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ABSTRACT

We describe multivariate generalizations of the Median, Trimmed Mean, and
W-estimates. The estimates are based on a geometric construction involving "projec-
tion pursuit". They are distinguished from other generalizations by the fact that they
are both affine equivariant (coordinate-free) and have high breakdown point. Such a
combination is not easy to find. For example, we show that various estimators based
on rejecting apparent outliers and taking the mean of the remaining observations, have
breakdown points not larger 1/(d+l) in dimension d, whereas the methods we propose
obtain larger breakdown points in high dimensions. As an example, our version of the
median has a breakdown point of at least l/(d+l) in dimension d and the breakdown
point can be as high as 1/3 under symmetry.

A sequel discusses asymptotic properties of these estimators, such as consistency
and limiting distribution.
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1. Introduction

In 1974, Tukey (1974a) (1974b) introduced the notion of the depth of a point in a multivariate

dataset as follows. The depth of a value x in a 1-dimensional dataset X = (X1,. ,X.,) is the

minimum of the number of data points on the left and on the right of x:

depth&x X ) = min (# [i: Xi s x ), # {i: Xi 2x) )
(see also Tukey (1977)). The d-dimensional depth of a point x E Rd in a d-dimensional dataset is the

least depth of x in any 1-dimensional projection or "view" of fte dataset. In detail, if we let u denote

a vector in Rd of unit norm, then the dataset (uTX,) is a one-dimensional projection of the dataset X,

and we define

depthd(x;X) = min g -1 depthl(uTx; (uTX,)) (1.1)
= mina -1 # (i:uTX. >UTX)

Tukey considered the use of contours of depth for indicating the shape of two-dimensional

datasets, and suggested that depth might allow one to define a reasonable multivariate analog of order

statistic. Of course, in dimension one, the sample minimum and maximum are the data points of depth

1, the upper and lower quartiles of depth -n/4, and the median, of depth -n /2.

While Tukey's proposal does not seem to be widely known, it raises a number of interesting pos-

sibilities. First, it gives a way of defining the median in a multivariate dataset. Since in d = 1, the

median is a "deepest" x-value, a deepest x-value in higher dimensions can be thought of as a multidi-

mensional median. Second, the contour of depth = n/4 (say) is a convex region whose shape indicates

the scale and correlation of the data in a manner analogous to the way a standard probability content

ellipse for a Nonnal distribution indicates its scale and correlation. Third, one can define trimmed

means, averaging those points of depth a n/10, say.

The resulting notions of median, covariance estimate, and trimmed mean have a pair of properties

pointed out by Donoho (1982). The first is that they are affine equivariant - i.e. they commute with

translations and linear transformations of the data. The second is that these estimators are robust in

high dimensions. Indeed, the depth-trimmed mean and the deepest point can have high breakdown

points -- as high as 1/3 -- in high dimensions.
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This combination of properties (equivariance and robustness) is interesting because many other

ways of defining location estimators lack one or both of these properties. Maronna (1976) and Huber

(1976) found that affine-equivariant M-estimates of location I scatter have breakdown points bounded

by lid in dimension d. This means that in high dimensions, such "robust" estimators can be upset by

a relatively small fEraction of outliers, strategically placed.

Thus the notion of depth leads to estimators which are affine equivariant and have high break-

down point. By considering why depth is successful in this regard, it becomes apparent that the idea of

looking at all 1-dimensional views of a datset -- projection pursuit -- can be used in other ways as

well.

In dimension 1, a measure of the outlyingness of a value x with respect to a dataset X is given by the

robust measure

rl(x;X) = Jr -Med(X)VMAD(X) (1.2)

where Med denotes median and MAD denotes median absolute deviation. As an analog in dimension

d, one could use

rd(x,X)=maxIl,j.. rl(uTx; (uTX,)). (1.3)

This is a measure of how outlying x is in the worst 1-dimensional projection or "view" of the dataset.

The measure rd can be used to develop a robust estimator generalizing what Mosteller and Tukey

(1977) call a W-estimator. Their definition is for dimension 1, and such an estimate takes the form

TW(X) = wIX,i/lZ:wi (1.4)
where the weights wi = w (r I(X,; X)) are generated by a weight function w (r) which downweights out-

lying observations. The obvious generalization to d > 1, simply replacing r1 by rd, works, and defines

an affine equivariant estimator of multivariate location. Under very mild conditions on the dataset X,

Tw has a breakdown point close to 1/2, even in high dimensions; this is the best one can hope for in an

equivariant estimator, and it means that quite heavy contamination is necessary in order to upset Tw

completely. This result is due to Stahel (1981) and independently, to Donoho (1982).

This paper is a shortened and somewhat improved version of Donoho (1982). It covers the results

just mentioned. A companion paper discusses the asymptotic properties of these estimates -- con-
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sistency, limiting distribution -- as well as the robustness against infinitesimal perturbations. It will

emerge for example, that our generalization of the median has very similar properties to the 1-

dimensional median in tenns of equivariance, breakdown point, conditions for consistency and root-n

consistency, and influence function. Whereas this paper is elementary in outlook and methods --

appropriate to the results we discuss -- the sequel uses a more demanding vocabulary and technique.

Contents of Paper

Section 2 covers properties of the depth and of outlyingness r. Section 3 covers the breakdown

properties of the various estimators. Section 4 shows how other methods of constructing robust estima-

tors do not provide the same breakdown properties. Section 5 discusses related results on breakdown

properties; the need for a computational breakthrough in order to make our estimates practical; and

some applications of the technology proposed here to other problems in multivariate analysis.

All proofs are contained in section 6. The so-called halfspace distance, from the theory of empiri-

cal processes, plays a key role in some of our proofs.
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2. Depth and Outlyingness.

In this section, we mention some of the basic properties of depth and outlyingness.

Lemma 2.1.

depth is affine invariant:

depth(Ax +b; (AXi +b)) = depth(x,X)

for every b and every nonsingular linear transformation A.

In other words, depth is independent of the coordinate system chosen.

Let Dk be the set of all x e Rd with depth(x;X)2k. We call Dk the contour of depth k,

although a stricter usage might reserve this phrase for the boundary of Dk. By the second line of equa-

tion (1.1), we have, equivalently, that Dk is the intersection of all the ddimensional halfspaces contain-

ing n+1-k points of the dataset X.

Lemma 2.2.

The depth contoursform a sequence of nested convex sets: Each Dk is convex, and Dk+1 c Dk.

How many contours are there? That is, what is the maximum depth for a given dataset X? In d=l, of

course, the median is about n/2 deep. In d>1, the maximum depth can be smaller than n/2; this

depends on the shape of the dataset. We introduce some notation. Let

k (X) =max.,,depth (xKX)
and

k+(X) = maxidepth (Xi X)

these are the maximum depth at any x eRd and at any Xi EX, respectively. We say that a dataset is in

general position if no more than d points lie in any d-l-dimensional affine subspace. In particular, a

dataset in general position has no ties, no more than two points on any line, no more than 3 in any

plane, etc. Let ral denote the nearest integer > a, and let LaJ denote the nearest integer < a.

Proposition 2.3.

IfX is in general position, the maximum depth k (X) lies between [d --d 1 and [- |
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The proof of the lower bound is the most difficult proof in this paper. We don't klow of any case

where it is attained. We conjecture that the sharp bound is [n+] This larger bound is attained if

the dataset is a strategically nested set of d-simplices. See the discussion and figure in section 4.1

below. About k+(X) one can in general say only that 1 k+(X) Sk (X), both possibilities occurring.

If the dataset is nearly symmetric the maximum depth will be much larger than n/(d+l); in fact

approximately n/2. We say that a probability distribution P is centrosymnmetric about xo if

P (xo+S)=P (xo-S) for all measurable sets S.

Proposition 2.4.

Let X() X1,= * ,X,. } be a sample from an absolutely continuous, centrosymmetric probability

distribution. Then n-1 k (X('>) converges in probability and almost surely to 1/2 with increasing

n. If, in addition, P has a positive density at xo, then n-1 k+(X(")) converges in probability and

almost surely to 1/2.

In short, "if X is nearly symmetric then the maximum depth is nearly 1/2". Actually, this princi-

ple is general and does not depend on probabilistic or asymptotic machinery. For example, using the

language of section 6.1, we can say that if the data have an empirical distribution lying within e dis-

tance of some centrosymmetric distribution according to the "halfspace" metric, then the maximum

depth k*(X) is at least n (1/2-e). This shows that the distance from symmetry explicitly controls

k (X). It shows more. Using known facts about asymptotic properties of halfspace distance, one can

easily show that

k * (X = n /2 - Op (n12)
when X(') is a random sample from an absolutely continuous, centrosymmetric distribution. However,

we defer discussion of such facts to the sequel.

So there can be as many as n/2 depth contours if the dataset is nearly symmetric, but far fewer

for highly asymmetric datasets.

What shape do depth contours have? This depends on the data. For example, if the data arise as

a random sample from an ellipsoidal distribution, the contours are good estimates of the ellipsoid's
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shape.

Lemma 2.5.

Let X()=(X1,..* ,X,) be a random sample from an elliptically symmetric distribution. The

ln a i-depth contour ofX () converges, as n )oc, almost surely and in probability, to an ellipsoid

of the same shape as that of the parent distribution, and a scale which depends on a.

("Convergence of contours" here refers to convergence of sets in Hausdorff distance.) For example, if

the sample comes from the standard Gaussian distrubtion bd on Rd, the limiting shape of the LnaJ

contour will be a sphere of radius Ra= b1(I-a), where 4-1 denotes the inverse of the 1-dimensional

Gaussian distribution function. Thus, the contours of depth can play much the same role as the covari-

ance ellipsoid in indicating the shape and orientation of data arising from ellipsoidal distributions.

Depth contours can be infonnative even when ellipsoidal symmetry fails to hold. For example,

suppose that the probability distribution P is centrosymmetric about xo. Then, given a sequence of ran-

dom samples from P, the Ln aj-depth contours converge to certain convex sets which are symmetric

about xo. Detailed information about the limiting behavior of depth contours is provided by the sequel

to this paper.

In short, the contours of depth are convex and nested; they are coordinate-free; they track the

shape of the dataset in a quite acceptable fashion for datasets with ellipsoidal symmetry; and the max-

imum depth behaves as in the 1-dimensional case for datasets with centrosymmety.

For a picture of depths, see figure 2.1. This shows the pattern of depths for a dataset consisting

of 18 observations from a Normal distribution with one covariance and 2 outlying observations from a

Normal distribution with another covariance. The figure shows a sequence of nested convex sets, giv-

ing the contours of depth 1,2,... up to depth 8. There are no values of depth 10 (= n/2) because of the

slight asymmetry in the sample.

Figure 2.1 about here
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The interest of depths from the point of view of robustness is clear from figure 2.2. That figure

presents, for the same dataset, the standard covariance estimate computed from the full dataset and the

estimate computed from the 18 "good" observations. Comparing figures 2.1 and 2.2, it is clear that

the inner contours of depth reflect the covariance of the "good" data much bettea than does the covari-

ance of the full dataet. A fact underlying some results of section 3 is that, by adding k "bad" data

points to a dataset, one can corrupt at most the k-outermost depth contours; the ones inside must still

reflect the shape of the "good" data. Thus statistics based only on data of depth > k turn out to be

robust against contamination by k or fewer outliers.

Figure 2.2 about here

Outlyingness

The results just stated for depths have analogs for the outlyingness rd:

(1) Outlyingess is affine invariant:

rd(Ax+b;fAXi+b)) = rd(x,X)
for every b and every nonsingular A.

(2) The outlyingness "contours" O, = (x: rd (x ;X) < r) are convex and nested: °r+l C ,O, h > 0.

(3) Under random sanpling from a centrosymmetric distribution, the minimum outlyingness is close

to zero, with high probability, for large n.

(4) Under random sampling from an ellipsoidal distribution P, the outlyingness contours converge

to ellipsoids with the same shape as the ellipsoid of P.

Figure 2.3 illustrates the outlyingness contours for 'the dataset used in the earlier figures. They

are similar in shape to the covariance ellipse of the "good" data; the two outliers both have large out-

lyingnesses.
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Figure 23 about here
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3. Breakdown properties of T*, Ta, and T,

Using the notions of depth and outlyingness, it is possible to define d-dimensional analogs of 1-

dimensional location estimates. For the analog of the median, we have the deepest point, T*, defined

by

T*(X) = arg max. depth(x; X). (3.1)

(When the depth does not have a unique maximum, any sensible rule for selecting among the

maximum-depth values may be used without affecting the results given below; we propose "averaging"

T (X) = Ave (x: depth (x;X) = max,depth (x;X)).)

For the analog of the a-trimmed mean there is the a-depth-trimmed mean, Ta, the average of all

points which are at least n a deep in the sample.

Ta(X) = Ave(Xi eX: depth(Xi ;X) > na). (3.2)

The generalized W-estimate was defined by (1.4).

These estimators have decent asymptotic properties. For example, they are consistent estimators

of the center of symmetry of any centrosymmetric distribution. And they generally have n-1I2 rates of

convergence to their limiting values. These facts are discussed in the sequel to this paper.

It is easy to see that these estimators satisfy the affine equivariance condition

T((AX5+b)) = AT(X)+b
for every b and every nonsingular linear tansformation A. Put otherwise, this means that they select

the same point of space independent of the coordinate system put on the space.

Donoho (1982) found these three estimates to have good breakdown properties. The breakdown point

is, intuitively, the smallest amount of contamination necessary to upset an estimator entirely.

Our formal definition of the breakdown point is as follows (Donoho, 1982). Let X(^) denote a given

dataset of size n, at which the breakdown point is to be evaluated. Let T be the estimator of interest.

Consider adjoining to X(^) another dataset y(m) of size m. If, by strategic choice of y(m), we can make

T(X(n)uY(m))-T(X(R)) arbitrarily large, we say that the estimator breaks down under contamination

fraction m/(n+m). The breakdown point e*(TX,) is the smallest contamination fraction under which
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the estimator breaks down:

£* min( m :sup(m IT(XuY(ff-T(X)I=con+m

For example, the breakdown point of the mean Ave(X) is lln, while that of the 1-dimensional

median Med (X) is 1/2. In colloquial terns, it takes only one (sufficiently) bad observation to corrupt

an average, whereas it takes about 50% bad observations to corrupt the median. We note (Donoho,

1982) that for translation equivariant estimators, e . 1/2, so the median has the best achievable break-

down point among location estimates. A fuller discussion of the breakdown concept is available in

Donoho and Huber (1982).

Adapting results in Donoho (1982) yields a number of facts about the breakdown point of our estimates.

It tuns out to be most natural to begin by studying the estimator T(k)(X) = Ave (Xi:depth (XA;X) k).

For this estinator, the depth-trmming does not change with sample size.

Lemma 3.1. If k+(X) ok, then T(k) is well-defined, its breakdown point is well-defined, and

e (T(k),X)- n+k

The lemma shows that k+ controls what robustness is possible using T(k). Now, as

TOI(X()) = T( 6RJ)(X(^), we can use this to get a result for T,. The key idea is that, by Proposition 2.4,

k = n /2 under centrosymmetry.

Proposition 3.2. Let X() = (X1, ,X, ) be a sample of size n from an absolutely continuous, cen-

trosymmetric distribution on Rd, with d >2. Let a< 1/3. With probability 1, for all n large enough,

Ta is well-defined, and the breakdown point of Ta(X(")) is well-defined. For this breakdown point we

have

e (Ta,X(^>) a a

as n -+oo.

The limitation cx< 1/3 is real. In fact, no amount of depth timming can give a breakdown point bigger

than 1/3.

Proposition 3.3. Let X(^) = (X1, .- - ,XA ) be a sample of size n from a centrosymmetric distribution
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on Rd, where d >2. The breakdown point of T*(X^)) converges almost surely to 1/3 as n -+ o.

What happens if P is not centrosymmetric? Suppose that k In -,* f3 1/2. Then the argument for

Proposition 3.2 will show that for lauge n, T. is well-defined and has a well-defined breakdown point

for a < fJ3(1+); and that the limiting breakdown point is a. As for T* the following lower bound is

always available -- i.e. without using probability or asymptotics.

Proposition 3A. Let X be in general position.

I... rn-d(d+1)/21
e$(T$,X) 2 +1 n -d/2

This is near sharp, so that without additional hypotheses on X, we can only conclude that the break-

down point of T* is roughly 1/(d+1) or better.

The outlyingness-weighted mean Tw has better breakdown properties, which do not depend on

any near symmetry ofX or on any probabilistic arguments.

Proposition 3.5. Let X(^ (X1,** ,X, ) be a collection of points in general position. Suppose that

r w(r) is bounded and positive. Then the breakdown point of T, (X(">) is

n -2d +1
2n - 2d +1

This may well be the best possible result. It is relatively easy to show that no affine equivariant esti-

mator can exceed a breakdown point of

n-d +l
2n - d +1

4. Methods which do not attain high breakdown point

The significance of these results comes from the fact, indicated earlier, that it is not easy to find

estimators with a high breakdown point in high dimensions. The Maronna/Huber results establish this

fact for M -estimators. Donoho (1982) gives several other examples of affine-equivariant estimators that

seem, at first glance, "robust" but which are do not have high breakdown points.

[A] Iterative ellipsoidal trimming (Gnanadesikan and Kettenring, 1972), followed by mean.

[B] Sequential deletion of apparent outliers (Dempster and Gasko, 1981), followed by mean.
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[C] Convex Hull peeling (Bebbington, 1978) followed by mean.

[DI Ellipsoidal peeling (Titterington, 1978) followed by mean.

It turns out in each case (but for different reasons) that these procedures never have a breakdown point

exceeding l/(d + 1). In this tsection we discuss why this happens in cases [B] and [C].

4.1. Convex Hull Peeling.

Convex peeling is an intuitive and pretty idea. One takes the points lying on the boundary of a

sample's convex hull, discards them, takes the boundary points of the remaining sample, peels those

away, and so on, until one decides that any outliers must have been removed; at which point the mean

of the remaining observations is taken as one's estimate of location.

Since the set of boundary points of X is affine invariant (affine transformations preserve member-

ship in the boundary of the convex hull), so is the peeling procedure itself. If the rule for terninating

the peeling iteration is affine invariant, the resulting peeled mean is affine equivariant. This procedure

has close links to depth trimming, as Donoho (1982) explains in detail, and many people who hear

depth trimming described mistake it for convex peeling. Actually, the procedure has very different

breakdown properties.

Proposition 4.1. IfX is in general position, the breakdown point of any peeled mean is no better than

< I[n+d+l]
d+l1 n +2

The proof is very simple; we sketch it here. Note that each stage of peeling removes at least d+l

points from the dataset -- because a set of data points in general position has at least d+l extreme

points. On the other hand, it is possible to arrange the contamination Y in such a fashion that the

points removed at each stage of peeling contain only one point from Y -- see Figure 4.1.

Figure 4.1 about here

In such a case, the peeling procedure removes at least d "good" data for every "bad" data point it
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succeeds in removing. Therefore if the fraction of "bad" points slightly exceeds 1/(d+l), the set of

observations remaining after peeling must contain bad points. On the other hand, as the picture shows,

these bad points can be arbitrarily far from the X -data without affecting the property that d good points

are removed for every bad point. This means that the average of the points remaining after peeling can

be arbitarily far from the average of the X's -- i.e. breakdown.

Actually, this bound may be somewhat more favorable than what actally occurs in practice. If

X represents a sample of size n from the Gaussian, Donoho (1982) reports that the breakdown point

appears to tend to zero as n increases. Intuitively, this is because peeling removes many more than the

minimum d+1 observations at each stage; again, with strategically chosen contamination, only one of

these need be a contaminating point; and so peeling has to remove many more than d good points for

each bad point successfully removed.

We remark that a result similar to Proposition 4.1 also holds for ellipsoidal peeling, for similar

reasons.

One connection between depth trimming and peeling seems worth pointing out. Let peel(x;X)

denote the last stage in the peeling of X at which x is in the convex hull of the peeled sample. Thus if

x is a boundary point of the convex hull, peel (xX)= 1; if x is a bounding point of the convex hull of

what remains after one peeling step, the peel (x ;X)= 2; etc. In analogy with the deepest point, we may

define the "maximally-peeled mean"

Tp(X) = Ave(Xi:peel(XiX)=maxipeel(X;X)). (4.1)

Refening to (Donoho, 1982), one can see that we must have

c* (Tp X) < e (To X), (4.2)
so that the breakdown point of depth trimming is always larger than that of peeling. This can be

strengthened to

d 1 d~~~~~~~~2
£(Tp,X)-O(-) < -1 . E (T.,X)+O(-). (4.3)

nt d+l n

Thus, except for remainder terms, the best breakdown point of peeling is no better than the worst

breakdown point of depth triminng.
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For an example of an X giving approximate equality in (4.3), see Figure 4.2. This figure portrays

a dataset of points at the vertices of a collection of nested simplices. In this case

max, peel (x;X) = 4 = max, depth (xX).

Figure 4.2 about here

4.2. Data Cleaning

Another method for robustifying the mean in high dimensions is based on sequential deletion of

oudiers. Using an affine-invariant discrepancy such as the Mahalanobis distance

D2(Xi ;X) = (Xi -Ave (X))TCov1(X XiX-Ave (X)), (4.4)

one identifies the observation which is most discrepant relative to the dataset X and removes it Then

one identifies the next most discrepant observation, using an average and covariance estimated from the

data remaining after the first point was deleted, and so on. At each stage, one identifies the most

discrepant data point relative to the remaining data. At some point, one decides that all the outliers

have been cleaned out of the data and takes the average of the remaining points.

Note that since D2 is affine invariant, the resulting "cleaned mean" is affine equivariant, pro-

vided the mle for terminating the cleaning is affine invariant. However, the procedure again has low

breakdown point.

Proposition 4.2. If X is in general position, the breakdown point of any cleaned mean is not larger

than 1/(d+l).

The proof actually shows that with this amount of contamination, one can arrange the contaminating

Yj's so that every good point is cleaned out of the sample before any bad point is -- even though the Yj

be arbitrarily outlying in some absolute (coordinate dependent) sense. Thus breakdown occurs in the

worst possible way.

Our infonnal explanation for this goes as follows. In dimension d, "most" good data points will

have D2 d. If a tight cluster of at least nid outliers is placed far away from the good data, the D2
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for points in the cluster, one can check, is less than d - because of the influence of this cluster on the

Ave (X) and Cov(X) used in (4.4). Thus, the good points appear more discrepant than the bad ones.

We remark that the situation does not markedly improve if, instead of the estimates Cov(X) and

Ave (X) used in (4A4), we employ "leave-one-out" estimates. That is, let Ave(X(_)) and Cov(X(^)

denote estimates of mean and covaniance formed without suing the i -th data point. Then, if these are

used in place of Ave (X) and Cov(X) in (4.4), a breakdown bound similar to that of Proposition 4.2 still

applies.

Remark

Ideas like peeling and cleaning, while they do not give high breakdown, may not give particularly

good estimators in any of the traditional senses, either. One simply doesn't know -- it is difficult to

analyze such sequential-deletion methods. In contrast, the high-breakdown methods intoduced here can

be expressed as functionals of the empirical distribution, and so it is possible to analyze their asymp-

totic properties in detail, as the sequel to this paper shows.

5. Discussion

5.1. Combining high breakdown with affine equivariance

If one is willing to relax the affine equivariance condition (3.3) to, say, rigid-motion equivariance,

or simply location equivariance, it does not take very much sophistication for an estimator to have a

high breakdown point. For example, the simple coordinatewise median is location equivariant and has

breakdown point 1/2 in any dimension. The difficulty comes in being both coordinate-free and robust.

When one is willing to adopt a specific coordinate system it is much easier to identify outliers than if

one does not commit to such a specific choice.

In another direction, Tyler (1985) has shown that if one constrains the allowed contamination so

that no two contaminating points can be at close angular distance, then M-estimates can not be broken

down easily. But this is again a form of coordinate dependence, since the constraint on the contamina-

tion makes reference to a specific choice of coordinates.
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For a general discussion of the relation between affine equivariance and robustess, consult

Donoho, Rousseuw, and Stahel (Forthcoming).

5.2. Other methods of attaining high breakdown

Donoho (1982) showed it was possible to attain high breakdown via suitably-chosen minimum-

distance esimates based on the so-called halfspace distance. Donoho and Liu (1986) have shown that

this is a general phenomenon: in situations of invariance, minimum distance estimators have the best

attainable breakdown point

5.3. On the need for projection pursuit

The examples in this paper, and the minimum-distance estimates just referenced, all depend on

projection pursuit in some way. Is it necessary to use projection pursuit to get high breakdown?

Donoho et al. (1985) point out that it is not, but that in some sense the information needed to avoid

breakdown is contained in the projections, and so projection pursuit very naturally is related to the

breakdown problem.

5.4. Regression

Phenomena similar to those occuring in the location problem happen also in regression. Accord-

ing to Maronna and Yohai (1978), the breakdown point of regression M -estimators is never better than

ii4d. Rousseuw (1984) exhbited an estimator which could do much better -- which in fact had a

breakdown point approaching 1/2. He called this the least median-of-squares estimator.

Several of our remarks about location apply also to regression. For example, the least median of

squares estimator has a projection pursuit character. The arguments of Donoho and Liu (1986) can be

used to show that in regression as well as in location, a suitable minimum distance estimator will have

the best possible breakdown point. This minimum distance estimator also has a projection-pursuit char-

acter.
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5.5. Covariance Estimation

Donoho (1982) showed that the obvious analogs of T. and T, for covariance estimation:

Ca(X) = Ave (XiXiT:depth (Xi ;X)2n a)

Iw (Xi;X)

are affine equivariant and could have high breakdown points if X and w satisfied certain conditions.

Compare also Stahel (1981).

5.6. Discriminant Analysis

There is a curious but perhaps illuminating link between the depth contours and linear discrim-

inant analysis. Suppose we have two datasets X and Y (of sizes n and m) and want to form a linear

rule which best discriminates between them. Suppose this rule should misclassify no more han n a of

the X's as Y's; we want, subject to this constraint, to misclassify as few Y's as possible. Let 1 denote

the best achievable misclassification rate for Y's subject to the constraint on misclassifying X's.

A solution to this problem is a linear rule which defines a hyperplane having no more than na

X's on one side, and mf3 Y's on the other. This hyperplane can be obtained from the depth contours of

X and Y. It is a hyperplane tangent to the n a depth contour of the X -dataset and also to the mJ depth

contour of the Y-dataset.

Figure 5.1 about here

It may help to see an illustration with real data. Figure 5.2 presents depth contours for data on Chemi-

cal and Overt diabetics obtained from Jerry Halpern and the late Rupert Miller of Stanford University

(Reaven and Miller, 1979). Contours are drawn for three different groups: overt diabetics ("o"), chemi-

cal diabetics ("c") and normal patients ("n"). Contours are drawn at depth 4,6,8,10, etc. Because in

no case do the contours of depth 4 for one group overlap with the contours of depth 4 for another

group, we can see that each cloud can be separated from either of the others by a linear rule making at

most 4 misclassifications.
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Figure 52 about here

The fact that depth contours are involved in optimal linear discrimination between two groups

makes it at least plausible that they are good at separating outliers from good data. This motivates their

usefulness in robust estimation.

5.7. Computational difficulty

Some sort of computational breakthrough is necessary to make the estimators, as defined here,

really practical. Adele Cutler has prepared, for d = 2, a program which computes the contour of depth

L[aJ in O(n2logn) time. The algorithm is based on the observation that for calculating depths it is

sufficient to restrict the search over projections in (1.1) and (1.3) to a finite number of projections:

namely, to those projections which map d points of the dataset into the same value. In general, unfor-

tunately, the algorithm runs in 0 (nd+llogn) time in dimension d, so this approach is impractical for

dimensions greater than 4 or 5.

Souvane and Steele (1986) have developed a number of promising techniques for speeding up -his

sort of computation, so there is perhaps prospect of doing better in the future.

6. Proofs

6.1. Notation and Background

Halfspaces, Empirical Distributions, and Depths. Below, H,,, is the halfspace

(y: uT y uTx), with interior intH. = (y: uTy < uTx) and boundary

bdryH,, = (y: uTy = UTx). Given data Xi, i = 1, . . ., n, P,, is the empirical distribution, defined

by P,, (S) = n1 # (i: Xi e S ) for every measurable set S. The halfspace metric PH is used to compare

empirical and theoretical distributions:

IH (P,'P) = sup I P,, (H., ) -P (H,.,)1; (6.1)

this is the largest discrepancy between P. and P on any halfspace. We remark that P-H has the
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Glivenko-Cantelli property: if (XJ) are iid P, then

pH (P.,P) - 0 as n -+ o; (6.2)

see (Steele, 1977) or a book on empirical processes, such as Pollard (1984). See also the sequel, where

the halfspace metric is employed thoughout.

In order to discuss the limiting behavior of depth in large samples, we introduce the projected

probability

[l(x) = inf P(H,.,); (6.3)
U

this is the minimal probability attached to any halfspace containing x. We note that for the empirical

version of n,

f,,(x) = inf Pf(H,,x), (6.4)

we have the following connection to depth:

n1 depth(x X( ) = H,(x). (6.5)

It is therefore of interest that we have the inequality

supJI I,,((x)-HI(x) l H,,(P,,P) (6.6)

which implies, for example, that

n1'depth (xX(^)) -as. [1(x); (6.7)

thus I represents the large-sample limit of n-l depth.

Three lemmas about the behaviour of rI are useful below; we state them here and prove them in

section 6.2.

Lemma 6.1. rI is an upper semicontinuous function of x. If P is absolutely continuous, rI is a con-

tinuous function of x.

Lemma 6.2. If P is centrosymmetric about xo, r[(xo) > 1/2. If, in addition, P is absolutely continu-

ous, I[(xo) = 1/2.

Lemma 6.3. IfP is absolutely continuous maxfI(x) > 1/(d+l).
z

Properly applied, these lemmas imply that the maximum depth is about n/2 under centrosym-

metry, and is always about nl(d+l) or larger.
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Sets and Datasets. A dataset X is, for us, an object which does not quite fit in with traditional

mathematical concepts. We like to think of it as a bag containing slips of paper, each slip with one

data point X, written on it. We can count the number of elements: #X is just the number of slips of

paper in the bag. We can merge two datasets X and Y: XuY is gotten by pouring all the slips from

both bags together into one big bag. We index the slips of paper in the bag in order to. keep tak of

them, so that X1 is the first slip of paper, X2 the second, and so on; but the indexing is arbitrary.

A dataset is sometiing like a set. Thus, there is little risk of confusion if we say things like

"outside the convex hull of X" or "if y 4X". For the first statement we mean: "outside the convex

hull of the set in Rd consisting of every point named on some slip of paper in the bag". For the

second statement we mean: "if the value y is not named on any slip of paper in the bag".

On the other hand, a dataset is not a set. Sets have elements without multiplicity. In a dataset, a

given value may be written down on several slips of paper, and so occur with multiplicity. Thus we

can say "let the dataset Y consist of m repetitions of Y1".

Despite this distinction, we use the traditional set notation: for datasets we write X = (X, }, and

for mergers we write X u Y. We have not been able to find an acceptable substitute, and although we

are abusing notation, we believe that in what follows there is little risk of confusion. Note that the only

letters we use for datasets are X,Y, and W. As an illustration, the reader may wish to prove the follow-

ing fact about mergers:

depth (x;X) < depth (xX u Y). (6.8)

It is used several times below.

6.2. Proofs for Section 2.

Proof of Lemma 2.1. Membership in a halfspace is coordinate-free: Xi e H,,,, iff

AXi + b cAHf,,;, + b for every b and every nonsingular A. Consequently,

#(i:X: HXi ) = #i:AXi +bEAHux +b)
for every u and x, and so
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minu .,l# (i:Xi e H,, = minj,u, .#(i: AXi +b eAH,, +b}.

By the second line of (1.1), this gives

depth (x ;X) =depth (A x + b;(AXi + b).

Proof of Lemma 2.2. A depth contour is the intersection of half spaces and so is convex. Recall the

definition of the depth contour Dk as the intersection of all halfspaces containing at least n+1-k points.

Now Dk+1 is the intersection of all halfspaces containing at least n-k points. Every halfspace contain-

ing n+l-k contains n-k, so Dk is the intersection of a subfamily of the family defining Dk+l. As

points in Dk satisfy a subset of the conditions which points in Dk+1 must satisfy, Dk+1 C Dk.

Proof of Lemma 2.3. For X in general position, there exists a projection direction v for which there

are nb ties in the projected dataset (vTXJ). In this projection,

maxdepth1(t;(vTX,)) = rn/21.

But

depthd(x;X) = min1,, 1depth1(uTx ;(uT Xi))
s depth I(vTX; VT Xi))
s maxdepth1(t;(vTXi)) = rnI2 1.

So k* (X) s rn/2 1.

It remains to establish the lower bound.

Let P.,h be the empirical distribution convolved with an isotropic Gaussian measure of variance

h2, h small. Then P.,, is absolutely continuous. Let rI,,,, denote the projected probability defined

from P,, as in (6.3). It follows from Lemma 6.3 (proved below) that max.,,f,h (x) is at least 1/(d+l).

Now the same reasoning that leads to (6.6) gives

SUP n,(X )InWlX < AH(Pn,hPx)
and from this we have that

A saxx h,is i(x)-maxxn we(x)J < tH(PaxiPi)i (6g9)
At this point we note that if X(^) is in general position, then

lim 9H(Pns,Pm) = d/2n.
A-*O

(6.10)
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Indeed, the limit is just half the largest fraction of mass in any jump of any 1-dimensional distribution

F,,,(t)=P, (H,,, ). By general position, no such jump has more than d points.

Combining now (6.9) and (6.10) we have

maxx rI^(x) 2 1I(d+l)-d /2n.

So from (6.5),

k* (X(^>) 2 n/(d+1)-dl2.

Proof of Lemma 6.1. As Hu,xo= xO + HM,o, centrosymmetry of P about xo gives

P (Hu,) = P (xo + Hu,o) = P (xo- HM,o)= P (H.,d). As H,x u H_b:o RRdI we have

2P (Hu,,x) = P (Huxd )+P(H u,,), . 1, so that P (HJ,I,M ) a 1/2.

Let P be absolutely continuous; then P (bdry Hu,Xo) = 0 for every halfspace. Hence

P(Hu,, d +P(H s,d = 1, and so P (H.,x) = 1/2.

Proof of Lemma 6.2. Now

H (x) = infUP(H.,)=inff,M(x).
where fu(x)=P (Hu,). By an indicator function argument such as that in the next paragraph, fM is a

continuous function of x. H is thus the infimum of a collection of continuous functions; it is upper

semicontinuous.

We now show that 1 is lower semicontinuous. The two semicontinuities then imply the desired

result. Let xX -* xo and let u, be a sequence of directions satisfying P (H4,^,) s [ (x,) + -. As the

u. all lie on the unit sphere in Rd, they contain a cluster point. Extracting a subsequence if necessary,

we may assume that u, converges, to u, say. Now

P (Hu,) - P (HU,,) = fIHx x- IH, dP

where Is is the indicator function of the set S. The difference in indicator functions is dominated in

absolute value by the constant 1, and, as u,, -+ u, x,, - xo, the difference tends to zero almost every-

where [PI. By the dominated convergence theorem, it follows that P (H,,,d - P (H,,,X) -+ 0 as
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u,, - u, x,, - xo. We conclude that

liminfrIH(x,) = liminfP (HuM,Xz) = P (Hu, )

a HI-(x).

Thus IT is lower semicontinuous.

Proof of Lemma 63. Fix R::1. Let Ph denote the convolution of P with a Gaussian of width h.

Then it is easy to see that

3 = inf inf dP(H.,,d) > 0. (6.11)
u i:tia dt

Also, Pi (Hu,x) is uniformly continuous in u and x. Thus, for example, given e >0, we have 8>0 so

that lu-uol<8, and Ix I R,

IPh(Hu.x)-Ph(Hu0,z)I . e. (6.12)

It turns out to be sufficient to establish the result for Ph. Indeed, by an upper semicontinuity argu-

ment

supfl(x) > limsup sup Hl, (x)

where I,hA) = infMP (H,,, ). So if

sup HTh(X) > 1
x ~~d+1

for each h, the result for P follows. In the remainder of the proof we drop the h subscript, although

we depend on properties (6.11)-(6.12) for the proof we present.

We remark that by an argument like that for depth, the "contour" (x:fl(x).2t) is the intersec-

tion of all halfspaces containing at least 1-it of the probability of P. Hence n has convex contours.

As HI is continuous (Lemma 6.1) and has convex contours (which are easily seen to be bounded) there

is a maximizer of H. Let us suppose that 0 is a maximizer, i.e. that

H1(0) = Xi = supfl(x).

Claim. For every direction v, I v 1=1, which we can consider moving away from 0, there exists a

halfspace H,,o so that

P (H.,o) = 1 - (1(P)
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and

P (H.a,,). P (H,,o) for all a>O. (P2)

Proof. (P1) and (P2) are a consequence of the fact that 0 maximizes H. They assert that for every v

there is a u in the closed hemisphere with north pole v which attains sup. P (H,O). Suppose this is not

true; we will derive a contradiction.

If ttie claim is not true, there exists a hemisphere S, with north pole v, say, that contains no max-

imizers of P (HM,o). Consequently, by the reflection symmetry P (HM,o) = 1-P (H.,o), all minimizers

are contained in S. Moreover, by the reflection symmetry of the boundary of a hemisphere, no maxim-

izers and no minimizers of P (H,,o) are contained in the boundary of S. Finally, by continuity of

P (H.,o) all minimizers are actually contained strictly in the interior of the hemisphere, in a polar cap

Cc S, of opening less than 90 degrees, with north pole v. Continuity in u gives

inf P(H.,o) > inf P(H.,o) = x
(U:UTV..S) uC

and also

inf P(H,,o) > inf P(H.,O) = at.

Continuity of P (H,,,=) in u and x then gives that for small enough a> 0,

inf P (HaV) > inf P(Huav).
(u:uTv S0) (u:uTv 20)

so that

HT(av) = inf P(HMav) (6.13)
(u:uTv .0)

On the other hand, it is easy to see that for u in the hemisphere with north pole v, P (Hu,av) is a mono-

tone increasing function of a. In fact, we have by (6.11)

P (H,av)P (Hu,o) > f auTv

and so in particular

inf P (Hu,av) > n* + Oacos(y). (6.14)

where y is the opening of C (y< r/2).

On the other hand



- 26 -

inf P(H,,a,) > inf P(H",o) > (6.15)
ueS\C e SWC

By monotonicity and an earlier display. Combining (6.13)-(6.15), we conclude that

fl(av) > x = M1(O)
which contradicts the assumption that 0 is a deepest point This contradiction establishes the claim.

We may recast the claim as follows. There exists a collection Ho= (H,.,O) so that

P(H,,,O) = 1-it" for all i (P1)

supu,Tv > 0 for all v. (P2)

Here the index i runs through a possibly infinite, possibly uncountable set.

Our plan is now to find a subcollection of Ho having only d+l halfspaces, but with properties

(P1) and (P2). We begin by extracting a a subcollection HI of Ho still satisfying (P1)-(P2) but contain-

ing only finitely many halfspaces. We argue as follows. Let Si = (v: uTv >0, I v I=1) be the hemi-

sphere of directions with pole ui. Then (P2) says that (Si ) covers the sphere ( I v I = 1) in Rd. The'

sphere is compact, so the Heine-Borel theorem says that (Si) contains a finite subcover (S,:i eI),

where I is a finite set of indices. Let HI = (HI,,Io: i e I) be the corresponding collection of halfspaces.

As [Si: i e I) has the covering property, HI has property (P2). As H, inherits (P1) from Ho, we have

now a finite collection of halfspaces with properties (P1)-(P2).

We now claim there is a subcollection HJ of H, with no more than d+I halfspaces that satisfies

(Pl)-(P2). By Lemma 6.4 below, placing the condition (P2) on HI is equivalent to saying that 0 is con-

tained in the finite polyhedron

K, = Hull((u1,ieI)),
and that 0 is not an extreme point of that polyhedron.

By Caratheodory's theorem (Rockefellar, 1970, page 155), if 0 has this property, then 0 can be

expressed as a convex combination of d+1 or fewer of the extreme points ({u, : i e I ). Let J be the set

of indices of the u,'s used in this combination. Then we have

0= E ojj. (6.16)

with Oj >0, O,j= 1. Put now KJ = Hull ((uj: j eJ)). Then by (6.16) Oe K and 0 is not extreme in
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K,. It follows by another application of Lemma 6.4 below that

max uTv >0 for allv.
jEJ

Define now

H, = (H,o: j eJ}

This is a collection of halfspaces with properties (P1) and (P2), having cardinality

2 #J . d+l, (6.17)

the upper bound being funished by Caratheodory's Theorem, the lower bound by non-extremality of 0

in K,. We now note that property (P2) is equivalent to

u H-*o = Rd. (6.18)

Indeed, -x EH ..jo iff ujTx 20. Thus -x is in some Hjo iff maxujTx > 0.

Because Hj.o., is the complement of intHujo,' P (H o) = 1-P (intHuj,o). Invoking absolute con-

tinuity, P (bdry Hu,Mo)=0, and applying (P1), we conclude that P(Hj.o)=ic. By this, (6.17) and

(6.18) we have

1 = P(Rd) =P( H ,,j O)

. P(Hj,o)
= #J* < (d+l),c .

Thus i* 2 1/(d+1) as claimed.

Lemma 6.4 Let (ui ) be a finite collection of points in Rd none of which are zero. The following two

properties are equivalent.

max uiTv > 0 for all v. (A)

Hull ({u, )) contains 0, but 0 is not an extreme point. (B)

Proof. (B) implies (A). Suppose that 0 is in the hull of the ui. Then by definition of the convex hull

of a finite set,

0 = oiuj

where Oi > 0 and £ Oi = 1. Then
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max ui4v > £0iu v

= OTVo = 0.

(A) implies (B). Suppose (A) held, but 0 were not in the hull of the uj. Then by a separating

hyperplane argument, there would be some v with

uiTv > 0 for all i.

But then putting v'=-v we get

max u1Tv' < 0,

contaddicting (A). So 0 must lie in the hull of the u,. Also, 0 cannot be extreme; as the set (u.) is

finite, it is contains all extreme points of its hull. But by hypothesis, no ui is zero.

Proof of Proposition 2.4.

As P is centrosymmetric and absolutely continuous, Lemma 6.1 implies fl(xo)= 1/2.

Recalling (6.5)-(6.7) we have

n1 depth (x ;X()) rI, (xo) n*.11(x0) = 1/2.

Now P is absolutely continuous, so with probability 1, X(^) is in general position. Thus, by Lemma 2.3,

r 72 1 2 k (X(^)) > depth(xO;X(^)

Combining the last 2 displays we have

n1 k*(X)) -at. 2

Consider now k'(X ) Let Xi be the closest among X1, .. ., X to xo. By the positive density

of P at xo and the Borel-Cantelli lemma, (X, ),, converges to xo almost surely.

Now by (6.3) and (6.4)

n k+(X(A > n1 depth (Xi ;X( )) = IJ(X,) r(Xi) - .H (PO)
Because P is absolutely continuous, we may apply Lemma 6.2 to conclude that r[(Xi ) -oas. I1(xO).

Then by the Glivenko-Cantelli property (6.2) we have

liminfn'k+(X(A)) >av. liminfnl(Xi.) = 1I-(X.) =
X A-4- 2
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As k+ s k * we conclude n1I k+ -+ a* 2

Proof of Lemma 2.5.

The proof for the Gaussian case is presented in the sequel to this paper following Lemma 2.2

there. The proof for any other elliptically symmetric distribution is similar.

6.3. Proofs for Section 3.

Proof of Lemma 3.1.

As X contains points of depth k, Tk is well-defined. Now the breakdown point of Tk is well-

defined just in case Tk (X u Y) is well-defined for all Y. This will be the case if X u Y contains

points of depth k, for every choice Y, i.e. if k+(X u Y) z k+(X). This inequality follows from (6.8).

Now we show e 2 -k. For Tk to breakdown at X, the contamination Y = (Y,) must be such

that Tk (X u Y) lies outside any fixed bounded set -- for example, outside the convex hul of X. In

order to place Tk outside the convex hull of X, it must be possible to arrange the contamination Y so

that there will be a contaminating point, say YI, with depth (YI; X u Y) 2 k outside the convex hull

of X. By the separating hyperplane theorem there will then be a direction u separating all the Xi's

from Y1:

max, uTX, < UTY1.

But Y1 is of depth k in X u Y, so that there must be at least k members in the combined dataset XuY

whose projection on u lies to the right of Y1. As none of these can be in X (by the last display) they

must be in Y. Hence #Y ok, and the contamination fraction must be at least kl(n +k).

Finally, we show e 5 kk i.e., that k is a sufficient amount of contamination. Place Y, Yk

on the same site. For every u, uT Yl = UT Y2 *.. = uT yk therefore depth(Yi: X u Y) . k,

i = 1 * k. T'hus Tk (X u Y) is an average over a set containing all of Y. However, as we could

choose Y1 to have an arbitrarily large norm, Tk (X u Y) can be made arbitrarily large.

Proof of Proposition 3.2. For a < 1/3, pick f3 e (3cc/2,1/2). By Lemma 2.3 k+(X(t)/nIn 1/2.
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This implies that there is a positive random variable no (f) which is almost surely finite with

k'(X ^>ln > f3 for n > no(f).

Let Y consist of m contaminating points, m s n/2. Then for n > no(o)

k+(X u Y) > k+(X)>JOn. Now Ta(X u Y) is well-defined iff k+(X u Y) 2 La(n +m)J. But

n > La(n + m) J for m 5 n/2; so Ta(X u Y) is well-defined for n > n (0).

For n,m fixed, T,,(X u Y) = Tk (X u Y), where k = La(n + m) J. By proposition 3.1, Y can

be chosen so that T(k) breaks down if and only if the contamination amount m . k, i.e.

m a L a(n + m) J. (6.19)
For a < 1/3, m = n/2 is always a solution of this inequality; hence the restiction that Y have cardinal-

ity s nl/2, imposed earlier, does not prevent solving (6.19). The smallest value of m solving this ine-

quality is either

m = L i-ajn- or m = r -a nl.
It follows that for n > no (3), the breakdown point is well defined and

e*(T,X(A)) = m = a+O( 1).nt+m ft

Proof of Proposition 3.3.

First, we show that the limiting breakdown point is at least 1/3. Now, m contaminating points

are sufficient to cause breakdown only if they are sufficient to place T* (X u Y) outside the convex

hull of the points in X. But, by the separating hyperplane argument of Lemma 3.1, if T* (X u Y) is

outside the hull of X, the number of contaminating points must be at least the depth of T. (X u Y).

Hence, for m to cause breakdown we must have

m.depth(T*(XuY),XuY) = k (XuY)
> k (X),

the last inequality following from (6.8). As m a k*(X), e = mf(n + m) > k*(X)/(n + k*(X)).

Now k (X) (1 + o°, (1)) so k (X)/(n + k*(X)) -.s 1/3. Hence liminf e* .". 1/3.

Next, we show that the limiting breakdown point is at most 1/3. Let xo be the point of cen-

trosymetry of P; put ko = max N (HMZ,d and m = k° + 2d + 1. We will prove in a moment that
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£ S m (6.20)
n+m

Before doing this, we observe that m = n (1 + o,,. (1)). Indeed, N (H,d) = n P,, (H,,,,, and,
2

by absolute continuity and centrosymetry of P, P (HM,,z() = 1/2 for all u. Thus

k°/n s 1/2+suplP.(H..o)--P(Hu,xd,l
:s 1/2 + 11H (P.,P).

Hence

m s n/2(1+gH (P,,P)/2)+2d+1

and m 2 n/2(1-j11H(P,,P)/2)+2d+1
so m = n/2(1+o,,. (1))

by the Glivenko-Cantelli property (6.2) of gH. Consequendy, if (6.20) holds

2(1 + °a... (1))n

n + 2 (1 +Oas.(1))

and so limsupe*(T*,X()) s,. 1/3.

It remains to prove (6.20). Let y be an arbitrary point in Rtd and let Y(m) be a diataset consisting

of m exact repetitions of y. Now

depth(y,XuY) > m.

We claim that y is the deepest point for X u Y:

depth(x,XuY)<m x.y. (6.21)

As y is arbitrary, this will prove that T. (X u Y) = y has a solution for any y e Rd, and so T. breaks

down under contamination of size m.

To establish (6.21) we proceed as follows. Let N be the counting measure N (S) = # (i: Xi e S

and M be the equivalent for Y:

f m if y E S
M (5) = 1°0 else

Now

depth (x;X u Y) = inf (N (H,,,,)+M (H,,,, )),
U
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s inf (N (H.,,U): M (H.,,,) =O).

Now N(H,,,d) S ko for aU u, by definition of kO. Invoking Lemma 6.5, there exists a particular u with

N (intH,,x) s k0, and y 4 intH,,, Then, by Lemma 6.6, there exists a w with N (H,,x) s k° + 2d,

and y i Hw,: . As y d HW,X M (Hw ) =O, and so

inf(N (H.,,,): M (H..x) = O) sN (HWx,)
= k°+2d.

Combining the last two displays, together with m > k° + 2d, gives (6.21), and completes the proof of

Proposition 3.3.

Lemma 6.5. Let x be arbitrary, and let x0 be a point with N(H,xo).k0 for every u. There is a u so

that N(intH,,,) s ko, and intHM,x does not contain y.

Proof. Pick v so that vTx = vT xo Then Hw,x = H,,XO and

N (H,,,) = N (Hv,x T supN (Hw,zJ) s ko.
w

By the same argument N (H,.x) < ko. As int (HV,7X) and int (HV,,X) are disjoint, one of the two sets

does not intersect y. Let u be one of v or -v, choice being made so that int H,,, does not intersect y.

Lemma 6.6. Let X be in general position, N (intH,.,) s ko, y i intH,,x. Then there exists w so

N(Hwx)sk0+2d, ydHw,t.
Proof. Unless y e bdryH,x there is nothing to prove. Hence we assume uT(y-x)=O. We will show

that there is a w close to u so that Hwx has essentially the same properties as HM,x and does not con-

tain y.

We say that w agrees with u if (uTX,)(WTX,) . 0 for all i. If w agrees with u, every point in

X which is not on the boundary of H,x or on the boundary of Hw,7, has the same membership or non-

membership in Hw,, as it does in H.,,,. Thus,

N (Hwx AHux) < N (bdry Hu,,)+N (bdry Hwx)
where A denotes symmetric difference. As X is in general position, N( bdry H ,x) s d, so if w agrees

with u,

N (Hw,,) s N (H,,,) + N (H,,,, A Hw,,) < N (Hu,,) + 2d s k0 + 2d.
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The lemma is therefore proved if we can show there is a w agreeing with u for which y d H,S

Let

S = min (IuT (Xi -X): UT (X, -X) *0.

LetM = maxlXi -xl. AsX is a finite set, 8 > 0,M < oo. Pick a e (0,8/M). Put

wo = u + a(y -x)

and

wOw = I 1Iwol'
Now using uT (y - x) = 0, we have by construction wT (y - x) > 0; thus y d Hw-x On the other hand,

wT (X, -x)-uT (XY -X)l = I(WT _ UT)(X, X)

5 -lw -uIlXi - xl.
5 Iwo-uImaxiIXi-xl 5 aM 5 S

But I uT (Xi -x) I 2l if X, d bdryHMx. Thus

if IuUT (Xi -x) I . 0, sgnwT(Xi -x) = sgnuT (Xi -x)
It follows that w agrees with u, and y i Hwx.

Proof of Proposition 3.4. As in the last proposition, if m points are enough to break down T*,

n+m- d
m 2 k* (X u Y). By proposition 2.3, k* (X u Y) 2 m -. Combining these two inequalities withm.k (XUY.Bypropoition2.3k*(XUY). d 2

some simple algebra gives the result.

Proof of Proposition 3.5.

The proof given by Donoho (1982) has been published in (Huber, 1985).

6.4. Proofs for section 4

Proof of Proposition 4.2. We show that with the 1/(d + 1) fraction of contamination, breakdown

occurs in the worst possible way, namely, every contaminated point is judged less discrepant than any

of the original data.

First we prove two lemmas.
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Lemma 6.7 Let V, = (VI) be a nonempty dataset.

Max, D2(V: V) 2 Dim (span (V)) (6.22)

where Dim (span (V)) is the dinension of the smallest eyJine subspace containing all the points of V.

Proof.

D2 is affine invariant, so without loss of generality assume that Ave (V) = 0 and Cov (V) acts as

an identity on span (V) and 0 elsewhere. Then D2(V, ;V) = Vi'V and

Avei D2(V,;V) = Ave (Vi'V) = Ave (trace (Vi Vi'))

= trace (Ave (Vi Vi'))
= trace (Coy (V)).

By assumption trace (Cov (V)) = Dim (Span (V)), and so (6.21) follows from Max 2 Ave.

Lemma 6.8. Let W be a nonempty dataset and let Y consist of a number of points all at the same site,

Y1, say.

D2(Y1: W u Y) . #W
#y.

The inequality is strict if Range(Cov (W)) = Span (W u Y).

Proof. The basic updating formulas for Ave(W u Y) and Cov(W u Y) are

Ave (W u Y) = n Ave (W)+ m y
n+m n+m

Cov (W u Y) - Cov (W)+ 2mn2 (Y1 - Ave (W)) (Y1 - Ave (W)).
n+m (n+m)

WriteD2(Yl: W u Y)as

(u'(YI - Ave (W U y)))2
uES SUa Y) U' Cov (W u Y) u

Put e = - Ave (W) and use the updating formulas to change this to

sup., )2(ute )21 u'Cov (W)u + nm (u'e )2)n+m n+m

or

n m u' Cov (W)u
sup. -(-+

n+m n+m (u e)2
which is less, than n/m, strictly so if u'Cov(W)u > a > 0 for all u of norm one, i.e. if
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Range(Cov (W)) = Span (W u Y).

Proof of Prop 4.2. Place the contamination Y1, ... . Y. all at the same site, Y1, say. It will be shown

that if m 2 nId, Y1 may be chosen to be any point not in X and yet iterative deletion applied to

X u Y will produce

The first n deleted points come from X; (6.23)

The remaining points come from Y; (6.24)

so all the Xi's are judged more discrepant than any contaminating point Yj. Then, whatever rule we

use for terminating the iterative deletion, the resulting estimate will be an average of terms including

Yj's. As Y1 may be chosen to have an arbitrarily large norm, the estimator breaks down. Proposition

4.2 then follows from m 2 nid.

X(k) will denote the part of X remaining in X u Y after k deletions have been made. (6.23) and

(6.24) require that for 1 s k s n:

D2(yI ;X(k) 2Y<ma,D(X, ;X(k) u Y).
In fact, an even stronger result is true: for any nonempty subset W of X,

D2(Y1; W u Y) < maxi D2(W,;W u Y). (6.25)

If #W = n - k, then from m 2 n/d, using Lemma 6.8,

D2(Y1;W u Y) s d(-)
n

with strict inequality if W is in general position, i.e. if n - k > d + 1. If n - k s d, then

Dim(Span (W u Y)) = n - k. In either case,

D2(Y1; W u Y) < Dim (Span (W u Y)).

Applying Lemma 6.7 with V = W u Y,

D2(Y1;W u Y) < maxiD2(V,;V).
Evidently, the maximum on the RHS is not attained at any point in Y; it must be attained in W.

Hence, (6.25), and the proof is complete.
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List of Figures.

Figure 2.1 Depth contours of a data set containing 18 "good" observations and two outliers.

Figure 2.2 Two ellipses of concentration: the broken line for the whole data set and the solid
line for the 18 "good" points only.

Figure 2.3 Outlyingness of the 20 data points used in figures 2.1 and 2.2.

Figure 4.1 An example showing low breakdown of peeling. The contaminating points ('Y') are
placed far away from the cloud ('X') so that for each Y peeled away at least d X
points are removed as well.

Figure 4.2 A configuration of points ('"') with depth contours superimposed. This
configuration indicates that equality in (4.4) may be attained.

Figure 5.1 A schematic illustration of the relationship of depth contours to discriminant
analysis. The hyperplane tangent to the na contour ofX and to the mJ contour of Y
defines a linear decision rule making at most ncz+m1 misclsifications.

Figure 5.2 Depth contours of the Diabetes data. Contours of depth 4,6,8,10 are shown for
each of the groups: "normal", "overt", "chemical".
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