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ABSTRACT

The smallest classes € which satisfy the Vapnik-écrvonenkis combinatorial con-
dition are assigned an index of 1. We show that over all classes ¥ of index 1, the
classical exponential inequalities for empirical processes are optimal.
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1. Introduction

- Let X, Xj,... be i.i.d. random variables with common distribution P on a measur-
able space (2, ). We define the empirical measure

n
P, = n! 21 O,
i=

and the normalized empirical process on ¢ defined by

vV, = n%@®,-P),n2>1.

n

For a given class of events € <, let D, ( €)= iuglv,, (A)|. Under certain condi-

tions on the class € , exponential bounds for the probability that D, ( € ) exceeds M,
M = 1 have been obtained. The inequalities which arise have the general form

(1.1) Pr{D,(®)> M} < ae™™’

where a, y are positive constants that depend on € but not on M. The results of
Dvoretzky (1956), Kiefer (1961), Devroye (1982) and Alexander (1984) are all of this
form, for various € .

The classical example comes from considering the class of intervals on the real
line. Here, we take €, = {[0,t]:te [0,1]}. The fundamental result (Kolmogorov,
1932) gives

Pr {sup v, (A)> M) ~ e M
AeC,

as n — oo, for all M.

In Euclidean space we may consider another well known example. Let

€=Eg: {{x:x;< tj=1,...,d}, te RY). When d > 1, Kiefer (1961) established

(1.1) with y=2(1 —¢), for all € > 0 and for some a = a(g,d). Unlike the case d = 1,
the form of the limiting distribution of D, ( ¢ ) depends on P.

A new direction was set when Vapnik and éervonenkis (1968, 1971) introduced
combinatorial ideas that lead to results for general families € of geometric regions,
defined as follows. Let X be a set and € a class of subsets of X. A finite set A © X
is shattered by € if every subset E < A is of the form A N C for some C € € . Now

€ is called a Vapnik-éewonenkis class (or VC class) if for some n > 1, no n-element
subset of X is shattered by € . Let S(€ ) equal the cardinality of the largest subset
A < X which is shattered by € . We will call S( € ) the index of € .

Several familiar classes of geometric regions are VC classes. These include the
classes of all rectangles, all closed balls, all polyhedra with at most m faces, and qua-
drants of the form (—eo,t], in R If € is a VC class, then {CND:C,De & },
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{(CUD:C,De® } and {A°: A e €} are also VC classes. The class of all closed
convex sets in R? is not a VC class. Additional facts about VC classes are presented
in Dudley (1978, 1984, etc.).

Assuming suitable measurability conditions Alexander (1984) in the more general
setting of VC classes of functions shows that for VC classes with index d and M > 8§,
a bound in (1.1) of the form aexp(—2 — €) M2) results. The exponent (2 - €) M2 can-
not be improved; a bound of the form aexp (-2M?) is the best possible. (Even a sim-
ple case where € = {A} with P(A) = 2 has this exact bound, Hoeffding (1963)).
However, Alexander’s work (intended for asymptotic use) yields a constant a = a (g,d)
which is impractically large. Is further refinement possible?

Bounds such as those desired for (1.1) yield faster rates of convergence when v,
is indexed by some small family of sets, such as the VC classes with index 1. But we
shall give an example on [0, 1] that shows:

(1.2) there is no constant B < o which will satisfy the inequality

Pr(D,(€) > M)} < Be™’ for all classes with S(€) = 1.
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2. An Asymptotic Distribution when S( ¢ ) =1
We introduce a collection of subsets on [0,1]. Let X =[0,1] and define k dis-
joint subintervals
A = [0,y]
Ay = (Gq11=12,..., k-1

k
with parameters t; < %2, 0 <t) <tp<-:- <ty =1such that X = A; Let €y bea
i=1
collection of the k sets, €;=A; UA;,;, 0<i<k-1. It is easy to check that
S( &) =1 since no 2-point set {a,b} <[0,1] is shattered by €. In this section
we show that as M — oo

(2.1) Pr(sup v, (A)>M) ~ (k - 1)’ and the

and the result (1.2) follows.

In order to prove (2.1), we now consider appropriate Gaussian limit processes. Let
(Q, .« ,P) be a probability space and let Wp denote the isonormal Gaussian process
with EWp(A) =0 and EWp(A)Wp(B) =P(A N B) for all A,B e Z. We define
Gp(A): = Wp(A) = P(A) Wp(Q) so that Gp is a Gaussian process indexed by a class
of measurable sets € < « with mean 0 and covariance

EGp(A)Gp(B) = P(A N B) - P(A)P(B).

Now Dudley (1978) [under suitable measurability conditions] gives the weak conver-
gence result

v (A) = Gp(A — oo
Aegg() p(A) as n

which holds under different conditions on ¢ , and in particular for Vapnik-
Cervonenkis classes.

Remark 2.1. When P is uniform we have Gp([0,t]) =Y,, 0 <t < 1, where Y, is the
Brownian bridge. We will use Gp (t) to denote Gp ([0, t]).

Remark 2.2. Instead of the usual linear ordering of the parameter sets A the collection

€k is constructed by a treelike partial ordering. See Dudley (1984): Let €< 2X
satisfy S(€) =1 and ® € €. Then the partial ordering of € by inclusion is tree-
like.
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We note that a partial order ( €,<) is called linear if for all A,B € €, either AS B
or BSA. A partial order will be called treelike iff for all B< € and
L(B): = {A: A < B}, the restriction of < to L (B) is linear.

In the treelike p.o. ( €y, <) we may successfully compare events for which t € A; and
t; e Ay, i=1,..,k— 1 but events for which t; € A; and tje A; for i #j# 1 are not

comparable for inclusion.

Remark 2.3. If A ad B are disjoint measurable sets then

Gp(A UB)=Gp(A) + Gp(B) a.s. since the variance of
Gp(A UB)-Gp(A) -Gp(B) =0. Thus, if X = A, for disjoint A; we have the
isk

linear relationship Gp (X) = Z]:‘ Gp(A) =0.
1<

In the subsequent analysis, we will require several well-known [Doob (1965,
1949)] facts about the Brownian bridge. One such result is given here. We omit the
straightforward proof.

Lemma 2.4. Let Y, denote the Brownian bridge, 0 s s <t < 1.
Then Pr(sup Y, > M|Y,=y) =exp(-2M (M - y)/t) where M 2 max (0, y).

Ossst
We now state our first theorem.
Theorem 2.5. Let (X, «,P) be a probability space, P Lebesgue measure, X =[0,1]
and @)y the collection { €;,i=0,...,k-1}. Thenas M — oo,

Pr{ sup Gp(A) > M} is less than or asymptotic to
AGU @i

(k - 1)e M,
Proof. The proof of theorem 2.5 is done in two stages. First we determine an upper

bound for Pr{supGp(A) > M} when A e €¥,; then we determine the form of the
asymptotic distribution. For the class €, we have X =) A, and assign probabilities

to the disjoint A; as follows: =

(2.2) PA)=p;j=1,...,kwherep; <2

and assume P(Al U Aj) > 2 for each j > 1. In terms of the parameters t we have
PL=tL,Pj=t-t4,j> 1

Define events
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B;: = [Sl}ng([O,t]) >M}, 1<sicsk
te

We will indicate a method for obtaining bounds for Pr(B;) over the collection €,
by considering the following inequality.

(2.3) Pr( sup Gp([0,t]) > M)
te\ A
2.4) = Pr(UB) s Pr(B) + Z Pr(B;\By).
i j>

Now let Z,: =Gp([0,t]). When te A;, we have Z, =Y, when Y, denotes the
Brownian bridge.

We wish to find the distribution of the supremum of the Brownian bridge indexed
by the parameter sets A;. We begin by computing the distribution on the set A;.
Later we will consider the general case.

Now
25) Pr(Bp = Pr(Y,>M)
+Pr(supY,>Mforte [0,t))and Y, <M).

The probability given in the first term is simply the tail distribution of the Brownian
bridge with EY, =0 and variance o =t;(1 —t;). To evaluate the second term we

integrate the conditional probability Pr(sup Y, > M|Y, =y) with respect to the distri-

Ost<ty
bution of Y,. Using Lemma 2.4 and after some calculation the expression in (2.5)

reduces to
(2.6) Pr(B,) = K(M/o}) +exp -2MHK [M(A - 2t))/ 011
where K(A) = 1 — ®(A), and @ is the standard normal distribution function.

Next, to evaluate the second term in the inequality given by (2.4) we start with
2.7 Pr(B;\B,) = Pr[sxszt>M]—Pr[512)Zt>M].
te j teAy

Define v; =t + t; — t, ;. Note that v; > 4. We consider the first probability in (2.7)
2.8) Write Pr[s%pZ,> M] = Pr[ sup Y,>M]
teC;

IG[O,Vj]

= Pr[Y, >M]+Pr[ sup Y,>MandY, <M].
] tGIO,Vj] !

= Prl+Pl'2

The distribution for ij has the same form as in (2.6) with t; replaced by V; and vari-
ance szz =V;(1 —v;). The case for the parameter v; can be found using analysis
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similar to that used in computing (2.6). Therefore, we find that
Pl’l = K(M/O'J), and

M
2MM-y)/v; 1 -y2/(267)

Pr, = e ) e s\

2 _‘L ‘[2760’1 y

and after combining the exponential terms and completing the square this integral
reduces to

= M1 -K[MQv; - 1)/g;]]
where v; > Y.

The inequality (2.5) may be evaluated by substituting (2.5), (2.8) and rearranging the
terms to yield the upper bound:

k
(29) Pr(UB)< }:iexp(—zmz) +K[M/o;] + _ZI[K[M/GJ-] -K[M/g;]]
i = »
+exp(2MHK[M (1 - 2t) /6, ]
- }:lexp(-zMZ)[K[M(zvj -1)/c;1 +K[M(1 -2t)/0y1]
P>

= (D + D) + (D) + (IV) = (V).

We complete the proof by finding the dominant terms in the asymptotic expression for
(29) as M — oo,
In (I) + (IOI) let
Y: = QoH1-2, j=1.k
Choosing Y = min(y;, . . . , %) > 0 will condense the notation.
The Mills’ ratio expansion for the tail-end area K(-) gives

Mm+dn=0 (ﬁ exp(—(2 + y)Mz)). Computing along the same lines we obtain for

(1-2t)?%/6f if m=1

O, =
m Qv;-1?/6} if m=j>1

that

(V) = Ol <= exp(-2 + §)MY)]

k
and (V) =O[Z — exp(~(2 + HMD)].
=1 M
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The appropriate substitutions allow us to conclude that
Pr{uB;] s (k- 1)exp (-2M?) + O[ -I:I— exp(—(2 + HM?)] where
8:=min(y,8;, ..., 8) >0. This inequality yields the desired result. O

We consider now the remaining result of this paper.
Theorem 2.6. Let (X,.«,P) be a probability space, P Lebesgue measure, X =[0,1]
and € =( €;;1i=0,...,k-1}. Thenas M — oo,

Pr{ sup Gp(A)>M]~ (k- 1)e M’
AEUC,'

Proof. To prove theorem 2.6 we make the assumption used in the computation of the
upperbound namely, P(A;) < 2 and P(A; U Aj) > ' for each j > 1. We will deter-
mine a lower bound for (2.3) by using the inequality

(2.10) Pr{UB;] 2 ZPr(B) - ZPr(B; N B).
i i<j

For j > 1, we begin our evaluation with
(2.11) Pr(B) 2 Pr(B; U B) - Pr(B)).
In view of (2.8) and (2.6) it is easy to verify that
Pr(B) 2 K[M/o;]+exp(-2M?)[1 -KMQv; - 1)/0)]
-K[M/o;] - exp(2MA)K[M(1 - 2t))/0y], j> 1.

To bound Pr(B; N B;) we refer to the simple case B, N B; and then generalize the
argument to account for arbitrary indices. But first we will require a calculation.
Remark 2.7. In %’=iksJ3 ¢; we assume X = ;{Ai with P(A,) = p,, where p; < %
and P(A) =(1-py)/2,j=2,3.
If we put Gp(A;) =x, Gp(A;) =y we have the constraint x +y +z=0 so that
z=-x-y. Now the joint distribution function of (x,y) is bivariate normal with den-
sity function f(x,y) and covariance ny =P(A; NAy) - P(A)P(Ay). One easily cal-
culates Zy=-p1(1-py/2 for X#Y, e =p1(1 =py) and
Ty = A-pp+pp/4

To bound Pr (B, N B3) we will consider

Pr(supGp () > M, supGp (9 > M].
3

teA, te

We will make use of the conditional distributions to obtain a bound for this expres-
sion. Now from Lemma 2.4 we have
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Pr[zt?Gp(t) > M|Gp(A)) =x,Gp(Ay) =]
2
exp(-2M-x)M-x-Yy)/(t-t)ifx+y<Mand x <M.
=u ifx+y2Morx =M.
The formula for Aj can be obtained similarly. Thus,
(2.12) Pr[s%;Gp(t) >M, S?Gp(t) > M]
teAy teAy

= ”Pr[ﬂacp(t) >M|Gp(A;) = x, Gp(A) = y]
+ PrlsupGp(t) > M|Gp(A) = x, Gp(Ag) = z] f(x,y) dxdy

which in accordance with Lemma 2.4 becomes

= Ij(llx-f-szorsz}
+ 1{x+y<M and x<M) €XP(2(M = X)(M = x — y)/ (13 - 1;)))

X (1{-sz or x2M}
+ 1{_ycM and x<M) €XP (2 (M = x) M + )/ (t3 = 1)) f (x, y) dxdy.
To obtain an explicit formula for (2.12) we expand the product in the integrand
and transform the integrals to standard bivariate normal form. It is a simple but tedi-
ous calculation (which will be omitted here) to then show that computation of the

asymptotic bounds may be condensed and each exponential term is of the form
exp (-2 + §)M?), §, = §;(p,) > O with p, < . Therefore,

Pr[tsel:ng(t) >M, lSEl}\I:GP(t) > M]
= F,+F, +F; + F, + F5 - Fq,
where
F, = exp(-Q+8)M?» i=1,...,6
with 8, = (2p; - D?[2p;(1 - py 17},
8 = 22 -3p)* [ +9p) (1 - pI7,
83 = 2(9pf - 8py + 3)[(1 +9py (1 - ppI7,

[2p; (1 - pl)]‘l — 2 when p; € (Y, %)
B = 12(3-8p)/(1+8p) when p; < (0,%]
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8 = 2(1 -pp/(1 +pp
and 86 = 85.
Let 3: = min(3,,3,, . . ., 8). then (2.12) < OJexp(~(2 + 5)M?), § > 0. This inequal-
ity provides an upper bound for Pr(B, N Bj).

To compute a bound for Pr(B; N B;) we will use a new description of the intervals
in €, Let %, be the class obtained by reordering the subintervals of X as follows.
W.lo.g. assume k is odd. Reparametrize the sets Ay, A, . . . , Ay, for k odd, so that
O0<tj <t <ty<tu <ty <ty and 0<t) <t3<ts<tyn ; <tym <t Then the
sets Aj, Ay,... form one branch of the treelike ordering and the sets As, As,... form the
other branch.

Insert Diagram 1

Thus the event B, N B; occurs on - ¥, and ¥, with equal probability.
Hence (2.13)
Pr(B, N B3) < Pr((B,u - UB 1 )N(B3U -+ UB)))
for which this intersection probability can be written
Pr(BU -+ UB_ ) +Pr(Bsu - - UB))
-Pr(B,UuB3;U:---UB_;UB).

To generalize our argument to include the case of pairwise intersections of the
events B; and B;, i # j we note the restrictions on i and j occur in (k;l) ways. There-
fore, Pr(UB) 2 (k - D - (O fexp -2 + HMH] 5> 0,
or passing to the limit as M — oo

Pr(UB) ~ (k - 1)eM*

which completes the proof of this theorem. O
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