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1. INTRODUCTION.

Splines are of increasing importance in statistical theory and method-
ology. In particular, Stone and Koo (1986) and Stone (1988) considered
exponential families of densities in which the logarithm of the density is a
spline. Such exponential families are the subject of the present paper, as
are corresponding exponential response models. In each context we use an
extension of a key result of de Boor (1976) to obtain a bound on the L.
norm of the approximation error associated with maximizing the associated
expected log-likelihood.

Let Y be a real-valued random variable ranging over a compact interval
I; without loss of generality, let I = [0,1]. Suppose that Y has a density
f that is continuous and positive on I.

Let S be a standard vector space of spline functions of a given order
q > 1 on Z (piecewise polynomials of degree q - 1 or less that are right-
continuous on I and continuous at 1) having finite dimension K > 2. Let
B1, ..., BK be a B-spline basis of S (see de Boor, 1978). Then B1, ..., BK
are nonnegative and sum to 1 on Z.

Let 61, ..., AK be real constants. Set

C(01, . OK) =log (J exp (Ez O&Bk(y)) dy)
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and

f(Y; O1, * *, K) = exP ( kBk(y)-C(O1, * * , K)) Y E

This defines an exponential family of densities on 7. Observe that, for
a E R,

c(Ol + a, O,OK + a) = c(01, * * ., OK) + a

and hence

f(y;19+a,...,OK +a)=f(y;O1,..-,O9K), yER.

Consequently the exponential family fails to be identifiable. In order to
make it identifiable, we require that OK = 0.

Let 0 denote the collection of ordered (K - 1)-tuples 6, ..., OK-1 of real
numbers. For 6 = (01, .. . OK-i) E 9, set

s(y; 6) = 01Bi(y) + -.. + OK-iBK-1(Y), Y E I,

C(@) = log (J exp(s(y; ))dy

and
f(y; 6) = exp(s(y; 6) - C(6)), y E I.

This defines an identifiable exponential family; it is referred to as a logspline
model since log(f(.; 6)) E S.

Let Y1 ... Yn be independent random variables having common density
f, which is not necessarily a member of the indicated logspline model. The
corresponding log-likelihood function 1(6), 6 E 9, is defined by

1(6) = E log(f(Yi; 6)) = Z[s(Yi; 0) - C(6)], 6 E 0.
i t~~~~~~~~~~

Suppose that (for given values of Yi, ..., Yn) the log-likelihood function has
a maximizing value 6 E 0. Then this maximizing value is unique and is
called the maximurm-likelihood estimate of 6; the corresponding density f
defined by f(y) = f(y; 6) for y E I, is referred to as the logspline density
estimate corresponding to the given logspline model.
The expected log-likelihood function A(@), 6 E 0, is defined by

A(6) = El(8) = n [Js(y; 6)f(y)dy - C(6)] 6 EE).

It follows by a convexity argument that the expected log-likelihood function
has a unique maximizing value 0* E 0. (Recall that f is a positive density
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on I and that s(.; 9) is a nonconstant function for 9 i 0.) Consider the
corresponding density Qsf on I defined by Qsf(y) = f(y; 9*), y E 2.
The density f belongs to the logspline model if and only if f = Qsf on
2. When f does not belong to this model, the function f - Qsf plays an
important role in the analysis of the asymptotic behavior of the logspline
density estimate (see Stone, 1988); roughly speaking, it acts as a bias term.
Given a real-valued function g on I, set 11 g lloo= sup, g(y) 1. Let F

denote a family of positive densities on 2 such that the famnily {log(f): f E
F} is an equicontinuous family. Set

Es(f) = inf jj log(f) - s 11a,. f E F.
*ES

(For an upper bound to Es(f) in terms of the smoothness of log(f), see
Theorem XII.1 of de Boor, (1978.) In Section 4 we will obtain an inequality
of the form

(1) 1log(f) - log(Qsf) loo< M6s(f), f E F,

where the positive constant M depends only on F, the order of S, and a
bound on a suitable 'global mesh ratio" of S. The main point of this result
is that M does not depend on K = dim(S). It follows from (1) that

11 f - Qsf lloo. [exp(M6s(f) - 1)] 1I f tloo, f E F.

Suppose now that the distribution of Y depends on a real variable x that
ranges over a compact interval T; without loss of generality, let 2 = [0,1].
Let f(. I x) denote the dependence of density of Y on x. It is supposed
that f(y x), x, y E 2, is a continuous and positive function.

Let 7t be a standard finite-dimensional vector space of spline functions
of a given order on IT having dimension J > 1, and let H1, ..., HJ be a
B-spline basis of 'H.

Let B denote the collection of J x (K - 1) matrices 83 = (Ik) of real
numbersLjk, 1 < j < J and 1 < k < K-1. Letf3E B. For 1 < k < K- 1,
let hk(.; ,B) be the real-valued function on I defined by

hk(x;/3) = ZI3jkHj(X), x E 2.

Set
h(x; ,) = (h(x; ,3), ... , hKl1(x; p))7 x E 2.

Then h(-;,B) is an RK-l-valued function on I.
The logspline response model corresponding to 7' and S is defined by

f(y I x; /3) = f(y; h(x; 3)) = exp(s(y; h(x; /3)) - C(h(x; /3)))
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for ,3 E B and x, y E I. Observe that, for ,3 E B and x E , f(. I x; 3) is a
positive density on I.

Let xi, . . ., xn E I and let Y1, ..., Y,, be independent random variables
such that Yi has density f(. I xi). The corresponding log-likelihood function
l(,3), ,3 E B, is defined by

1(p3) =E log(f(Yi I xi; p)) = Z(s(Yi; h(xi; p)) - C(h(xi; 3))), 3 E B.
i i

The expected log-likelihood function A(,1), ,3 E 8, is defined by

A(13) = El(/3) = E [J s(y; h(Zi; 13))f(y xi)dy - C(h(xi; 3))] 13 E B.

Suppose that XH is identifiable from x1,..., x,; that is, that if h E 'X
and h(xi) = *-. = h(xn) = 0, then h = 0 on I. Then, by a convexity
argument, the expected log-likelihood function has a unique maximum 13* E
B. Consider the corresponding function Qsf on I x I defined by

Qsf(y x) = f(y x;13*), x,yE.

Let T denote the tensor product of Xt and S; that is, the vector space of
real-valued functions on I x I spanned by functions of the form h(x)s(y),
x, y E I, as h and s range over 1t and S respectively. Then T has dimension
JK, and the functions Hj(x)Bk(y), x,y E 1, 1 < j < J and 1 < k < K
form a basis of T.
Given a real-valued function g on I x I, set 11 g lloo= sup1.:g(x,y).

Let JF denote a family of continuous and positive functions f on 2T x I
such that f& x) is a density on I for x E I and {log(f) f E F} is an
equicontinuous family of functions on I x I. Set

6T(f) = inf jjlog(f)-tI lo, f E F.
tET

(For an upper bound to br(f) in terms of the smoothness of log(f), see
Theorem 12.8 ofSchumaker, 1981.) In Section 5 we will obtain an inequality
of the form

(2) 10log(f) - log(QTf) .loo< M6T(f), f E JF,

where the positive constant M depends on F, the orders of Xt and S,
bounds on the global mesh ratios of XH and S, and a measure of regularity
of xj, ..., x,, that depends on 'H. The main point of this result is that M
does not depend on J = dim( 7t) or K = dim(S).
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2. PRELIMINARY INEQUALITIES

The bound on the global mesh ratio for S described in de Boor (1976) is
equivalent to a bound of the form

(3) M-'K-1 < Bk(y)dy < M1K-1' 1 < k < K,

where M1 > 1 is a constant. Since the support of Bk is an interval having
length q f Bk(y)dy, where q is the order of S, (3) can be written 88 a
two-sided bound on this length. Under (3) there is a constant M2 > 1
(depending on the order of S) such that, for O1, ..., OK E R,

(4) MlTlM2-lK1ZE .J< | (ZekBk(y)) dy < M1K- EZJ

(see (7) of de Boor, 1976).
Similarly, we assume that

(5) M-1J- J< Hj(x)dx < MrJ-1, 1 < j <J.

Under (5) it can be assumed that, for 3k,..., 3j E R,

(6) Al'1Mj- lJZ-l Ej2 < J jHj (x) dx < MlJ1 1E321.

For a given order q of Xi, the functions in XH are piecewise polynomials
of degree q - 1 or less. In light of (5), a natural regularity assumption on
Xl, ..., xn is that

(7) M-1n Jh2(x)dx < Eh2(x,) < M3n h2(x)dx, h E X,

for some constant M3 > 1. It follows from (7) that XH is identifiable from
xl. . ., x". It also follows from (7), by choosing AM3 larger if necessary
depending on the order of X, that

(8) EHj(xi) < A-f3J-1n, l < i < J.

(Let h denote the sum of the HIk's whose support overlaps with that of Hj;
note that H < 1 = h - /i on the support of Hj.)
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Let p be a positive (Borel) function on I such that, for some constant
M4> 1,
(9) M4' <p(y) < M4, y E I.

For the real-valued function g on Ix I, let 11 9 112 be the nonnegative square
root of

11 g 112= Jg92(zi, y)p(y)dy.

For 1 < j < J and 1 < k < K, define Bjk onIx Iby

Bjk(X, y) = Hj(x)Bk(y), 7 Y E I.

It follows from (4), (6), (7) and (9) that, for ,3 E B,

2

Mj2M22M3M4JK Z k < ZZ kBjk <<Mj2M3M4n Z k
jk ~ j k 12 JK k

(10)

3. THE INVERSE GRAM MATRIX

Consider the K x K matrixM whose (k, l)th entry is f Bk(y)BI (y)p(y)dy.
It follows from (4) that M is invertible. Let akl denote the (k, I)th entry
ofM1. Then

|| M-1 Iloo< maxl: I akl I

By a slight extension of a result in de Boor (1976), there is a constant
M8 > 1, depending on All, M2 and M4, such that

(11) 11 M-1 loo0< M8K
(see the proof of (18) below). This has the following consequence.

LEMMA 1. Set g = Zk 6kBk. Then

max I k j< JMsI'K max |g(y)Bk(Y)p(Y)dY
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For real-valued functions g, and g2 on I x I such that the norms g|91 112
and 11 92 112 are finite, set

(g1, 92) = g(Xi, Y)92(xi, y)P(y)dy

Then 11 g II'= (g, g). Consider now the JK x JK matrix M whose
((j, k), (1, m))th entry is the inner product (Bjk, Bim) of Bjk and Bim. It
follows from (10) that M is invertible. Let ajklm denote the ((j, k), (1, m))th
entry of M1. Then

(12) || M-1 1loo= max Z CtIkln I.

We will now imitate the elegant proof of (11) above in de Boor's paper (see
also Descloux, 1972).

Set
fjk = Z ajklmBlm.

I m

Then (fjk, Bim) equals 1 if j = I and k = m and it equals zero otherwise.
Consequently,

0 <11 fjk 112= avjkjk-
Set M5 = Mj2M2AI3AM4> 1. Then, by (10),

M-1J-'K-1najk .AlJKlnZZa2 lm <11 fjk 112= jkjk.
I m

Therefore
cejk;jk < MI5JKnn

and
(13) ZZajk,m < M5JKn-1ajkjk < (M5JKn-1)2.

I m

Set M16 = M12AI2AI4 > 1.

LEMMA 2. There is a constant Al7> 1, depending on Al6, such that

ajklm j< A[53163I7JK.3I (Ij-ll+lk-ml)n-1.

PROOF. Let (j, k) be given anid let v, w E R with v2 + w2 = 1. For
c E R, set

Sc = {(1,rn): v(l -j) + w(m- k) > c}
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and
9c= CiiO!jklmBlm.

Sc

Let c > 0. Since fjk is orthogonal to Bim for (1, m) $ (j, k), g9 is orthogonal
to fjk. There is a positive constant u, depending only on the order of'H and
S, such that if (1, m) E Sc and (11, ml) $ Sc-u, then Bim and Bl,,.,i have
disjoint support and hence are orthogonal to each other. Consequently, g9
is orthogonal to fjk - ge-u and hence to gc-u Therefore,

1 gc-u 112 + 11 gc 11g2=11c-u - gc 112

and hence
(14) 11 gc_u 112<11 gc_2 _ g. 112
Now

gc-u-gu = Z CjklmBlm,

where SC_u,c

Sc_u,c = Sc-u\Sc = {(1, m): c-u < v(l - j) + w(m - k) < c}.
We conclude from (10) and (14) that

(15) Z EIc(E lm>.lM- E Fi ahim,,, C > 0.
Sc-u,c Sc-u

Set
a,, = E aSklm v = 0, 1,2.

By (15), Sc+(V-1)u,c++u
(16) Iav. Mj-2(Ia,, I+ I a,+, I + *.), v = 0,1 2.

According to Lemma 2 of de Boor (1976), (16) implies that

(17) 1 av 1<1 ao IAI6 12 (1_AIM-2)v, v = 0,1, 2,...
By (13) and (17),

a, I< (AI5AI6JKn 1)2 (1-A_ -2)v, v = 0, 1, 2,...

It follows by choosing v, w, and c appropriately that if

v < U-1[(l _ j)2 + (m - k)2]/2,

then
ajlm 1< M5AI6JK(l- 2)v/2n-1.
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This yields the conclusion of the lerma.
Set

M8 = M5M6M7(M7 + 1)2(M7 _ 1)-2 > 1.

It follows from (12) and Lemma 2 that

(18) 1 M-1 Iloot< M8JKn-1.

This inequality has the following implication.

LEMMA 3. Set
g = EZi:3kBjk

j k

Then
max |3k j< MsJKn'1 max (g, Bjk) I .

4. LOGSPLINE MODELS

In this section, we obtain (1). For f a positive density on I and 0 < a < 1,
let fa denote the density on :Z defined by

fa(Y) - f (y)
f fa(y)dy'

It can be assumed that fa E F for f E F and 0 < a < 1. (Extend F if
necessary.)
Choose s E S and define the real-valued function g on R by

J exp(ts(y) - g(t))Qsf(y)dy = 1.

Then

9'(0) = Js(y)Qsf(y)dy.
Also

J[log(Qsf(y)) + ts(y) - g(t)]f(y)dy
is maximized at t = 0; hence

g'(0) = s(y)f(y)dy.
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Thus
J s(y)[Qsf(y) -f(y)]dy = 0.

Consequently,

(19) J Bt(y)[Qsf(y) - f(y)]dy = 0, 1 < k < K,

or, equivalently,

(20) JBk(Y)[Qsf(Y) - f(y)]dy = 0 1 < k < K-1.

Formula (20) can also be written as

C
(21) 49-(9*) = ]Bk(y)f(y)dy, 1 < k < K - 1.

Let K be a fixed positive integer and let S otherwise vary subject to (3).
Then B1 ... BK depend continuously (in the L2 norm) on the knot sequence
defining S. Thus it follows from (21) and the properties of the Hessian
matrix of C(s) (e.g., it is negative definite) that 9* depends continuously
on f Bk(y)f(y)dy, 1 < k < K - 1, and the knot sequence defining f.

Let f E F. There is an s E S such that || log(f) - s IIo= Es(f). Since f
is a density on X, we conclude that

log (Jexp(s(y))dy) < 6s(f).

Consequently, there is a 9 E 0 such that

(22) 1 log(f) - log(f(.; 9) lloo< 26s(f)

Note that Qsf = f, where f = f(-; 6). Thus it follows from (22) and the
continuity properties of 9* described above that there is a positive constant
M1K (depending on MI1 and F as well as K) such that

109log(f(;*)) - log(f(-; 9)) oo < MlK6S(f)

and hence

(23) 11 log(f) - log(Qsf) lloo< (MlK + 2)6s(f), f E F

Choose 6 E 0) such that (22) holds and set f = f(.; 6). Then

(24) 11 log(f) - log(f) lloo< 26s(f).
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There are constants Mg, Mlo > 1, depending on F, such that

(25) 1 f - 1 1100< M96S(F)
and
(26) M1-1 < f(y) < M1o, y E 2.

By (3), (19) and (25),

(27) J Bk(y)[Qsf(y)-f(y)]dy <MIA9K-ls(f), 1 < k < K.

Write
log(Qsf) - log(f) = OAkBk

and set E = maxk Ok 1. Now 11 log(Qsf) - log(f) 1I,0< e and hence

(28) 11 log(f) - log(Qsf) 0loo E + 26s(f).

It follows from (viii) on Page 155 of de Boor (1978) that there is a positive
constant Ml,, depending on the order of S, such that

(29) E < Ml, 11 log(Qsf) - log(f) 1100.

Suppose that e < 1. Since Qsf = f exp(Ek 6kBk), we conclude from
(26) that

Qsf- OkBk < MlO1
k .00

and hence from (3) and (27) that, for 1 < k < K,

(30) J Bk(y) I 61B1(y)f(y)dy < Ml9M1K-r's(f) + MlMlOK e2.

According to (26), (30) and Lemma 1, there is a constant M12 > 1, de-
pending on M1, M2 and Mlo, such that

E < M11 A19MI263(f) + M11AM1l0MA2E22

Suppose now that
(31) M1MIl Ml2e <2<

Then e < 2M1M9M126s(f) and hence, by (28),

(32) 11 log(f) -log(Qsf) Iloo< M135S(f),
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where M13 = 2(MIM9Mi2 + 1). According to (29), a sufficient condition
for (31) and hence for (32) is

(33) 11 log(Qsf) - log(f) 11r< M14

where M14 = 2M1M1oMiiM12.
Let

0< 6< 2-'M231M14.
There is a positive integer Ko, depending on M1 and the order of S, such
that
(34) Es(f) < 6, K > Ko and f E F

(see Page 167 of de Boor, 1978). Let K > Ko. Suppose that

(35) 11 log(f) - log(Qsf) Iloo< 2-1Mj41.

Then (33) follows from (24), so (32) holds.
We will now verify that (35) necessarily holds for K > Ko. Suppose not.

Now
log(fa) - log(Qsfa) 110

is continuous in a for 0 < a < 1 and it approaches 0 as a -_ 0. (According
to an earlier argument, 8* is continuous in a.) Thus there is a value of
a E (0,1) such that

|| log(fa) -log(Qsfa) Iloo= 2'M^1'.

By the previous argument, (32) and (34) hold with f replaced by fa; hence

11 log(fa) -log(QSfa) Iloo1< M1136S(fa) < M136 < 2- MT41
which yields a contradiction.
We have now shown that

(36) 11 log(f) - log(Qsf) loo1<001136S(f), K > Ko and f E Jr.

The desired inquality (1) follows from (36) together with (23) for 1 < K <
Ko.
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5. LOGSPLINE RESPONSE MODELS

In this section, we obtain (2). For f a positive function on I x I such
that f(- x) is a density on I for each x E I and for 0 < a < 1, let fa be
defined on I x I by

fa(YIX) fa(yjIx)
f fa(y x)dy

It can be assumed that fa E F for f E F. (Extend F if necessary.)
Let 1 < k < K - 1. Choose h E Ii and let h be the RK-l-valued

function on I whose kth component is h and whose other components axe
zero. Define the real-valued function g on R by

g(t) = E [J s(y; h(xi; p3*) + th(xz))f(y xi)dy - C(h(xi; p3*) + th(x:))]

Then

0= g'(0) = E h(xi) [J Bk(y)f(y xi)dy - a (x ]3*))

Thus, for 1 < j < J and 1 < k <K - 1,

(37) ZHj(xi)
C

(h(xi;3*)) = ZHj(xi) Bk(Y)f(Y xi)dy,

which can also be written as

Z Hj(xi) Bk (y) [f(y xi) - QTf(Y xi)]dy = 0

or, equivalently, as

(38) E Hi(xi)J Bk(Y) [f(Y Xi) - QTf(Y Xi)]dy = 0.

Let f E F. There is a t E T such that 11 log(f) - t Iloo= 6T(f). Let
x E I. Since f( x) is a density on I, we conclude that

Consequently, there is a, E 1 such that

(39) 11 log(f) - log(f(. .; 3) lloo< 26T(f).
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Let J andK be fixed positive integers and let X, S and al ... x. otherwise
vary subject to (3), (5) and (7). It follows from (37) that there is a positive
constant MJK (depending on M1, M3 and F as well as J and K) such that

(40) 1 log(f (' I ; 13*) - log(f (- I *;,/) IIoo< MJK6T(f)f
We conclude from (39) and (40) that

(41) || log(f) -log(QTf) |loo< (MJK + 2)6T(f), f E F.

There are positive integers Jo and Ko and there is a positive constant
Mg, depending on F, M1 ... M4 and the orders of 7t and $ such that

(4211 log(f) - log(QTf) Iloo< M96T(f), J > Jo, K > Ko and f E F.

The argument used to prove (42) is a refinement of that used to prove (36).
To start off, choose t E T such that 11 log(f) - loo= 6T(f), set

e(x) = log (J exp((x, y))dy) a, E 27

and note that
1,E(x) l16r(f), xE 7.

Define f on I x I by f(y x) = exp(f(x, y) -c(x)). Then

11 log(f) - log(f) Ijoo< 26T(f).

There are constants Mlo, MlA1 > 1, depending on F, such that

(43) || f - o1100 MIo6r(f)

and
Mj1 <f(ylx)<Ml, x,yE2.

By (3), (8), (38) and (43),

f ~~~~~M1M3M10EHj(xi) Bk(y)[QTf(y | Xi)-!f(y Xi)]dy <
JK n6r(f)

for 1 < j < J and 1 < k < K.
Write

log(Qrf(y x)) = t*(x,y) - c*(x), x,,y E l,
where t* E T, and set t = t*- . Then-

QTf(Y x) = exp(t(x, y) + c(x) - c* (x))f(y x), x, y E I,
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c*(x) = log (J exp(t(x, y) + c(x))f(y x)dy

= log ((1 + J[exp(t(x, y) + c(x)) - 1]f(yI x)dy)

for x E I, and

QTf(y l x)- I(y x) = [exp(t(x, y) + c(x)-c*(x))-1]f(y 2x), x, y E I.

Thus

c*(x) - E(x) ]t(x,y)f(y z)dy, x E I,

and hence

(44) QTf(Y X)-f(Y X) [t(x7 y) - t(x,y)f(y X)dy] f(y x)

for x, y E I.
Write

t(x, y) = 3 OjkHj(x)Bk(y), x, y E T.
j k

It follows by a double application of (viii) on Page 155 of de Boor (1978)
that there is a positive constant M12, depending on the order of 7t and S,
such that

max 1|jk |< M12 || t lloo
j,k

Choose q > 0. Now

Jt(x y)f(Y X)dy = ZJ Bk(Y)Z3jkHj(X)f(Y X)dy.
k

Choose xj in the support of Hj. Define h E 1t by

h(x) = ZJBk(Y)Z JkHj(x)f(Y I xj)dy
ki

- Z Hj x) 1 3jJk Bk(y)f(Y xj)dy.
ik

There is a positive integer Jo, depending on M1, M12 and F such that

J|t(x,y)f(y x)dy-h(x) <. 1 t Ilc, J > Jo and x E 1.

15



After replacing t*(x, y) by t*(x, y)-h(x) and replacing c*(x) by c*(x)-h(x),
we have that

(45) Jt(x,y)f(yI x)dy < 11 t J > Jo and x EI.

The argument used to prove (42) from (44) and (45) is similar to that
used to prove (36), except that Lemma 3 is used instead of Lemma 1 and
Theorem 12.8 of Schumaker (1981) is used instead of Page 167 of de Boor
(1978).
Next it will be shown that, for each positive integer K, there is a positive

integer Jo and there is a positive constant M13, both depending on JF,
m ..., M4 and the order of XH and S, such that

(46) 11 log(f) - log(QTf) Iloo< MI13b5y(f), J > Jo and f E F.

To this end, write

Qsf(y x) = exp (6k(Z)Bk (Y) - c(X)) x yE IE

From (21) we conclude that (as f varies over X, etc.) the resulting functions
Ok(*)j 1 < k < K -1, are uniformly bounded and equicontinuous, and there
is a positive constant M14 such that

(47) _max H(i(k( )) < M146T(f).1<k<K-1

Observe that
max H k

1<k<K-1
can be made arbitrary small by making J sufficiently large (see Page 167
of de Boor, 1978). According to (1), there is a positive constant M15 such
that

(48) log(f(y I ()) 9k(x)Bk(y) - c(X) . Ms T(f), x, y ElI
It follows from (19) that

J Bk(y) [exp (z Gm(x) B,(y) - c(x) - f](yx) dy =

for x E I and 1 < k < K and hence that

Hj(x,) J Bk(y) [exp (z Gm(xi)Bm(y) - c(x)) -f(y xi)] dy = O
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for 1 < j < J and 1 < k < K. Thus we conclude from (38) that

E Hj(Xi) |Bk(y) [exp (z om(Zx)Bm(y) - c(x))- QTf(y I ) dy = 0

for 1 < j < J and 1 < k < K.
For 1 < k < K - 1, choose hk E H such that

O6(X) -hk(X) 1= '5(dk())k x E I-

Set E(X) = log (Jexp (Zhk(X)Bk(Y)) dy) El,

and define f on I x I by

f(y x) = exp( hk(x)Bk (y) -cx)

Write

QTf(y x) = exp ( h* (x)Bk(Y) c* (X)) x, y El,

where h* E XH for 1 < k < K -1. It now follows by arguing as in the proofs
of (36) and (42) that there is a positive constant M16 such that

| 6k(T)-h*(x) I< A116 max 6X(Ok))k 1< k < K-1 and x E .

Thus there is a positive constant M17 such that

1og(QTf(y zX)) - ( k(x)Bk(y) -C(X)) <M17 1 <k<SK-l

(49)
The desired result (46) follows from (47)-(49).

Finally it will be shown that, for each positive integer J, there is a positive
integer Ko and there is a positive constant M18, both depending on F,
m ..., M4 and the order of XH and S, such that

(50) 11 log(f) - log(QTf) Iloo< M186T(f) K > KK and f E F.

To this end, let i3(*),....3j(.) be the real-valued functions on I such
that

E [log(f(y j xj))-E j(y)Hi(xj)
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minirmzes

z [log(f(y xz,)) - Z /Hji(T)] 2
L J

for y E I. It follows from the appropriate analog of Lemma 2 that, as
f varies over F, etc., the resulting functions A(.),**,K1j(.) are uniformly
bounded and equicontinuous, that there is a positive constant Mlg such
that
(51) maX 6s(13j(.)) < M16T(f),

and that there is a positive constant M20 such that

(52) log(f(y zT))-j:3(y)Hj(x) <M20oT(f), x,YEe

Observe that
max s (3j

can be made arbitrarily small by making K sufficiently large. For 1 < j < J
choose sj E S such that

(53) 1,3j(y) - sj (y) bs(6j( )) yY E 1*

Set

e(x) = log (I exp (z j (x) j (Y)dy) x E I.

There is a constant M21 such that

(54) e(x) I. M21r(f),f x E I.

Define f on I x I by f(y x:) = exp(E, Hj(x)gj(y) - e(x)). Write

QTf(Y x) = exp (ZHj(x)s;(y)-c*(x)) xY El,

where s* E S for 1 < j < J. It follows as in the proofs of (36), (42) and
(49) that there is a positive constant AM22 such that

(55) log(QTf(yYI x)) -log(f(y x)) I< M22 max bs(;j

The desired result (50) follows from (51)-(55).
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Inequality (2) follows from (41), (42), (46), and (50).
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