains other complements to the basic development.
Proofs are given in section 6.

(5.A). Description of the confidence bands.

To describe the bands based on the bootstrap method, recall from section 2 that
Pap, is the distribution of the basic point process (Nnt,O < t < 1) which has Aalen
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parameter a, and nuisance parameter . Fix Ti, 0 < rj < 1, and suppose the desired
confidence level is 1 - TI. Let An be the Aalen estimate of An (a; ) and let Pn be an
estimate of P.

Illustration 5.1. To illustrate such On consider the simple censored data model of
section 4 (Example 4.2.) Here a = f/F, and the Aalen estimate is described there. The
nuisance parameter [ can be taken to be the cdf of the unknown censoring distribution
G. Because of the inherent symmetries in this model, the estimate on of [ could be
taken as the Kaplan-Meier estimate of the censoring distribution G. Obviously, there
are other possibilities, as is clear from section 3.4.

Define

(5.1) CE= {fe L00[0,1]:n112IIfAnII r.n}

where the nonm is that of L¢0 [0,1 ] and

(5.2) rln = tn(An;f3n;i)
and tn(An (a; ); [B;Tl) is given by

(5.3) P (n112I1A1-A(a;A- )II s t(An(a;-); 1;Ti)) i- .

The random set Cin gives, under conditions given in subsection (5.B), an asymptoti-
cally optimal, 1 - Tl level, confidence band for An (a; ) on [ 0, 1].

To build a confidence band for exp{-A(oc; )}, proposition 3.3 suggests a con-
struction similar to that of (5.1), but based on product limit estimators. Indeed, if Gn
is the product limit estimator given in (3.8) set

(5.4) C2n = (f e L. [0,1]: n12If - GnI < r2n)
where

(5.5) r2n = t2n(Aj3n;Ti)
and t2n (An (a; *); [3;l) is given by

(5.6) Pn pfnl/211Gn-exp{-A(a; )11 < t2n(An(a; );I3;Ti)) ITi.
The confidence band C2n will be asymptotically optimal with the correct (asymptotic)
coverage probability.

Application 5.1. The optimal confidence band Ci can be used to assess assumptions
about the underlying statistical model. For example, to assess the idea that the Aalen
parameter be constant, one might check that the band Cin contains at least one straight
line emanating from 0, and having non-negative slope. If so, then this could be
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regarded as evidence in favor of the null hypothesis of constant "failure rate" - in
the sense that the trustworthy set estimate Cin contains at least one member of the null
hypothesis. The reasoning here is not that of a standard goodness of fit test. A more
interesting possibility, is to assess the hypothesis that the Aalen parameter is increasing
on [0,1 ] (say). In examples 4.1, 4.2 this amounts to seeing if "IFR" is a viable pos-
sibility. If the Aalen parameter a is increasing then the integrated Aalen parameter
would be non-decreasing convex on the intervals {s: Zn, > 0) and flat on the intervals
{s: 7.s = 0). If the confidence band Cin contains at least one such piece-wise convex,
piece-wise flat increasing function emanating from 0, then the hypothesis that a be
increasing would be supported - in the sense given before: the optimal set estimate
contains at least one element of the null hypothesis. If n is large, then in our exam-
ples, I(Z,,, > 0) = 1 0 < s < 1, and so one need check here only whether Ci contains
at least one convex increasing function starting at 0. A closely related, but more tradi-
tional method of testing such null hypotheses could be based on minimum distance
methods centred at the Aalen estimate. Such methods will be discussed elsewhere.

(5.B). Optimality of the confidence bands.

To describe the optimal nature of the confidence bands C1tl let C(z,r),
ze Loj[0,1], r>0 denote the band (ye L,j[0,1]: IIy- zll < r}. Then C(z,r) is a
ball in L..[0,1] with centre Z and radius r. To set up a formal decision theoretic
framework, let D be the collection of all such balls. Then D is the decision space. A
nonrandomized procedure (- conf. band) is then C(z ") where Zn ?n are functions of
the observed data. We restrict attention to those confidence bands C (z, n) that have
the proper coverage probability:

(57)~ ~~~aP, (C(krn) An(a; ) > 1-l

Denote by Dln the collection of all procedures C (2n,j) that satisfy (5.7). A
confidence band C(Q,rn) will be reasonable if it belongs to DR,n at least approxi-
mately, and also is not grossly off centre or excessively wide. To formulate such a
condition introduce a loss function ln, at time n, by:

(5.8) ln(C(Znri), An(a; *)} g[n112 sup 1 y-An(a; )II].ynC(zn, n-)
where g is an increasing function on [0,oo) which will be assumed bounded and con-
tinuous for convenience. The LAM result for confidence bands of An (a; ) may now
be formulated. Fix a0, Pso. Let D* (n,c) = ((a, ,1): 11 a - ao 11 ' c/4n,
II 0 - oll1 < c/--Fn
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Proposition 5.1. (LAM lower bound). Assume the hypotheses of theorem 2.1, with

an=n= 12 Then lim lrn inf suR An(a;
cToo n->o c(zn, i)ED,VM (a,P)ED (n,c)

dPan > Eg[II X + rii ] where X is given in proposition 2.1 and r1, is defined by
P{IIXII < rl.) = 1-rj.

Remark 5.1. The number rl, has, of course, a simple characterization; see Proposi-
tion 5.3 below.

The LAM lower bound of Proposition 5.1 required only the hypotheses of theorem
2.1. However, in order that the confidence set Cin achieve its lower bound, a slight
strengthening of the hypothesis of theorem 2.1 is necessary. The conceptually simpler
"plug-in" method of Complement (5.2) will also require strengthening of these
hypotheses. Let us therefore introduce the "strong triangular array hypotheses":

(5.8)the hypotheses of theorem (2.1) hold, but with Pn0 replaced by P no where

(an', On) satisfy
n1/2l,Bn-Jpol < c

and

(5.8a) ni/2 IIAn(Xn; A)-A(cxo; )II < c

t

where A (a; t) = f cO (s) Is [ qs F-1 ds. The escalation to (5.8a) is severe, but
0

appears unavoidable even in the context of Complement (5.2).

Proposition 5.2. (LAM character of Cmn ). Assume the hypotheses of Theorem 2.1
in "strong triangular form"', as given by (5.8). Then

cToon sua(a,p)E (n c)Jn (Cln) dPanp = El (11X 11 + rj ).

Moreover, rin
>

rl, under Pn, (cyf3n) e D* (n,c).

The number rl.,, which depends on A (czo;-), 30:
(5.9) rl1 = r, (rj; A(cz; .); 13o),

was given an abstract characterization in Propositions 5.1, 5.2; this abstract description
was meant to emphasize the similarities in structure between the confidence bounds
here, and those in other statistical applications (cf, Beran and Millar, 1986, for exam-
ple). Unlike most other non-parametric applications, the numbers r1,1 here have a sim-
ple characterization in terms of known distributions. The statistical significance of rl7
of course is that for large n, the width of the optimal confidence band Cin, centered at
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An, is approximately 2r,nn-12, according to proposition 5.2.

To describe ri,, recall the function ¢ (t) _ D(A (aO; - ); [o; t) given in section 2.
If (Ba, s > 0) is standard Brownian motion, define

(5.10) L (y) = PI max IB, I < y}.

Then L(y) is "known" in, for example, the form of series expansions. Define kll to
be the 1 - r1 point of L:

(5.11) L(kn) = 1 - T

An easy argument (see section 6) then yields:

Proposition 5.3. The number rll is given by

rl = kI(D (A (a; ); 130; 1)1/2

(5.C). Complements.

This subsection describes several variants on the ideas of subsections (5.A), (5.B).

Complement 5.1: Estimation of exp(-An (a)).
The propositions 5.1, 5.2 are easily extended (using the simple idea of section 3) to

the case of the estimation of exp(-An (a)) by means of C2n, the bounds centred at
product limit estimators. The number r2.- lim ' can be characterized in terms of

n

transformations on Brownian motion, but there is no simple result like proposition 5.3.

Complement 5.2: asymptotic plug-in confidence bands.

The results of subsection 5.B suggest a computationally simpler confidence band of
the form:

(5.12) Can, = {fEL. [01 lf-Anl < lcn(D(An, On )}

where we have used the notation of Proposition 5.3. Under the hypotheses of Proposi-
tion 5.2, this confidence band will also be asymptotically optimal in the sense defined
in subsection 5.B; the proof is similar to that given for Cin. The band Ca is clearly
easier to compute than Cin, since one is not faced with the problem of replicating
Aalen processes starting with preliminary estimates. On the other hand, several recent
studies in the bootstrap literature show that often a bootstrap confidence set will be
"better" than one constructed by "plug-in" methods based on asymptotic formulae.
Such analyses depend on "second order" properties, typically involving Edgeworth
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expansions; see, for example, Abramovitch and Singh (1985), Hall (1986), Diciccio
and Romano (1988).

Asymptotic optimality properties such as LAM are "first order" properties, and cannot
distinguish between Cln and C,. Since "second order" analysis of Aalen estimates is
a completely uncharted field, it is not possible at the present time to decide between
Cln, C.. On the otherhand, since the trend of research in other statistical areas sug-
gests that C,n is often better - and no worse - than C., we have featured in this sec-
tion the more complicated bootstrap method. Finally (cf 5.8a), for the plug in method
to give optimal bands, D (A; B; 1) must be a smooth function of the integrated Aalen
parameter A (for the L. norm on A).

Complement 5.3: confidence bands of shape f.

The confidence bands given in subsection 5.A and also in complement 5.2 are
based on the notion of a ball in L,,([0,1]). Obviously, many Banach spaces other
than L., could be used here, and also in section 2.3 to express the LAM results. Here
is one possibility. Let f be a real function on [ 0,1 ], and assume for convenience that
0 < inf f(t) < sup f(t) < oo. Define a norm II 'If on real functions b: [0,1 -* R' by

O.tsl Osts 1

liblif = sup Ib(t) / f(t)I.

One may now repeat the entire development of this section (and preceding ones),
replacing the L. norm 11 11 by 11 II. The resulting confidence bands will then be
LAM with respect to the loss function determined by II II instead of II 11; see subsec-
tion 5.B. In this manner we find that the confidence bands "having shape f" as
described by Jacobsen, 1982, p. 204, are "optimal". The optimality is relative to the
chosen norm; the theory of Beran and Millar (1985) does not, in the form given there,
provide comparisons for confidence sets determined by different norms. Note that
such optimality results can be extended to any Banach space B consisting of real func-
tions on [0,1 ], provided mainly that (a) An (*) is a B-valued random variable and (b)
Rebolledo's CLT holds for An on B. In particular, the stringent conditions on f given
above can be greatly relaxed.

Complement 5.4. Implementation of the bootstrap method.

Actual calculation of CGn via Monte Carlo methods involves constructing iid copies
of a multiplicative intensity process beginning with initial estimates of the integrated
Aalen parameter and the nuisance parameter P3. To see this, let A", n be the estimates
of the integrated Aalen parameter and ,1. Conditional on the values of Aw, on con-
struct Nn,... , N* i.i.d. point processes on [0,1 ] whose integrated Aalen parameter
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is An, and whose nuisance parameter is f^. Next, using N* construct A_,t, the estimate
of the integrated Aalen parameter An, derived by the usual recipes, from Nn*. Finally,
construct the empirical c.d.f. Fn of (I An - Anlan, 1 < i < n}, and use as a guess for
rln (at level 1 - Tj) the 1 - rl quantile of the Fn just defined (or the closest thing to

it). The law of large numbers guarantees this will work, at least theoretically.

In the present context, difficulties attend this construction. First, given Aalen
p.zrameter a and nuisance parameter [, it is unknown in general how to simulate iid
copies of the relevant point process with these parameters. This difficulty is not new,
and arises in other areas of bootstrap applications. In important special cases, how-
ever, (esp., examples 4.1, 4.2 section 4) one knows methods of effecting such simula-
tions; see Lo and Singh (1986) for discussion of Example 4.2. Indeed a computer
intensive methodology for simulating multiplicative intensity models, on anything
beyond a case by case bases, is an important open area of research. A second
difficulty attending the bootstrap construction centres on the condition that the simula-
tions begin from an estimate of the integrated Aalen parameter, and not the parameter
itself. The fact that An estimates a random variable (see section 2) has unknown
consequences for the validity of the simulation; the strength of the restriction (5.8a)
has already been noted. A further point is worth noting here. The Aalen estimates of
the integrated parameter, by definition, have certain measurability properties relative to
the given filtration {Ft, t > 01. On the other hand, one may wish to take as estimate of
a a "smooth" version of the "density" of An; see Ramlau-Hanson 1983 for some
possibilities. In particular, one might wish to select a smooth version whose integral
fails to have the usual measurability properties. The success of the bootstrap simula-
tions will not be affected by such measurability considerations; the "smooth" estimate
dn need only have the property that its integral is subject to the usual CLT.

6. Proofs.

Proof of proposition 5.1. It suffices to establish the lower bound with D*(n,c)
replaced by the D (n,c) of section 2. Take Phn in the theorem of section 4, Beran and
Millar, 1985, to be the measure Qhn described in section 2 of the present paper. Define
the 4 of Beran and Millar, 1985, to be t (Ph) = An(ah), where ah is given in (2.13)
above; then 4' is the identity, and proposition 5.1 follows from theorem 4.5 of Beran
and Millar, 1985.

Proof of proposition 5.2. Let (cn, [n) E D* (n,c). Then by the strong triangular array
hypotheses of section 5 above, an 11 An - an (an, fin) II =' ii X 11 where X was given in
section 2, and where the convergence is under [Pa^N. It is easy to see that liX II has
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a continuous distribution with strictly increasing cdf; this implies that tn (An (ca), [n; T1)
converges to r,. But IIAn - A (ao) Ilan is tight and by assumption so is 1ln - Po IIan.
It follows that rln =- r.,. Let (ao,nn) E D* (n,c) be arbitrary. Then using Beran and
Millar, 1985, p. 879, we find that limnJ (C1I; n,In)dPaj =p-~~~~~~n Ci'an O a)
n- i(-iiInAn- A (an) 11 + 'ln) = E 1 (IiX + rn). Since (anp1n) could have been

chosen to achieve sup , this completes the proof.
aAED (nc)

Proof ofproposition 53. Let (BS,O < s) be standard Brownian motion. Since (Be) is
equal in distribution to tj'2 B(s/to), for any to > 0, we see that P( sup IB., < y) =

OsS<%t
L (y t6-112), where L was defined in (5.10). If one chooses to= (ao,PO; 1) then it is
immediate that rrl [ D ]-112 = k.

Proof of proposition 3.1. As in the proof of theorem 2.1, one may reduce the sup over
D (n,c) to a sup over Do (n,c), to get as a lower bound
lim lim inf sup f [an (T - 4 (An (a))]dPn. Because of the differentiability of 4, if
cto.n->oo T aEDD(nc)
a is given by (2.13), then the argument in 1 can be replaced by
1 [T' - 4' hoh] + o(l) (where T' = an(T - An (ao))); this in turn can be replaced, for
decision theoretic purposes by I o ,'[T" - rh ] where T"' ranges over the decision
space Tn of section 2; this uses the hypothesis that 4' has dense range in B2. Since
I o ,' is subconvex, the result is now immediate from theorem 2.1 An alternative
approach, which is more convenient for establishing Remark 3.1b begins with the
observation that, if H' is the orthocomplement in H of the null space of the linear map

' o r, then (t' o r, H', B2) is an abstract Wiener space, and the canonical normal on
B2 is the image of QO under 4'. Using this, plus the evident equivalence of the
relevant statistical experiments, one can rework the proof of theorem 2.1 to achieve the
greater generality.

The artainment of the lower bound in proposition 3.1 by 4 (A^n) is immediate from
hypothesis (3.3).

Proof of proposition 32. Because of the developments in the proof of theorem 2.1
in particular the abstract Wiener structure and the convergence, in the sense of Le
Cam, of the statistical experiments - the proof of proposition 3.2 is immediate from
Millar, 1985, section 4.
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