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Abstract

We demonstrate how the computational abilities of interconnected 0-1 networks (often

referred to in the literature as neural networks) may be employed for the task of

efficient combination of statistical evidence from several sources via the Dempster-

Shafer theory of upper and lower probability systems. For a certain structure of the

evidence (which allows it to be incomplete, inaccurate and partly contradictory) an

algorithm is given which has linear time complexity. The work has applications to the

handling of uncertainty in knowledge-based expert systems and quantitative

knowledge-integration systems.
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1. Introduction.

Np-complete is one of the new words of the computer age. It is used to characterize

problems with respect to their computational complexity. It means, roughly, that a

problem is so hard that no polynomial time algorithm that solves it is known. In other

words, the time required to solve a problem of a certain size or input length on a given

computer grows exponentially with the input length. The number of problems to be

classified under this heading grows almost daily. Some of the more famous represen-

tatives of this class are the Traveling Salesman problem, the Hamiltonian Path prob-

lem, and the Steiner Tree problem (see Garey and Johnson (1979)).

Another problem that is known to be np complete is the combination of basic probabil-

ity assignments in the Dempster-Shafer theory of upper and lower probability systems

(henceforth called DS-theory). The theory was first introduced by Dempster in his

1967 paper and was subsequently extended and enriched by Shafer (1976). It may be

regarded as a generalization of Bayesian inference. While Bayesian inference requires

a global prior probability distribution for all relevant variables, and observations on

some of these variables, no complete prior probability law is needed for DS-modelling.

There is, of course, a price to be paid: no exact probabilities can be obtained from

such inference, but only upper and lower probability systems (see Dempster (1968)).

The Dempster-Shafer theory is currently widely used among the Artificial Intelligentsia



especially in knowledge-based expert systems (e.g. Garey et. al. (1981), Shafer (1984),

Buchanan and Shortliffe (1984)) since it lends itself to the representation and combina-

tion of evidence from several independent sources and also allows to handle situations

where knowledge is both incomplete, inaccurate and partly contradictory.

Section 2 gives a condensed description of the basic structures of DS-theory. For this

we claim neither originality nor completeness. The reader should consult Shafer

(1976) for an exposition of formal theory. In Section 2 we also give a new interpreta-

tion of upper and lower probability systems and DS theory in terms of positive definite

functions on semigroups with involution.

Section 3 addresses the problem of representing and combining statistical evidence

from several sources. In the DS formalism the main device for knowledge integration

is Dempster's rule for the combination of basic probability assignments. We point out

a defect of Dempster's rule and suggest a modification (for conflicting evidence only)

that eliminates these shortcomings. For a certain structure of the evidence, frequently

encountered in practice, an algorithm is then given which has linear time complexity,

as measured in arithmetic operations. The innovation is to first map the problem onto

a neural network and formulate it in terms of desired maxima of a functional defined

over the state space of the network in such a way that the asynchronous parallel pro-

cessing capabilities of these networks are exploited in a fashion similar to Hopfield
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(1982).

2. The Dempster - Shafer Theory.

For many years there has been a need within the Artificial Intelligentsia for a con-

sistent (non ad hoc) theory which can deal with incomplete knowledge, ignorance,

uncertainty, and partial contradiction. The Dempster-Shafer theory is such a general

purpose tool.

Standard probability models are characterized by a sample space and a probability

measure over the sample space. The Dempster-Shafer theory requires only that proba-

bility be attached to certain margins (determined by the available evidence) of the sam-

ple space (which in this formalism is referred to as frame of discernment) and it

operates with basic probability assignments. Formally these have the same structure as

probability measures over the power set of the sample space (rather than the sample

space itself). For a complete description of the formalism the reader is directed to

Shafer (1976). Here we define some basic structures of this theory that we will need

in the sequel. We confine ourselves to finite frames 03 = (01, . . . , on}.

Definition: (a) A non-negative function m: 28 -+ [0,1] from the power set 28 of 0)

to the unit interval is a basic probability assignment if

m(4 = 0
(2.1)

I m(A) = 1
AEr 2e
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If m (A) > 0, then A is called a focal element.

(b) The lower probability P: 2e -+ [0, 1 ] is defined as

(2.2) P(A) = I m(B).
BCA

The simple set function with P (0) = 1 and P (A) = 0 for all A . e is called the vacu-

ous lower probability function.

(c) The upper probability P: 20 -+ [ 0, 1 ] is defined as

(2.3) P (A) = 2 m (B)
Br)A.O

(d) Let 0, Q be two frames of discernment. If there exists a mapping w: 209 2n

with

1. w((0 }) . 4 forall Oi0E0

(2.4) 2. w({Oi) n w({0j)) = 4 if Oi # Oj

3. U w({8JO) = a
e1Ee

then Q is a refinement of e and 0E is a coarsening of Q. The mapping w is a refining.

(When working with basic probability assignments in practice it will always be

assumed that any frame 0) under consideration is embedded in a family of frames F

consisting of refinements of 0E and coarsenings of the refinements of e0 in such a way,

that every pair of elements in F has a common refinement in F, i.e. if 091, 02 E F,

then there exists w, : 2E0 -e 2fi1 and W2: 202 -- 2Q2 such that Q1 = n2.)

(e) Let 031, 02 E F be two frames w: 201 202 be a refining and let P2 be a lower



- 6 -

probability over E02. Then Pi defined as

(2.5) P1(A) = 2(w(A)) for all AE 201,

is the restriction of P2 to 01.

If instead P1 is a lower probability over 01, then P2 defined by

(2.6) P (A) = max P1 (B) for all A E 292
w (B)CA

is the minimal extension of P1 to 092.

(It can be shown that P1 is the restriction of its minimal extension P2 to 8i.)

Dempster and Shafer interpret these entities in the following way: m (A) is a piece of

probability which can move freely among all the elements Oi of the set A and P (A) is

the minimum total probability committed to A in the sense that it cannot move outside

A. P (A) is the largest amount of probability that can move to a given 0i E A. If all

the focal elements of m are singleton sets than m reduces to a standard probability dis-

tribution over the sample space 03 and P(A) is simply the probability attached to the

subset A of 03. Since focal elements are not restricted to singleton elements, basic

probability assignments are more general than standard probability distributions over

sample spaces: They are probability distributions over the power set of the sample

space 0. This generalization greatly enhances their applicability and makes them

much more useful in situations (encountered frequently in knowledge-based expert sys-

tems) where exact prior probability distributions are difficult to come by due to limited



knowledge, ignorance, uncertainty, or partial contradiction.

The Dempster-Shafer theory retains the same basic structure of conditioning on

observed data as the Bayesian theory but introduces Dempster's rule of combination

(see part (f) of the definition) as an updating scheme for upper and lower probability

systems:

Definition (continued): (f) If ml, m2 are basic probability assignments for P1 and P2

over the same frame 0e, and if A1, . .. , Ak and B1, . . . , Bl, respectively, are their

focal elements then the function m: 2e [ 0, 1 ] defined as

I ml (Ai) *m2 (B.)
AjrBj = A

(2.4) m(A) = - , AE 20 for A ml(A) - M2(Bj) < I1I ml (At) -m2 (B~) ArinBj4
is the orthogonal sum of m1 and m2 and is denoted by ml eM2.

(It can be shown that ml ®m2 is a basic probability assignment over E0. The

corresponding lower probability is denoted by P1 e P2).

If one interprets P1 and P2 as being derived from independent sources of statistical evi-

dence, then Pi eP2 is the lower probability function representing the combined evi-

dence.

Dempster's rule is the fundamental updating mechanism in DS-theory. It describes

how incoming new evidence changes upper and lower probabilities: Initial probability

bounds are formalized by Pi over 03, new evidence is represented by P over e and if
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the requirements for the application of Dempster's rule are satisfied, then our new pro-

babilities are represented by Pi eP2.

The Dempster-Shafer theory is especially suited to deal with situations where stan-

dard Bayesian inference does not succeed because prior probabilities for the entire

space are difficult to come by. DS-modelling allows to exactly represent the available

evidence, however limited and contradictory it might be, without having to come up

with prior probabilities for every possible outcome. For example, in an inference

problem that involves integers the structure of apriori knowledge might be such that it

allows to specify prior probabilities only for the sets of pairs (1,2), {3,4),{5,6), etc.,

rather than for each integer individually.

For this and other reasons DS-modelling has frequently been used by the AI commun-

ity (e.g. Barnett (1981), Garey et. al. (1981), Shafer (1984)) in knowledge-based expert

'systems. The medical diagnostic system MYCIN (Buchanan and Shortliffe (1984)),

for example, operates with DS-theory.

The history of upper and lower probability systems goes back further than indicated by

the above references and an extensive literature exists. The following is a partial list

only: Boole (1854), Good (1950), Smith (1961, 1965), West (1971) and Beran

(1971a,b). There is also a connection to Choquet (1953); in this sense upper probabili-

ties P are alternating Choquet capacities of order oo.
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Before going on to Section 3 we mention here that upper and lower probability sys-

tems and the Dempster rule fit naturally into the theory of positive definite functions

on semigroups with involution.

A semigroup (S,O) is a non-empty set S equipped with an associative compositiono

and a neutral element. A semigroup (S,o) together with a mapping *: S -* S that

satisfies

(i) (S o t)* = t*oS* for S,t E S

(ii) (s*)* = s for s e S

is a semigroup with involution. A function 4f: S -* C is positive definite if

(s,t) e v(s*ot) satisfies

n
v cjckxJ(sj+osk).>O for all n E rN, {sl, . . . , n) c; S and {cl,...,cn}cC.

For a frame e the power set 2e equipped with the usual intersection of sets, (2e, ro) is

a commutative, idempotent semigroup. If ml, m2 E JR8 (where Re is the set of func-

tions from 2e to R) then

ml * m2 (A) 1 m(A1) m2 (A2)
AlrA2=A

is a convolution and (1Re, *) is again a semigroup. If one requires normalization in

R8, specifically

X m(A) = 1, m 0) = 0, m(A) 0 for all A E 28
Ae 2e

then one is in the context of basic probability assignments. Then obviously
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mlem2 (A)
Ml *0 m2 (A)

mlem2(A) = -Ml0m2(A)

is the Dempster combination of basic probability assignments in terms of the convolu-

tion *. For the basic definitions, see Berg et al. (1984). Harmonic analysis on the

semigroup (Re, *) amounts to a change of basis in Re. The new basis is chosen such

that the convolution can be expressed as a simple multiplication which further

simplifies both the structure and computations.

Furthermore, if (2e, r), c) is a semigroup (2e, r)) equipped with the partial order s set

inclusion then for this partial order the Riemann Zeta function 4 is such that for two

subsets A, B of 8, 4 (A, B) = 1 if A C B and 4 (A, B) = 0 otherwise. The correspond-

ing M6bius function 1. is given by g (A,B) = (-l)IB-AI for A : B and p.(A,B) = 0

otherwise. Here A I denotes the cardinality of the set A.

Since P (B) = m (A) = £ (A, B) m(A), lower probabilities are M6bius
AQB AE 2e

transforms of basic probability assignments and therefore, one may obtain the function

m from P via Mobius inversion:

m(A) = g(B,A) P(B) = £ ( A)IA-BIP(B).
BC2e BCA

In this setting many of the results of harmonic analysis on semigroups become avail-

able in the theory of basic probability assignments over frames of discernment.
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3. Combining Statistical Evidence.

Let X1,. . . , XN be a set of nodes and Cij; ij E (1,..., n) a set of edges or connec-

tivities between pairs of nodes. In many applications nodes will be representative of a

set of variables, propositions, attributes etc. and connectivities may represent pairwise

interactions in the form of joint distributions, upper and lower probability systems,

classical or non-monotonic logical relations etc. These network-based knowledge

structures appear frequently in the construction and design of expert systems, quantita-

tive knowledge-integration systems and in the theory of reliability (e.g. Buchanan and

Shortliffe (1984), Barlow et. al. (1975)).

Consider now, in particular, a set of propositions each one of which has the possible

truth values "tue" (state 1) and "false" (state 0) and the context where the connec-

tivities are given by basic probability assignments over bivariate frames. In addition,

propositions may interact with each other in one of the following ways

(3.1) Proposition j being true gives some support to proposition i being true also.

(3.2) Proposition k being true gives some support to proposition 1 being false.

In the language of DS-theory, (3.1) and (3.2) translate into the basic probability assign-

ments mij and Mlk, respectively, with focal elements

(3.3) mij({(1,1), (1,O), (0,O))) = rij,mij({(O,1) x (0,1))) =-rij where in (-,-) the

first coordinate represents proposition i and the second coordinate represents
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proposition j.

(3.4) mlk (((0,1), (0,0), (1,0)}) = sW), mlk (((0,1) x (0,1))) = 1 - slk where the first

coordinate in (*,*) represents proposition I and the second coordinate

represents proposition k.

Evidence with the structure (3.1), (3.3) or (3.2), (3.4) is by no means artificial. An

example for (3.3) is the percolation of water through a system of sites and valves:

The links (edges) denote valves which allow water to flow from site to site. Each

valve is open independently of other valves with probability p (otherwise closed) in the

direction indicated by the arrow. Hence, if site (3,5), say is wet, then site (4,5) is wet

with probability p. However, if (3,5) is dry (4,5) may still be wet due to a connection

with (4,4). The relevant basic probability assignment has the same focal elements as
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in (3.3).

It gives further insight to note that in the above sense basic probability assignments

bridge the gap between probabilistic and logical relations. Probabilistic relations

between random variables are represented either by joint distributions or conditional

distributions. Logical relations, on the other hand, correspond to subsets of the joint

outcome space: For example, if X and Y are two Boolean variables then the implica-

tion "if X = 1 then Y = 1" may be represented by the subset {(1,1),(1,0), (0,0)) of

the product space {(0,1) x (0,1)). The basic probability assignment (3.3) attaches a

probability to this subset and hence allows to randomize logical relations.

We now address the following rather general problem: For a large and possibly highly

interconnected network of nodes and connectivities of type (3.1) and (3.2) inferences

about the states of nodes both locally (i.e. for an individual node) and globally (i.e. for

the set of nodes as a whole) are desired given the states of certain nodes.

(3.5)
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In (3.5) 0 denotes a node with known state. The basic building block of the network

(3.5) is the unit

(3.6)

where the links (the respective probability assignments on the edges) and the states of

X1 and X2 are given and these interact with X3 through (3.1) or (3.2).

Consider first the case where both interactions are of type (3.1), i.e.

(3.7) M31 ({(1,1), (1,0), (0,0))) = r3l, M31 ({(0,1) x (0,1)) = 1 - r3l
(3.8) m32({(1,1), (1,0), (0,0)}) = r32, m32({(0,1) x (0,1))) = 1 - r32.

Since inferences about the state of X3 are desired one needs to first minimally

extend (Definition (e)) the corresponding probability assignments (3.7), (3.8) to the

entire space (0,1) x (0,1) x (0,1), combine them via Dempster's rule (Definition

(f))over this space, and marginalize with respect tO X3 conditional on states of X1 and

X2, respectively again via Dempster's rule.

Here and below in (.,-,-) the sequence of states refers to (X3,X2,X1). Minimal

extension of (3.7), (3.8) generates

M31 (((1,1,1), (1,0,1), (1,1,0), (1,0,0), (0,1,0), (0,0,0))) = r

M31 ({(0,1) x (0,1) x (0,1)M) = 1 - r3l

M32(((1,1,1), (1,1,0), (1,0,1), (1,0,0), (0,0,1), (0,0,0)) = r32
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m32({(0,1) x (0,1) X (0,1))) = 1 -r32.

Dempster-combination gives rise to

M31 Em32((11,1), (1,0,1), (1,1,0), (1,0,0), (0,0,0)R ) = r3l r32

in31 ®m32({(1,1,1), (1,1,0), (1,0,1), (1,0,0), (0,0,1), (0,0,0))) = r32(1 - r31)

M31 6m32((Ml,1,1) (1,0,1), (1,1,0), (1,0,0), (0,1,0), (0,0,0))) = r3l(1 -r32)

M31 @m32({(0,1) x (0,1) X (0,1))) = (1 - r31)(1 - r32)

and conditioning on X1 = 1, X2 = 1 leads to

M31 Dm32({(1,1,1) = r3l + r32 - r3l r32

M31 ®9m32({(1,1,1), (0,1,1))) = 1 - r3l - r32 + r3l r32,

conditioning on X1 = 1, X2 = 0

M31 E®m32({(1,0,1))) = r3l

m32 em32({(1,0,1), (0,0,1))) = 1 - r3l,

hence producing the expected results in this simple case. Similar relations are

obtained when both basic probability assignments are of type (3.2). Consider now the

case of conflicting evidence. Specifically, let

M31 ({(1,1), (1,0), (0,0))) = r31

M31 ({(1,1) X (0,1))) = 1 - r3l

m32({(0,1), (0,0), (1,0))) = S32

m3*2({(0,1) x (0,1))) = 1 - S32

then after minimal extension, Dempster combination and

conditioning on X1 = 1, X2 = 1:

43lf)m*2(f(11D,V)}) = r3l(1 - S32)in31 eM'32\1 - S32'r3
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M31m(M321{(0,1,1)) = S32(1 - r3l)
conditioning on X1 = 1, X2 = 0:

M31 Em32({(1,0,1))) = °

M31 ®9m32({(0,0,1), (1,0,1)}) = 1 -r

conditioning on X1 = 0, X2 = 1:

M31 em32({(0,1,0))) = S32

M31 M3*2 Q({(1,1,0) = 0

M31 Em32({(0,1,0), (1,1,0)}) = 1 - S32*
These are the required computations for one basic building block only. Nodes may

have more than two incoming links requiring repeated pairwise Dempster combination.

It is clear that for a large and highly interconnected network the number of operations

explodes.

Our goal is therefore to use the computational abilities (especially their ability for

parallel processing) of neural networks for the combination and propagation of proba-

bility assignments. Towards this end, we require a transformation which accomplishes

combination of basic probability assignments on an additive scale, i.e. we require an

Abelian group which is isomorphic to the additive group of real numbers on (-cc, +oo).

A candidate for such a transformation is -log (1 - *), Shafer's (1976) weight of evi-

dence function:
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Adjusted to our context write S (r3l) for the weight of evidence for X3 = 1 (due to a

probability assignment of type (3.1)) conditional on X1 = 1:

S (r31) = -log1( - r30)
If there also is S (r32) due to a probability assignment on the second edge in (3.6), then

the total (conditional) support for X3 = 1 is

S (r3l) + S (r32) = -log (1 - r3l - r32 + r3l * r32)

and since m3l Em32 ({(1,1,l)M) = r3l + r32 - r3l * r32 clearly

S (r31) + S (r32) = S (r3l + r32 - r3l * r32)

Hence in this case transfornation to the weight of evidence scale and Dempster combi-

nation are exchangeable operations. This is true also for two probability assignments

of type (3.2). Unfortunately, this commutativity collapses in the case of conflicting

evidence. When two basic probability assignments of type (3.1) and (3.2), respec-

tively, are combined, then the second probability assignment erodes part of the support

for X3 = 1. If Dempster's rule and Shafer's weights of evidence scale jointly are to be

consistent then the support for X3 = 1 conditional on both X1 = 1 and X2 = 1 should

be S (r3l) - S (s32), if r31 . S32 and, in particular, this difference should be zero if

r3l = S32* Instead, the combined support is equal to S (r3l) - S (r3l - S32) and nonzero

for r32 = S32-

On this deeper level the DS-theory has the same weakness as that ascribed to the

Bayesian theory by Shafer (1976 p.22) on a less profound level i.e. equal support for
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both sides of a dichotomy should combine to no support for either, but, when using

Shafer's weights of evidence scale in combination with Dempster's rule, they do not.

We therefore chose to modify Dempster's rule introducing a slightly modified updating

mechanism (for conflicting evidence only) eliminating this defect. To make the

difference clear also notationally, we called this the concept of degrees of

confirmation.

Definition: For the basic probability assignments of type (3.1) and (3.2), respectively:

Given X1 = 1, we say that X3 = 1 has degree of confirmation r31.

Given X2 = 1, we say that X3 = 1 has degree of confirmation -S32*

For non-conflicting evidence we want the combination rule (for confirmation numbers)

to produce the same result as Dempster's rule applied to two basic probability assign-

ments of type (3.1) or (3.2). For conflicting evidence the above-mentioned defect

should be eliminated. We propose

Definition: (Combination Rule for Degrees of Confirmation). Let X be confirmed

independently to degrees a and b. Then the combined degree of confirmation is a ®E b

where

[a+b-ab if a,b.O
a0b = a+b+ab if a,b<O

a + b/(l -min{IaI,IbIl) if sign a. sign b.

In addition, define the modified transformation
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f-log(1 - a), a >O
S*(a) = llog(l+a), a<O.

Then the transformation S* is compatible with the combination rule for degrees of

confirmation in the sense that one may first transform both degrees of confirmation and

then combine them, or first combine degrees of confirmation and then transform them.

And this holds for both nonconflicting and conflicting evidence:

S* (a 3b) = S*(a)+S*(b) forall a,be (-1,1).

Now everything is in place for an efficient computational handling of the network (3.5)

and the desired task. We will allow evolution of the global state of the network

(represented as a binary word of length N) over time and write Xi (t) = 0 or Xi (t) = 1

for i = 1,2, . . . , N depending on whether the i-th node is in state 0 or state 1 at time

t. (A mechanism for state changes will be introduced momentarily.)

The connectivities Cii for i,j = 1,2, . . . , N will be taken to be constants, in particular,

they are derived from the transformation S*:

Cii = -log (l - rij)
for a probability assignment between propositions (nodes) i and j of type (3.1) and

Cjj = +log(1 - sjj)
if the probability assignment is of type (3.2). Hence the connectivities Cii are the con-

ditional degrees of confirmation given Xi = 1.

Define also the confirmation function
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C (t) = Xi (t) - Dy1Xi (t)
i.j

and introduce the following mechanism for state changes governing the evolution of

the system of nodes

at time Tik node i changes its state from 0 to 1 > Xi
at time Tik node i changes its state from 1 to 0 C*1 (Ti Yi

Here yi is the individual threshold of the i-th neuron, and for given i = 1,... , N the

random variables Ti', k = 1,2,... are the times at which changes occur in a Poisson pro-

cess with parameter X. Individual nodes therefore wake up at random times and

decide whether of not to change their state. The Tik and T! for i . j are independent

random variables for all k, 1. The time evolution of the state of the system of nodes is

based on asynchronous parallel processing.

If Xi (Tik+) and C (Tik+) denote the state of the ith node and the confirmation function,

respectively, immediately after the i-th node has evaluated its field £ Cii Xi (Tb) for the
#i.

kth time, then

(3.10) Xi (Tik+) - Xi (Ti) - 6 C(Tik+) - C(Tf) -6(E CijXj (T') - yi)
i.1

for = -1,0,+1.

In view of our definition of degree of confirmation and with respect to the envisioned

task of the network yi = 0 for all i should be chosen. It is clear from (3.9) and (3.10)

that the above scheme for state changes causes C(t) to monotonically increase in time
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and the evolution of the network is towards a (local) maximum of the confirmation

function. The system is started up with random states except for the nodes whose

states are part of the input information.

Interconnected systems of 0-1 nodes (sometimes referred to as neural networks) of

similar structure have been employed by Hopffield (1982, 1984) for the task of solving

large scale optimization problems with constraints. Among other things his findings

were:

(a) If Cij = Cji for i . j then the system has stable limit points.

(b) Stable limit points persist when Cij . Cji but additional noise is introduced into

the system.

(c) Convergence is rapid. After only a few multiples of the stochastic mean pro-

cessing time the system settles into limiting behaviors, the most common of

these being a stable state.

(d) When (apart from the prescribed input states of the network) the dynamics were

started from randomly assigned configurations convergence usually was towards

a small number of stable limits only for repeated runs with different (random)

starting configurations. Hence a small number of stable states (the local maxima

of the confirmation function) usually collect the system flow from initial

configurations.
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We expect similar behavior for our network in the context of the specific task but have

not done simulation studies yet. This clearly needs to be done.
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