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Abstract

When a regression problem contains many predictor variables, it is rarely wise to try
and fit the data by means of a least squares regression on all of the predictor variables.
Usually, a regression equation based on a few variables will be more accurate and cer-
tainly simpler. There are a variety of methods for picking "good" subsets of vari-
ables and programs that do such procedures are part of every widely used statistical
package. The most common methods are based on stepwise addition or deletion of
variables, and "best subsets". The latter refers to a search method that given the
number of variables to be in the equation, say five, locates that regression equation
based on five variables that has the lowest residual sum-of-squares among all five vari-
able equations.

All of these procedures generate a sequence of regression equations, the first one
based on one variable, the next on two variables, etc. Each member of this sequence
is called a submodel and the number of variables in the equation is the dimensionality
of the submodel. A complex problem is which submodel of the generated sequence to
select. Statistical packages use a variety of ad hoc selection methods: F-to enter, F-
to-delete, Cp, t-value cutoffs, etc. Our approach to this problem is through use of the
criterion that a good selection procedure selects dimensionality so as to give low pred-
iction error (PE), where the PE of a regression equation is its expected squared error
over the points in the X-design.

Since the true PE is unknown, use of this criteria has to be based on PE estimates.
We introduce a method called the little bootstrap which gives almost unbiased esti-
mates for submodel PEs and use these to do submodel selection. Comparison is made
to Cp and other methods by analytic examples and simulations. Little bootstrap does
well -- Cp and, by implication, all selection methods not based on data reuse, give
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highly biased results and poor subset selection.

Key Words: variable selection, subset selection, best subsets, Mallows Cp.
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1. INTRODUCIION

In a regression problem with many predictor variables, data analysts often attempt to
reduce the dimensionality of the model by running a procedure such as "best sub-
sets", stepwise forward addition of variables or stepwise backwards deletion. These
dimensionality reduction methods are among the most frequently used programs in
packages such as SAS, SPSS, and BMDP.

Any one of these procedures produces a sequence of possible regression equations,
each of which uses a subset of the predictor variables. Any such regression equation
will be called a "submodel", and the dimensionality of a submodel will be the
number of predictor variables it uses. The goal is to choose one out of this sequence
of submodels as the preferred model.

From a theoretical point of view, submodel dimensionality selection is a trade-off
between bias and variance. By decreasing the number of predictor variables in the
model, its predictive capabilities will be enhanced because of the decrease in variance
involved in parameter estimation. On the other hand, bias will be increased because
the "true model" is usually not in the range of the lower dimensional models.

To get optimal prediction functions, we would like to balance the gain in variance
against the loss in bias. There is additionally a desire to minimize the complexity of
the model by reducing dimensionality. In going, say, from a 40 variable model to a 5
variable model, the apparent structure of the data is considerably simplified. Only the
relationship between a few variables needs to be examined (although, in fact, this
apparent simplicity can be quite deceptive).
Two major difficulties with these submodel procedures are:

(a) selecting the dimensionality of the submodel to be used.

(b) evaluating the model selected.
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By this is meant choosing the dimensionality to get a near optimum balance between
bias and variance, and then giving a realistic assessment of the predictive capability of
the selected submodel.

In selection of dimensionality, a number of ad hoc methods are commonly used. In
stepwise methods, use of F-to-enter, F-to-delete, and adjusted R2 are prevalent. In
"best subsets" the use of the Mallows Cp crterion has become common. Once the
subset is selected, then another ad hoc figure of merit is attached to it, often the
residual-sum-of-squares, R2 or adjusted R2, Cp, etc.

This usage has long been a quiet scandal in the statistical community. It is clear that
selecting a sequence of submodels in terms of an optimum or suboptimum fit to the
data can produce severe biases in all of the statistical measures used for the classical
linear model. In recent years, with recognition of the shortcomings of the commonly
used ad hoc methods, use of resampling methods such as bootstrap and cross-
validation has been advocated. Their performance in the present context, however, has
not been systematically explored.

My interest in this problem is when the data is thin compared to the number of
variables--a common situation in many applied problems. For instance, in the simula-
tion presented in Section 5 we go down to 60 cases with 40 variables. This is a land
strange to asymptopia.

There is a substantial literature on this and related problems. Excellent reviews are
given by Miller (1984, 1990) together with a complete list of references. These works,
particularly the 1990 book, point out the biases inherent in the problem and look at the
weaknesses of some of the standard procedures for dealing with it.

1.2 Criteria for Dimensionality Selection and Evaluation

We assume data of the form (yn, xn), n = 1,...,N where xn is an M-variate vector. Sup-
pose p. (x) is a prediction function for y in terms of x. We need, at least, a conceptual
dlefiniton of how good a model p (x) is. The definition used in this paper is the x-
fixed prediction error PE and the corresponding model error ME.

The x-fixed error measures are computed using the same values of x1,*.. , XN as in
the data. Suppose that the true model is

Yn = (xn) + En
with {en) i.i.d with mean zero, variance a2. Once the model has been fitted to the
existing data, consider the gedanken experiment of generating new data of the form

new * newYn p (xn) + w

with the (E{W) independent of the {fe,) but having the same distribution.
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We use the notation

a = (al, ...,aN), b = (bl, * ,bN)

11a112 a£ (a,b) = Ianbn-
n

Taking expectations only over the {SJew), define the prediction error by

PE = Ellynew_-(X) 12 =No-2 + jig _ 2

This leads to the definition of x-fixed model error as

ME = 11-JI* 112.
The prediction error is thus a sum of two components--a N ca2 error due to the inherent
noise level in the regression and the error in fitting the true model. Because there is a
little that can be done with the N a2 term, we prefer to work directly with the model
error.

The x-random definition of prediction error assumes (yn,xn) i.i.d. selected from
some underlying distribution (Y, X) and assesses the prediction error in a predictor W
as its expected squared error in predicting ynew fiom . (XneW) where (yeW, Xnew) is
selected from (Y, X) independently of (yn, xn). The x-random definiton and its conse-
quences are explored in Breiman and Spector [1989].

Whether the x-fixed or x-random definition of PE is used leads to conceptual or
methodological differences. For instance, cross-validation tries to estmate the x-
random PE which is generally larger than the x-fixed PE (see Efron [1986]). In
regression there are two versions of the bootstrap. The one commonly used (the
unconditional bootstrap) gives x-random PE estimates. Another version (the condi-
tional bootstrap) was developed for x-fixed estimates and is discussed in Section 2.2
(see Bickel and Freedman [1982]).

The x-fixed ME for the full model has expectation Ma2, i.e. a penalty of ay2 in
variance is paid per coefficient estimated. The x-random definition leads to higher ME
values, particularly for thin sample sizes and skewed long tailed x-distributaons. Thus,
it is important to distinguish between the two definitions and use appropriate methodol-
ogy. We note that the x-fixed, x-random terminology was used in an earlier review
article by Thompson [1978] where the difference was stressed. See also Copas [1983].

Other definitions of prediction error are possible and often desirable. The x-fixed
definition used above assesses predictability only at the points (xc) in the given X-
design. Both referees point out that frequently the desidiratum is accurate prediction at
x-points not in the X-design. Examination of the difference between x-fixed and x-
random shows that the real distinction is whether the new data points {xnew) at which
predictions are desired are known and fixed, not whether they are points in the present
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X-design. This contrasts with the situation in which the future (xnew) are random.
Thus, a better terminology might be: future X fixed vs future X random. The conclu-
sions of this present paper can be generalized to the future X fixed situation (see Sec-
tion 4).

1.4 Notation and a more precise problem statement

Denote by C any subset of the indices (1,... , M); by HC the projection matrix of
any N-vector into the column space of {xm; m ErJ; by t(4) the OLS predictor based
on the variables (xm; m e C); and

RSS (C) = 11 y_ A(- )112 ME(C) = 11A,(C) 1*12.
We assume that some well-defined procedure (best subsets, stepwise, etc.) has been

applied to the data and resulted in a sequence of M + 1 submodels with variables hav-
mg indices in

Co.)1*i.. * CM (Co=
where I Cj I = J, (I I = cardinality). Associated with each OLS predictor (QJ) is the
MEE (Cf) value. The sequence X. .. CM the predictors (Cj), and the values
ME (fj) are random, depending stochastically on the (s)J.
Define the best submodel in the sequence as the one which has the minimum value of
ME(J). Because the (ME(fJ)1 depend on the unknown gL*, it is not obvious how to
construct a submodel selection procedure that will produce low ME values. Our
approach is to construct good estimates ME(Q) of ME (Cj), and select the submodel
having minimum ME4)

The exploration in this paper will be based throughout on the assumption of a clas-
sical linear model

Yn = £{ nrim + EnX 1 ..m

with {enj i.i.d N (0, a2). That is, the true prediction function is

(x)= £,*xmm

Sub-M will be used to denote full model values; i.e. f1M is the full model OLS predic-
tor; RSSM and MEM the full model residual-sum-of-squares and model error.

1.5 Organization and results

Among methods currently in use or advocated as estimates of ME, the ones having
some theoretical justification or rationale are Mallows Cp and the conditional bootstrap.
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In Section 2 we look at some properties of the above estimates. While Cp is easy to
compute, there is no reason why it should perform well in a dimensionality selection
context. (Mallows [1973] points this out, but nevertheless the naive use of Cp per-
sists.) We give examples, both analytic and simulated, to illustrate the potentially
severe bias of this approach. It tends to select submodels of too high dimensionality
and give ME estimates that are far too low.

We also give a simple example that shows that the conditional bootstrap can have con-
siderable bias and give nonsensical results. In Section 3, we introduce the paradigm of
the replicate data set. This procedure provides insight into the structure of the problem
and is useful as a benchmark.

In Section 4 we introduce a procedure for estimating the (ME (Qj)) that we cal the lit-
tle bootstrap. It has some similarties to the conditional bootstrap, but also some
interesting differences. We show that it gves almost unbiased estimates of the
(ME(j)} when the submodels are generated by the commonly used methods of subset
selection. This procedure also works in the more general future X fixed case.

Section 5 introduces the concept of rss-extreme. Given the sequence of submodels
with indices in Co, . . ., Cm, a criterion is defined which designates some (usually a
small fraction) of these to be rss-extreme.

Section 6 reports on an extensive simulation testing of little bootstrap using backwards
variable deletion with forty variables and either 60, 160, or 600 cases with a variety of
coefficients. It is compared with the use of Cp and a replicate data set. The results
indicate that little bootstrap at the original sample size is almost competitive with the
replicate data set method using double the sample size in evaluation, but is not quite as
good in dimensionality selection. It also shows that, in selection, there is a gain in
accuracy by restricting selection to the rss-extreme submodels.

Section 7 revisits the bias vs variance trade off in minimizing model error and gives
some simulation results. Section 8 discusses what information is available after
dimensionality selection, and section 9 gives brief conclusions.

2. Cp AND CONDMONAL BOOTSTRAP DO NOT ALWAYS WORK

2.1 Mallows Cp

Let g (C) be the OLS estimator on the subset with I 4 I = J. The Cp criterion is based
on the following simple relation:

RSS(C,) = IIY-p (C)ll2 = llÆl.* + (C) 2

NME(4) + ell12 + 2(£,-(2()). (2.1)
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Now (C) = H; (I* + E), so the last term in (2.1) can be written as

2 (el (I - H~) *) - 2 (e, H;e). (2.2)

If I t I = J and the choice of C does not depend on the data, then the expectation of
(2.2) is -2J a2. Thus, the Cp estimate of ME (4) is

MEE() = RSS (C) + (2J-N) &2

where &2 is estimated in the usual way from the full model.

If C depends on the data, this argument fails. To see what can happen, we repeat the
example given by Mallows [1973]. Using an orthogonal design, (xm, xm,) = 8.,, the
OLS estimates of 1 * are m = 0 * + Zm, with (Zm) i.i.d N (0, a2).

The best subset Cj of size J consists of those vanrables having the J largest values of

I [Om . The subset selected by minimum Cp consists of all variables xm such that
m2> 2e. For this subset C the Cp ME estimate is

PM S - £ (m-2&). (2.3)
m mE<;

Suppose all 0= 0. Then the expectation of the first term in (2.3) is zero, while the
second term is always negative. Assuming 2= &, the expected value of the Cp ME
estimate is -.26Ma2 while the expected ME value is .58Ma2. Furthermore,
E(I C 1) = .16M.

2.2 The Conditional Bootstrap

As above, let a (C) be based on C and let Cj be the best subset of dimension J, i.e.

RSS(&) = min (RSS(4); lI=J).

Then consider trying to estimate

E (ME (4))- (01,* **X M)

With o3*,a2 unknown, one is tempted to compute the maximum likelihood estimate

IJ(01, OM, ). This latter is essentially what the conditional bootstrap does.
Proceed as follows:

i) Fit the full model, getting

011--)OMI, e, AM(X).

ii) Generate (es) i.i.d. N (0, e) to get data

y = AMM(X) + E.
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iii) Using the (y, x) data, find the best subset Cj of dimension J, and OLS predictor
II (UJ)

iv) Estimate ME (Cj) by

II2M (- J)112.
v) Repeat many times and average.

Conditional bootstrap resamples residuals. Instead we have i.i.d. sampled from
N (0, 62). With this minor modification, conditional bootstrap is seen as a Monte Carlo
method for evaluating J([3 62). For M fixed and N large, conditional bootstrap
should have all of the maximum likelihood asymptotic properties. But this is not
applicable to the situation where N/M is of modest size.

To examine finite sample behavior, look at the orthogonal model used in section 2. To
avoid complications, assume c& known. Recall that [3m = + Zm {Zml i.i.d.
N (0, 2). The bootstrap data is

y = AM +£,

and the estimated coefficients of the bootstrap model are

[m = ~m+OZm+ Zm i.i.d. N(O,o2)

and {Zm) independent of (ZM).
Let Cj be the indices of the J largest I [3m 1. Then, for the original data, Cj is the best
subset of size J, and

p21*2ME (4)= £Z: + m8*mE <j m i m

Take all J3m = 0. Denoting by R (Z4) the rank of IZm I in IZ1,.. .. IZMI1 and letting
I (A) be the indicator function of A,

ME(Cj) = £ZjI(R(Zm) < J)
m

Now, letting R (Zm +Zm) be the rank of JZm+ ZmI among the values of
IZi + Z11, ... , IZM + ZM 1, the bootstrap estimate of ME (J) is

ME(&) = IZZI (R (Zm + Zm) > J) + ZI (R (Zm + Zm) < J)
m m

- Z + £(Zm-Z) I (R (Zm + < J)-
m m

Thus

E (ME()) = £E(Z I (R (Zm) < J)),
m

E (ME(4f)) = M 2.
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It is simple to verify that ME (&j) is always larger than ME (&) for J < M/2. Also, it
is larger in a way that prevents effective subset selection. ME(&) decreases as J
decreases and identifies the best subset as the empty one, but ME(&) has constant
expectation for all J.

This is admittedly a quite specialized example. But the Freedman et al. [1988] simula-
tion results, in a less specialized case, also found that the conditional bootstrap has a
large upward bias. This does not mean that bootstrapping doesn't work, but only that
this method of applying it doesn't work. What does work comes in Section 4.

3. THE REPLICATE DATA SET PARADIGM

Conceptually, one method for doing dimensionality selection is to replicate the data.
Use the first data set to do the model fitting and get the sequence of submodels. Then
use the second set to get the PE and ME estimates for the submodels.

This procedure is hardly ever used in practice. But it is a useful paradigm for two rea-
sons. First, the resulting analytic structure is fairly simple and can be understood more

easily than that resulting from resampling methods. Secondly, it gives a measure
against which to judge resampling methods. Resampling methods attempt to make the
original data set do double service, first to fit with and then, under resampling, as ME
estimators. How well they succeed can be measured against the yardstick of a repli-
cate data set.

Denote the replicate data set by y' = * + E', (e'} independent of { ). Then for any
submodel 4, the replicate data set PE estimate is

PE(t) 11 yt _ L (t)I2
11 £' 112 + 11 II* _ () 112 + 2(e', -a (C)

so that

ME(4) = PE (C) - 11ell2 - 2(e,p* - (C)) (3.1)
The second term has expectation Na2, and the last has zero expectation. But better
estimates than Na2 of lIe' 112 are available. Denote the full model PE estimate by PEM.
Fit a full model to the (y'), and denote the residual sum-of-squares by RSSM, Then the
estimate of I e, 112 given by

RSSM' + PEM
2

has expected squared error of 2Ma4 (expectation over both (e), (e')) as compared to

2Na4 using Na2 as the estimate. Thus, we use the ME estimate;

ME(4) = PE(4) - 2(RSSM' + PEM)2
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Going back to (3.1), note that

MEM - ME( ) = PEM-PE(J) + 2(£', AM- (J))

or

[MEM -ME( J)] - [MEM-ME(4J)I = 2(£'4M-R(4J)). (3.2)

The term on the right has mean zero. Its variance, conditioned on {e}, is
4C02 II - r (4I) 12. To the extent that this term stays small, ME (4X) will track the

changes in ME (&) and give accurate estimates of the minimum ME submodel.

4. THE LlITLE BOOTSTRAP

In most practical situations, we have only one data set and no replication. What can

be done? To temporarily simplify notation, let a = j (4J), and start with

RSS (t) = 1| g + c - R 112

- l1e12 + 11* -A12 + 2(e, -O

Therefore

ME () = RSS (J) - RSSM + || J -AM 112 - 2(e, AM - °). (4.1)

The term 11 * - AM 112 = (e, He) can be estimated by Me2. The critical issue is

estimating the last term. The Cp approximation is:

2(£,AM-O = 2(e, (H-H) (g* + e))
= 2(e, (H-H*)g) + 2 (e, (H-H4)e)

_ 2&(M-J).

As pointed out before, this cannot be accurate if C is data selected. The little bootstrap
procedure, as given below, uses the data to compute a variable B (C) such that

E(B (4J _E(el4M - A)

when the sequence {4X) is data selected using any of the common selection methods.
Then the little bootstrap ME (&j) estimate is taken as

ME (&) = RSS (&) - RSSM + Me - 2B(BJ).
Note that there is no guarantee that B (4X) (e, PM - 2), but only that their expecta-
tions over {e) are nearly equal. The fact that resampling methods, in general, can at

best recover only expectations of error rate corrections has been emphasized by Efron
[1986] and Gong [1986].

To begin with we define the relevant class of submodel selection procedures.
Denote the data by {Yn,X};
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Definition 4.1. The subset selection method is scale invariant if for each J,
0 < J < M, the function fj((yn,xn)) such that

CJ = fj((Yn,xn))
fjQ(CYn,cXn)) = fJ({Yn,xn)

satisfies for any constant c # 0.

All commonly used data dependent methods of submodel selection are scale invariant.
For instance, in best subsets Cj is the minimizer of RSS (c),I I I = J. With yn' = cyn,

'= cxl, RSS' (4) = c2RSS (C) and the same Cj minimizes RSS'(C), I CI = J. It is
easily verified that stepwise forward addition of variables and stepwise deletion are
also scale invariant.

Use a scale invariant procedure to select the {Xj), and denote

J([1 X * 3*j,o) E(,Am-
Assume c;2 is known and generate data

y=y + 4

with {el) i.i.d N (0, t2 02), t > 0, and (el) independent of (e}. Get the subsets Cj of
dimension J, J = 0,... , M, by applying the same selection procedure to the data
{yn, xnj. Denote OLS predictors based on (yn, xnj by p. Then

Theorem 4.2.

-(j)) = Oj i"1i/ . ** . VI+M/,2]
t2

Proof. See the technical appendix.

As a consequence of this theorem, for t small

-E(C1, gm - (<;j)) =- E(el.Mftm -( )(4.3)t2
This result is used to get the little bootstrap ME estimate as follows:

i) Fit the full model getting RSSM and 62. Do variable selection, getting the
sequence of subsets of indices Co, Cl * *, Cm, and the values RSS (QJ).

n) Generate Imn), n = 1,... , N as iid N (0,t&62) and form the new y-data

y = y + C1.

iii) Using the data (yn,xn) find the subset sequence (Cj) using the same procedure as
in i), and compute the predictors 11M and p (Cj) based on the full model and Cj
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respectively.

iv) Calculate

t2
v) Repeat ii), iii), iv) a number of times and average the quantities computed in iv).

Denote this average by Bt (J).

vi) The little bootstrap estimate is

ME () = RSS (J) - RSSM+ M - 2 Bt().

The little bootstrap can also give almost unbiased estmates in the more general future
X fixed context. Assume that the new data to be tested on a given linear regression
equation j.(x) is (ynwe,x:ew),y n' = 1, . . . , N' where the XtX matrix for the (xY,:') is
assumed known, say V = XtX. Then define

PE = EIIynew - (xnew)II
= N a2 + E 11 (xnew)- (xnew) 112

=N' (1- p*)tV(5-
and the second term is defined to be the model error.

Let OM, PJ denote the OLS coefficients in AM and P. (J) respectively. Denote also
by A the matrix such that

OM Ay.

Then

-MEM = (OM- *)tV (Om - )

and

E(MEM) = a2Tr(AtVA). (4.4)

Now

ME(J)-MEM = piJVjJ-mMV M2(3tV (PJ OM).
Writing the 3rd term as (1M - Ae)tV (Ij - O3M) gives

ME () = MEM + (p[ - OM)tV ( - )-2eAtV( pi)
The first term is estimated using (4.4). The second is calculable from the data. The
third term is estimated using little bootstrap in a manner similar to the x-fixed case
described above. Note that by taking V = I, we get estimates of 11 $j _ P* 112.
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Just because little bootstrap gives almost unbiased estimates of the submodel MEs
does not necessarily imply that selecting the submodel that minimizes ME (4X) gives a
good selection procedure. We rely on the simulations in Section 6 to give a picture of
how well the little bootstrap estimates do in the selection and evaluation process.

5. RSS-EXTREME SUBMODELS

Assume a sequence of submodels Co , Cm, and denote

RSS (J) = RSS (U).
Definition 5.1. Call Cj a rss-extreme submodel if there is an a > 0 such that

RSS(J) + aJ = min[RSS(J')+aJ'].

It is clear that the smallest and largest submodels, Co, CM, are always rss-extreme. The
others are characterized as follows:

Proposition 5.2. Cj, J e (0, M), is rss-extreme iff for every J' < J < J" with
J = t' + (1 - t)J",

RSS(J) < tRSS(J') + (1-t)RSS(J"). (5.3)

The proof is a simple convexity argument.

Proposition 5.2 characterizes the rss-extreme submodels as those for which their RSS
is an extreme point of the lower convex envelope of the graph {k, RSS (k)},
k = 0, . . . , M. The isotone regression algorithm can be adapted to give an efficient
method for finding the rss-extreme submodels.

Note that the subset selected by Cp minimizes RSS (J) + 2e J. Other candidate selec-
tion rules (see Thompson [1978]) are to minimize RSS (J) + ce J, where c is larger
than 2 and can range as high as 6 or 7. Guided by this, we restrict attention to rss-
extreme submodels with a in the range 2& to 10&. The number of such submodels
is usually a small fraction of the total number M of submodels. Selecting from these
gives a substantial savings in computations, and allows the analyst to focus on only a
few competing submodels.

The question now is, if we select from only among the rss-extreme submodels, how
much do we lose? The simulation results of the next section show that not only do we
not lose, but in fact the restriction often helps matters.

6. SIMULATION EXPERIMENT

6.1 Description
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The simulation was complex, so it will be described in stages.

a) For each run, the X-design was fixed, as were the coefficients of the full model. In
each repetition, normal noise was generated and added to give the y-values. Back-
wards deletion was then carried out to give the sequence of submodels. There were
always forty variables and either 60, 160, or 600 cases. In each run, there were 500
repetitions.

b) In each repetition the ME was computed for each submodel selected by the back-
wards deletion. ME estimates for each submodel were derived using a replicate data
set and Cp.
c) In each repetition little bootstrap was applied. We tested to see how many repeti-
tions of little bootstrap were necessary, by trying 20, 40, 80 iterations. We found that
40 was an improvement on 20, but that 80 gave only a marginal improvement over 40,
so we stuck with 40 over the course of the simulation.

We were also unsure of the appropriate values for t, the multiplier of 62. In all initial
runs, we tried t = .2, .6, 1.0. In some initial runs we tried other values of t such as .5,
.7, .8. We comment further on the results below.

d) Two general behavioral characteristics were observed. The first was the behavior
of the ME estimates over the entire sequence of submodels. Since the MEs were

known, the accuracy of the estimates could be computed and systematic errors noted.
We call this the global behavior.

In the second type of behavior we looked at how well these estimates did in selecting
dimensionality and evaluating the submodel selected. Knowing the MEs, we knew the
optimal dimensionality.

Using the replicate data estimate, in each repetition we selected the subset having the
minimum estimated ME. For this subset we computed its dimensionality and the value
of its replicate data ME estimate. The selected dimensionality was compared with the
optimal dimensionality. The replicate data ME estimate for this subset was also com-
pared with the actual ME of the subset. This was repeated for the subset selected by
Cp and by little bootstrap. We refer to these results as the submodel selection and
evaluation behavior. We also did these computations for the rss-extreme subset having
minimum little bootstrap ME estimate.

e) Details: The X-distribution was generated from a multivariate mean-zero normal
with E (XiXj) = pIiiI, with p = .7. The generated X-design was then held fixed for all
runs. In all cases N (0,1) noise was added. The non-zero coefficients were in three
clusters of adjacent variables with the clusters centered at the lOt, 20th, and 30th vari-
ables.
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For the variables clustered around the lO'h variable, the initial coefficients values were
given by

= (h j)2, Ij I < h.

The coefficient clusters at 20 and 30 had the same shape. All other coefficients were
zero. The coefficients were then multiplied by a common constant to make the
theoretical R2 equal to .75 (theoretical R2 = (1*tXtX P*) / (P*tXtX * + 02)).

We used the h-values 1, 2, 3, 4. This gave, respectively, 3, 9, 15, 21 non-zero
coefficients. For h = 1, there were three strong, virtually independent variables. At
the other extreme, h = 4, each cluster contained 7 weak variables. These four different
sets of coefficients are designated by Hi, H2, H3, H4 in the tables and figures. The t-
values for the coefficients are graphed in Figure 1 for the 3 sample sizes.

We also ran the case with all coefficients zero. This is designated by a Z in the tables,
and figures. Many preliminary runs were done with other coefficients and X-designs
before settling on the scheme for the final runs. Note that each run involved 500
repetitions, each with 41 sequences of 40 variable deletions. This required a non-
trivial amount of CRAY-XMP time. My appreciation is due to Ludolf Meester who
transferred my code to the CRAY, and did the graphs.

6.2 What Value Should t Have?

The smaller t, the less bias. But we suspected, (and our siulations confirmed) that
the smaller t is, the larger the variance of the ME estimates. We did some preliminary
runs to check the effects of different values of the parameter t. For each submodel of
dimension J we averaged the values of the ME (4X) little bootstrap estimates over the
500 runs and compared these with average of the ME(j). The difference we refer to
as the bias. Also, for each ME( ) little bootstrap estimate we computed the RMS
difference over the 500 runs between the estimate and the ME (4X) value.

We used the t values .2, .6, 1.0. The bias generally increases slightly as we go from
.2 to .6 and does not increase drastically even for t = 1.0. However the RMS error
decreases markedly from t = .2 to t = .6 and is usually the lowest at t = 1.0.

In a set of preliminary runs at sample sizes 60 and 160, we used 4 different sets of
coefficients (including Z) similar to, but not the same as, the coefficients described
above. For each run of 500, we averaged the absolute value of the bias over J, as well
as the RMS errors. Then we averaged over the 4 coefficient sets. The results are
given in Table 6.1 below

Table 6.1



- 17 -

Although the best performance in terms of RMS error is given by t = 1.0, its
theoretical justification is weak. Furthermore, in running a case at sample size 60 with
X-design and coefficients different than those described above, we found that the bias
and RMS error using t = 1.0 increased sharply at important values of J. For these rea-
sons, we do not feel that we can recommend use of t = 1.0. Even when t = 1.0 yields
lower RMS than t = .6, the improvement is small. For general use we prefer the .6-.8
range. The remainder of the simulation results are based on t = .6.

6.3 Global Comparison: Little Bootstrap, CP and Replicate Data

In our final runs we compared the little bootstrap procedure to Cp and use of a repli-
cate data set. The average of the absolute values of the bias over J for little bootstrap
and Cp are given in table 6.2 below (the replicate data bias is zero within limits of
variability).

Table 6.2

The "average" over J of the RMS differences between the estimates and the ME (Cj)
values are given in table 6.3 below. The first row is the standard deviation of the
ME (Cj) over the 500 runs "averaged" over J (RD = replicate data).

The reason for quotes around the word average is this: for small J, ME (4j) becomes
large except in the Z case. Then the RMS differences also become large (see figure
3). The average over all J would unduly reflect the RMSE for a few of the lowest J
values. For this reason we averaged only over those J for which the 500 run average
ME (j) was less than the corresponding full model MEM.

Table 6.3

In figure 2 we graph the averages over the 500 runs of the three different estimates of
ME (Cj) together with the ME(Q) values. Side by side we graph the RMS errors of
the ME (Cj) estimates together with the standard deviation of the ME (Cj). Note that
the Cp estimates are heavily biased downward. Surprizingly, this persists even for
sample size 600.

For sample size 60, the test set estimates have substantially lower RMS values than lit-
tle bootstrap. But at the two higher sample sizes, their overall RMS values are very
comparable. Our approximate calculations show that little bootstrap and the test set
would have comparable accuracies if the exact value of a2 were used in setting up the
variance of the {(1e. We conjecture that the loss of accuracy at sample size 60 is due
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to the fact that only 20 degrees of freedom are available for the a2 estimate.

6.4 Dimensionality Selection and Evaluation Behavior

There are two aspects to this problem. First, is the procedure nearly picling out the
optimum dimensionality? Second, is the estimated ME for the selected subset close to
the actual ME for the subset? In this phase, we compared the replicate data, little
bootstrap, and Cp procedures. The dimensionality selected was that at the mnimum of
the ME (C) estimates. We also ran a modified lttle bootstrap, where the subset
selected is that rss-extreme subset having minimum little bootstrap ME estimate. This
procedure is designated as LB/E.
The most telling summary is the comparison of the average ME for the subset selected
using the ME minimum and the average ME for the subset selected by the estimating
procedure. This is given in table 6.4 below

Table 6.4

The next comparison is between the average dimension as selected using the actual
ME's and by each of the estimates together with the RMS differences between them.
In table 6.5 below, the figures in parentheses are the RMS differences except that the
figures in parentheses following the average dimension selected by the actual ME's is
the standard deviation over the 500 runs of the dimension selected.

Table 6.5

In terms of the ability of the estimate to evaluate the subset selected, we give two
tables. The first (Table 6.6) compares the average estimated ME value for the subset
selected by the estimate to the average ME value for the same subset. In table 6.6, the
first number is the average estimated ME, the second is the average ME for the same
subset. Note that both the RD and LB estimates have a downward bias, although over
all J they are virtually unbiased. The reason is that the subset being evaluated was
selected as the subset minimizing the RD estimates and LB estimates respectively.

Table 6.6

Table 6.7 gives the RMS differences between the true ME for the subset selected by
the estimate and its estimated ME.

Table 6.7



- 19 -

6.5 Discussion of Results

These results, first at all, clearly indicate the salient difficulty in submodel selection.
This is the presence of a number of weak variables whose estimated coefficients can
be close to zero. These variables can be deleted sooner than variables with zero true
coefficients, but estimated coefficients away from zero. When these former are
deleted, their non-zero coefficient values make substantial contributions to the M1E.

This difficulty can be made worse by substantial conrelations between the weak vari-
ables and other variables, weak or strong. In this case, deletion of a weak variable can
produce very little RSS increase since its predictive ability can be transferred to a
correlated variable: Thus, the case of many weak correlated variables (case H4) contin-
ues to give high ME for the selected subsets even at sample size 600.

As to the behavior of the estimates; Cp is clearly very biased. This bias persists even
at sample size 600. It selects models that are too large. If there are many weak vari-
ables, this is not too damaging because it will then retain some of the weak variables
with nonzero coefficients. For this reason, Cp does slightly better than little bootstrap
in some situations involving weak vanrables (see Table 6.4). But in terms of subset
evaluation, the Cp esdmates are out of the ball park.

Little bootstrap, in terms of selection, has difficulty with weak variables. It does not
select dimensionality as well as the replicate data procedure, although on the average it
selects about the right dimensionality. In terms of evaluation, it does quite well com-
pared to use of a replicate data. It is somewhat less accurate at sample size 60. But
accuracies are comparable at the two larger sample sizes.

The RMS errors in both the replicate data and little bootstrap methods are substantial.
They average about 11-12 while the ME's we are trying to estimate have a maximum
value of around 40. This seems to be inherent in the problem and I doubt if there is
any method that could substantially increase this accuracy.
To illustrate, consider trying to estimate the full model error (e,He). The estimate we
used above was M&. This, at best, is estimating a CY2XM variable by its mean value
Ma2. The resulting variance is 2Mo4. The standard deviation is c2 42Ki; in the simu-
lation this equals 80= 9.

Are better estimates of (e,He) available? The only things we have approximating the
(e£ are the residuals {r). But the residuals are independent of He, so the best estimate
of (e, He) we can get using the residuals cannot improve on using MoR as an estimate.
The essence of this problem is that we are forced to estimate unobservable random
variables by their mean values. The result is substantial RMS error.

However, this error changes slowly across the sequence of submodels Co, . . ., CM.
As a result, the replicate data method is able to accurately select the minimum ME
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submodel. Little bootstrap does not do as well when weak variables are present, but it
certainly improves on any other method currently being used.

The results also show that restricting selection to rss-extreme submodels uniformly
improves the little bootstrap accuracy and significantly decreases the variability of the
dimensionality selected. On the average, over all sample sizes and coefficients, about
5 out of the 41 submodels are rss-extreme. For H3 and H4 the average is around 6,
while Z and Hi average around 4.

7. BIAS V.S. VARLANCE REVISITED
We earlier referred to submodel selection as a trade off between bias and variance.
We can now make this more precise and give some results to quantify the trade off.

The submodel predictor f1 (4) is not a predictor of p4*, but rather of the reduced model
* (Q) = H g"*. In particular, the OLS coefficients of (xm; m E CJ in 1t (C) are esti-
mates of the corresponding coefficients in the reduced model ,

Now ME (C) can be split into two terms:

11I* - a(C) l12 = 11 * -*(C) 112 + 11 * (C) - A (C) 112.
The first term measures the minimum discrepancy between g* and any model based on
(xm; m e C). We call it the bias term. The second term measures the error in A (C)
as an estimate of g* (c), and is called the variance term. This latter terminology is
not, strictly speaking, correct in our present context.

7.1 Structure of the Variance Term

If C is not data selected, then J (4) is an unbiased estimate of * (c), and
11 * (4) - 1 (0) 112 is correctly called variance. If I I = J,

E 11 g* () - a (C) 112 =Jo2.
But suppose Cj is a data selected subset of dimension J with C = {ml, . . , mj). Lt

be the coefficient of xmj in g"' (4I) and K3n the OLS estimate in L (4X). The distri-
bution of f3m - [P3*j may be quite complex. For instance, look at the orthogonal model
with coefficients (pm)* Suppose Cj is selected, then the distribution of imn,
j = 1, ... , J will depend on the relative magnitude of all of the ti*}. For example,
ff cfry/oa 10 and I pm /a< 1, m > 1, then the 1st variable wil almost always be in
every Cj, J 2 1 and I1 - 1 will have an approximately normal distribution with mean
zero and variance c2.
But now suppose there are numerous variables with I [ / alin the range 1-2. There is
a competition for inclusion in Cj between the variables. The ones that win tend to
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have the largest values Of bm- B3 in the direction of the sign of P. For the weaker
variables included in the model, the distribution of Pm - PM given that they were
selected will be skewed with non-zero means and inflated variances. In addition, if
there are a large number of variables with P* = 0, then some of these will have large
I PmI values and may be included in Cj, also resulting in inflated variances.

Thus, the variance component termn 11 * (C) _- (C) 112 can reflect both the bias in
coefficient estimates and inflated variance due to the selection process. The extent to
which the expectation of this term exceeds Jo2 is a measure of these selection biases.

7.2 Simulation Results

As a substudy in our simulation, in each iteration of a run, ME (J) = ME (Cj) was
decomposed into the bias and variance components BIAS (J) and VAR(J). These were
then averaged over the 500 iterations in the run. Graphs of these averages are given in
Figure 3 for Hi, H2, H3 and H4. Superimposed on the graphs is the straight line
JO2 (= J) for comparison with Av(VAR(J)).

To give a more quantifiable idea of how much effect the selection inflates the value of
the variance term,, we also computed the "excess". In each iteration of a run, the
dimensionality selected, Jmn, was defined by

ME (Jmin) = minME (J).

In this iteration, the excess was computed as

VAR(Jmin) -Jmin
Jmin

This quantity was then averaged over the 500 iterations. Table 7.1 below gives the
values of this quantity (E) together with V = Av(VAR(Jm,n) and B = Av(BIAS(Jmm,)).

Table 7.1

The values of the excess are surprizingly low, compared to the higher excesses that
show up in figure 3. For instance, if we look at the average excess at J = 20, we get
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ss 60 ss 160 ss 600
Hl .78 .83 .82
H2 .68 .69 .68
H3 .59 .62 .62
H4 .56 .53 .47

Looking at this table, and especially at H1, it is clear that the major source of the
excess is in those variables selected in 420 that have zero or nearly zero true
coefficients.

This also indicates that if the selected submodel has dimensionality close to the
minimum ME submodel, then the variance inflation is not substantial. Of course, we
can almost completely eliminate excess by always choosing submodels with small
dimensionality, but only at the cost of increased ME.

8. WHAT CAN BE DONE AFTER SELECTION?

8.1 Do Confidence Intervals Make Sense?

For the classical linear model there are elegant conditional distributional results that
give confidence intervals for the coefficients and significance levels for tests of
hypotheses.

A nonsensical procedure that is often used in standard statistical packages is to do sub-
model selection, select (somehow) the best submodel and then to apply classical distri-
butional theory to the coefficients by assuming that the other variables never existed.

That significance testing results in nonsense can be clearly seen from the orthogonal
model with all J =0. Say, for instance, that M = 75 and a model of size 4 is
selected. Then, in 95% of the runs of this model, all four coefficients would be found
significant at the 90% level (assuming 62 = 02). They are significant because they
have been selected.

What is the meaning here of confidence intervals? For instance, how can confidence
intervals be defined for the coefficients of the variables deleted from the equation? Or
consider the distribution of the estimated coefficients: Over many simulated runs of the
model, each time generating new random noise, and selecting, say, a subset of size 4,
the coefficient estimates of a given variable have a point mass at zero reflecting the
probability that the variable has been deleted. In addition, there is a continuous mass
distribution over those times when the variable showed up in the final 4 variable
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equation. The relation of this distribution to the original coefficients is obscure.

As pointed out in Section 6, the coefficients in a (C) are not estimates of the
coefficients of {xm; m Er) in the full model g*, but rather estimates of the
coefficients of the reduced model g* (C) = HC g*. Suppose Cj is the selected subset of
size J, (ml, . . . , mj). Let be the coefficient of xmj inm (j). Then what we
may want, in analogy to classical theory, is the distribution of [mj-[3 given that J

is selected. As noted above, this distribution may be complicated, with skew and
non-zero mean.

In general, even running a simulation to estimate these distributions, using known
{R,b seems formidable. One would have to repeatedly generate {e), set

y = + e, look only at those outcomes in which Cj was selected, and using those out-

comes construct some nonparametric estimate for the distribution of Om - [3*. The
problem of estimating these distributions for {f3*) unknown seem much more difficult.
My opinion is that such an effort would be "love's labour lost". In particular how
would such results be used?

8.2 Useful Information for Data Analysts

In my experience, the two most useful pieces of information about the structure of a
problem involving submodel selection are first--some rough approximate idea of the
relative importance of the variables still left in the equation. This can be gotten from
deleting a variable still in the equation, computing the rise in the residual sum of
squares, putting the variable back in and repeating this procedure with the next vari-
able still in the equation. The sizes of these RSS increases give one measure of rela-
tive importance.

Second--an idea of the alternative subsets of the same dimensionality that have nearly
the same residual-sum-of-squares. This information can give valuable insights into the
structure of the problem. If the "best subsets" algorithm is used, this information can
be easily supplied. But for more than 30 variables, this algonithm is too slow and
stepwise methods must be used.

The advantage of resampling methods such as little bootstrap and cross-validation is
that they form alternative sequences of submodels. In general, each application of lit-
tle bootstrap will result in a different sequence of submodels than formed using the
original data. As surprising as it may seem, in cross-validation, even the deletion of a
single case often leads to a different sequence of submodels.

The fact that both little bootstrap and cross-validation can give alternative submodel
sequences is the key to the fact that they can produce relatively unbiased PE and ME
estimates for data selected submodels. Methods, such as Cp, by not providing for
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alternate submodel paths, cannot provide low-bias estimates.

This property can be used to advantage even when only stepwise deletion (or addition)
is being used. For instance, suppose the analyst wants to look at altemative submodels
containing five variables. In the, say, 40 iterations of little bootstrap, look at all sub-
sets of size five selected in the 40 deletion procedures. Now run a regression (using
the original data) on each distinct group of five vanrables selected in the little bootstrap
deletions. The residual-sum-of-squares produced should be close to that of the subset
produced by the original deletion process.

9. Conclusions

The issue of submodel selection and evaluation is a critical one in statistics. It occurs
in analysis of variance, in analysis of discrete data, in generalized linear models, in
time series, as well as in regression. In distinction to most theoretical results, which
assume a predetermined sequence of submodels, in actual practice the sequence of sub-
models chosen is data dependent. Regardless of asymptotic optimality results, criterion
or estimates such as Cp, AIC, BIC etc. are highly biased in finite data situations
because they do not account for the data driven selection.

The simulation results emphasize again what many statisticians have long suspected--
that the various ad hoc methods used to evaluate submodels when data driven selection
occurs can be extremely optimistic.

Although the distributional assumptions are stringent, little bootstrap emerges as the
only procedure to date that can give relatively unbiased estimates of the x-fixed ME or
PE when data driven submodel selection is used and the number of cases relative to
the number of variables is moderate.

An important subsidiary conclusion is that restricting selection to the class of rss-
extreme submodels slightly improves model selection accuracy, while drastically
reducing the number of candidates.

Little bootstrap has wider applicability than submodel selection in OLS regression. It
works in contexts where the coefficient estmates are linear in the (ynj. Thus, the
theory and practice of little bootstrap generalizes to such situations as estimating
optimum ridge parameters. However, that is another research story.
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Technical Appendix

Proof of Theorem 42.

Proof.

Consider the scaled response data y' = y/ a, x' = x/ a, and denote OLS predictors
based on the (y',x') data by fl'. The estimates a (C) and a' (C) differ only by the scale
factor a. Assuming scale invariant subset selection, the same Cj are selected by both
data sets. Denoting £' = £ / a, then

Y'= x(p*) + £

and

(El AM-a(A)) = a2 (E', aM _- (AP))
Therefore

H(B(Pi ,J a.2) - 20J[f1/a,... .I3iI/a 1]. (A2)

Now, looking at the data

y = y + £1 = L + C + £1,

note that j0-p(4J) is a vector quantity that depends stochastically only on the ran-
dom vector £ + el. But for any n,

E(EinI(I+El1) = (t/ +t2)(En+£1n).

This implies that

E (£- + £1 3, AO-F = (1 +-))E (c1, t(BJ)) (A3)t2
Putting (A2) and (A3) together proves the theorem.
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Tables

Table 6.1. Bias and RMS ]
Sample Size 60

Bias RMS
.7 16.4
.6 14.1
.8 13.8

Error for Different t-Values
Sample Size 160
Bias RMS

.6 15.0

.8 11.9
1.1 11.4

Table 6.2. Average Bias of the LB and CP Procedures
Sample Size 60

Hi H2
1.0 .9
19.4 20.6

H3
.7

21.7

Sample Size 160
.4

20.8

Sample
.5

22.0

.4
20.9

Size 600
1.0

19.3

.7
21.1

.8
19.2

t

.2

.6
1.0

LB
CP

z
.5

21.7

H4
.5

22.4

LB
CP

LB
CP

.4
23.1

.2
23.5

.7
22.7

1.1
22.6



- 28 -

Table 6.3. "Average" RMS Error
Sample Size 60

Z Hi H2 H3 H4
SD 7.4 8.2 9.0 9.0 8.9
RD 8.9 8.9 9.3 9.5 9.5
LB 12.9 13.2 13.6 13.8 13.8
CP 25.6 24.3 25.3 26.2 26.9

Sample Size 160
SD 7.4 7.7 8.4 9.3 9.5
RD 9.1 9.2 9.6 9.8 9.8
LB 9.4 9.6 10.3 10.8 10.7
CP 25.4 23.9 24.6 24.9 25.7

Sample Size 600
SD 7.5 7.7 9.3 9.0 9.6
RD 9.3 9.2 9.7 9.5 9.7
LB 8.8 8.9 10.1 9.6 10.0
CP 25.6 24.0 22.8 21.9 22.5
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Average MEs Produced by the Selection Procedure
Sample Size 60

Hi H2 H3 H4
4.4 14.1 21.7 25.3
5.9 16.5 24.4 28.5
9.5 21.1 30.0 33.5
8.5 19.7 28.6 32.4

22.7 28.4 31.4 32.8

3.1
4.6
5.0
5.0

23.8

Sample Size 160
17.2
19.9
22.5
22.1
30.3

Sample Size 600
19.6
22.0
28.7
27.9
29.4

24.7
28.0
34.3
33.3
32.6

20.4
22.6
26.9
26.1
31.4

29.1
32.0
37.7
36.7
35.3

29.9
32.7
37.8
36.7
35.1

3.1
4.3
5.1
4.9

24.1

Table 6.4.

z
.0

1.4
4.9
4.6

20.7

.0
1.5
1.9
1.9

22.6

ME(true)
RD
LB
LB/E
CP

ME(tue)
RD
LB
LB/E
CP

ME(true)
RD
LB
LB/E
CP

.0
1.3
1.8
1.8

22.6
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Table 6.5. Average Dimension Selected and RMS Difference to Dimension Selected by ME.
Sample Size 60
Hi H2

3.2(1.3) 4.1(2.6)
3.9(3.4) 5.5(4.1)
4.9(6.2) 6.8(8.4)
3.9(2.8) 5.1(3.8)
9.3(7.6) 10.6(8.1)

Sample Size
3.0(.0)

3.4(1.4)
3.3(1.1)
3.3(1.1)
9.1(6.8)

Sample
3.0(.0)

3.4(1.4)
3.3(1.8)
3.2(.7)

9.0(6.6)

160
4.5(1.9)
5.8(4.5)
5.5(5-9)
4.8(3.4)
11.3(7.7)

Size 600
9.4(1.9)

10.2(3.9)
10.9(6.4)
9.8(3.7)
13.5(5.1)

H3
6.1(3.6)
7.7(5.8)
9.2(9.9)
6.7(4.9)

11.4(7.6)

8.8(2.7)
9.8(5.1)
11.5(9.6)
9.1(5.1)

13.0(5.8)

10.0(1.7)
11.5(4.3)
12.0(5.9)
11.1(3.5)
15.2(6.0)

H4
7.9(3.8)
9.4(6.5)
11.0(10.7)

7.9(5.4)
11.7(6.8)

11.6(3.8)
13.2(7.0)

15.4(11.3)
11.4(5.6)
13.9(5.2)

15.5(3.2)
17.5(6.6)
19.0(9.4)
15.5(4.8)
17.3(4.4)

ME(tue)
RD
LB
LB/E
CP

ME(true)
RD
LB
LB/E
CP

ME(true)
RD
LB
LB/E
CP

z
.0(.0)
.6(2.1)
1.7(6.1)
1.2(4.0)
6.8(8.3)

.0(.0)
.4(1.4)
.3(1.0)
.3(1.0)

6.8(7.5)

.0(.0)
.3(1.1)
.2(.7)
.2(.7)

6.5(7.1)
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Table 6.6. Estimated ME's for the Submodel Selected vs. Actual ME's.
Sample Size 60

H2
12.0(16.5)
14.4(21.1)
14.9(19.7)
4.0(28.4)

Sample Size 160
12.9(19.9)
15.3(22.5)
15.4(22.1)
-2.0(30.3)

Sample Size 600
17.5(22.0)
23.6(28.7)
23.8(27.9)
1.1(29.4)

H3
18.2(24.4)
21.2(30.0)
21.9(28.6)
-3.1(31.4)

20.8(28.0)
26.2(34.3)
26.6(33.3)

.2(32.6)

18.5(22.6)
22.9(26.9)
23.1(26.1)
3.4(31.4)

H4
21.8(28.5)
24.5(33.5)
25.3(32.4)
-2.8(32.8)

25.9(32.0)
30.7(37.7)
31.8(36.7)
1.4(35-3)

27.3(32.7)
32.0(37.8)
33.1(36.7)
6.6(35.1)

RD

LB
LB/E
CP

RD
LB
LB/E
CP

RD
LB
LB/E
CP

z
-.6(1.4)
-.5(4.9)
-.5(4.6)

-9.2(20.7)

-1.0(1.5)
.1(1.9)
.1(1.9)

-8.9(22.6)

-.8(1.3)
-.2(1.8)
-.2(1.8)

-9.3(22.6)

HI
3.7(5.9)
5.5(9.5)
5.8(8.5)

-5.4(22.7)

1.9(4.6)
2.9(5.0)
2.9(5.0)

-5.4(23.8)

2.3(4.3)
2.8(5.1)
2.8(4.9)

-5.8(24.1)
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Table 6.7. RMS Differencies Between Estimated and Actual ME's for the Submodels Selected.
Sample Size 60

.Z HH H2 H3 H4
RD 8.6 8.9 10.3 11.4 12.1
LB 15.1 13.7 14.6 15.6 15.3
LB/E 14.7 12.7 13.3 14.2 13.9
CP 31.6 29.9 33.9 35.8 36.9

Sample Size 160
RD 8.8 8.7 11.5 12.6 12.4
LB 10.2 10.4 12.7 15.1 14.0
LB/E 10.2 10.4 12.6 14.7 13.9
CP 32.7 30.5 33.4 33.9 35.3

Sample Size 600
RD 8.6 9.0 11.5 10.1 11.4
LB 10.7 10.3 14.1 11.2 12.2
LB/E 10.7 10.3 14.0 11.1 12.2
CP 32.9 30.9 29.9 29.3 30.0

Table 7.1. Bias, Variance and Excess at the Submodels Selected by ME.
ss 60 ss 160 ss 600

B V E B V E B V E
Hi 1.1 3.3 .00 0.0 3.1 .00 0.0 3.1 .00
H2 9.4 4.7 .06 12.2 5.0 .11 7.4 12.2 .17
H3 14.5 7.2 .15 12.6 12.1 .29 8.7 11.6 .09
H4 15.7 9.6 .18 13.7 15.4 .25 11.4 18.5 .16



Figure 1, T-VALUES FOR COEFFICIENTS
sample size 160
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Figure 2

SAMPLE SIZE 60
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Figure 2 (continued)
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Figure 2 (continued)
SAMPLE SIZE 600
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Figure 3

BIAS AND VARIANCE COMPONENTS OF ME
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Figure 3 (continued)

SS 60

SS 10

88s

H3 H4


