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Abstract
Let Xt,', ,..., be a sequence of independent, planar Brownian motions

starting at the points of a planar Poisson process of intensity A. Let a', 02,.. ..
be independent, ±1 random variables. Let Lt(X', Xi) be the intersection lo-
cal time of x' and Xi up to time t. We study the limit in distribution of
A-1 EZ oi'ioLt(XV,XJ) as A -* o.
The resulting process is called the intersection local time for the Brownian

density process, and its existence was established in a companion paper by
Adler and Lewin (1988). The current paper concentrates on establishing the
above limit theorem, and, as a bonus, obtains a Tanaka-like formula giving an
evolution equation representation of -the Brownian density's intersection local
time.
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1. INTRODUCTION

Let IA be a Poisson point process on R2 of intensity A, i.e. the number of points of
1lA in a Borel set A c R2 is a Poisson random variable with parameter A I A , and the
numbers in disjoint sets are independent. Since the probability that any two points of
flA lie exactly the same distance from the origin is zero we can order them by magnitude,
and shall denote them by X0 , X:, .. ..

Let Xt', X7 . . . , t>0 be a sequence of independent, planar Brownian motions, with
initial values given by X0, XX,. . . , and let a' ,a2, .. . denote a sequence of independent
Rademacher random variables. (P{a' = +1} = P{ai = -1} = 2). The two sequences
and IfA are assumed independent of one another except for the fact that flA determines
the initial values of the X'.

For k E S2 = S (,R2), the Schwartz space of infinitely differentiable functions on 2

decreasing rapidly at infinity, let %' be the S2 valued random process defined by

(1.1) =>(+7 A-112 or

*= 1

(If one thinks of the random signs as signed particles moving throughout space according
to independent Brownian motions, then m' (1A) would describe the average net charge
in the set A at time t, if only it were true that indicator functions belonged to S2.)
The A --oo behaviour of t7 has been a subject of some considerable interest, and the

most complete results can be found in Walsh (1986), where it is shown that 17 converges
in distribution in the Skorohod space D([0, 1], Sf)) to the solution of the stochastic partial
differential equation (SPDE)

(1.2) 977 1AZ7 4 V * W
2

N7o = H,

where fI, a Gaussian white noise on R2, is the weak limit in S' of A- 1/2 a,
and W is an !R2 valued Gaussian white noise on R2 x2. Equation (1.2) should be
understood in the weak form developed in Walsh (1986): i.e. for every X E S,,,

17() = ,7r(A)ds + f j(V4(z),W(dxds)).

The solution q, of (1.2) is called the Brownian density process. It can also be defined as
a simple S2 valued process via its covariance function (c.f. Definition 2.1 in Adler and
Lewin (1988)), but the above formulation will be more natural for us.
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Another process of considerable interest, also defined in the same setup, is the follow-
ing:

(1.3) -A 1/2 oi 0(. ) d

rt
= frI(46)ds.

for OE S2. By taking 1= A, where A C Z2, (and ignoring the fact that 1A is not an
element of S2) we see that g (l,) describes the average "net charge" of the X' in A up
until time t, and so we shall refer to g, and its A -A oo limit as Brownian occupation
proccsscs.

Since integration is a continuous functional in D([O, 1J, S2) the limiting distribution
of gA(a), as a process in t, is clearly that of flo(0) ds. It then follows (as, in fact, it
does from a simple central limit theorem) that the limiting marginal distribution of gA
is that of a centered S2 valued Gaussian random variable, which we shall denote by IA,
whose covariance kernel, which will not actually concern us in this paper, has a natural
representation in terms of the transition density of a planar Brownian motion, viz.

(1.4) Pt(z Y) = Pt( -Y) = 2 teIIzuI2/2,2irt

where, hopefully, our use if the same function pt to denote both a function on !R2 X 2

and OZ2 will not lead to too much confusion. Limit theorems of this form (modulo some
minor technical differences - see the comments at the end of this section) were discussed in
detail in Adler and Epstein (1987), where we also discussed more complicated, and more
interesting, limit theorems for sums of additive functionals of quite general symmetric
Markov processes. A particular, and important, special case was a limit theorem for
sums of intersection local times of planar Brownian motions. The intersection local time
of two such processes X and Y is defined formally as the continuous S' valued process

rt ru

(1.5) Lt(0; X, Y) = f f (Y,)(Xu - Yv) dudv,

where 6 is the Dirac delta function, or, rigorously, as the £2 (p) limit, as E-O, of

{t tu

(1.6) L (0; X, Y) = j J (Y )e2 p( (Xu - Yv) dudv,

where p, was defined above. The limit theorem studied, for fixed t, sums of the form

(1.7) 8TA(O) = 'X 1 7aiojLt(O*;X',Xj).
i.j
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which were shown to converge in distribution, as A- oo, to certain S2 valued random
variables which could be represented as double Wiener-Ito integrals of the Gaussian
process

A,
which appeared as the limit of gA'. Denote the A -A oo limit of T' as T.

Our aim in the current paper is to study the temporal development of 1t,, as a process
in t. In particular, we shall derive a result somewhat akin to Tanaka's formula for the
temporal development of the local time of a single Brownian motion, so that we shall be
able to write %P, in terms of an evolution equation driven by Gaussian white noises.
The result is interesting from two points of view. Firstly, the process 't appears

naturally in a model of interacting, signed particles as the limit of 'V, (c.f. Adler
(1989)) and the evolution equation formulation adds insight into that model. Since the
infinite particle limit in that model is a Euclidean field theory, the added insight extends
beyond the specific prescriptions of that paper. Secondly, rather than defining %Pt as the
limit of the 'LV, it can be defined directly as a sort of self-intersection local time for the
S2 valued process 7t via the formal relationship

(1.8) 'i(+) = fj j f| 5(y)6(x - y)(j7u (dx) x,% (dy)) dudv,

where a certain renormalisation is required to keep (1.8) finite.
(A proper formulation of %Pt is given in the following section. A detailed and careful

proof of its existence is given in the companion paper by Adler and Lewin (1988), which
is meant to be read concurrently with the present paper.)

Intersection local times of this form, for measure valued process, have been the subject
of intense recent interest, commencing with the work of Perkins (1986) and followed by
Dynkin (1987) and others. The emphasis in Perkins' work was on the dimensionality
of the support of the intersection local time, while Dynkin was primarily concerned
with integral representations of the intersection local time itself. We shall obtain a
representation for '2 as a process in t, as a multiple stochastic integral over 2 X R+ X R+ .

This representation is, perhaps, the deepest result of this paper.
The most interesting result of the paper, however, is the fact that the convergence,

as A - oo, of 'I'W to *t justifies the consideration of the latter as a candidate for
the intersection local time of the Brownian density process. Up to this point of time,
expressions such as (1.8) have been taken at face value as representing a generalisation
of the intersection local time concept to distribution or measure valued processes, with
no real justification other than "things seemed to work'. We shall discuss this point in
more detail in the following section.

In the following section we shall present all our major results, with some discussion
but without proofs. These follow in Section 3. The main technical tool used there is the
weak convergence theory developed in Walsh (1986), and we are grateful to John Walsh
for long ago providing us with a prepublication copy of his excellent set of notes.
The results we present here are restricted to the two dimensional case; i.e. to planar

Brownian motions. It is not too hard to see that most of our arguments also extend to
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three dimensions, although there are some non-trivial technical problems to overcome on
the way. The important fact to note however is that although some details change, the
same intuition developed by the results of this paper for the intersection local time of
the planar Brownian density process carries over qualitatively to the three dimensional
one (whose existence was established in Adler and Lewin (1988)) as well.
We close the Introduction with two technical notes, explaining why the processes

considered here are directly comparable neither with those treated in Adler and Epstein
(1987) nor with the measure valued processes referred to above. The reader not interested
in this can skip immediately to the following section without loss of continuity.

Technical asides In Adler and Epstein (1987) and Adler (1989) our basic processes
were general Markov processes with symmetric transition densities. Here we treat only
Brownian motion, and so are, in essence, obtaining much more detail for a much smaller
class of processes. In Adler and Epstein (1987) our processes were not started according
to the points of a Poisson process, but either according to a (non-probability but S-finite)
uniform measure on R2 , or according to a rather awkward probabilistic way of spreadimg
points out through a partition of BZ2, (also used in Adler (1989)). We could have saved
ourselves a substantial amount of trouble had we used the Poissonization trick, for no
lack of realism in the model. Thus we do so here.

Furthermore, objects like L, (X; X, Y) were replaced by intersection local times of the
form

o o(1.9) LV(0;Xi,Y) ej j ee'O(Y,)6(Xu - Y.)dudv,

so that the corresponding limit theorems for objects like A' are somewhat different.
Because of the exponential weighting in (1.9), and the fact that the integration on u and
v is over the entire real line, the results of this and the previous paper are not strictly
comparable. Both, however, show similar phenomena. We emphasise again, however,
that the results of the current paper, in so far as planar Brownian motion are concerned,
give substantially more detailed information.

Finally, it is worthwhile to note that our processes and those of Perkins and Dynkin
mentioned above are not strictly comparable, and, despite the fact that they are dis-
tributions rather than measures, are actually somewhat simpler to work with. (In the
Perkins/Dynkin formulation, each one of our Brownian motions must be replaced with a
branching Brownian motion with a branching rate that goes to infinity as A -- mx.) Nev-
ertheless, we thought we might start with the simpler case, both because of our original
interest in it resulting from the interacting particle results described above and because,
as will become clear in future sections, even this case is not all that easy.
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2. MAIN RESULTS

We retain the notation and general setting of the introduction, so that X*1, X7,... is
a sequence of planar Brownian motions, started at the points of a homogeneous Poisson
process 1FA of intensity A. Let X and Y be two generic processes from this collection.
Our first task is to define the intersection local time between X and Y, and to represent

it via a Tanaka-like formula. To this end, let g be the Green's function of X, given by
either

(2.1) g(z) = j e-'/2pt(z)dt, or g(x,y) = -t/2pt(z - y)dt,

.where Pt is the Brownian transition density (1.4). Then, as noted in the Introduction,
the intersection local time, L4 (q; X, Y) between X and Y, up to time t, and weighted by
the test function 0 E S2, is defined as the £2 limit, as E -. 0, of

{t ru

(2.2) Lgk(; X, Y) = j j e1/2p(Xu -Y. )4(Y,) dudv.

The existence of this limit, which gives a precise meaning to the formal expression (1.5),
follows from results in Dynkin (1981). A Tanaka-like formula also holds for L,, and is
given in the following result.

THEOREM 2. 1. The following equality holds for all 0 E S2:

Lt(4;X,Y) = 29(Xu - Y)4(Y)dudv + f (Xu -Y.)(Yxu)du
ot t ru

-.Jg(Xt - Yu)k(Yu) du + JJ Vg(Xu - Y.) (Y.)dXudv.

We shall indicate how to establish this result in the following section.

IMPORTANT REMARK ON NOTATION: Note that since X,t E R we should really write
the last integrand above as the inner product (o(Y,,) (Vg(,YX - Y,)), dXu) dv, using the
second option in (2.1) to define 9. To keep our formulae reasonably neat, however, we
shall use the more ambiguous formulation al wve throughout the paper, and the reader
will do well to keep this in mind later on.

The next result incorporates the central limit theorem for n'A described in the Introduc-
tion. To formulate it, we need to define two (orthogonal) martingale (signed) measures.
The first is defined for each A>0 as

6



(2.3) WA(A, t) = A- X/2ZudJAu(X:)dX%,

where AC:R2 and from now on we restrict t to the interval [0, 11. The o' are, of course,
the random Rademacher signs of the Introduction. The second measure is the !22-valued
Gaussian white noise W on x2X !+, defined by the requirement that the two components
Wi (A, t), i = 1, 2 of W(Al t) be independent, zero mean Gaussian random variables, and
for all A,B C R2 and s<t,u<v

(2.4) E{[W,(A,t) - Wi,(A,s)] [W,(B,v) - WvV(B,u)j} = 6I A nB I * [s,t nfl [u,v] 1,
where is two dimensional Lebesgue measure.
The following result is a consequence of Proposition 8.16 of Walsh (1986). We associate

with the Poisson point process IT' giving the initial points of the Brownian motions a
signed version defined, in distribution form, by

1V@) = O(XO)I

so that A- 1/2A (4)) = n (4)) (Recall that the points of ITA are the XO.) Weak conver-
gence is denoted by =.

THEOREM 2.2. As A cX

(A- 1/2 fIXWA,9 )7. (,i WIo I

where IT is Gaussian white noise on 92, W is defined above, 7 is defined as the solution
of the SPDE (1.2) with initial condition Y7 = fI, and the weak convergence is on the
SkorohodspaceD([O,1],S' x S' x So).
The next step is to set up a central limit like result for sums of intersection local

times. As noted in the introduction, results of this kind were established previously in
Adler and Epstein (1987), but in the formulation of that paper there was an automatic
integration over the t parameter (The integration was over t E [0,oo), and finiteness
of this integral was assured by an exponential damping of the intersection local time
not applied in (2.2).) Consequently, the next result contains far more structure (for the
Brownian motion case) than was achieved there.

Let T' be as defined at (1.7), and let 'It be the S' valued stochastic process defined
formally by

(tj u

(2.5) 'Pt(¢l) =/du dv(nu i n. )(b ( - y))0(x),
0
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where %,,@rj is the centered version of the product q, x 7, of distributions, so that for
+E S4

(n"Xw(X)= (rix vi,)(k) - E{(vixvi,)(k)}

and n, x ,i (0) is defined by setting (ri, x ',,)(+) = E vI ( tk)v (+kk) for all functions
in S4 of the form (x, y) = EN I Ok (z)+k* (y) x, y E %2, and extending by continuity
to all 6E S$. (See Adler and Lewin(1988) for details.)
The existence of ', as an £2 limit, along the lines of (2.2), was also established in

Adler and Lewin (1988), where it was called the "intersection local time process" for the
Brownian density process Yt*, The only motivation provided there to justify the fact that
it was indeed an appropriate candidate for an intersection local time was the fact that it
"seemed the right thing to do at the time". In fact, the same rather weak justification
is all that has ever been offered in all the previous studies of intersection local times
for measure valued diffusions listed in the Introduction. The following result provides
a somewhat more substantial justification, and is one of the two central results of this
paper.

THEOREM 2.3. T." > %I as A .-* oo on the Skorohod space D([O, 1], S2)*

NOTE: One immediate consequence of Theorem 2.3 is the fact that T takes values in
a Skorohod space. While in Adler and Lewin (1988) we succeeded in establishing the
existence of 'I, as an £2 limit, the extra cadlag property implicit in Theorem 2.3 did not
come out of that proof.

The reason why this result provides the required justification is due to the fact that
we know that L, is precisely what we want to serve as the intersection local time of two
Brownian motions, and so V, as a sum of such local times, is well understood, and has
support exactly on the intersections of the paths of the individual Brownian motions.
It seems reasonable, therefore, that the A -+ X limit of l should be an appropriate
candidate for the intersection local time of the Brownian density process. Since Theorem
2.3 gives us that this limit is the %Pt of (2.5), we have the required justification.
At first inspection, Theorem 2.3 should be a "straightforward" consequence of Theorem

2.2, via an appropriate version of the Continuous Mapping Theorem. Since we know by
Theorem 2.2 that i7i =* v, that Vi is a functional defined on ' and that ' is a similar
functional on ri, Theorem 2.3 seems to almost be an immediate consequence of Theorem
2.2. The difficulty with this line of argument, however, is that functionals based on
intersection local times, whether they be of Brownian motions or the Brownian density
process, are generally not smooth enough to apply continuity arguments of this kind. (A
related, but somewhat different problem, was studied by Dynkin (1988).)
As a consequence of this, the proof of Theorem 2.3 is unfortunately somewhat cir-

cuitous, and will rely on Theorem 2.5 below, which is somewhat more involved and
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somewhat less interesting. Fortunately, however, another consequence of Theorem 2.5
will be the next theorem, which gives a Tanaka-like representation of the intersection
local time process %Pt. The stochastic evolution equation given there is essentially the
main result of this paper.
We shall require, however, a little more notation, and one lemma, which will aid in

formulating this result. This lemma gives an easy Tanaka-like representation for PtV, the
average intersection local times of the component Brownian motions defined at (1.7).

For 0 E S set

(2.6) = A'Za'iA(X,,Xf.
0.#

Note that the sum here does not include the diagonal i = j.
To help out in the following, if 4 E Si is a distribution, and 6E Sd a test function,

we shall often write $(0(x)) to denote 4(k).

LEMMA 2.1. ForeverytE [O,11, A>O,> E S2,

1 rt ru(2.7) &A () - I dul dv A-(g(' -t ~~2J0 .g(x,10(W
ot ot

+ J du AA (g(u - Yg(Y)) - du (g(- (y))
ot

+ J L w>(Vg(x - )4(.))WA (dx, du) - RtA

where

Rt ) =A Z f Vg(Xv -X)ck(X-)VdvdXv,d

and Rt (4) Oas A-_ , for all t E[O, 1 and all ' E S2.

To save on notation, we shall write A,t to denote the centered product 7,017t. Equality
in law is denoted by -. Then Lemma 2.1 indicates that the following theorem, which is
the second of our major results, should be true.

THEOREM 2.4. The following equality holds for all 0 E S2:

(2.8)

'Pt (0) -2 j du dv A (g(x - y)W(y)) + du Auu. (g(x - Y)W(Y))

- 10 du At, (g(x - y)q5(y)) + JA ((Vg(x - -)q0()) W(dx, du)
O~~~~~~~~I O
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where the stochastic integral is of the type studied by Walsh (1986).

Once again, it rather looks as if any 'easy" proof of Theorem 2.4 would be to apply
the Continuous Mapping Theorem via Theorem 2.2 and Lemma 2.1. In particular, for
the reader familiar with the weak convergence theorems of Walsh (1986), which we shall
heavily rely on in the following section, it would seem that virtually all the work has
already been done in that paper. The difficulty in following this direct route, however,
lies in the fact that the functions g and Vg appearing above are not always the best
behaved (e.g. g(X,) =oo, Vg(X - y)o(y) 0 C2(.R2 X %2)) and so substantial techical
difficulties arise.
The key to proving both Theorems 2.3 and 2.4 is the following result, based on the

random distributions

(2.9) A1F ZG:= 'E(aiLtc(;X',Xi),

where L" was defined at (2.2), and

rt {u

(2.10) 'I'(k) fJ (v71®T.)(C-e/2p ( -y)o(y))dudv.

In the terminolgy of Dynkin (1988), 'IA and I" provide "links" between 't and 'Pt.
THEOREM 2.5. 'LA' * ' as A oo, for every c > 0, on the Skorohod space
D([0 i], S2).

Since it is (essentially) the main result of Adler and Lewin (1988) that 'I' -,21t as
e-. 0, and it follows from the definition of 'Ie and the £2 convergence of L to Lt that
TA C 2 A as e -e 0 for every A > 0, it is now easy to see how to prove Theorem 2.3
from Theorem 2.5. We shall give details in the next section.

In closing this section, however, we note that results similar to Theorems 2.3 and 2.4
hold also for the intersection local time of the Brownian density process on W defined
by Adler and Lewin (1988). The technical differences in this case, referred to briefly in
the introduction, arise primarily from the fact that the corresponding summands in the
remainder term Rj' (0) of (2.7) do not exist in this case. Nevertheless, approximations
to these, analagous to the summands of RA (X) of (3.4) in the following section do exist,
and judicious handling of the A -+ X0 and e -- 0 limits overcomes the difficulties. We
shall not go into the details here, however.
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3. PROOFS

We commence by trying to get a result like Theorem 2.4, but for the process IC, i.e.
an evolution equation representation for V". Recall that Va' was defined at (2.8), as a
sum of "approximate" intersection local times. For e > 0 set

(3.1) K'(z) = f -t/2p (z) dt

Note that KI -cXg as e -. 0, where g is the Green's function (2.1). Unlike g however,
K" is well behaved in that it is C*-, everywhere finite and VKE E £2 (Rz2). Furthermore,

1 2(3.2) -(-A- 1)K'(x) = e- PC(x),2

as is easily checked by direct differentiation. This leads us to

LEMMA 3.1. For all A,E >O, t E [o,1], and 0 E S2

(3.3) P"(-)= a, du| dvK (u- X' +X't 2~~~'.

+ A'Z oa, j du K' (X' -Xu ) +k(Xu )
o

A- E,:$ai du K" (Vt -Xu ) O)(Xu )

+ AJVKZ'(XiuV-XXY)k(X¼)dvdXu%.

PROOF: Apply Ito's formula (using (3.2)) to the CX function

f (tx) = jKt(x-Xv)4(X,)dv
replace z by Xu, multiply by a'a& and sum over i # j. (A similar argument, used in
establishing the original Tanaka formula for Brownian motion intersection local time,
can be found in Rosen (1986).)
PROOF OF THEOREM 2.1: In the proof of the above lemma we actually established,
en passant, a version of Theorem 2.1 with L" replacing Lt and KI replacing g. Sending
e - 0 to obtain £2 limits on both sides of the equation is not trivial, but, fortunately,
has already been done for us in Rosen (1986). (Rosen actually treats self-intersections
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of Brownian motions, so his proof is a little harder, and the precise terms in the Tanaka
formula slightly different. Nevertheless, the proofs carry over almost verbatim.)

To convert (3.3) to a form more reminiscent of an evolution equation, we need to mike
optimal use of the notation set up in the previous section. We need, furthermore, one
more piece of notation, and so for EE $2 we set

(3.4) Rt'(0) IV-1 VK'(Xu - V 0(XV,u) dvdXu,.
LEMMA 3.2.

1 t ru

)= 1 f duf dvA".(K'(x -y)(y))
o fo

rt {t

+ j du AAu (K' (x - y)+(y)) - f du AU (K' (x -y)(y))
ot

+ j J A(VK'(x-.)k(.))W`(dx,du) - R"(4).
os}

PROOF: The above is basically a rewrite of (3.3). The first three terms are easily seen
to be equivalent to the first three terms of (3.3) on applying the definition (2.6) of AA,.
To obtain the last two terms, we write the last expression in (3.3) as

1~tj ZcL a'oi j j VK' (X,, - Xvi) O(X' ) dvdXu
i3~~~~~

- 'ZjjVK K(X' -Xv) (X')dvdXi.

Consider the first term here. (The second is much easier, and it is easy to see that it is
equal to R"'.) By Fubini's theorem for stochastic integrals (e.g. Revuz and Yor (1987),
Section VI, Lemnma 1.4) this is equal to

A112 ZE f dv [A- l/2Zao VK'(X -XI' (Xv) dXu.
From the definition of the measure WA, it follows that this is equal to

V- 1/2 aj dv [ j VK'(z - X')4(X' ) WA (dx, du)].

(This follows from Proposition 8.3 of Walsh (1986). The proof there proceeds by estab-
lishing a result like the above first for indicator functions X, and then via passage to the
limit for general 0 E £V. It is precisely at this point that we need VK' E £2 (R22).)
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A stochastic Fubini theorem for worthy martingale measures (Walsh (1986), Theorem
2.6) implies that the above equals

A1.2 aj f If VK (z - X¢)X(X2) dv] WA (dxz du).

Interchanging summation and integration yields

I L21| A- ' /2 ZU [iVK' (x-zX (X' ) dv WA (d-, dU)
2~~~~~~

ot

= f JM (VKe(z:k- *(.)) WA (dx, du),

where the last line follows from the definition of gA at (1.3).

This completes the proo of the lemma. The next step is to show that Rte, the
remainder term in (3.4), goes to 0 as A - oo.

LEMMA 3.3. Rlt"(q) p G as A - oo, for each t E [0,1],e >O, and k E S2.

PROOF: Note first that if X denotes a generic term of our sequence X1, X2,..., B a stan-
dard Brownian motion on s '̂ irting at the origin, and F a functional on C([O, 1i, 2),
then

E F(X) Xo =} = E{F(B + x)}.

Consequently, using the fac. that the sequence of planar Brownian motions X', x2,.J .
commence at the points of a Poisson process of intensity A, it follows that

(3.5) E{ F(X')} = A E{F(B +x)} dx.

Define now

rt (X) = rt (X: ,E) = J VKe(Xu - XV)q(Xv) dvdXu
so that R" ( A-')=rA FXi). Thus

E{[R10)(12} A` E{Z[rt(X)I2}
i

= A- J E[f J VK (Bu - B.,)4(Bu + x) dvdBu]' dx,
3
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the last line following from (3.5). Standard inequalities for the moments of stochastic
integrals (e.g. Ikeda and Watanabe (1981), page 110), combined with the fact that 0
decays rapidly at infinity give us that the triple integral above is finite, and so Rt>-,p 0
as A - oo, and the lemma is established.

For k E S2 let U,' ('k) be the second to last term in the representation of 'Pt' given by
Lemma 3.2; i.e.

(3.6) U(K(x) f-f #(VK(A- (dx,du)

Furthermore, set

rt

(3.7) Ut (0) := (1 K"A (x(- -) $(-))W(dx,du)

The next result is the key step in establishing all of our main results.

THEOREM 3.1. Let A -- oo along a countable sequence. (We should therefore re-
ally replace A by A. in what follows, but there is a limit to how many subscripts and
superscripts the human mind can absorb.) Then, for all 0 , 42, e 3, 4'. E 52, and Os eSE4,

(3.8) (A- 11(0J),W (02)MA (03)iU (04)sA ((Os)
=> ( (O1)W(02)1(03),U(04), At(os))g

as A -A oo along this sequence.

PROOF: The general theory of weak convergence that we require to prove this result
is developed and expounded in detail in Walsh (1986). To give a fully detailed, self-
contained version of the proof of (3.8), we would have to copy two pages of definitions
from Walsh's notes, and then go through a number of pages of rather detailed, and
essentially uninteresting, calculations. Since this seems to be somewhat unjustified, we
shall assume that the reader is familiar with Walsh's notes, and merely point out how
Theorem 3.1 follows from the results and techniques developed there.

Note, firstly, that the weak convergence of the triple (A-' 1, WA , ,rA) is a special case

of Theorem 2.2, since here we are only taking A -_ oo through a countable sequence.
Appending the convergence of A' and Ut' follows as in the proof of Proposition 8.17 of
Walsh's notes, once we have checked that the individual limits are as claimed. We shall
check this only for AS,, this being the harder of the two, and somewhat different to the
example treated by Walsh.

Consider firstly 4 E So of the form +(X, y) = +(z)+(y), k, 'k E S2. Then

14



(3.9) A( = t( ) - E (X,)

By computing moments as in the proof of Lemma 3.3, it is easy to check that the last
term in (3.9) converges in probability to the deterministic expression

E{+(rt)+(t)} = f i(b)dxzf(y)dy p,t-., (I-y) t 8,

- Jk(z)tk(z)dx t =,S.

Since this expression is equivalent to E{(i7,xr,.)(fk)} (c.f. Theorem 2.1 of Adler and
Lewin (1988)) it follows from (3.9), the convergence of r7-' to 17, and the continuous
mapping theorem that for q6 of product form

(3.10) A>,(4) * At.(X) = (9®,7.)(X) = (n x .)(4)-E{(it x,.)(n)}.

Using now the fact that sums of the form k 1k (z)tkk (y) are £2 dense in S4, the
extension of (3.10) to all 0 E S, is standard.

This fact, together with the comments made above, completes the proof of the theorem.

REMARK: It is important to note that since the proof of Theorem 3.1 relies on results
proved by Walsh, the weak convergence in (3.8) can only be shown at this stage, to hold
for nice functions Ok, and not for functions like g and Vg, which is what we need. To
handle these functions we need the extra work of the folowing arguments.

PROOF OF THEOREM 2.5: We need to show that V' =* V as A -- oo, for every
e > 0, on D([0, 11, S2). Recall that

(3.11) A's'(x)= j j A>,(e'2pc(z - y) (y)) dvdu,

and I is given by an identical expression with Au. replacing A',.
Note firstly that since e- t/2p, (x - Y)O(y) E S it follows that for every X E S2 we have

A-,(-/2p(z - y)(y)) => AU. (e-,/2p,(X - y)4(y)). Since integration with respect to

the two time parameters is a continuous functional on D([0, 1] x [0, 1], S,), it follows that
I (+) TfI (0) for every q6 E S2 and each fixed t E [0, 1]. By the Cramer-Wold device

(to handle the t parameter) and linearity (to handle the k parameter) this convergence
can be lifted to that of finite-dimensional distributions. The problem now is to establish
tightness in t for fixed 4. Theorem 6.15 of Walsh (1986) then gives us that 'Pt' =* IQ'
on D([O, 1], S2'), which completes the proof of the theorem.
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For fixed X, however, tightness in t follows easily from standard moment conditions,
using the integral form of (3.11) and the fact that A', (A) has moments of all orders (c.f.
Rosen (1986).)

PROOF OF THEOREM 2.3: We want to prove that V' * ' on the appropriate Sko-
rohod space. Note firstly that

wA(+) _ @A = 1Zo ai[Lt(4
;
;XIXi)-Le(4;Xi,Xi)J,

1$,

and so

E{I I'F(0) - IP(4)I2} = E{I (Lt- L8)(,X,X)X2}=CC1
where C.(*) * 0 as f -- 0, by the very definition of L, as the £2 limit of L4. Conse-
quently, by Tchebychev's inequality,

(3.12) P{CIE'(k) - A(k) 1. 6} < '( )for every o E S2,

where Cc(e) _0 as e -0 , for every 6 > 0.
We now want to show that for fixed t E [0, 1] and Ee S2 that IA (k) - 'I (O) as

A --xo. For z E R and 6 > 0,

lim P{'I"(k) < z} = lim lim P{x' (k) < x}
A-oo e-0 A-X

= lim lim P{[I (X) - 4- ' (k) - }
c_ 0 A -

I

< lim lim [P{((V (0) - V)(#) I. 6} +P{}V' (0) . +6}]
0-A -coX

< lim[ C(5) + P{'(') . z+6}]
e-.o 6

= P{4t(o) < x+6},

where the first line follows from the independence of both the right and left hand sides of
e, the second and third are trivial, the fourth is a consequence of Theorem 2.5, and the
last from the fact that I' zk't by Adler and Lewin (1988). (For the sake of precision,
we should note that the definition of %I' in the current paper and in Adler and Lewin
(1988) differs by the fact that the factor of e-e/2 appearing in (3.11) is replaced by e-6
there. It is easy to check, however, that this makes no difference to the limit process
It-.)
A similar argument shows that limA_ P{'V (X) x) > P{'It (0) < x-6}, and since

6 was arbitrary we have that IA (0) - %I, (0) for fixed t and 0. A similar argument to
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that used to prove Theorem 2.5 can be applied again here to obtain full weak convergence
on D([O, 1], $2), and so complete the proof of the theorem.

PROOF OF THEOREM 2.4: It follows from Theorems 2.5, 3.1, and Lemmas 3.2, 3a3,
that for all e > 0, t E [0, 11, and SE

(3.13)

'I' (+) - 1 j dus f dv A., (K' (z - y) (y))2 o

ot rt
+ j du AUU (K' (x - y) (y)) - du A,t (K' (x -y)(y))

+ i j Au(VK'(-)x ( ))W(d2,du).

All we need to do to prove Theorem 2.4 is to show that each term in (3.13) has a well
defined limit as c -_ 0. The £2 convergence of *I to Tt is established in Adler and Lewm
(1988), and has already been noted above. Thus we need only work on the four terms
on the right hand side of (3.13). Consider the first of these, which, modulo a factor of

2 equals
rt ru

()= j duf dv Au. (K (x - y)O(y)).

In order to show that I, converges in £2, it suffices to show that E{I. (k)Ij (0)} tends to
a limit as E,6 _ 0. By Theorem 2.1 of Adler and Lewin (1988)

(3.14)

E{I ()I6()} = Piu- ul ( Z)PV - vl (y w)K ( - y)4(y)K'(z - w)q6(w)

+ ||PIU- t (XI W)Plv _u,l (y, z)K' (x - y)O(y)Kf6 (z - W)O(W),+11
where D = {0 < v < u < t;0 < v' < u' < t} and we have neglected to write the eight
differentials in each of the multiple integrals.

Consider the first term in (3.14). (The second is handled in an almost identical fash-
ion.) By the definition of Ke this is equal to

ID |Plu-. I((X,wZ)PI-VI( )j e- a/2PC (XI Y)>(y) da e°/2pP (z w)k(w)d8
D f d 6

eC a/2 dot J -0/2 d/3J dydw 0(y) (w))
e i D2'~~~~j
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Integrating over 2 and then z, by applying the Chapman-Kolmogorov equation twice,
we obtain that this is equal to

j c-/2da c-0/2d3 'j dydwd(y)O(w)pjw.-.,j(y,w)p(jl...D+,a+ 0)(Y/,w).

By the Lebesgue dominated convergence theorem this will converge, as E, 6 _- 0 to the
finite constant

4 f dydw k(y)&4(w)pj,,- t (y, w)P1U-,l (y, w),

as long as fD, f3. dydwO(y)*6(w)pj1U1.g(y,w)p1U- +.,+O(yj,w) is bounded uniformly in
E and 6 for each + E S$. Calculations similar to those made in the proof of Theorem 3.1
of Adler and Lewin (1988) easily show this to be the case.

This establishes the required convergence for the first term on the right hand side of
(3.13). The next two terms are handled similarly, and we leave the details to the reader.
The last term is somewhat different, however, so we treat it in detail. Set

rt

(k) = J A,u(VKE(x- -) (.))W(dx, du).
Then

E{([(JE - 6)()1 }= E{[j f su(V(K '- (x - )4(.))W(dx,du)12}
< E{j LAuI ((Ke - K6)(x- )+(.))

o w x SO

lAu (V(KE - K6)(y -. (.)) 6(x-y) dzdydu},
where the last line follows from Theorem 2.5 of Walsh (1986), and is, in turn, equal to

,tE{[j L U (V(K - K6 )(x - 1(-) 2 dxdu
rtr

- Jj dzduEjju[(Vl(K V(Kx-K6)(z-x()) 12

o w}

| | dxdu|E ?IV(V7(K '-K6)(x -.)O())d

dxdE(V(KC - K6)(z -*(x (*))1 dv1dv2
- fj| dxdu j f E[(V(KE- K6)(z-X,-Xj(XVj))

O ofs O i U

* (V(K'e- K6)(x - X.j)4(X,,))] dv,dv2,
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the last line following from Walsh (1986, p389). Note that for each £ > 0

2 f eipPIe('11 P12)/2
K~(z) = (2wr)2 1.: + Iipii1 dp

Substitute this into the above to obtain that

(3.15)

E{[(Je-J.)(4')J2} < Ctf dvi dV2 dxf dpif dpP2IIi2 11

. [e-(1+IIPhII )/2 - e-6(1+06tXll ]

E{e'PlX( s- X *1) +(X.,s)eP'P (x- X }) (Xt, ))-

We now proceed much as Rosen (1986) argued when dealing with similar expressions
that arose in studying Brownian motion self-intersections. The expectation in (3.15) is
a simple Gaussian calculation, and is easily seen to be equal to

(3.16) e(P+P) j j (y)(z)e" pp' vl (y-z) dydz.

Note the elementary inequality Ie-e0 - e62 < C. (a2jc - 61), for every a < 1,
and the fact that f ei(PL+P2)' dx = 6(Pi + P2), where 6 here represents the Dirac delta
function. Thus, substituting (3.16) into (3.15), integrating out x, and applying these two
facts we obtain that (3.15) is bounded above by

(3.17) C, le - bj2* t j dv1 j: dv2 f dP(1+pJ2 (1 + llpII2)+ Ilill2~2( 1122
L3|.L !(y) (z)p ,i.l,I(y - z)c'P(wy dydz

= C0 l-b62 t , dvj dw L dp(- + 11pfl2
3 (~11+lp112)2-20

dz*p| (z)e'P L dy (y)O(y - z)

< Cjle- 612a t2 dp 11pl2 L2 dz P f(z)gt(z),
2

( + IlpII2)2-2, zeP()g()

where C. may change from line to line, and the functions f and g are given by

f(z) = * ' (z), 9t (z) = jP (z) dv,

O'(z) = 0(-x) and * represents convolution.
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Denoting Fourier transforms in the usual way, and writing h. (p) for

IP112/(1 + IIpII2)2-2
we can write the integrals in the last line of (3.17) as

(3.18) ha (p) (f* (p)) dp.

Clearly, if we can establish that this integral is finite for some a < 1, then the £2
convergence of J4 (jk) follows from (3.15)-(3.17). A standard inequality on convolutions,
(e.g. Reed and Simon (1975) p29) gives us that

(3.19) h,, (p) (f* gt(p)) dp < IIha It. iIfI19 ugh11,

where ,' +, = 1. We leave it to the reader to show that if we choose a < 2 and
s > (1 - 2a) 1 then each of the three norms in (3.19) is finite. This completes the proof
of Theorem 2.4.

Only one task remains to complete our work:

PROOF OF LEMMA 2. 1: The proof centers on noting that the equivalence (2.7), which
is what we must establish, is almost identical to that established in Lemma 3.2, with
the function g in the former replaced by Ke in the latter. If we can send e-. 0, and
show that all terms in Lemma 3.2 converge in £2 to the corresponding term in (2.7),
then we shall be done. This, however, is not too difficult, since at this stage the density
parameter A, is still finite.

We shall consider only one term of Lemma 3.2, and, following our established practice,
shall choose the most difficult term. Set

F?() = f f AA.(K (x -y)o(y)) dudv.

We need to show that as 6e-* 0 this converges in £2 to first term of (2.7). Note that
for e,6 > 0
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E{lFe _()FA> ()12}

<E dtsjdv)J'ZE[au(Kf-K')(X<-X').(X')]
otru

Ef duf dv)C2A2E{I(K' - - X')I K*K(XX)X2}
o 2

= j du dv j dE l dz(K'- _Z) *42(Z)t u

The important thing to note at this stage is that we have managed to reduce the
computations to the point that they are of the same nature as those which prove the
excistence of intersection local time for two independent Brownian motions, as in Rosen
(1986). In fact, they are very similar to those at the end of the previous proof. We thus
leavre it to the interested reader to satisfy himself that it is now not hard to show that

limE{IFzd (K) -K6 )2 = 0,

which completes the proof of the convergence of the first term of the representation of
Lemma 3.2 to that of (2.7). The remaining terms can be handled similarly, and this
completes the proof of Lemma 2.1.
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