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ABSTRACT

Suppose that we observe dte process Y(t) fromii

Y(t) =if (u)du + a W(t), t e 10,1]

time optimal rates of coiivergence ( wheni a -+ 0 ) of quadratic functionals under hyperrectangle
type of conistraint on unknown functioni f (t) is addressed, wilere W(t) is a standard Wieller

Process oni [0, 1J. Specially, ilie optimiial rate of estituating Lf (k)(j)12 dx wider the lhyperrec-

tangle constraint , = ff: xj(f) < n-P I is a wheni j, . 0.75 + 2k, anid a2-(4k + 1(4p - 1),
when k + 0.25 < p < 0.75 + 2k, wlhere xj (f ) is the jlm Fourier-Bessel coefficient of unknown

funxction f. The lower bouinds are fowud by applying dte hardest 1-dimensional approach as

well as testing method. We use dte lower bounds to comlpare how far the lower bounds apart

from the upper bounds, not oily in rates but also in coIIstant factors, whiich gives us an idea
lhow efficienit thie best "unibiased" truncation estiniator is in comiiparisoni to the possible best esti-
mnator. hideed, wi(th such a comparisoni, we find the asymptotic mininicax estimiiator for estimat-

I

ing the functional f2(x )dx wheii p 2 0.75. The more general testinlg bound are also dis-

cussed in the current setting.

Key Words and Phtrases: Quadratic funictionals, Lower bounds, Rates of convergence,
Minimax risk, Gaussian wlhite noise, Estimiation of bounded squared-mean, testing of
hypothleses, Hardest 1-diimenisionial sutbpr-oblem, Bayesian appr-oach.
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1. Introduction

Suppose the information available for untknown functioni [(t) is the observationt from

Y(t)= f (u) du +c W(t), te [0, 1] (1.1)

wilth conistraint f (t)E 1, a subset of L2[0, 1J, where W(t) is a standard Wiener process on [0,

1]. We wauit to estuimate a fwuctional T(f) nonparametrically. Thne functionials of particular

interest in this paper are quadratic functionials, witlh a lhyperrectantgle. For examuple, we want

to estimnate

T(V) = Ff(k)(t)12 (it (1.2)

where f(k)(t) is the ktlh derivative of the unknown functioni f(t). A natural questioni is. how

well canl we estimiiate the functional? How well does the best quadratic estinmator behave?

lbragimov et al (1986) niade a start on questions of this kiim(l.

Suclh a inodel is apparenitly tlhe mnost useful nmodel for stu(lyinig tlhe properties of nioni-

pwarnetlic estimnates, as pointed out by lbragiinov et ai (1986), sinice tlhe statistical nature of

tIme problemii is niot comiiplicated. Doiiolio anid Liu (1988) comuiect such imiodel with non-

parailletric deiisity estimnationi by lheuristic argumiienit that tlhe informiiationi available from an

emipirical process is alimiost the samie as imodel (1.1) because thie eimpirical process temids

weakly to a Browiani briidge. Indeed, thte result of Efroimnovichi and Pinisker (1982) -- under

ellipsoid type of conistrainit, the best linear estimator of denisity estiniator (found explicitly) is

an efficient estimator among all possible estimators -- is motivated by Pinisker's(1980) study of

model (1.1). Our results togetier with recent findings of Bickel an(l Ritov (1988) also support

such a heuristic.

The discretized version of niodel (1.1) is as follows: fix an orthlonornial basis I j(t))

in L 2[O, 1 j, expanuid the funictionial dY(t), f (t), dW(t) on this fixed basis. Tlheni the observa-

tion from (1.1) is equivalent to observe their itlh coordinate from
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Yi -= Xi + (5 Zi (i = 1, 2, * * * ) (1.3)

whiere Yi xi, zi are the ilh coordinate of dY (t), f (t), dW (t) defined by

I

Yi = i(t) dY(t), xi = i;(t) f (t) dt, zi = I (t) d(t) (1.4)

aid the functional T(f ) of iinterest is equivalent to T(x ), and constraint 1; is the same as a sub-

set in R°.

Thle quadratic functionals under consideration are

Q (x)=Xi xi2 (1.5)

with hyperrectangle type of constraint

I=(xeR: IxiI.AiJ (1.6)

To make problemi imieaniingful (Q (x) <0, for x e :), assumie additionially that

,Xi Ai2 < 00 (1.7)

Specially, whien = ]2k, and Aj = jP (p 2 k + 0.25), theni Q (x) defined by (1.5) is die

stume as Ilht deriied in (1.2) witlh the sniootiness constraint onl f(t).

For find(ing the optimal rates of conivergence, miiathlemuatically it inivolves on one hand, to

fitid a lower bound, whicih says that niO estimator can do better than the lower bound, and on

tIie other liaid, to find an reasoniable estiiator to acihieve die rate of the lower bound. For the

current setting, it is not hard to find an intuitive estilnator, wliich is good enough to allow us to

obtain an optimnal rate of the convergence.

Finding a lower bounid usually inivolves more mathematical teclumiques. An usual way to

fintd a mininiatx lower botund is by assigiling an appropriate prior. However, we will shiow that

no intuitive Bayes mnethod works in the currenit setting. For the setting of nonparamietric den-

sity estimiiationi, tlie mathlemiiatical backgrouid behinld the constructioni of Farrell (1972) and

Stoine (1980) is that no perfect test, Ino good estimate even though they didn't state clearly.
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The generalization of such an idea is illustrated in Donoho and Liu (1987b,c, 1988).

When T is a linear functional, Donoho and Liu (1987a) shows that when the constraint is

convex, balance and symmietric, uneder quadratic loss, the maxiniuni risk of best lilnear estinia-

tor is nlo worse than that of the best estinator times 1.34 by using thte hardest 1-dimensionxal

trick back to Stein (1956). Thne optimal rate of the convergence is equivalent to tde modulus

functioni defined by

bT (C) = SU I IT(X1)-T(X2)1: Il 1 -X12= 2,xX' X,2eC ) (1.8)

We will see that no matter wlhat kind of functional we want to estimate and what kind of con-

strainlt we hlave, the lower bound bT(O) is always available to be a lower bound. However, the

attainability of the lower bound bT(C) fails already even for quadratic functiolnals.

Looking inside of the modulus function defined above, it says by no mean that once we

camnot test between xi, aid x2 from the observations, then the clhange of thle functional of

T(,x) is the least mistake we will make for estimiiation of T(x). For the case that mnodulus

bound doesn't work, one mlay argue that the pair of x I r, and x2 E z miiay not be one of the

mIlost difficult pairs of subsets to be tested among all subsets having the sane change of the

functionial based on our observationt (1.3). Thus, a niore economical anid automatic way to for-

niulate a pair of subsets (usually comiposite) to be tested is that let thle chalnge of functional of

two sets be at least A, and theni see htow large A will be inl order to hiave a good but no perfect

test to separate two subsets. The idea of this kind is due to Donoho and Liu (1987c).

Contents of Paper: We begini witlh finding the best "unbiased" truncation quadratic esti-

mator, anid compute its MSE error. Theni, we apply the hardest 1-dimlenisional nmethod to give

a lower bound, wliich shows that wheni p 2 q + 0.75, the best "unbiased" truncation quadratic

estimator is quite efficient in asymplotic miniimax sense. Wheni (q + 1)/2 < 1p < q + 0.75, the

hardest I-dnimensionial approacli does n1ot give sharp lower bounids. To lhalndle this case, we

develop a new lower bou-nd, based onI thle Bayes risk in testing between two htiglily comiposite

priors, whichi shows that the best "unbiased" truncationi quadratic estimnator gives the optimal
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rate in this case. However, the lower bound and upper bound is quite different in thie constant

factor. Motivated by the testing metlhod, we will suggest how to assign an appropriate prior to

give a bigger (possible) lower bound ( in conistant factor ). Finially, we generalize the idea of

testinig nietllol to more general settinig.

2. Quadratic estimators

Let start witlh the model (1.3). Suppose we observe

y =x +oz (2.1)

with lhyperrectanigle type of constraiint (1.6). A intuitive class of quadratic estimnators to esti-

mate

Q(x)= ,Xi X2 (2.2)

(where Xj . 0 ) is (lie the class of estimiators definied by

qB (Y) = y'By + c (2.3)

where B is a sytiunetric mlatrix, aned c is a constant. Simiple algebra shows the risk of qB y)

under quadhiatic loss is

R (B, x ) _^ E (qD (V ) Q (,())2 (2.4)

= (x'Bx + 0T2 trfB + c-Q (x))2 + 2oy4 trB2 + 402 x'B 2x (2.5)

Followinig Proposition tells us thie class of qua(ratic estimators wilh diagonal miatrix B is a

conilplete class among all estimiiators definled by (2.3).

Proposition 2.1: Let DB be a diagonal matrix, wliose diagonial elemiientts are those of B.

Thnent for- eacli symmetric B,

nmwx R (B, x ) . max R (DB , X)
x 'E 2: xxeI

where 1; is defiiied by (1.6).
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Tlhus onily diagonal matrix B is nieeded to be considered. For diagonal niatfix

B =diag(b ,b2.) (2.6)

the estimator (2.3) lhas risk

00 coo 00 00

R(B,x)=(Xbx12 +2 Xb1+xc -b X1/c)2 + 7 b/ (2oy + 402 X/) (2.7)

A natural questioni is wlhein the estimoator (2.3) with B defined by (2.6) converges almliost sturely.

Followinig Propositioii numay state in some stanidar-d probability book.

Proposition 2.2: Unider moodel (2.1), qB 'y) conlverges almost surely for eachl x e L iff

bbw(Ai2 +0 2) < 00 (2.8)

Even though for diagoital matrix B, it is hard to find the best quadratic estinmator. For thle

indinite dimenisional estimationi problem, usually the bias is a onie of miiajor contribution to the

risk. Thius, we would prefer to use a unique unbiased quadratic estimnator

z x2 - 2)

but it may not convergenice in L2, amid even it does coniverge, it may contribute too much on

varianice. Because of convergence conIditioni (1.7), we kinow that after certaini dliienision m (

whiiclh will go to ilnfiniite, as o-O0 ), we are not wortli to estimate v,. Thus, "unbiased"
m

truncation quadratic estimator

m
=q X(y2 - o2 (2.9)

is a good canididate for estimating Q(x), aid m is choseni to miniimize its MSE. For estimiator

quT () just definied above, tlIe miaxiinmumli MSE is

*tax R (quT, x) = (YXXA,2)2 + XX(2o4 + 4a2A/) (2.10)
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Wlieii Xj = jq and Aj = jP, (p > (q + 1)/2), (2.10) can be simplified a lot. Let's study its

asymptotic property as a - 0. By (2.10), the estimator

m
iq(Y-2 02) (2.11)

lhas its iimaximiiuin risk

_~2n2q+1 4 1 -2p -q - 1R (in ) _ 2q + 1 O4( + o (l )) + 4(y2 E2q - 2p + m 2p -q -Il 2 OM

Case l: (q + 1)/2 <1. q +0.75.

4

Clhoose mn = [co 4P-1 , where c0 is specified below. Let

2q+ t
g(c) -2q + + c- 2(~p -q - 1)/(2p - q - 1)2 (2.12)

Tilen the filhilnlizer of g(c) is co = (2p - q - 1) 4P 1 . Thus, (2.11) is simplified as

4- 4(2q+ 1)
g(c) a 4p - I (I + o() (2.13)

and(lie optimal i11 is

, 4

no = 1(2p) - q - 1) 4P - Ia 4 (2.14)

Thus risk of (lhe optimnal estimatior "unbiased" is

4 4(2q + 1)
g(c 0)a 4p - I (1 + o(l)) (2.15)

Case II: p > q + 0.75

4

Tlhe optimiial n0o = [a 4"-I ], with risk

00

4£ j2q - 2p(2(l + o(()) (2.16)

Let suminiarize tlie result we obtained above
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Tiheorem 1: For Xi = I' and Ai = jp, (p > (q + 1)/2), the best "unbiased" truncation

estimiated is given by (2.11) with optimal mo defined by (2.14) wleii

(q + 1)/2 < 17 . q + 0.75, and the nmaxinum risk of ilte optimal estimator is given by (2.15),
4

and tlie olt iinal ni( = [aT 4P-1 j when p) > q + 0.75 with the maximiumi risk given by (2.16).

Note tha[t when (q + 1)/2 < p < q + 0.75 the rate given above is bigger thian a2. In fact,

in the next two section, we will show that the "unbiased" truncation estimator is quite efficient

in the sense tlhat its risk is quite close to lower botndls, and thle rates given above -are optimal.

Note the wlhen q = 0, we will actually prove that the best "unibiased" truncation estimiator is

asymiiptotic efficient in miinimax sense.

hi tlhe followinig examiples, we always assume that the constraint is I = (x: Irj . j ].

Examiiple 1: Suppose we want to estimate T(f) = f 2(t) dt from model (1.1). Let

j (t) ) be a fixed ortlioniorimial basis. Then T(f) = , /2. Thus, tlie optimnal "unbiased" esti-
j=l

1in'
nmator is Xj (y2 - 2), wlere

4

={[a 4P-I,1 if p> 0.75
[(2p - 1) 4p -

a 4P- I, if 0.5 p 0.75

Moreover, wheii p > 0.75, the estimator is ani asymptotic nminimnax estimator. For

0.5 . p . 0.75, tlhe optimal rates are achiieved.

Examiple 2: Let orthonoirnal basis be Ij (t)) = (1, cos2njt, sin2tjtl. We

want to estimnate

T(f) = I I (k)(t)12 dt = (21t)k/2 zj2kjx/2
6 j=2

mO

The optinal "unbiased" estinmator is (2J)k/2 2k (yj2 - 2), where
j=2
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4

[a4P-']I fpfp>2k+0.75
711o= -- _ 1 4

[(2p -2k -1) 4P a 4P- ]if k +O.5 .p 2k +0.75

Moreover, tie estimators achieve the optimal rates.

Example 3: (Inverse Problemi) Suppose we are interesting in recovering dte indirectly

observed funiction f(t) from data of thle form ( Donoho & MacGibbon (1987))

It s u

y())= K(t, s)f (t)dt ds +adVw, u E to, I]

wlhere again W is a Wiener Process and K is knowii. Let K: L 2[0, l]-+ L 2[0, 1] have a

singular systemn decompositioni (Bertero et al (1982)), i.e. a representation

Kf = , Xi(f,i ) lj
i=l

where the Xi are sinigular values, the I4) and (in) are orthogonial sets in L2[0, 1]. Then the

observation is equivalent to

Yi = Xi Oi + a ei

whlere -i are i.i.d. N(O, 1), Oi is thle Fourier-Bessel coefficient of (f, 4i), anid yi is a Fourier-

Bessel coefticicit of the observed data. Now suppose want to estimate

f2(t) dt = p0?=) 2xi2

whiere xi = Xi Oi. If the non-parametric constrainit on 0 is a hyperrectangle, ttiei the constraiit

of x is also a hyperrectangle in R . Applying Theorem 1, we can get an "optimial" estimator,

which achieve the optimal rate. Moreover, we will klow roughly hIow efricientt the estimator is

if we apply the Table 3.1 and 4.1.
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3. Hardest 1-dimnensional lower bound

Tlhe hardest 1 -dimensional trick is suggested by Stein (1956). The idea is to use the

difficulty of the hardest t-dunensional problem as a lower bound of that of nonparametric

problemn. initis, for estimation of quadratic functionals ( infinite dimensional), we will end up

witlh ffie difficulty of eslinmation of 02 from observation Y - N(0, 02) (1-dimensional).

Let Y be a random variable distributed as N( 0, a2 ), and suppose it is known that

101 . . Let (lhe niiniiax risk of estimiiatinig 02 be

p(T, 02) = inf sup EO(S(Y) -02)2 (3.1)

By definiition, it is easy to slhow that

p(t, o2) = (4 p(t/o, 1) (3.2)

For estim1ationi of bounded iiiean, the quantity

inf sup Ee(6(Y) - 0)2 (3.3)

hals been studied by Casella anid Strnawderman (1981), Bickel (1982). However p(t, 02)

belhaves mtchcdifferent from the imiinimiiax risk of estiniation of the bountded nmeani (3.3). For

tlhe purpose of later use, we give the following asymptotic result of p(a, 1).

Thteoreml 2: As a -* oo,

p(a, 1) = 4a2(1 + o (1)) (3.4)

Moreover the least favorable prior is the linmit (as n -oo ) of the prior denisity of

gn (0, a) = (2 l)-2 (tle :!) (3.5)

Now we are ready to fiind a lower bound by using the lhardest 1-diinensional trick. Fix a

pOillt X E 1. Let x, = tx, t e [-1, 1J, be a line segment passing the origin. Then the problem

of estimnatinig of Q (x) in I x, ) is just that of esthinatinig

o2 = Q (ax) = t2Q (X) (3.6)
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from observation

y=tx +cz

wlhere z is nornuial with miiean 0 an(d variance identity, and t is unknown to be estimated. As

(y, x) - NQ( % 112, O2I ,112) is a sufficienit statistics for t, the observation available for estimation

t or 0 is equivalenit to that from a(x) (y, x) - N(01 Q -X ) U2). Thus time niiniimax risk of

estimnationl 02 ill the problein is

p 4Q(X~) - ( 2) (3.7)

accordinig to our niotationi. By (3.2),

P (r ) a2) =Q p(IkIt / a, 1) (3.8)

But, the nmininax risk of estimation Q (x) is at least as difficulty as that of estimation 02. Con-

sequently,

ilif sup E. (8S) - Q (x ))2

= inf sUp Sip Etx(8(y) -t2Q (X ))2
s X EY Iit1!I.i

)

2 sIlufisqPE,,(8(y) - 2)2

Xs6Z Q 2(1,1).(y4

1CUIICIUSiOXl:

hi coniclusionl,

Thteoremx 3: The miniiiax risk of estimation Q (x) from observation (2.1) is at least

S7 Q (IT))2(4 7p(Ill / a,1) (3.9)

and as a -4 0, the miniimax lower bound is at least

sxLl7
4 2@)a2 (1 +o (1)) (3.10)

X 6 . t1 1RVII > 0 l 112
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Comilparing the lower bound anid upper bowud giveni by (2.16), wheni p 2 q + 0.75 the

rate a2 iS the optimal one.. When p = 0 , the best truncation is the asymptotic mhiimax estima-

t(or. How close is the upper bound to lower bound? By (2.16) and (3.10), as a --0

Lower Bound( c__2
Upper Bounid c2p C4, - 2q

where Cr = E cani be calculated numerically. Following table shtows thte result:
I

Table 3.1: Comparisoni of the loweer bouInd anid upper bound
p = 1 + I + 0.5 i

i=- i=2 i=3 i=4 i=5 i=6 i=7 i=8

q=0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
=0.5 0.976 0.991 0.996 0.998 0.999 1.000 1.000 1.000

1=1.0 0.940 0.977 0.990 0.995 0.998 0.999 0.999 1.000

=1.5 0.910 0.963 0.984 0.992 0.996 0.998 0.999 (.999

=2.0 0.887 0.952 0.979 0.990 0.995 0.998 0.999 0.999

=2.5 0.871 0.944 0.975 0.988 0.995 0.997 0.998 0.999

=3.0 0.859 0.938 0.972 0.987 0.994 0.997 0.998 0.999

=3.5 0.851 0.934 0.970 0.986 0.993 0.996 0.998 0.999

=4.0 0.845 0.931 0.968 0.985 0.993 0.996 0.998 0.999

=4.5 0.842 0.929 0.967 0.984 0.992 0.996 0.998 0.999

=5.0 (.839 0.928 0.966 0.984 0.992 0.996 0.998 (.999

(3.11)
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4. Testing of tine vertices of lhypercube

Note that wlhen (q +1)/2 . p < q + 0.75, thle upper bound (2.15) is not at the rate of a2,

and conisequenitly, the liardest 1-diniensionial lower bounid (3.10) is iiiuch smaller. We niay

wonder whtether 1-dimensional bounds camot capture the difficulty of estimating quadratic

functionials or else the best "unbiased" truncation estimator is not a good estimator in this case.

Indeed, we will construct a bigger lower bound, which says the best "unbiased" truncation esti-

mator gives the optimal rate.

Tlhe idea of the conistruction is as follows: take a largest lIypercube of. dimensional n

(whtichi depentds on a ) in the hyperrectanigle, and assign probability I to each vertices, and
2"

(lien test them against the origin. Wlhen Ino perfect test exists ( by choosinig sonie critical value

n, dependitng on1 a), the difference in functional values at two hypercubes supplies a lower

bound. The approachi we use is related to one of lbragimov et al (1986), who, however use

hypersphere rather thaIn hyperrectangle.

To carry out t(le idea, let's fornmulate testiing problemii

HO): Xi = O. +- HI1Xi = ± tn (i=l, * - *, n ), 0 (i > n ),(4.1)

i.e. we wantt to test wlhether (he observationi yi fromn H0J or H 1, which is specified as follows:

2H(: yi - N(O, a) (i = 1, * * * ,n) + (4.2)

HI: Yi -

I

[J)(Y .tn I () + V(Y . t, 7](iA = ,** 1)2

where t(y, t, a) is the density funiction of N(t, a2). The result of the testing can be summar-

ized as follows:

Lemimiia 4.1: The suin of type I and type 11 error of the best testinig procedure is

2 D(- I,(t )2 )(1 + o(1)) (4.3)

if 111/2 (tn / a)2_*C, wliere F(Q) is (lie probability fuliction of a stamndard normal distribution.
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Now we are ready to derive a lower bound. Let

= IQ (HI) - Q (Ho)/2 = tn2 Xj1/2 (4.4)

be the half of chlange of the functional. For any estimlator T(y), the niliiniax risk under qua-

dratic loss is

supji Ex (T (y)-Q (x ))2

2 [E (T(y)- Q(x))2 + E, (T(y) - Q(x))2]

> I
r 2 [po (IT(y)I 2 rn) + PI(IT(y) -Q(x) 2 rn)]

2

> 2 rn2 [P(, (IT(Y )I 2 rn ) + P I( IT (Y)l 5 r, )] (4.5)
2

2r,NF )(1 + o())

where E(> and E miiean that take the expectation under H0 anid H , respectively.

The last inequality holds because we can view the secoiid term of (4.5) as sum of type I

error and type 11 error, wlhichi is nio simaller Uiani that of best test procedure given by Lemma

4.1. Thulls, take In such that the last tcrnm is bouided away from 0, tlhcn r 2 is the order of the

lower bound.

Tlheorein 4: Suppose tliat Ai is increasing ini j, whien j is large. Let na be (lte largest

number of the equation

IF,(An/c0)2 < c,

Thieti, for any esthiator T(y), tlie niaxiniituni risk of estiniiatilig Q (x) is no slialler thian

su8p z ot 4c/%) (I x An 4, (1 + o(l)) (as o -4 0). (4.6)

Moreover,
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na

I(£k,j ) Ana
Su.p PXfT(Y)-Q(X)I 2 2+

and for any symmetric increasing loss function 1 (),

su}Ex [( ( )Q (,,)I )]2 1(I) qb(- )+ o (1)
5X1 Aneno

WheIn Ai = ]-P and Xi = jq, we cani calculate the rate in Theoremi 4 explicitly.

Corollary 4.1: When Aj = j-P and Xj = jq, for any estimator the mininax risk under

qua(lratic loss is no better than

4 _4(2q +I§
p,qO 4p - I (1+ O l?

Moreover, for any estiiator T(y),

2g
_

I
-2 (2+

siFp Px,(IT(y) - Q (X)I 2- c 4P '1(2(q +1)) 4 P Dt}2f(_ X)I ()

wlhere

supc~' ~ ~( ~~V40+ 1)2)4p, q = >0
- )(4(q+

Wlheni (q + 1)/2 . p < q + 0.75, by comparing tlie lower bound and upper bound given

in section 2, againi we shiow that the best "unbiased" truncation estimiator gives the optiiial

rate. Followiing table shows hiow close the lower bound and the upper bound are.
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Table 4.1: Comparisoni of the lower bound and the upper bounid

whlere ratio = lower bouid by testiingrmethod
upper bound by qud(y)

The above table tells us that there is a large discrepancy at fie level of constants between

the upper and lower bounids. It appears to us that the hypersphere bound of lbragimov et al

(1986) would not give a lower bound of the sanie order as we are able to get via hypercubes.

5. Bayes Methiod

Often we use Bayes method to fined a minimtax lower bound. However, as jientioned in

the initroduction, the intuitihe Bayes methiod gives too small lower bound in the case of

(q + 1)/2 p < q + 0.75. By intuitit'e Bayes method, we niean tihat assign prior uniformly oln

the hiyperrectangle, whiich is equivalenit to say that inidepen(dently assigin prior uniformly on

each coordinale, or niore generally assign prior xj - nj(O) inidependenitly. Mathtematically,

assignin)g tlhe prior in this way does not include the interaction term ( wihicih lias order n2

terms) and hence give a smaller lower bound. To see thiis, let p, (jP, a) be the Bayes risk of

estimation 02 from Y - N(0, 2) knowing 10l j-P with prior Il. Let

8(y) = E ( jq X/2 t y ) be the Bayes solution of the problem. By indepenident assumption of

prior,

8(y) = E jqE(Xi21Yj

Theii the Bayes risk is

q=0 q=1 q=2 q=3 q=4

p= fratio p= ratio p= ratio p= ratio P= ratio

0.55 0.0333 1.15 0.0456 1.75 0.0485 2.35 0.0495 2.95 0.0499

0.60 0.0652 1.30 0.0836 2.00 0.0864 2.70 0.0864 3.40 0.0858

0.65 0.0949 1.45 0.1159 2.25 0.1170 3.05 0.1153 3.85 0.1132

0.70 0.1218 1.60 0.1431 2.50 0.1419 3.40 0.1383 4.30 0.1345
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00

Enc Exc (8(y) - 1 qXj)I = 1: j24 px ( j-p, ()

I I~~ 0

y2q PRJ(j- p :2)+ j2q-4 (5.1)
I 71+1

because the Bayes risk is no larger than the maximum risk of estinator 0. As Bayes risk is no

bigger thla tle minimax risk, by Theorem 2, the last quantity is no bigger than

12q pr(j 1) 4 +, (i- 4p + 2q +11

< 0 1t 2q - 2p + I 2) + Q(n- 4P + 2q + I

4_ 2q +I

= nax(O (a2), 0 ( ))

4 _ t + 1)
= o(0 4 - ) (wihen (q + 1)/2 < 1 < q + 0.75)

by clhoosinig it = P.

To liid a bigger lower boun(d, inotivated by time testing methiod, take a largest n dimen-

siolnal liypercube in 1. Assign prior t(x) oni the diagonial linie segmiienits starting from tile ori-

gin uniiformitly, withi probability -I to each line seginenit of thie hiypercube.
2"n

Mathenmatically, assigning the prior in this way can be reduced to find the Bayes risk of

tie estimating 02 based on thie nm i.i.d. observationis Yi lhavimig denisity

yi - I.- (+( 1) + +(- o0 ))2

with prior nt(0) is utnifornitly distributed on [0, t,, . anid dentote the Bayes risk by B (tn, n ),

wliere 4(0, 1) is the denisity of niormal distribution witlih imean 0 anid variance 1. Theni, a

minimax lower bouid of estimnating Q (x) is at least as big as the Bayes risk, i.e. no smaller

than t(ie quanitity
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1?

min max E(6(y) - oX02)2
&(y) 101 . A,,

n

> ( j)2&4 B (A, /a, ii)

We believe that for the case A,, = n-P and = jq by choosing suitable dinmension

4

11 = [(c ) 4'P - I I, the lower bowud miiiglht be improved. We are not goinig to pursue that hiere.

6. General testing lower bound

hi this sectioni, we will generalize the testing bound to more general setthig, which

applies to all functionals to be estimated and any kinid of conistraint. Suppose we have obser-

vation front (1.3), and want to estimnate T(x) knowning x e L. Then no estimator can esti-

nate T(x) Caster than the mo(dulus bounid defined by (1.8).

Tlheorenm 5: For aity estiiator (fy) fromti observationi (1.3),

sup E. (5r)-T(x ))2 2 suviD(- C/2)b72(c ()/4

wihere b17 is defined by (1.8).

Renmark: Whenl the hardest 1-dimienisioinal lower bound anid miodulus bound(i botlh give

the correct rates for estimiating quadratic functionial ( p2 q + 0.75), the miodulus bound gives a

smilaller constant factor. In fact, by Cauchly-Schwartz inequality,

bT(E) . 24jij £E = 24C2t_q)S q( - q>0.5)

and

supY[D(-c 12)c j C2pc c)C2pModiultus bound< c C(-017 2(p-q) 4'~
l-dimim botund 4 C~p2c?p2whereC=- The second iseautdnmea2pl-q 2p-q

00

wliere Cr ,jr The second is evaluatedl iiuinerically iti Table 3.1. For p=O, tlle last temnl

is ino biggef tliani 0.167 anid somietimiies eveni imiu;li worse, if we evaluate botli boundts more
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carefully.

Applying tie testing -trick iii section 4, we can give a more general result which allow us

to judge whietlier tie modulus lower bound is too snmall or not. To state the result, without

loss of genierality, asswne thiat T(O) = 0. Let I, be the lenigth of the largest n-diimensional

hypercube i 1, with in > 0 and 1,, -+O0, and N , be the largest integer such that

Thleorem 6: Under the above notations, assume thiat in the neighborhood of origin,

IT (x) > Q (x), whicih is symimetric in each argument. Then the rate of Q (x ) is a lower rate,

in t(le sense that no estimiator can estimate T(x) faster than that of Q (x@) (as 0-4O), where

X= (Oa *. , ,0,O ... )IN 0.25 with Na non-zero elements.

If mitoreover bT (c a)/Q (,V) -+ 0 for each c. Then modulus bouid bT (c a) does not give

an achievable lower rate under quadratic loss, where bT is defined by (1.8).

As nienitioned in the hltroduction, 2-poimits testinig bound may nlot be the best pair to be

tested. To give a imiore powerful lower botmd, let I;5; = (x 21: T(x) . t ) and 42, + ,

dclfined sinmilarly be the two subsets to be tested. Let conty (Er, t + A) be the convex hull of

E t +& ill the space of distributionis, and define coiv(>g ,t) siniilarly. Le Cam (1985)

shiows mininax risk of the sum of type I aid type 1I error of testinig

HO: x E ZT>t+ 4H1:x e IT t (6.1)

is just die minaxinum testing afliiity of tlhe lhardest pair in Con '(IT at + A) and conil'(IT

aid denote it by n(convi' (Er +t), conty (I 5 ),i.e.

J(convII(I >.1 +&)9 con'(?(. ) =

nilift Ynax (Ex(;y) + Ex (I - 4(y))). (6.2)
T o e t1 x te m2,+oustd

Ttle stili Of type I and type If of the niost dlifficult subsels to is tested be

aT (A, a) = sup it(conv(I 2 t + A), conv((IT 6.3)(6.3)
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Henice the largest chlange of the functionial A of the pair that we canmot test

AT(CC, a) = sul(A: aT (A,) 2 a) (6.4)

Tlhen, we lhave followiiig tlheorem, wlhich genieralizes all kiiids of testing lower bound given

above.

Theoremn 7: For any estimator S(y),

inf suip} P, 5(y -T(x )I . AT(a,cY)/21 > a/2

and for any symmetric increasing loss I(t), the minimax risk lower bound is given

inqf sup Ex 1(2(8(Y)-Q(x)) ) 2 1(1) a

6 x
4

L AT(xa 2

7. Proofs

Proof of Proposition 2.1:

For aniy subset Scl 1, 2,.), let prior ps be the probability ineasure of indtlependently

assigniing xvj =±Aj witlh probability - eachi, for je S an(d assigninig probability I to the point
2

0 for j 4 S. Tlhen by thle Jetnsen's inequality,

nmax R(B, x)
X E

2 max E,s R(B, x)

S~~~~~~

mla (E s(x'Bx) + ( t-B + c - E s [Q (X)])2 + 2a4 trB 2 + 402 E ¶(x'B 2x). (7.1)

Let DA = E s(xx') whichI is a diagoInal matrix. Simple calculationi shows thiat

E s(x'Bx)= t-(BDA )=tr(DBDA)

E 1s(xBx) = t(B2DA) . tr(DB)2DA

trB 2= trB 'B = trD2B
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Thnus by (7.1) and the last 3 display,

nmax -R (B, x) . iniax E SR (DB,X)= nax R (DBX )

The last equality holds because (2.7) is convex in xj , and consequently attains its maximum at

eitlier x2 = 0 or x2 = A,

Proof of Proposition 2.2

Suflicienicy follows fromii the monotone conivergenice theoremii:

EqB (X) bhi(xi2+ &2)+C <00

Suppose that (2.3) convergence a.s. for each x e 1, then according to Kolmogrov 3-

series theoremn,

P(biyi 2. 1) < 00 (7.2)

EEby2 l(biyi2 . I) < °° (7.3)

As the distributioii of Yi is lnormlal, it is easy to clheck that

E yi4 3(E yi2)2

Tlhus by Cauchy-Schwartz iniequality,

E byi 2 l(biyi22 1)

<,F1 Ebiyi2 P (biyi2 2I

=O( E biYi2) (7.4)

Hence the assertion follows from (7.3) and (7.4).
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Proof of Theorem 2

Let (lhe prior distributioni of 0 is g, (0, a) defined by (3.5), for fixed n. Tlhetn the poste-

rior (lenisity of 0 given Y is

02n exp(y _0)2/2)l(ea) (7
a

J 0211 exp(- (y _ 0)2 2) dO
-a

Thus, the Bayes solution under quadratic loss is

a

(2n + 2 e-xp(- (y _ 0)2 / 2) dO
E (02 Y) = -a

a

J O2n exp(- (y _ 0)2 / 2) dO
-a

A 2+ (7.6)

Now, tlie risk of the Bayes estimate is

E(y2 + 8a(Y) - 02)2

= 402 + 3 + ES2(e + 0) + 40 Ee Fa(e + 0) + 2Ee2 sa(£ + 0)

whtere £ - N(O, 1). ThIus, the Bayes risk is

4 2 +1 a2 + Ea(e + 0) + 4 E£ 0 8a (£ + 0) + 2E£2 8a(£ + 0) + 3 (7.7)

wlhere E represenits taking the expectation over £ N (0, 1), and 0 - g" (0, a).

We will prove tlhat

Ea(c + 0) = o(a2) (7.8)

Suppose (7.8) is true, theni By Cauchy-Schwartz iniequality,
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Es 0 8a(, + 0) . (E02Es2)112 (E62(e + 0))112=o (a2)

Thus, by (7.7), the Bayes risk is

4 2ii + 1 a2(1 + o(1)) -+ 4a2(1 + o(1)), ( as n - oo)2nt + 3

Consequently,

p(a, 1) 2 4a2(1 + v(l))

On the other hanld,

.vup Ee(Y2 02)2 = 4 a2 + 3

We conclude that

p(a, 1) = 4a2(1 + o (1))

Now, we have to chieck (7.8). By definiitioni of (7.6) and integration by parts,

a

2n (2- y2) exp(- (y _0)2 / 2) dO

a (Y ) a (7.9)

02 exp(- 0)2 / 2) dO
-a

Y-(y)+ 82(y) + (2n + 1) + 2n83(y) (7.10)

where

81(,+^) = a2?v(y + a) extp(- (y - a)2 12)1 l1 (7.11)

A2(Y) = a2i"(y -a) exp(- (y + a)2/ 2) / I (7.12)

a

835(y) J 02n1 -I exp(- (y - 0)2 / 2) dO / 1 (7.13)
-a

a

I = J 02" exp(- (y _ 0)2 / 2) dO (7.14)
- a
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Thlus, to prove (7.8), we need onily to prove

E J(y) = o(a2), ( =1,2,3)

which will be proved by following three Lenunas, where y = 0 + e

Leinmna 2.1: Under the above notationis, E 62(y) = o (a 2)

Proof: When y . a - 1, and a is large,

a

I .(a - 1)2n exp(- (y _0)2 / 2) dO0
a - I

2(a - 1)2' exp(- (y -a)2/ 2)

2a2nexcp( (y - a)2 / 2)12n

IlVus, on the set I y: y < a -1 1'

82(y)<4(a +y)2< 16a2

Consequently, by Lebesque's dominated conivergence theorem,

E 82l(y)lt a-)= o(a 2

O tihe set ( a -i y .a ),wehlave

a

I f 02"iexp(- Cy - 0)2 / 2) dO
a-I

> e .5(a _1)2n

2 0.5e -.5 a2n exp(- (y - a)2 / 2)

Thus, by (7.16)

(7.15)

(7.16)
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E 8 )(a - I.v .a)

< i6e a2 p (a - 1.y . a ) = o(a2)

When y > a,

I . (a - 1)2n

a

f exp(- (y - 0)2 / 2) dO
a - I

2 (a - ()2-[exp(-(y a )2 / 2) - exp(- (y - a + 1)2 / 2)]
yy-a + I

> a2" ~(1-e-04LS)exp(-(y-a)2 /2)
2y- a + 1)

Hlence,

(7.18)I4(1 (y > aE)

< 4(1 e 1-1)-2 E fy - a + 1)2(y + a )2 1(y > a)

Note that

P(y >a).Pfa -a025 < 0) +P(a025 <e) =0(a&0.75) (7.19)

Note also that

Ply >a +aOt25jI P(e> ao-)

= O (a- 025)exp(- 4a / 2)

By the easily clhecking fact that

E lytI = 0(atm)

aid Caucliy-Scliwartz iniequality,

E 6(y)l(v>a)

.4(1- -05)2[E (y -a +1)2(y +a)2l(ao2+a1ya)

(7.17)

(7.20)
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+E (y-a + 1)2(y+a)l,> a025 +2a)I
025 4 025 1/2+a

.O(a2)p(2a025 + a 2 y > a + 40(a4) [P(y > a +a)025J/2

= 0 (a 1.75) (7.21)

Consequenttly, by (7.15), (7.17), and (7.21), the desired assertion follows.

Lenmina 2.2: Under the above inotations, E 22y) = o (a2)

Proof: The proof is similar to that of Lemma 2.1.

Lemina 2.3: Unider the above inotatioIIs, E 2(y) = o (a 2)

Proof: Wheni a > 2,

y2(y)j52[2 ( 2n Iexp(- (y _ 0)2/ 2)dOI I)

+ 2 ( 02n - I exkp(_ (y _ 0)2 / 2) dO1 I )2]
tel< 1

J 02n -" Iexp(- (y - 0)2 2) dO
< 2 Y2 + y2 ( 101 <21 )](7.22)

02n exp(- (y - 0)2 / 2) dO

Let

02- exp(- (y _O)2 / 2) dO
let < I

2
g(Y)= ~ 2p 2

J &2' exp(- (y 0)2 / 2) dO

Obviously, by thle continuity of g, wlen Iy 1 5 2, g (x) . c, a finite constant. Anld when y > 2,

02n& exp(- (y _-)2 / 2) dO 5 2exp(- (y - 1)2 / 2)
let < I
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wlile

2
J 2 exp(- 0)2 / 2) dO 2 exp(- (y _ 1)2 / 2)
- 2

Hence, Ig (x )I . 2, wheni x>2. Similarly, when x < - 2, Ig (x )I . 2. Thus, we concluded that

S32(y) .2 max (C2 + 1, 5)y2
3 3~y

As Y2 is niiformly integrable, and so is a2 Conisequenitly,
aa

E 3 O(as a -+ oo)
a2

The assertion follows.

Proof of Lemina 4.1

Witlhout loss of generality, assume that a = 1. Thnen the likelihood ratio of thle delnsity

un(der Ho anid H I is

n

L. =nLn,i
I

(7.23)

where

Ln,i = exp(-_ 2t2/2) [exp(tn yi ) + exp(- tn yi )]/2

Denote 4,j,t, = log L ,i, theni

22

= - t / + log[1 + 2+~YCSti f" ?44

= tn2/2+2 '' +
2

tn Yi
24

4 4
tn +Yi (tn )]24 +

4i4
It + O0, (tn6)
8

Consequcitly,

n

log Ln + ntn4/4 X(y12-1)tn2/2 - - 3)/12

;it /2 tn2 4;i/ tn2
+ 0, (4n-t4)
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By invokinig the ceIItral liIit theorem for i.i.d. case, we conclude that

log L,, + nt 4/4

4;~-7 tn2
L- N(O, 1)

under Ho. Note that

log L,, - nt,,"4/4
1in27 tn2

n
2 1 - t,,2)/2 - t,2(yi4 _ Eyi4)/12 + 0 (nt,,4)Dy t

I
+ Op(-jIF,t4)

Now, wider H1,

nE (Iyi2-1- ,1/1 )4 = 0 (n-1)

and

nE (Ily 4 - Eyi4I/4n)4 = O (n -')

Hlence, the Lyapounov's condition holds for the triangular arrays. By triangular array central

limiit tieoremii, under HI,

log L, -n4/4LnN

4I1 -/2 2

Conisequenitly, tihe suin of type I aid type 1I error is

PHolLn > 1] + PHILLn < 1] = 2 0P(- t )(I + o(M))

Proof of Theorem 4:

The first two results is actually proved by the argument before statinig Theorein 4. The

third result follows from the inequality

(7.24)

Proof of Corollary 4.1:

4

Take n = [(F a) 4P I ]. Then,

i(It 1) > 1(1)1(ltl .: 1)
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no
(I jq)n a2P

q + 2P1I(q + 1) (1 +o(1))

=c o 41 Iq+1Z - 22
=C 4p - I (Y /p-(q + 1)

Henice, tle assertion follows fromi Tlheorem 4.

Proof of Theorem 5:

Consider the testing problemii

HO: y- N(xI, o2) - HI: y- N(x2, a ) (7.25)

Tlhen, the likelilhood ratio is

Y (X2- XI) _Ir 2112 _II- ll2
L = exp( 202

andi thle niniiiutnti sum of the type I aiid type l1 error is

nin (Ex1(y) + E.x2(1 - t,)))= PX(L > 1) + Px2(L . 1)

= 20(- 1 I - X211o

where 0( ) is the distributioni of the standard niormal distribution. Let r - ± IT(x,I) - T(x2)I2

be t(ie lhalf of the change of the functionial. Then, by the samiie argtunent as tlhose in (4.5), we

have

su Ex (8(y)TT(x,))2 > ,.2[PX,(86) - T(xt)l > r] +PXd(Y) - T(x1)I < r)]

IT(x,) - T(X2) 12 lb1, - X 211
4 2

Taking "sup" over x 1, x2e I subject to iIv I - X2112 = Ca, we get the desiie result.
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Proof of Tlheorem 6

Consider the testing problem (4.2) witl t,, = In, and n = N0. By Lemma 4.1, there is no

perfect test between Ho, and HI, i.e. the minimum sum of type I and type II error is bounded

away froiii 0. Hience, by the similar algebra as those in (4.5), the half of change of the func-

tionial froni Ho to HI is a lower bound of estiniating T(x). Now when a is small, by

assumption, the change of functional from Ho to HI is at least Q(xU). Hence, Q(xU) is a

lower rate. As BT (c a) = o (Q (x)), we conclude the second result.

Proof of Theorem 7

Without loss of generality, let the supremum over t in the definition of aT be attained, at

t(, anid thle supreniuim over A in tlie definitioni of AT be attained, at A. Then by definition, it

follows the iiiimiiax risk for testing betweein Ho anid H1 is at least a, i.e.

min. sup [Ex~+Ex°(lXI a (7.26)
0<t5. 1 Xc-T- 50, C T t0+

Now for any estimnator $, aid xle T 0+2 A

PXI I 18(y ) - T(rxl)l > A/2) > PX, 18(y) - T(xO)1 < A/2

Hlenice, by (7.26)

sup naxPx 16(y)-T(x)I .A/2)
X0EL 5 tot, X,1 ,2tt0+A X0 Xi

2 sup --Pso5(y)-T@O)I 2A/2j +[P ,x1y) -Ty -TO)I A2 )]
xo= Lr,, X,ez t0 +A 2

. a/2

Tlhus, the conclusioni first result follows. The seconid result follows fronm the inequality (7.24)
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