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Confidence Bounds for Extrene Quantiles
LEO BREIMAN, CHARLES J. STONE, and CHARLES KOOPERBERG*

Let y be the upper pth quantile of the distribution of a random variable Y, so that

Pr(Y . yp) = p. We consider four related methods for obtaining confidence bounds for

when p is very small (p = 0) that are obtained by first fitting a parametric model to the m

upper order statistics based on a random sample of size n > m from the distribution of Y.

The exponential-tail (ET) method corresponds to the assumption that the upper tail of the

distribution of Y is approximately exponential or, equivalently, that yp is approximately

linear in log(l/p) for p = 0. The quadratic-tail (QT) method corresponds to the assump-

tion that yp is approximately quadratic in log(l/p) for p = 0. Associated with these two

methods are two other methods, ETP and QTP, which involve the use of a preliminary

power transformation to make the upper tail more nearly exponential. We also consider

the multisample problem, in which the tails of the distributions corresponding to various

samples are assumed to have approximately the same shape. When the ETP and QTP

methods are applied to the multisample problem, a common power transformation is

made to all samples. The confidence bounds we obtain depend on a parameter t that

must be adjusted to yield a given nominal coverage probability. We make this adjust-

ment by adaption, via simulation, to the exponential distribution. An extensive simulated

study is described, which compares the performance of 90% upper confidence bounds

corresponding to the four methods over a wide range of distributions "centered at the

exponential;" that is, which are neither too heavy tailed nor too light tailed.

KEY WORDS: Quantile estimation; Exponential-tail model; Quadratic-tail model; Power

transformation; Adaption; Tail heaviness.
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1. INTRODUCHON

Often, in applications, we want to estimate extreme quantiles from sample data. For

example, we might have 30 years of annual high-water levels on a river and want to

estimate the 100-year flood level y 01, defined by the requirement that the probability of

annual high-water level exceeding y.01 should be .01.

As usual, it is important that the estimates we obtain be accompanied by some indi-

cation of accuracy. The distributions of estimates of extreme quantiles are far from

normal; in particular, they are typically quite skewed. Thus "standard errors" are inappro-

priate measures of accuracy. Much better are confidence intervals or, equivalently, upper

and lower confidence bounds. Since a 100(1-c)% lower confidence bound is a 100c%

upper confidence bound (UCB), we can restrict our attention to UCB's.

Let Y be a random variable (whose distribution function is continuous) and let y

denote the upper pth quantile of Y for 0 < p < 1; so that Pr(Y ) = p. Let n be a posi-p
tive integer and let Y1,- *,Yn be a random sample of size n from the distribution of Y.

Then Y1,.-,Y, are independent and identically distributed random variables. Let

Y( )...-Y(n) denote the corresponding upper order statistics, obtained by writing

Y1, - ,Y in decreasing order, thus Y(1)> ... > Yn () -(n)'
Let U be a statistic based on the random sample, which is thought of as an upper

confidence bound (UCB) for yp. The corresponding coverage probability is Pr(y < U).

Let 0 < c < 1. If U is derived as a 100c% UCB for yp by making various assumptions

and approximations, then we refer to c as the nominal coverage probability of U and to

Pr(y < U) as its actual coverage probability.
p
Consider, for example, the maximum value, Y(1). in the sample as an UCB for

Since

P (Y < y ) =Pr(Y < Y - - < p=[P( <y) .. _P)n
we see that the actual coverage probability of Y(1) is given by

Pr(YIn ptl Y ) 1U(aly )

In particular, Y(1 is. a 90% UCB for yp if and only if

p = 1- (1)1/n = 1 -exp( log(10)/n) =log(10) - 2.3 n > 1.n n
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Thus (for n > 8) ifp < 2/n, there is no order statistic that serves as a 90% UCB for yp.
When p < 2/n, we can obtain a nominal 90% UCB for yp in a standard manner by

assuming a Weibull, gamma, lognormal or other classical parametric model for the distri-

bution of Y. But if our assumption is even mildly inaccurate in a given application, the

actual coverage probability can differ substantially from .9. In other words, the actual

coverage probability of the nominal 90% UCB for an extreme quantile is very sensitive

to model departures.

It is better to fit a more flexible parametric model such as the logspline model dis-

cussed in Stone and Koo (1986). But we will not pursue this approach in the present

paper.

Another approach is to obtain a nominal 90% UCB for yp by first fitting a paramet-

nc model to the upper tail of the data; that is, to the m upper order statistics

Y ... ,Y where m < n. This is the approach that will be followed here.(1)' M)
In Section 2 we describe several such methods for obtaining confidence bounds for

extreme quantiles. The well-known exponential-tail method is described in Section 2.1.

The quadratic-tail method, briefly described in Section 2.2, was introduced in Breiman,

et al. (1981), which is a precursor to the present work. Further details for this method are

given in Section 5 and Appendix A. The preliminary power transformation is discussed

in Section 2.3; adaption of the parameter t in a confidence bound to the exponential

distribution in Section 2.4; and the multisample problem in Section 2.5. In Section 4 we

discuss a reasonably extensive simulation study of 90% UCB's, in which four specific

methods are compared when the actual distribution of Y is Weibull, generalized gamma,

or lognormal. The power parameter of each of these distributions is chosen so that the

corresponding tail heaviness, as defined in Section 3, ranges from -.2 to .4 (the tail

heaviness of an exponential distribution is zero). The results of the simulation study are

presented in graphical form in Section 4.4.

We are unaware of previous work on confidence bounds for extreme quantiles (other

than Breiman, et al. (1981)). But there have been many studies of exponential-tail and

related methods of estimation for tail probabilities and extreme quantiles. These (mainly
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theoretical) studies have focussed on methods that are appropriate when the tail is (I) in

the domain of attraction of some extreme-value distribution; (II) approximately algebrai-

cally decreasing; or (III) approximately exponentially decreasing. These three conditions

are very closely related. For example, the upper tail of Y is approximately algebraically

decreasing if and only if that of log(Y) is approximately exponentially decreasing; so

methods appropriate to approximately exponentially decreasing tails may be applied to

data having approximately algebraically decreasing tails by first taking logs. In category

(I) are Maritz and Munro (1967), Pickands (1975), Weissman (1978), Boos (1984), Davis

and Resnick (1984), and Smith (1987); in category (II) are Hill (1975), DuMouchel and

Olshen (1975), DuMouchel (1983), Hall and Welsh (1985), and Csorgo, et al. (1985);

and in category (III) are Breiman, et al. (1978, 1979, and 1981) and Crager (1982). See

Smith (1987) for a recent and thorough review of this literature.
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2. CONFIDENCE BOUNDS

2.1 Exponential-tail Model

Let 0 < po < 1. Consider the exponential-tail model, in which there is an a > 0 such

that

Pr(Y > Y I Y 2y.y) = exp(-(y-y )/a) (2.1)

for y 2 yp or, equivalently, in which yp is a linear function of log(l/p) as p ranges over

(0, po]. Let m be a positive integer with m/n < P0. Then

yp = Ymln + a log np]
for 0 < p < po. It is reasonable to estimate ymln by Y(M) and to estimate a by

A

m1

&= za [Y(i)-(m)] (2.2)

This leads to the quantile estimate

yp (M) + a log (2.3)

for 0 < p < Po.

Suppose that Y has a (two-parameter) exponential distribution or, equivalently, that

yp is a linear function of log(l/p) as p ranges over (0, 1). Let a^ and 5' be given by (2.2)yp
and (2.3) respectively. Then the constant t = tpcnn can be obtained numerically from

the incomplete beta function so that U = Y(m) + ta is an exact 100c% UCB for yp. We
refer to U as the exponential-tail 100c% UCB for yp.

Under the more general exponential-tail model, the actual coverage probability of

the exponential-tail UCB is close to its nominal coverage probability if

Pr(Y(M) 2yp ) = 1. But it is more realistic to consider the exponential-tail model as

being a reasonably accurate approximation. Hopefully, the actual coverage probability of

the exponential-tail UCB will be close to its nominal coverage probability if p is not too

small. But if p is extremely small, then the actual and nominal coverage probabilities

may well be considerably different.

2.2 Quadrtc-tail Model

Let 0 < po < 1. In the corresponding exponential-tail model, is a linear function

of log(l/p) as p ranges over (0, po]. In order to obtain a more accurate approximation, we
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consider the quadratic-tail model, in which y is assumed to be a quadratic function of

log(1/p) as p ranges over (0, po]. Let m be a positive integer with m/n < po. Then

Yp = Ymrn + a[log(1/p)-log(n/m)] + 9Llog2(1/p)-1og2(n/m)], 0 < p < Po. (2.4).

Here a and [3 are unknown parameters with a . 0. The quadratic model can be exactly

valid if [ > 0 or if a > 0 and [ = 0. It cannot be exactly valid when [ < 0; for, in that

case, the quadratic function in (2.4) tends to -- as p - 0. But, even when [ < 0, the

quadratic-tail model can provide a good approximation to yp for values of p that are not

too close to zero.

Given m and p, set

L = log(l/p) - log(n/m) and M = j[log2(1/p) - log2(n/m)]. (2.5)

It follows from (2.4) that yp = ym/n + t, where X = La + M[. Corresponding to an

estimate X of X is the estimate p Y(m) + X of yp.
More generally, let L and M be arbitary constants and set X = La + Mo. Consider an

estimate t of X of the form
rn1

ir - wit (i) (i+l)]- (2.6)

It is shown in Section 5 and Appendix A that

Var(i) = c1a2 + c2a[3 + c332 (2.7)

where cl, c2 and c3 are given explicitly in tenns of L, M and the weights w. .*w

If the exponential-tail model is reasonably accurate and, in particular, if [3 0, then

VarQX) ca2. (2.8)

In light of (2.8) it is reasonable to choose the weights to minimize cl subject to the

constraint that X be unbiased; that is, that, for all values of L and M,

El = La+M. (2.9)

It is shown in Section 5 that this minimization problem has a unique solution, which is

given explicitly. (The quadratic model should be thought of as an approximation. In

Section 5, the error of approximation is ignored. Thus (2.7) and the solution to the

indicated minimization problem should be thought of as informal approximations. The

minimization problem itself is reasonable, since it is not possible to choose the weights
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to minimize Var(t) for all values of a and j.)

In particular, by choosing L = 1 and M = 0, we obtain an unbiased estimate of a

having the form

wiy ].a~~izwiYi (i+l]
and by choosing L =0 and M = 1, we obtain an unbiased estimate of ,1 having the form

Lw2i[y(i)-Y(i+1)]-
As shown in Section 5, for arbitrary values of L and M the unbiased estimate of

X = La + MP3 for which cl is minimized is given by X = L& + M[; so the corresponding

quantile estimate is given by

yp =Y + La + MP (2.10)
p (in)

for 0 < p < Po.

It is shown in Section 5 and Appendix A that

Var()= Cla2 + C2a + C3P2 (2.11)

where C1, C2 and C3 are given explicitly in terms of n, m, L, and M. The corresponding

standard error is given by

SE(yp) = (C&2+C A 21/2.SE 1 ~+2c4+C30)
Presumably, under suitable conditions,

Dist [YP-YP N(0, 1),
SEyp

in which case yp + z1<SE(Ip) is an approximate lOOc% UCB for y here

Pr(Z >zl.C) = 1-c, where Z has the standard normal distribution.

2.3 Preliminary Power Transformation

Suppose that Y is a positive random variable. The approximation errors of the expo-

nential-tail and quadratic-tail models can be substantially reduced by a preliminary

power transformation. Given a positive constant y set W = YT and Wi = YY for 1 . i < n.

The upper pth quantile of W is given by '=y. Let wp be an estimator of wp based on

the random sample W1,* -,Wn. By applying the inverse power transformation, we obtain

the estimate = of y based on the original random sample. Similarly, let
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wp + t SE(' ) be an approximate lOOc% UCB for wp. Then [wp + t SE(ip)]'/y is anp ~~p Wp Wp
approximate lOOc% UCB for yp.

Let 0 < po < 1. We would like to choose y so that the conditional distribution of

W - given that W . w is approximately exponential. Note that if V has an
p W~~~~PO

exponential distribution, then E(V2) - 2(EV)2. This suggests choosingy > 0 to satisfy

E[( Y- )2j1Y>y I
0o 0=2. (2.12)

[E[Yy-yy IY.yp]
In practice, the power transformation must be determined from the random sample;

so we denote the corresponding parameter by . We are led to 5 = 1/1 as an estimatey- yp p
W

of yp and to [w' + t SE("')] as an approximate lOOc% UCB for yp. Let P0 = m/n,
p Wp

where 2 < m < n. The obvious sample version of (2.12) is to choose j > 0 to satisfy

i-iY(i)- (m 22 (.3M- UY(i) (m)
1-l ~~~~2= 2. (2.13)

For a refinement of (2.13), let Z.' -,Zn be independent and identically distributed

exponential random variables and let Z(1)' ,Z(n) be the corresponding decreasing

order statistics. It is shown in Appendix B that

M i=~~~1

|TE- [Z(i)-Z(m]2|(2.14)

This suggests choosing i > 0 to satisfy

m [- il[i4)(m)] =2. (2.15)

fflM i=l (i) (m) ] i

AIL,
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Suppose that m . 3 and that Y(1) > ... > Y(M) > 0. Then the left side of (2.15)- is a

continuous function of ' e (0, oo), which has limit

X 7, [log(Y i)-l°g(y(m)M i=1
M-T ~~~~~~~2

lii iE [log(Y( )-log(Y()]]
as i - 0 and limit m as iy -+ oo; and, as shown in Appendix B, it is a strictly increasing

function of . Thus there is at most one value of Ee (0, co) that satisfies (2.15); and there

is such a value if and only if A < 2. It is an elementary numerical computation to

determine i when it exists. (When i fails to exist, it is reasonable to consider the

logarithmic transformation: W = log(Y) and Wi = log(Yi), 1 . i < n.)

The use of (2.12)-(2.15) to select the parameter of the power transformation was

suggested by the test for exponentiality due to Shapiro and Wilk (1972). The use of a

power transformation before applying the ET method was suggested by a similar

estimator in Weinstein (1973).

2.4 Adaption to the Exponential Distribution

Consider a confidence bound U(t) for yp that involves a constant t in its definition,

where t is to be chosen to yield the coverage probability c. Usually this is done by means

of an appeal to some central limit theorem to justify normal approximation. We have

found that in the context of obtaining confidence bounds for quantiles, the resulting

confidence bounds are very unreliable; that is, that the actual coverage probability can

differ substantially from c even when Y has an exponential distribution.

At least for distributions of Y similar to those in the simulation study discussed in

Section 4, it is more reliable to choose t by adaption to the exponential distribution; that

is, so that Pr(y < U(t)) = c when Y has an exponential distribution. In practice this must

be done by Monte Carlo simulation (as in the implementation of bootstrap methods of

obtaining confidence bounds).
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Consider, for example, a confldence bound for y of the form

(wp + t SE(w

Let t be chosen so that, when Y has an exponential distribution,

Pr [yp [wp + t SE(wp)A/(
or, equivalently, so that

PrfW__> -l=C.
(.SE (wp) JWp

Then -t is the upper cth quantile of the distribution of

II

SE(w)
when Y has an exponential distribution; so t is easily found by Monte Carlo simulation.

2.5 Multisample Problem

For 1 < k < K, let Yk be a positive random variable having a density fk that is

continuous and positive on (0, o) but otherwise unknown. Let yAp denote the upper pth

quantile of Yk. Let n be a positive integer; let Yk1' Yk be a random sample of size
k

n from the distribution of Yk; and let Yk(1)'**-'k(n ) denote the corresponding
decreasing order statistics. It is assumed that the n + - - - +nK random variables -obtained

by combining the K random samples are independent. We can obtain separate estimates

and confidence intervals for the quantiles ykp, 1 . k < K.

In many practical applications, the upper tails of the distributions of Y1,-...*KYK have

approximately the same shape. If so, it is reasonable to use a common power

transformation for the K samples. To this end, we choose positive integers mk. 1 < k . K,

such that 2 < mk < nk for 1 < k < K and then determine y as the unique positive number

such that

K mk fmi7 .1 [Yk(i) k(mk)] 2
k-lmv F t,k -21 2K. (2.16)
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3. TAIL HEAVINESS

Let G denote the tail distribution function of Y, which is given by G(y) = Pr(Y > y),

y ER; and let G 1 be the inverse function to G, which is assumed to be continuous and

strictly decreasing on (0, 1). Then y - G1(p) for 0 < p < 1. In this section, it is

assumed, in addition, that Y has a density that is positive and continuously differentiable

on the range of G1.

Let 0 < p < 1. The tail heaviness of the distribution of Y at yp is defined by

H(p) = Hy(p) dyp/ (3. 1)= Hi.~ =d(log( I1/p))2 d(log( llp)) (.1

The tail heaviness is invariant under location and scale transformations; that is,

Ha+bY(p) = HY(p) a E R and b >O.

The effects of power and logarithmic transformations on the tail heaviness of a positive

random variable Y are given by

dyp
H (p)= p) + (b1) b > 0,Hy4) yp, d(log( lip))'

and

HIQg(y(P) = Hy/p) -i79lo(yi) =H()yp d(log( Il/p))'
p

An exponential random variable has tail heaviness zero, since its pth quantile is a

constant multiple of log(l/p). A random variable is said to be heavy-tailed if its tail

heaviness is positive and light-tailed if its tail heaviness is negative.

It follows from (3.1) and elementary calculus that

dy ~pG"i(y )
H(p) =-p d1 . (3.2)

[p [G'(y )](32
Suppose, for example, that Y has a Weibull distribution with positive power

parameter ,B; so that Y has the same distribution as Wp, where W has an exponential

distribution. Then yp = a [log(l/p)]5 for some positive constant a, which is a scale

parameter. By (3.1), the tail heaviness of Y at yp is given by

H(p) = l4gj!Jj3y.
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When ,1 = 1, Y is exponentially distributed and hence it has tail heaviness zero; when

3> 1, it is heavy-tailed; and when 0 < [ < 1, it is light-tailed. For fixed [3 1, the tail

heaviness converges very slowly to zero as p -+ 0.

The tail heaviness corresponding to the quadratic-tail model is given by

H(p) = a

for 0 < p < po. If a and [3 are positive, the tail heaviness is positive; and it converges to

zero as p -+ 0 at the same rate as for heavy-tailed Weibull distributions. If a is positive

and [ is negative, however, the tail heaviness is negative for p > exp(a/[3) and it

decreases to -oo as p -+ exp(a/[3). This is another indication that the quadratic-tail model

is unrealistic for sufficiently extreme quantiles of light-tailed distributions.

Suppose next that Y has a lognormal distribution; so that log(Y) is normally

distributed. Then = a exp([z ) andyp ~p

Gy) = [v](Dlo Y>

Here D denotes the standard normal distribution function, whose density is denoted by (p;

and the scale parameter a and power parameter [ are both positive. The random variable

log(Y) has mean log(a) and standard deviation [. According to (3.2), the tail heaviness

of Y aty is given byyp
P(Z +[3)

H(p) =(p -1.

It follows by straightforward asymptotics that

1 im H(p) og(lp)= .
p+O a

Thus the tail heaviness is positive for p sufficiently close to zero and it converges

extremely slowly to zero as p - 0.

Suppose, finally, that Y has a Pareto distribution; so that = a exp([ log(l/p)) for

0 < p < 1, where the scale parameter a and power parameter [ are both positive. By

(3.1), H(p) = [ for 0 < p < 1. In particular, Y is heavy-tailed and its tail heaviness fails to

converge to zero as p -4 0.
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4. SIMULATION STUDY

4.1 Distributions

The simulation study involves Weibull, generalized gamma(5), and lognormal

distributions. In each case, the power parameter f takes on values corresponding to seven

values, -.2, -.1, 0, .1, .2, .3, and .4, of the tail heaviness,.H(. 1), at the upper decile. For

the Weibull distributions the seven values of 3 are (approximately) .54, .77, 1.00, 1.23,

1.46, 1.69, and 1.92. For the lognormal distributions the seven values of i are .12, .30,

.47, .65, .82, 1.00, and 1.18.

The generalized gamma(5) distributions considered are distributions of W3, where W

is distributed as the sum of five independent and identically distributed exponential

random variables (so that W has a gamma distribution). The seven values of 3 are .68,

1.14, 1.60, 2.06, 2.52, 2.97, and 3.43.

Table 1. Selected Quantiles of Simulated Distributions

H(.1)

p -.2 -.1 0 .1 .2 .3 .4

Weibull distributions
.2 1.6 1.9 2.3 2.8 3.4 4.2 5.0
.02 2.5 3.8 5.6 8.4 12.5 18.7 27.8
.002 3.3 5.4 9.0 14.9 24.6 40.8 67.6
.0002 3.9 6.9 12.3 21.9 39.0 69.5 123.9
.00002 4.4 8.3 15.6 29.4 55.3 104.2 196.1

Generalized gamma(5) distributions
.2 1.3 1.5 1.8 2.1 2.5 3.0 3.5
.02 1.7 2.5 3.7 5.4 7.8 11.4 16.6
.002 2.1 3.4 5.7 9.4 15.4 25.4 41.9
.0002 2.4 4.3 7.8 14.1 25.4 45.8 82.7
.00002 2.7 5.2 10.0 19.5 37.8 73.4 142.4

Lognormal distributions
.2 1.1 1.3 1.5 1.7 2.0 2.3 2.7
.02 1.3 1.8 2.6 3.8 5.4 7.8 11.2
.002 1.4 2.4 3.9 6.5 10.7 17.8 29.5
.0002 1.5 2.9 5.3 9.9 18.5 34.5 64.1
.00002 1.7 3.4 7.0 14.4 29.5 60.8 124.9

Table 1

Y.02') Y.002')

shows for the distributions being simulated, the dependence on H(. 1) of

Y.0002, and Y.00002 (selected in light of the discussion later on in this
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section). In this table, the scale parameter is chosen so that the median, y 5, of each

distribution is one.

4.2 Confidence Bounds

Four methods of obtaining upper confidence bounds for extreme quantiles are

evaluated in the simulation study: exponential-tail (ET), quadratic-tail (QT), exponential-

tail with power transformation (ETP), and quadratic-tail with power transformation

(QTP). In all four methods, the parameter t is chosen by adaption to the exponential

distribution, as described in Section 2.4.

The ET and QT methods, as described in Sections 2.1 and 2.2, respectively, depend

on a single integer-valued parameter m. The ETP and QTP methods depend on two

integer-valued parameters, m1 and m2. Here ml is the value of m used in the preliminary

power transformation and mi2 is the value of m that is used in the exponential-tail or

quadratic-tail method applied to the transformed data. In the one-sample problem the

parameter ' of the preliminary power transformation is chosen to satisfy (2.15).

In the simulation study, we also consider the multisample problem with K = 10. The

ET and QT methods treat the ten samples separately. The ETP and QTP methods involve

a preliminary power transformation, as described in Section 2.5. In the simulation, the

ten sample sizes coincide; the integers m , Ml¶o introduced in Section 2.5 also coin-

cide, the common value being denoted by mi1. The exponential-tail method with para-

meter m2 or quadratic-ail method with parameter mi2 is then separately applied to each

of the ten transformed samples to yield upper confidence bounds for the various quan-

tiles of interest. Finally, the inverse power transformation is applied to these upper confi-

dence bounds to yield upper confidence bounds corresponding to the ten original

samples.

Consider a confidence bound obtained by using the ETP or QTP method in the

context of the one-sample or the multisample problem, with t being chosen by adaption

to the exponential distribution (which takes the preliminary power transformation into

account). Its actual coverage probability does not depend on the power parameter of the

underlying Weibull, generalized gamma(5), or lognormal distribution. In particular, for
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underlying Weibull distributions, its actual coverage probability is equal to its nominal

coverage probability.

Consider, instead, a confidence bound obtained from the ET or QT method with t

being chosen by adaption to the exponential distribution. Its coverage probability does

depend on the power parameter of the underlying distribution. In particular, for

underlying Weibull distributions, its actual coverage probability is equal to its nominal

coverage probability when the tail heaviness is zero but not when the tail heaviness is

nonzero.

4.3 Parameter Selection

Let Med(U) denote the median of a random variable U; so that

Pr(U . Med(U)) = .5.

The excess of an upper confidence bound U for a quantile yp is defined as
Med(U) -y

P x 100%.
yP

The excesses of the confidence bounds obtained from any of the four methods under

investigation depend on the power parameter of the underlying Weibull, generalized

gamma(5), or lognormal distnrbution.

Excesses and coverage probabilities of the nominal 90% upper confidence bounds

obtained by using the four methods described in Section 4.2 will be used to compare

these methods. Two sample sizes are considered: n = 50 and n = 500. Attention is

restricted to three quantiles for each sample size: yllnX Y. 11n and y.o1n Thus, for

n = 50, we compare nominal 90% upper confidence bounds for y02 Y002, and Y

and, for n = 500, we compare nominal 90% upper confidence bounds for Y.002' Y.0002'
and Y.00002

In order to determine reasonable values of the pairs ml,m2 of parameters of the ETP

and QTP methods, we conducted a preliminary simulation, in which we used 2000 trials

to determine values of t for adaption to the exponential distribution, 1000 trials to

determine actual coverage probabilities and excesses for Weibull distributions, 1000

trials to determine those for generalized gamma(5) distributions, and 1000 trials for
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lognormal distributions. For each sample size and each of the three families of

distributions, the same (pseudo) random numbers were used for both methods, all three

quantiles, and all pairs of parameters under investigation.

It is necessary to make tradeoffs between coverage probabilities and excesses.

Consider a given sample size and the nominal 90% upper confidence bound for yln
obtained by either method. We settled on choosing pairs mlm2 to meet the objective

that the estimated actual coverage probability be at least 88% for each of the three

families of distributions. Our second objective is, subject to the constraint of the first

objective, to mininiize the sum of the excesses of the confidence bounds for the three

distributions with zero tail heaviness. For confidence bounds for Y l/n and Y Ol/n' we

settled on 85% and 82%, respectively, instead of 88% in the first objective.

We actually made two passes at parameter selection. In the first pass we looked at

pairs ml,m2 broadly spread out and in the second pass, we concentrated on regions that

looked most promising in the first pass. Upon reflection, it occurred to us that we could

do just about as well by choosing the same pair ml,m2 for all three quantiles. Since

doing this has obvious conceptual and practical advantages, we decided to restrict

attention to such quantile-invariant choices. We are satisfied that the pairs we ended up

with, shown in Table 2, come close to meeting our two objectives.

Table 2. Values of m1,M2 for
the ETP and QTP Methods

ETP QTP
n n

50 500 50 500

One-sample problem
25, 7 150, 6 30,20 450,100

Ten-sample problem
19,19 40,30 35,20 300,135

The ET and QT methods have a single parameter m. For these methods, the

coverage probability depends on the power parameter of the underlying distribution.
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Here, we initially modified our first objective by restricting the power parameter for each

of the three families to the seven values indicated in Section 4.1, which correspond to

values of the tail heaviness at the upper decile that range from -.2 to .4.

It became apparent, however, that it is not always possible to realize this objective,

especially for the lognormal distribution, the highest values of the tail heavimess, and the

most extreme quantiles. For the QT method, we ended up by choosing m to give

(approximately) the best coverage probabilities for the heavy-tailed distributions for all

three quantiles: for n = 50 we chose m = 30 and for n = 500 we chose m = 45. These

values of m yield reasonably good coverage probabilities and excesses that are not

unreasonably large. For the ET method we chose m = 3 for both sample sizes, since the

coverage probabilities dipped too low for m > 4 and the excesses were unreasonably

large for m = 2.

4.4 Results

In the final simulation, the performance of the four methods for obtaining 90%

upper confidence bounds, with m or m1,m2 as described in Section 4.3, was re-evaluated.

Now, 10,000 trials were used to determine values of t for adaption to the exponential

distribution, 5000 trials to determine actual coverage probabilities and excesses for

Weibull distributions, and 5000 trials each for generalized gamma(5) and lognormal

distributions.

Figures 1, 2, and 3 show the results for the one-sample problem with p = l/n, .1/n

and .01/n respectively, while Figures 4-6 show those for the ten-sample problem and the

same values of p. Although all three families were used in the determination of m or

m 1,M2, as described in Section 4.3, the final results for the generalized gamma(S) family

are omitted from Figures 1-6 in order to save space. These results are intermediate

between those for the Weibull family and those for the lognormal family. This is com-

patible with the quantile values for the three families shown in Table 1 in Section 4.1.

Corresponding to each of the four methods for obtaining an upper confidence bound

for y is an estimate y (which does not involve adaption to the exponential
P ~~~P

distribution). The bias of such an estimate is defined as
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~x 100%.
yp

In all six figures, the Monte Carlo estimate of the bias of the corresponding estimate

is shown along with the coverage probability (expressed as a percentage) and excess of

each method. The correspondence between linetypes and methods is as follows:

. ET

QT

............... ETP

QTP

The ET and QT methods treat separately the ten samples in the ten-sample problem.

Thus the results for these methods that are shown in Figures 4-6 coincide with the

corresponding results shown in Figures 1-3.

In each plot on each figure, the tail heaviness ranges from -.2 to .4 along the

horizontal axis. Note that the coverage probabilities of confidence bounds obtained by

the ETP and QTP methods do not depend on tail heaviness, while those obtained by the

ET and QT methods do depend on tail heaviness.

According to the coverage and excess plots in Figures 1-3, in the one-sample

problem the QT method is best for all three quantiles when n = 50 and the QTP method

is best for all three quantiles when n = 500. According to Figures 4-6, in the ten-sample

problem the ETP method is best for both sample sizes and all three quantiles. (Letting

the shapes of the distributions in the ten samples differ somewhat from each other would

have favored QTP over ETP.) In particular, the ET method is never the best method.

As of now, someone wanting to apply the QT, ETP or QTP method to real data

would need to do a simulation to select t as described in Section 2.4. Perhaps further

simulation studies would be required to select m or ml,,m2 for the sample sizes, quantiles

and hypothetical distributions of interest. Although such computer simulations are

increasingly feasible because of the ever greater prevalence of powerful workstations,

they are still not easy to perform. But nobody has claimed that getting reliable

confidence bounds for extreme quantiles would be easy!
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5. QUADRATIC-TAIL MODEL

We now develop the informal properties of the quadratic-tail model that were used

in Section 2 to obtain the corresponding upper confidence bounds. To this end, let

U(1). * U(n) be the decreasing order statistics based on a random sample of size n from

the uniform distribution on [0, 1]. Then G(Y(1)), ,G(Y ) have the same joint(1) ~(n)
distribution as 1-U(1),** ,1-U Let Z,, * ,Zn be a random sample of size n from the(1)"~ (n)'
exponential distribution with mean one and let Z( )'... ,Z be the corresponding(yn)
decreasing order statistics. Then 1-U(1) ,1-U(n) have the same joint distribution as

exp(-Z(Z)) .,exp(-Z(n)); and Y( ),I-,Y have the same joint distribution as(n) (1)" ~~(n)
1 ~~~~1G (exp(-Z-)) ,G (exp(-Z )). In particular, Y ...-,Y have the same joint(1)' (n) (1)' (in)

distribution as G I(exp(-Z(19))).. ,G (exp(-Z(m)))
It follows from (2.4) with p = eY that, for y 2 log(n/m),

G1 (e ) =Yrn/n + a [y-log(n/m)] + [y2-log2(n/m)]

for y . log(l/po). Thus if Z . log(l/po), then G1(exp(-Z i 1, m coincide(Mn) (ep(Z))i=1..,ncnid
respectively with

Yinfn+ a[Z(i)-log(n/m)] + 9[Z2 -log2(n/m)], i = 1, * ,m.Ym/n+ a(i)L (i)
Ignoring the error in the quadratic-tail model and the possibility that Y(M) < log(l/po),

we conclude that Y i = i,-*i,m have the same joint distribution as(i)')I
a+a [Z -log(n/m)] + g [Z2 -0log2(n/m)], i = 1,... ,m.Ymln (i) (i)

In particular, Y -Y jE+),i= 1, m*,m-1, have the same joint distribution as(i) (+l)

a [Z(i)-Z(i+l) +[Z-Z)zU+1)" i=1, * I'M.
Let L and M be known constants. Consider the parameter X = La + MP. Let

v.... ,vm_1 be known constants and consider the estimate
rn-i

X = ivi[Y(i) -Y(i+l)]
of t. Observe that X has the same distribution as

rniVi[a [Z(i)-'(i + [Z(i)-]22
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and hence that
m-1

Ex = aX,iviE(Z)-Z(i+l))i=1 i)(
+ g iv1E(ZW-Z2 (5.1)

As is well known (see page 37 of Galambos 1978 or page 21 of David 1981),

Z(i)' i = 1,- ,n, have the same joint distribution as

n Z.

j=i J

Consequently, for 1 < i < n-1,

Z(i+1))= EL+]
and hence

(i) (i+ 1 ) z1E(Z(i-Z(+1))- -P- (5.2)

Now

Z(2) Z )= [Z( ZZ2[Z (i

and hence

[Z(i)-Z(i+l)] = L[ I]i I
2E [=i+iJ ]]

Therefore,

[2 2 2u.iE (i) Z(i+l)J = -T

where

2
=1 2 ni+l1

Ij-i+1J

(5.3)

n_

ui = -.2.JJ=i
We conclude from (5. 1) (5.3) that

m-1 m-1
E?=a Xv.i+5 uivi.

i=l i=l
Thus t is unbiased if and only if

m-1
L = Y v.

i=l I

(5.4)

(5.5)
m-1

and M= X u.v..
i=lI

The variance of X is derived by a simple but lengthy computation given in

Appendix A. To state the result, set

U(2)n=i 1

J= ij
and v iT= v.

j=i
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Then
rnm-i 2 2 I1i(2) 2 22Var(X) = X (avi+[V3i+Pu.ivi) + 3 u2Iu'vi + (m-l)um vM1j. (5.6)

It follows from (5.6) that (2.7) holds with w/li = vi for 1 < i < mr1,
rn-i. 2=c v (5.7)

rn-
m-1

c2= 7 vi(9i+UiVd)si=

and
rn-i~~ 2)2 (2)...2

c3 =i £+udv VI + (m-1) u Vm-
Consider the problem of choosing vi,. *v to minimize the right side of (5.7)

subject to (5.5). It is geometrically clear that there is a unique solution to this

minimization problem and that the solution is given by vi = 1 + X2ui, 1 < i < m-1,

where k1 and '2 are chosen to satisfy (5.5). It is easily seen that

1-= S2LSI1M and X2= (m l)M4lL
where

m-1 m-1 2
Si uiS 2 r i

and D = (m-l)S2 -Si. Thus, for 1 < i < m-i,

V= FsI2-SIui] + M[(m)-ui-Sl]- (5.8)

By choosing L = 1 and M = 0, we obtain the unbiased estimate of a given by

r-i rn(i)-(i+l) ii1Y(i)iY(i+iL
where

I
vi-S u

for 1 < i < m-1. By choosing L = 0 and M = 1, we obtain the unbiased estimate of ,3

given by

x W2i[Y(i)-Y(i+i)] - ' v2i[y(i)-Y(i+1) '
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where

w2i (m l)ui-S
I v2i D

for 1 < i < m-1. It now follows from (5.8) that, for arbitrary values of L and M, the

unbiased estimate of r for which cI is minimized is given by X = L& + Mo.
The variance of

j-Y + 't-=Y + ivi[Y -Y.]1)yp (M) (m) + i (i) (i+1)

is the same as the variance of

cZ + (miR a i)2(i+1)] 2[ ( (i+1)l(in) '~(m)+aZ-z .1 [Z2-Z

This variance is clearly a quadratic function of a and 1; so that (2.11) holds. It follows

from (5.8) that the constants C1, C2 and C3 in (2.11) depend only on n, m, L, and M.

These constants are determined explicitly in Appendix A.
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APPENDIX A: QUADRATIC-TAIL MODEL

We now derive (5.6) and determine the constants in (2.11).
Recall that Z.... ,Zn are independent random variables, each having an exponential

distribution with mean one. The following facts are easily checked: Var(Zl) = 1;

Var(Z) = 20; Var(ZlZ2) = 3; Cov(ZI, ZI) = 4; Cov(Zl, Z1Z2) = 1; Cov(Zl, ZjZ2) = 4;

and Cov(ZlZ2, Z1Z3) = 1. It can be assumed that, for 1 < i < n,
n Z.

z(i) = F

Until further notice, unless otherwise indicated, the variables i and j range over

1 ,n-1. Set B.i= 1 if i=j and Bj=O if i *j; and set ivi=1 if i>j and v =0 if

i < j. The following formulas are easily verified:

Cov Z ZZq+1)] IZPJJ+.~
C[iJ (j+ 1)] ij ..

CovtZ4, Zj(+l)j = uj

VarLZ(i+1)] =U4-2 i+2i2) --

and

Coy ~ZZ = (2) + i>j2
i (i+1)l J (j+1)] Ui

In verifying (5.6), it can be assumed that

=Xiv1 La [Z(i) Z(+1)] + VW 1(i+)]]
z2

=a, EvtZ- + 0 Y'Vil + ZZ(+)

Thus Var(Q) = c1a2 + c2ap + c,32 where

C= VarXvYZv 2C1 LiJ In
and

c = 2 CovtviZi, v + ZZ(i+l)]]
2 [ i]v.2'i

= 4 -F-- D2vlivuit .......

= 2 >v(Pi + Uivd)
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Also,

C3 =Var[2d Z+2+VZiZ(i+l)J C4 + C5 + C6.
Here

2

c4 = , Var[£ iZ = 5£

Next,

c=CovFiZ2XvZZ5 C [iTZ i . Svl*Zi(i+1)
2 2

=4£: ,+41 i 1-8£g.

Moreover,

c6 = Var IV ZIZ(i+l)j

v [i4U 2- + 2u4 - + 2 IV Li42u + - V[ivViJ
2 2UNv V. v.v.

41 + 3 I-4+ 12v~-4Xi2uvi.= Xui2vi2 -4 £ ,Pi + 3£ .

+ 2 Yiui£ i i uivivi.
Consequently,

c3= Iui2Vi2 +2 (2)i + 2 Yuivv..
Observe that

2 2) 2) 2 u2v.P£v2= [()-ui() IV£v3 2 £u)vv- u(f2)vi2 -(m-1)2u(2) 2_

and hence that

c = (+uvi)2 u2)v2 + (m_1)2um2)V
The last formula for c3 and the previous formulas for c1 and c2 together show that (5.6)

is valid.

Writing y as Y(m) + , we see that

Var[] = Var Y(J + 2 Cov Y(my] +Vart]

Now Var(Q) is given explicitly in (5.6). Thus to determine the constants in (2.11), we

need to determine explicit formulas for Var(Y(M)) and Cov(Y(M), ).
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Now

Var(Y(r))= Var ta Z() + ! Z(]

and hence

Var Y ]M a2Var[Z(m)] + a3 CovtZ(M)z(m)] + Var Z)] (A.1)

It will be shown below that

[ (m] 2 (.2VarZ1() A2

Cov Z(m)' z(m) = 2 um3) + um2)uM] (A.3)

and

VartZ)] = 6ur4) + 8u 3)ru + 2(u 2) 2 + 4u (2)u2, (A.4)
where

u =3) 3 and u 4)_j an rn =rn

Equations (A.1)-(A.4) together yield an explicit formula for Var(Y(r)). Also,

Cov Y )c] = Cov ta(r) + g Z()> 1 XiVjZ(i+1)[Z( )-Z(i)]

= Cov BaZ(r) + g Z()2 [xVi]Z(j
and hence

Cov Y )' ] =(rl m- 1 cVar Z(m)] + Coy Z(m) Z()] (A.5)
Equations (A.2), (A.3), and (A.5) determine an explicit formula for Cov(Y(m) ).

It remains to verify (A.2)4A.4). To this end, let ij,k,l range from m to n. Then

V[r~ZJ = []Z. 1 (2)

so (A.2) holds. Observe next that

Coy tZ ,Z__]- Coyt2Z. [-t]] 2]
CovZ Z o CoyrIz ZJZkI

= SE aCov[Z., 2C

=-£i Cov iZ + 2 Cov1z, z= i4Um 1: [ 3 ]
-~~ +22[~~I-*j]

- 2 t73) +(2)
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so (A.3) holds.

Finally,

VaZ var[[ 4] ] = Cov Z[ kZll.

The total contribution of all terms for which i = j = k = I is

Var[z I 1 -20u4)

The total contribution of all terms for which exactly three of the four quantities ij,k,l

coincide is

4 Cov tz1 z2]Z 1 J = 16 uf3)um-

The total contribution of all terms for which i and j are distinct and exactly one of the

pair k,l equals i or j is

[Z1Z2 1Z3] 21.kjS.ij Lm I i

= - 8u3)u-4(%- ) + 4um um
here i.j.k means that ij and k are distinct. The total contribution of all terms for which i

and j are distinct and (k, 1) is either (i, j) or (I, i) is

2 Var(Z1Z2) £ = 6 -(2))2 (4).

Equation (A.4) follows by adding up these four totals.
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APPENDIX B: POWER TRANSFORMATION

We first verify (2.14). Let Zl,-.*,Zn be independent random variables each having

an exponential distribution with (say) mean 1 and let Z().. 'Z(n) be the corresponding

decreasing order statistics. Let 2 < m < n and let i range over , ,rm. Then the

conditional distribution of

£ [ZG) z(M) I
2

given Z(m) is the same as the distribution of IZ(Y.Z/)2. Thus, to verify (2.14), it

suffices to verify that the latter random variable has mean 2/m or, equivalently, that

Z2/azi)2 has mean 2/[m(m-1)].

SetV=Z1 and W + +Z We need to verify that

E[Vw]W] 2 (B.1)

Now V and W are independent random variables; V has the gamma distibution with

parameters 1 and 1; W has the gamma distribution with parameters m-2 and 1; and V+W

has the gamma distribution with parameters m-1 and 1. It follows form the change of

variables formula involving Jacobians that W/V and V+W are independent and hence that

V/(V+W) and V+W are independent. Consequently,

2 =E(V2) = E[ W 2(V+W)2] = [(m_1)2 + m-l]E[tv 7Wj] =rm(m-1)E[tw;]W ]

and hence (B. 1) holds.

We will now show that the left side of (2.15) is a strictly increasing function of

E (0, oo). It is enough to verify the following result: Let W be a nonconstant discrete

random variable having a finite number of possible values, each of which is greater than

one. Define the function g on (0, oo) by

1 = E (W_-1)2]
- [E(W-1)]2

Then g is a strictly increasing function.

To prove this result, we observe that

-= E[WT(WT-l)log(W)] E[(Wy-l )2 ] E[WYlog(W)]
[E(WT-l)] [E(WT-1 )]3
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It sufflces to verify that g' > 0 or, equivalently, that

E[WT-i] E[WT(WT-1)log(W)] > E[(WY-1)2] E[WYlog(W)] (B.2)

for y> 0. Set V = Wt. After noting that log(W7) = y log(W), we see that (B.2) is equiva-

lent to

E[V-1] E[V(V-l)log(V)] > E[(V-1)2] E[V log(V)],

which we can rewnrte as

E
I

V-1 V log(V)F E (v-1 Vlog(V) J> E t(V-1)42 Vlog(V) (B.3)..V7log(V) ELV log(V)]J t E[V log(V)]J > V log(V) E[V log(V)] B3
Let P denote the distribution of V, let P* be the distribution on R defined by

P*(dv) = V log(V) P(dv),

and let U be a random variable having distribution P*. Then (B.3) can be written as
2

E[Ul 1 E(U-1) > E[ C 1 3 (B.4)

But (B.4) follows from Schwarz's inequality, provided we can show that U-1 is not, with

probability one, a constant multiple of
U-1

U log(Uy)
To this end, it is enough to verify that the function h on (1, o) defined by

h(u) = a log(u)
(u-i)

is strictly decreasing. But

h'(u) = 1 + log(u) 2 u log(u)
(u-i) (u-i)

so it suffices to show that

(u-1)[1 + log(u)] < 2 u log(u)

for u > 1 or, equivalently, that

u log(u) + log(u) - u + 1 > 0 (B.5)

for u > 1. But (B.5) is clearly valid, since the function defined by the left side of (B.5)

equals zero at u = 1 and its derivative is positive on (1, oo).

For more general results along these lines, see Breiman, et al. (1979).
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