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0. Introduction

Bahadur (1966) has initiated the asymptotic representation theory of sample quantiles

via the empirical distribution function. In particular, he demonstrated that under cer-

tain fairly mild regularity conditions on the distribution F and the density f of the iid

sequence X (1), X (2) ,... the following is true with probability one:

XP.n = R + p - Fn(4p)

and

Rn = 0 (nC3/4 (log n)1/2 (log log n)114).
Here, for 0 < p < I, tp is the unique p-quantile of F, i.e. F (4 = p, Xpn is the p-th

sample quantile based on X (1), X (2), ... , X (n), and Fn is the empirical distribution

function based on the same sample.

Bahadur's theorem and proof give great insight into the relation between empirical

quantiles and the empirical distribution function. It has triggered a number of refined

studies in the iid case and subsequent extension to non-independent sequences:

Analysis by Eicker (1966) has revealed that the remainder R, is op(n3/4 g (n)) if and

only if g (n) -+ as n -+ oo, and Kiefer (1967) gave the following definite answer,

w.p.l limsup+ n - 2 (p(l-p))"4
n-+o (log log n)3/4 33/4

for either choice of sign.

Other references in the iid case include Duttweiler (1973) and Ghosh (1971), who

obtained a simpler proof of Bahadur's representation but for a weaker result.

There are some extensions to sequences of random variables with certain dependency
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structures, e.g. m-dependence, 0-mixingness, strong mixingness, compare Sen (1968,

1972) and Babu and Singh (1978). In this paper we obtain an analogous strong

representation for a very broad class of stationary linear processes with parameters

decreasing at a polynomial rate. In particular, the following sequences are considered:

00

(0.1) X(n) = 1(i)e(n-i)
i=O

where e (n) are iid innovations with E (I e (n) j) <c for some a> O and

I8(i)I.c i" for some c,q > O and i > 1.

The class of linear processes in (0.1) is very broad. It includes both finite and infinite

variance linear processes and also incorporates processes based on both continuous and

certain (due to restrictions on the stationary distribution function that will be imposed

later) discrete innovation series e (n). It covers m-dependent sequences, all autoregres-

sive - moving average processes and certain sequences which are neither 0-mixing nor

strong mixing. Examples of sequences within the class (0.1) which are not strong

mixing are easily obtained: The first order autoregressive process

(0.2) X(n) - - X(n - 1) = e(n)
2

is strongly mixing iff e (n) has a distribution with absolutely integrable characteristic

function, such as the normal distribution; see Chanda (1974). If for example the e (n)

are iid symmetric Bernoulli, X (n) is not strongly mixing, compare also Andrews

(1983). However, (0.2) is in the class (0.1), (even has an absolutely continuous sta-

tionary distribution function), which is easily demonstrated by obtaining the stationary

solution of the difference equation, namely

00

X (n) = 2-ie (n - i).
i=O
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1. STATEMENT OF RESULT

Theorem 1 in this section is the main contribution of the paper. It gives a Bahadur-

type result for empirical quantiles of the broad class of stationary processes introduced

in (0.1) with parameters S(i) decreasing to zero in absolute value at a polynomial rate.

For 0 < p < 1, what is here and below meant by p-th sample quantile XPn of a

sequence of random variables X (1), .. . , X (n) is the [n pl -th order statistic, where

rxl denotes the smallest integer larger or equal to x.

As before Fn, F denote the empirical distribution and the stationary distribution of X,

respectively, tp is such that F (,p) = p, and c denotes a generic positive constant, not

always the same one. Other notation will be introduced as needed.

Theorem 1: Let

(1.1) X(n) = 1(i)e(n-i)
i=O

where the innovations e (n) are iid with E (I e (n) I') < 00 for some a > 0. Assume also

that for i . 1, I8(i)I < c - i- with q > 1 + 2 / a, and that the density f of the stationary

distribution of X is bounded away from 0 and oo in a neighborhood Bp of ,p. Then
p-~~~~~~~

Xp,n = tp + F(4p) + Rn a.s.

a2(8q-5)+ 2a (lOq-9)- 13where R. = O (n7314+'t) for ally> -

4(2aq - a - 1)2

Remark 1: The lower bound for y in Theorem 1 is decreasing both for increasing a

and for increasing q.
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2. PROOF OF MAIN RESULT

The proof is based on extensions of Lemmas 1-3 in Bahadur (1966) to the present con-

text. Two of these extensions are straightforward while one (our Theorem 2) is some-

what involved.

Theorem 2: Under the conditions of Theorem 1 let, for given n, 0 < 1 < 1 and

i=1,.. .,n

Xp (i) = we (i - j).
J=o

Then it holds true for the empirical p-th quantile (Xp)pn of X (i) that for all n

sufficiently large*

(XP)p.n E In = (4p - an,p + an) a.s.

with an = 0 (max { nl"2(p - 1) (log n)12,n a+1 (

Remark 2: The parameter [3 determines the order of truncation of the infinite linear

combination of innovations in (1.1). To obtain the strongest result in Theorem 1, an

optimal choice for [ will have to be made later.

Proof of Theorem 2: For latter use we first evaluate the difference between X (i) and

Xp (i). Clearly,

| x(i)-xPi(i) I < c-* jS |e (i-ij)|

Cc t*nl/a -q+l/a
j=[ntln

where e* = supf e (0)1I, sup e(k)I is almost sure finite due to the conditions on e (k)
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and moreover P (e* > 4) < c - for all 4 > 0, as is easily proved. Hence, uniformly

in i (up to n),

(2.1) IX(i)-Xp(i)I < c -**nP(l+l/a-q)+1/a
We write rl = - (1 + 1 / a - q) - 1 / cc. Equation (2. 1) implies that the difference

between the p-th sample quantiles based on Xp (i), X (i), i = 1,... , n, respectively, is

(2.2) I (XP)p,n - Xp = 0 (n`1)
Here and below order relations are to be interpreted to hold almost surely.

Then, using Lemma 1 from the Appendix, we get

(2.3) supIF(Fy)(-)F = 0(n a+ )

and

a

(2.3a) sup IF(y) - Fp(y-)I = O(n a+)

where F is the distribution of Xp and Fp (y-) denotes the limit from the left, i.e.

Fp (y-) = limi Fp (yo).

We now exploit the independence of the truncated series after lag [ n] by defining

Snk = {X (k),X (k+[n]),...,X (k+(nk-1) rn])), k=1,2,... ,fn].
where nk is either rnl'~ or [nl'P - 1, its dependence on k being of no concern.

If for given n, X k denotes the p-th sample quantile of the k-th set SP containing nk

random variables, then by Lemma 2

(2.4) min X k .max Xk
(2.4) ~~~~Lsksr~fna mi,n -< (Xp)p,n :5

i sk4x4 Xp`nk
At this point it is necessary to point out one of the defects of the distribution F: its

possible discontinuity. We remedy this by introducing the slightly perturbed but con-

tinuous random variables
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G (X (i)) = U (i) - F (Xi (i)-) + (1 - U (i)) FB (X (i))

where U (i) has the uniform distribution over (0,1) and is independent of Xp (i). If we

also define Go (y) as

Gp (y) = U (i) F (y-) + (1 - U (i)) F (y)

then, using (2.3) and (2.3a), we get

sup IF(y)-Fj (y-)I s su IIF (y)-F(y)I + sup IF(y)-F (y-)I O(n a)

and hence

_al
(2.5) su 0F(y)-G(y)I = O(n a`)
Since, in particular, for all n sufficiently large (Xp)p, e Bp a.s., by Lemma 5, Equation

(2.5) therefore implies that

a

F,B ((XP)p,n) -G. ((Xp)p,n) I = O (n +)
from which we deduce

a

(2.6) (Fi (Xp))p,^ = (Gp (Xp))p, + 0 (n + )

by monotonicity of Fi and Gp. In Equation (2.6) (Fi (XP))pn is the r n p -th order

statistic of Fp (X (i)), i = 1,... , n and (Gi (Xp))p,n is defined similarly. Equation

(2.6) demonstrates that the effect introduced by the perturbation with respect to the

corresponding p-th quantiles may be ignored. Keeping in mind (2.6) we are in the

sequel concerned with Go (Xi (i)), i = 1, . .. , n only.

We will first determined how close (-log (Gp (XP)))p,n the p-th quantile of

-logG (Xp (i)), i = l,...,n is to log p1. Since Xp (i) has distribution Fp,
-log Gp (Xp (i)) has an exponential distribution with mean 1. On each set k, we may

therefore apply the Renyi representation (see e.g., Shorack and Wellner (1986) p.723)
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to these transformed random variables. In particular, for the rnk pl -th order statistic

(-log Gp (XP))k of the transformed random variables in S P we obtain

- k E
(2.7) (-log Gp (Xp))p,nk = .I v

where for each n,k the En,k,v for different v are independent random variables with

exponential distribution (with mean 1). This representation is used to establish that

(2.8) limsup mx
n (-log Gp (XP))k - logp1 I < -

In view of (2.7) and the rectangular rule of quadrature it suffices to show, in place of

(2.8), that

En,kv - 1
(2.9) max I = (n1/2(p- )(logn) )

Isk[nl v4pfnkl v

Lemma 3 in the Appendix proves the statement in (2.9).

Equations (2.9), (2.7) together with (2.4) imply that

(-log Gp (XP))p,n = log p-1 + 0 (nl12 (Vl) (log n)1/2)
and hence

(2.10) (Gp(X))pn = p + O(n1'2(P-1)(logn)1/2).
Since

I GP ((XP)p,n) - F (Xp = U (i) [ F (Xpn-) - F (Xp)pn] + (1 - U (i)) [F3 (X)pn-F (Xp)p,]n
and because of (2.3), (2.3a) and Lemma 5 we get

a

(2.11) (Gp (Xp))p,n = (F (Xp))pn + 0 (n +1 )

for n large enough. Then, combining (2.11) and (2.10) establishes

a

(F(Xp))pn = p + 0(max{n12(-1)(logn)1/2, n a+1

Since, over the neighborhood Bp, the derivative of F is bounded away from 0 which

implies that F-1 has bounded derivatives, we may transform from (F (Xp))p,n tO (X)pn
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and obtain

(X)p,n e In with probability one for all sufficiently large n.

This completes the proof of Theorem 2.

Remark 3: Because of (2.2) and since a / (a +1) < 1 for a > 0 the statement of

Theorem 2 holds with (X)p,n replaced by Xp,n.

Proposition 1: If F * is the empirical distribution function of Xp* (i), i = 1,... , n

where [* is not necessarily equal to [3 above, and

Vn (y) = IPF (y) - F* (4p) - (Fp* (y)- F* (4p)) 1.
Then

lim sup (y(n))1 su Vn (y) < oo a.s.
nf-+ yE n

for any y(n) with

l a 1 *p+ *

y(n) O(max{n 2 a+1 2 ,n 4 4 2 }) >

and

I = (4p - , 4p + an)
where

a

(2.12) an = O(max {n1/2 ( 1)(log n)1/2,na+})

Proof of Proposition 1: Without loss of generality we assume that FP* is continuous.

If not we use the method introduced after (2.4) and consider GP* instead of FP*. Write

F for the empirical distribution function of Xp* (i) based on the subset S1k, and

Vk (y) accordingly, then

supVn(y)V sup max V k (y).
yE YyE15lskfnO
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Let

(2.13) bn = [cnsl
be an integer sequence with an optimal exponent s to be selected later. Also, write

= 4p + an b-1 v, InV for the interval [wv,w',+i] and

Un,v = F,* (Wn,v+i) - Fp* (wn,v) for all n and integers v with -bn < v c bn- 1. Then for

all y e In

Vk (y) < Vk (Wn,v,+) +

Vk (y) 2 Vk(wn,v+i)-
and hence

(2.14) sup Vn (y) < max max Vk (w ,v) + max
YE n 1 ksFnDj -bn5-vsbn -bnnvsb,nv

< T1 (n) + T2 (n), say.

Since wmv+l -
v
< an b 1 for each v, and since FP* (or better Gp*) is sufficiently

well-behaved in a fixed neighborhood of '4p, it follows that T2 (n) = 0 (an bnj1).

As far as T1 (n) is concerned, it suffices, in view of the Borell-Cantelli lemma and

Bonferroni's inequality, to show that

FnD]
(2.15) z z Xp(Vk (wn) 2 y(n)) < o

n=_N0k=1 v
n

for No sufficiently large so that here and below degeneracies are avoided. To demon-

strate this, we exploit the fact that the distribution of V k (wn,v) is the same as that of

nk l B (nk, 6 (n, v)) - nk 6 (n, v) I, where B (nk, 6 (n,v)) is a binomial random variable

with parameters nk and 6 (n, v) = I F* (wn,v) - Fp* (4p) 1. Using Bernstein's inequality

(2.16) P (IB (nk, 6 (n, v)) - nk * 8 (n, v) I ' y(n)) < 2 exp (-h)
with h = y(n)2/ {2[nk6(n,v)(1 - 6(n,v)) + (,y(n)/3) max{6(n,v), 1 -6(n,v)}]).

No in (2.15) has to be chosen so large that Fp* (4p + an) - Fp* (4p) < cl an and
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Fp* (4p) - Fp* (,p - an) < cl an for all n > No and some constant Cl. Using

h = h(nk,8(n,v),y(n)) . y(n)2/2[nk - 6(n,v) + y(n)] and since lviI bn implies

6 (n, v) < cl an for n > No it follows

p(V k(Wn,v) > 7(n)) < 2exp (-hi)
where h, = hl(nk,ky(n))n2y(n)2/2[clnk an+nk y(n)] which depends on k only

through nk and is independent of v. Hence

rnA'j
kl 1:p(V k (Wn,v) 2 7(n)) < 4bn frnP - exp (-hl n5l-,y ))k=1 v rlnyn)

where y(n) and the exponent of n in bn = rcnsl have to be chosen so that for all

n 2 No the expression 1* + s - h1 ( Fn1~1 - y,(n))/logn is less than -1. Hence,

given ,3*, we choose s so that the exponent of an bn-1 nl1P is larger than s and since

O (an b1) = O (max n a+ n1/2(-1)s(log n)1/2})
*~~~~

n

this requires

a21 1- s+ 1 *> s or 2
- 0) - s > s

which leads to

2 al1i-i or s 4-+ 4 2
1 a 1-2(1-*)+ -4 ++ + e +

and y(n) = O(max{n 2 a+1 2n 4 4 2 }) e>0. This completes

the proof of Proposition 1.

Remark 4: The rate y(n) essentially determines the rate of convergence in Theorem 1.

An optimal choice for ,B in Theorem 2 is P3o = 3 so that the optimal an is
2aq-a- 1

= (n-1/2+1)for allXk> Oc+3
2ac(2q-1)-2
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a -'*
Since suj IFp* (y) - F (y)= O (n a+1) with Jn (4p - p + a°) and

ye n

1* =I3*(1 + 1/a -q) - 1 /a, the optimal * is (in view of Lemma 4)

2-°4ct (Note also that 3* > PO). This implies the optimal

a+1

(2.17) R,3=O (n:3/4+
for all

(2.18) ~> a2(8q-5)+2ac(10q-9)-13
4(2acq-a - 1)2

End of Remark.

Proof of Theorem 1: Theorem 2 and Proposition 1 provide us with the technology to

establish the main result. Due to Theorem 2 and Remark 3, we may select No such

that for all n No,, Xp,n E1 = Jn. Then, also, Fn(Xp,) = [n- In. Since

a * a

supIFpo*(y) - F(y) =O(n a ) and su)Fn(y) - Fn° (Y) = (n a+ ) by

Lemma 4, using Proposition 1 (with 1* = J ) applied to y = Xpn gives

(2.19) n
= Fn (,p) + F (Xpn) - F (4d + O (n-3/4+y)n

for all y satisfying (2.18). Since, by assumption, F is sufficiently smooth within the

neighborhood B. of 4p we may use Taylor's theorem (in Young's form) to assert that

(2.20) F (Xp,n) = F (4p) + (Xp,n- p) f(4) + 0 ((a)2)*
Consequently, combining (2.19) and (2.20)

rn*pl /n - Fn (4

Comparison of the rates (a4)2 and n-3/4+7, and observing that rn p1 /n = p + 0 (n 1)

gives the desired result. This completes the proof of Theorem 1.
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Appendix

The appendix contains the Lemmas used in the proof of Theorem 1.

Lemma 1: Let X (i), X (i), i = 1,..., n be two sequences of random variables with sta-

tionary distribution functions F and Fp, respectively. Fp may depend on n. Assume

that F has bounded derivative in some neighborhood Bp of 4p with F (4p) = p. Assume

also that

(A.1) maxlX(i) - Xp(i)I c c-e*-n-P a.s.
1 sisn

where p is a positive constant and e* is a random variable independent of n and such

that

(A.2) P(e* 2 4) . c - a

for some a >O and any , >O. Then

imsup naPI(l+a) supI F (y) - F (y) I <oo
yeB.

Proof: We may conclude from (A.1) that for any X with 0 < X < p and all y e Bp

P (X (i) s y - nX) - P (e Q.cnP) <P (X (i) < y) s P (X (i) < y + n-X) + P ( i> nP-X)

Using (A.2), it is clear that

F (y - n--) - 0 (nf (P4)) . Fp (y) <F (y + n4X) + 0 (n- a(P )

and consequently, since F has bounded derivative over Bp,

I F (y) - Fp (y) 0= 0 (n-X + n-a(X)).
Selecting X = a p/(1 + a) we obtain the best possible rate

sup IF(y) - F(y)I = O(nP/(l+a))

This completes the proof.

Theorem 2 utilizes this Lemma with p = -f (1 + 1 / a - q) - 1 / a.
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Lemma 2: Let J = {X(i): i e {1,2, ... , n}) be a set of random variables and Sn,k
r

k = 1,.., r be r nonempty disjoint subsets of cardinality nk of the set J with i_j Sn,k =
k=1

Then, for any 0 < p < 1, the p-th sample quantile Xpn of J and the p-th sample quan-

tiles X knk of Snk satisfy the inequalities

mninX k .X <.max X4k.
15.ksnr pnk Pn - Lsksr )bnk'

Proof: Since Fnk *pl > nk * P > rnk * Pl - 1 for all k = 1, ... , r it is true that

r r

X[nk- Pl > [nppl > k[fnk -P r

and hence

r

(A.3) #{X(i): X(i) < mmn Xpnk) < X(fnk.Pl - 1) < Fnpl
1 ksr Ptk-i=

and

r

(A.4) #X (i): X (i) S max Xkp,nl 2:rFnk ' P1 2 n[pl.
Lsksr P'k-k I

(A.3) implies that mnin X;,nk s Xp,n and (A.4) implies that max X .,n2 Xpn.
1sk5r Lsksr

Remark 5: Both r and nk may be functions of n.

Lemma 3: For integers n, k, v let En,k,v be random variables having an exponential

distribution with mean 1. Also, for all n,k let Enkv, and En,k,v2 be independent when-

ever v1 . v2. Then, for any 0 < f < 1,

limsup F n 11/ max I En,k,v - 1
n--~*L log n 1sks.Fn1l vfpflkl v

where the nk are defined after (2.3a) in Section 2.

Proof: We start by deriving sharp bounds for

r
141/2 nk E -

(A.5) P nt I n,k,v _
1

> M
logn v#pfnlVl
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Using Chemoff's bound (Chernoff (1952)) we obtain that this probability is bounded

by

[vinl I exp(-t/v)j exp (-tMn1/2(V1) (log n)12)

for all 0 . t .r p nkl. We choose t =c3 nl12(10). (log n)1/2 with some positive con-

stant C3 to be detemnined later. Then

log exp = -log(1 -) t
V=~- kl t/V v4~pf-lkl V V

nk 2
= z t +oQf1/2+E)n e>0

v4p -nkl 2v

c32 nl-P log n
<

3 o~o(nl1/2+e)
2p nk

C2
s<2 log n for n large enough.

Hence

n v=[p.n,kv- +c3/2P-C3M(A.6) P[[ 1/ k nkv - M Sn1lii
logn v=ip -nCl v

Taking C3 = p M we may make, for given p, the exponent of n on the RHS of (A.6)

as small as we want by increasing M. Hence for n and M large enough, the probabil-

ity in (A.6) is bounded by n-P-M/2 = V (n, p, M) say.

The same argument can be applied to

Fl 1/2 nk
(-1)[ nlp Enkv -1

L logn v=fp nkl v

Combining both, it is obvious that

F[ 1/E -1 M] . 2N (n,p,M)r[lognJ v4_p -nkl vj
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and the bound is independent of k. Exploiting this uniformity and choosing M large

enough we get

(A.7)
fl=NO i

F n_1 1/2
max

1:kssFnAl log n

4k

Iv4p - nk

En,k,v1
V

100

and the Borel-Cantelli lemma produces the desired result.

Lemma 4: With the notation of Section 2

a *

suJIFn(y) - FO (Y)I = O(n cL+1 )
Yw n

where Jn, = (4p - an° tp + 4n), and an, 00, ,0*as in Remark 4.

Proof: Choose r such _a _ athat a+1(m10 -,lo) <r<,o -
a + 1 T1, dn= Fcnirl

define Yn,v = 4p + a1 d; v.

For n sufficiently large and all v with I v < d, the empirical distribution function

evaluated at yn,,,

Fn(Yn,v) =
n

n

* FIX (X(i) Yn,v)i=l

is upperbounded a.s. by

1 n 1 n
-£ X (Xg (i s Yn,v + aT° dn; +-£ X (X5s (i) -. X (i) > an° dn-;

nn i=1n -i

Similarly,

n n

Fn(Y,v) > EX(Xp*(i) < Yn,v - a1?d;1) - IX(X(i)-Xp*(i)>4a1d;')
n io1 n i=1

so that

(A.8) IFn (Yr,v) - Fn' (Yn,v) I "xI I Fn (Ynv ±va d;-1) - F (Yn,v) I}

+ -1X(IX(i)-Xp*(i)I>a1?dn1)ln i=l

where here the max is to be taken over the choice of signs in the argument of

and
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Fn°0(Yn,v + a d;1).

It is also easy to show that

supI|Fn(y)-FYn (Y) . max I Fn(Yn,v) Fn (Yn,v)IYIEJ IvIe-d.

+ max | Fn° (Yn,v+i) - Fn (Yu,v)

Combining (A.8) and the previous inequality we see that

suplFn (y)Y- F (y)I < 2 - max I-Fn (Ynv+l) FF (ynv)
Ye -n |vlsds,

in
+ X(IX(i)- X ( I > dW1)
= 2 S (1) + S (2), say.

To show the required rate for S (1) one makes use of the fact that

n"(F (Yn,v+l) - Fno (y,v)) has the same distribution as

n
izX (Yn,v < X5O* (i) < Yn,v+l)

and X (Ynv < Xp (i) < Yn,v+l) i = 1,... , n is a sequence of Fn01 -dependent Ber-

noulli random variables with parameter equal to

Fp*(yn,v+l) - Fp (Yn,v) = 0(agdl).
The inequalities in Hoeffding (1963), Section 5d admit a straightforward extension to

[nP*1 -dependent random variables and, using these inequalities together with the Borel

Cantelli lemma proves the required rate for S (1).

To show that

~~~~~~a

ZX(IX(i)-XpX*(i)I> a4d;1) = O(n )
n izet1h

it is sufficient to realize that
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max I X (i) - XpO (i)I . C* £ nl a.s.

by (2.1), that andn- > c e,* n-Il for all sufficiently large n, and that e* is a.s. finite.

Lemma 5: With the notation of Section 2 it is true for all 3 with 0 < f < 1 that

(X)p,n e Bp a.s. for all n large enough.

Here Bp is the fixed neighborhood of 4p over which the density of X (i) is bounded

away from 0 and infinity.

Proof: We will show that (X)p,n -4p a.s. from which the statement follows.

For 6 > 0 it is clear that

F(4P-6) < p < F(P+86)
Now, if we can also show that

(A.9) F (4p- 6) F(4p- 6) a.s.

FnP (4p + 8) F (4p + 8) a.s.

then it follows that

F 5 (4p - 6) < p < Fg (4p + 6) a.s. for all n large enough

and therefore

4p - 6 < (X)pn <.p + 6 a.s. for all n large enough,
because clearly FnP (4p + 6) > p iff 4p + 6 > (FP)-' (p) = (X)p,n.

So we only need to show (A.9). We prove only that

n (4p - 8) o- F(t,p -6) a.s.

i.e. for all e > 0

n
(A.10) £P(In1 xX(Xp(i) s 4p-6) - F(tp- 6)1 > e) <

The LHS of (A. 10) is upperbounded by

a

(A.11) £P(In-1 £X(Xp(i) s 4p-6) - F(4p-6)1 > e-cna+
n i=1
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by (2.3). By construction X(X3 (i) <.p - 8), i = 1,... , n is an rn] -dependent

sequence of Bernoulli random variables and again we may use the results in

(Hoeffding 1963 Section 5d) to prove the finiteness of (A. 11).
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