Optimal Stopping of Two-parameter Processes on Nonstandard Probability Spaces ${ }^{\left({ }^{*}\right)}$

By
Robert C. Dalang

Technical Report No. 126
December 1987
(revised June 1988)
${ }^{(*)}$ This research was accomplished while the author was completing his doctoral dissertation at the Ecole Polytechnique Fédérale de Lausanne, Switzerland

Department of Statistics
University of California
Berkeley, California

Optimal Stopping of Two-parameter Processes on Nonstandard Probability Spaces $\left.{ }^{(}{ }^{*}\right)$

By
Robert C. Dalang
Department of Statistics
University of California
Berkeley, CA 94720

${ }^{(*)}$ This research was accomplished while the author was completing his doctoral dissertation at the Ecole Polytechnique Fédérale de Lausanne, Switzerland

Abstract

We prove the existence of optimal stopping points for upper semicontinuous two-parameter processes defined on filtered nonstandard (Loeb) probability spaces that satisfy a classical conditional independence hypothesis. The proof is obtained via a lifting theorem for elements of the convex set of randomized stopping points, which shows in particular that extremal elements of this set are ordinary stopping points.

AMS 1985 Subject Classification: 60G40, 60G57, 60G07.

1. Introduction.

The optimal stopping problem for two-parameter processes has been the object of much research in recent years, starting with the fundamental paper [CG] of Cairoli and Gabriel. The discrete time version of the problem was then solved with increasing generality by Mandelbaum and Vanderbei [MV], Krengel and Sucheston [KS] and Mazziotto and Szpirglas [MS]. Several papers concerning the continuous time version of this problem have also appeared: Mazziotto [Ma] shows the existence of optimal stopping points for bi-Markov processes, and similar results are stated in [Mi] and [MM] for general two-parameter processes. However, the proofs contained in these two papers are not complete, and the question of existence of optimal stopping points for general two-parameter processes in continuous time is to be regarded as open (see Remark 7.4). However, in this paper, we shall prove the existence of optimal stopping points for upper semicontinuous two-parameter processes defined on a nonstandard (Loeb) probability space that satisfies the commutation property F4 of Cairoli and Walsh [CW].

The approach in this paper was motivated by the following considerations.

- The discrete time optimal stopping problem was well understood, but no continuous time extension had been obtained. In particular, no discretization argument seems feasible.
- Nonstandard probability theory, as developed by Loeb [L], Anderson [A], Keisler [K] and Hoover and Perkins [HP] provides a powerful tool for extending discrete case results to continuous time.

It thus seemed natural to study the optimal stopping problem via these methods, which have so far been little used in the general theory of two-parameter processes (the only case we are aware of is [MMe]).

Our main tool in this study of the optimal stopping problem is the notion of randomization. The convex compact set of randomized stopping times was first introduced in continuous time by Baxter and Chacon [BC], and used in the context of the single-parameter optimal stopping problem by Ghoussoub [G]: the property that makes this set useful is that extremal elements of the set of randomized stopping times are exactly ordinary stopping times. Now when trying to follow a similar procedure for two-parameter processes, one is hindered by the fact that the set $\underline{\underline{U}}$ of randomized stopping points generally contains extremal elements which are not stopping points: a simple example is provided in [MM]. This fact turns out to be a consequence of the complex combinatorial structure of two-parameter filtrations (see [DTW]), and led Millet [Mi] and Mazziotto and Millet [MM] to try different randomizations.

As a matter of fact, the set of extremal elements of $\underline{\underline{U}}$ seems to remain the set $\underline{=}$ of stopping points when the two-parameter filtration satisfies certain classical conditions, such as Hypothesis CQI of Krengel and Sucheston [KS] or Hypothesis F4 of Cairoli and Walsh [CW]. This was proved on finite probability spaces in [DTW] and on arbitrary complete probability spaces but in discrete time in [D2].

The main result of this paper is that the property $\underline{\underline{T}}=$ ext $\underline{\underline{U}}$ is again valid in continuous time, provided the underlying probability space is a nonstandard (Loeb) space. Existence of optimal stopping points for upper semicontinuous two-parameter processes is then obtained using a generalization of the regularity result for functionals of randomized stopping points obtained in [D1].

The use of nonstandard probability theory seems particularly natural due to the following: the discrete time proof that $\underline{\underline{T}}=\operatorname{ext} \underline{\underline{U}}$ contained in [D2] relies on the construction of a particular optional increasing path $\left(Z_{n}\right)_{n \in \mathbf{N}}$ by a step by step procedure. In continuous time, one would imagine that a path $\left(Z_{u}\right)_{u \in \mathbf{R}_{+}}$with similar properties could be defined as the solution of a (random) differential equation of the form

$$
\begin{equation*}
\frac{d Z_{u}}{d u}(\omega)=f\left(u,\left(Z_{v}\right)_{v \leq u}, \omega\right) \tag{}
\end{equation*}
$$

However, no regularity is to be expected from the function $f(\cdot, \cdot, \omega)$. Now certain stochastic differential equations with insufficiently regular coefficients are known not to have any (strong) solution (see Barlow [Ba]), and so it is improbable that (*) would have a solution in any useful sense. On the other hand, Keisler [K1] (Theorems 5.2 and 5.5) has shown under minimal regularity assumptions that stochastic differential equations have a (strong) solution when the probability space is hyperfinite, hence the use of these spaces in this paper. We feel that nonstandard probability theory may lead to solutions to several other problems in the theory of two-parameter processes, particularly in instances where the discrete case is solved, but the continuous time extension via classical methods does not seem to succeed.

2. The set of randomized stopping points.

Throughout this paper, we will primarily be concerned with stochastic processes indexed by $\mathbb{N}, \mathbf{D}_{\mathrm{n}}$ or \mathbf{R}_{+}(single-parameter processes) or $\mathbb{N}^{2}, \mathbf{D}_{\mathrm{n}}^{2}$ or \mathbf{R}_{+}^{2} (twoparameter processes). Here \mathbb{D}_{n} denotes the set of dyadic real numbers of order n . In the continuous case, we will often replace \mathbb{R}_{+}by $[0,1]$.

The letter I (respectively I^{2}) will denote a single-parameter (respectively twoparameter) index set. The set I is equipped with the usual total order, denoted \leq, whereas on I^{2} it is natural to consider the two orders \leq and $\underline{\wedge}$ defined by

$$
\begin{aligned}
& s=\left(s_{1}, s_{2}\right) \leq t=\left(t_{1}, t_{2}\right) \Longleftrightarrow s_{1} \leq t_{1} \text { and } s_{2} \leq t_{2} \\
& s=\left(s_{1}, s_{2}\right) \leq t=\left(t_{1}, t_{2}\right) \Longleftrightarrow s_{1} \leq t_{1} \text { and } s_{2} \geq t_{2}
\end{aligned}
$$

We will use the notation $s<t$ to express that $s \leq t$ and $s \neq t$, whereas $s \wedge t$ will mean $s \underline{t}$ and $s \neq t$, and $s \ll t$ will mean $s_{1}<t_{1}$ and $s_{2}<t_{2}$. Several kinds of intervals can be defined on $\left.\left.I^{2}:[s, t]=\left\{u \in I^{2}: s \leq u \leq t\right\},\right] s, t\right]=\left\{u \in I^{2}: s \ll u<t\right\}$ and so forth. In order to avoid introducing special symbols, we will set $] s, t]=\left\{u \in I^{2}: s<u \leq t\right\}$ when $s \leq t$ but $s_{1}=t_{1}$ or $s_{2}=t_{2}$.

In several instances, we will use the lexicographic (total) order \leq_{1} on I^{2} :

$$
s \leq_{1} t \Longleftrightarrow\left(s_{1}<t_{1} \text { or }\left(s_{1}=t_{1} \text { and } s_{2} \leq t_{2}\right)\right)
$$

The notation $\mathrm{s}<_{1} \mathrm{t}$ will mean $\mathrm{s} \leq_{1} \mathrm{t}$ and $\mathrm{s} \neq \mathrm{t}$.
We will often add to I or I^{2} an extra element, denoted in both cases ∞, and will set $\overline{\mathrm{I}}=\mathrm{I} \cup\{\infty\}, \overline{\mathrm{I}}^{2}=\mathrm{I}^{2} \cup\{\infty\}$. These sets will be equipped with their usual metric topologies, making them compact. We will also suppose that $t \leq \infty$, for all t, in either I or I^{2}. The notations $\underset{=}{\mathrm{B}}(\mathrm{I}), \underset{=}{\mathrm{B}}(\overline{\mathrm{I}}), \underset{=}{\mathrm{B}}\left(\mathrm{I}^{2}\right), \underset{=}{\mathrm{B}}\left(\overline{\mathrm{I}}^{2}\right)$ will denote in each case the Borel σ algebra of the index set.

Let $(\Omega, \underset{=}{\mathrm{F}}, \mathrm{P})$ be a (complete) probability space. A two-parameter filtration is a family $(\underset{=}{F})_{t \in \mathcal{I}^{2}}$ of sub- σ-algebras of $\underset{=}{F}$ with the following properties:

F1. $\underline{\underline{F}}_{0,0}$ contains all P-null sets;
F2. $\mathrm{s} \leq \mathrm{t} \Rightarrow \underline{\underline{F}}_{\mathrm{s}} \subset \underset{\underline{\mathrm{F}}}{\mathrm{t}}$;
F3. When $I=[0,1], \underline{F}_{s}=\bigcap_{t \in] s,(1,1)]} F_{t}, V s \in I^{2}$.
These properties are termed the "usual conditions" ([DM] , IV. 48).
Many results in the theory of two-parameter processes require a supplementary hypothesis on the two-parameter filtration, usually Hypothesis F4 of Cairoli and Walsh [CW]:

F4. If $s, t, u \in I^{2}$ are such that $s \underline{t}$ and $u=\left(s_{1}, t_{2}\right)$, then $\underline{\underline{F}}_{s}$ is conditionally independent of $\underset{=}{F_{t}}$ given $\underset{\underline{F}}{ }$.

This condition restricts the combinatorial complexity of the filtration (see [DTW; Theorems 3.6, 5.8 and 5.9]).

Associated with a two-parameter filtration is a set $\underline{\underline{T}}$ of stopping points: a random variable $T: \Omega \rightarrow \overline{\mathrm{I}}^{2}$ is a stopping point provided $\{\mathrm{T} \leq \mathrm{t}\} \in \underset{\mathrm{F}}{\mathrm{F}}, \mathrm{Vt} \in \mathrm{I}^{2}$.

Given a measurable process $\mathrm{X}=\left(\mathrm{X}_{\mathrm{t}}\right)_{\mathrm{t} \in \mathrm{I}^{2}}$, the optimal stopping problem is to determine a stopping point T_{0} such that

$$
E\left(\mathbf{X}_{\mathrm{T}_{0}}\right)=\sup _{\mathrm{T} \in \underline{\underline{T}}} E\left(\mathbf{X}_{\mathrm{T}}\right) ;
$$

T_{0} is then called optimal. We shall prove that optimal stopping points do exist on nonstandard filtered Loeb probability spaces that satisfy Hypothesis F4, under suitable regularity assumptions on the reward process X. This process may or may not be

The problem of existence of optimal stopping points reduces to the following: consider the map $\phi: \underline{\underline{T}} \rightarrow \mathbf{R}$ defined by $\mathrm{T} \mapsto \phi(\mathrm{T})=\mathrm{E}\left(\mathrm{X}_{\mathrm{T}}\right)$, and show that this map attains its maximum on $\underset{=}{T}$. It is thus natural to embed $\underline{\underline{T}}$ into some larger "randomized'" set $\underset{\underline{U}}{ }$ with certain convexity and compactness properties and on which ϕ can be extended to a function with sufficient regularity that a maximum over $\underline{\underline{U}}$ will exist. The choice of randomization should be such that one can then recover a maximum in T.

The regularity question for upper-semicontinuous processes will be solved by a generalization of the result of [D1]. Furthermore, a natural way to randomize is to take the convex closure of $\underline{\underline{T}}$ in an appropriate sense. This leads to the set of randomized stopping points, introduced by Baxter and Chacon [BC] in the single-parameter setting. The presentation of the set by Meyer [Me] and Ghoussoub [G] will be the most convenient for our purposes.

A randomized stopping point is a random probability measure $\mu(\omega, B), \omega \in \Omega$, $B \in \underset{=}{B}\left(\overline{\mathrm{I}}^{2}\right)$ such that $\mu(\cdot,[0, t])$ is $\underset{=}{\mathrm{F}_{t}}$-measurable, for all t. Each stopping point T identifies with the randomized stopping point μ_{T} defined by

$$
\mu_{T}(\omega, \mathrm{~B})=\mathrm{I}_{\{\mathrm{T} \in \mathrm{~B}\}}(\omega), \omega \in \Omega, \mathrm{B} \in \underset{\underline{\mathrm{~B}}}{ }\left(\overline{\mathrm{I}}^{2}\right),
$$

so $\underline{\underline{T}}$ is "contained" in $\underline{\underline{U}}$.
Let $\underset{\underline{C}}{ }$ denote the set of continuous real-valued processes $\left(X_{)_{t \in}} \mathrm{I}^{2}\right.$ such that $E\left(\sup _{t \in I^{2}}\left|X_{t}\right|\right)<+\infty$. C equipped with the norm $\|X\|=E\left(\sup _{t \in I^{2}}\left|X_{t}\right|\right)$ is a Banach space. It is well-known that $\underset{\underline{U}}{ }$ is a subset of the unit ball in the dual \underline{C}^{*} of $\underline{\underline{C}}$ that is compact in the weak topology $\sigma\left(\underline{\underline{C}}^{*}, \underline{\underline{C}}\right)$ (see [Me], [G]).

Furthermore, for $\left(\mathbf{X}_{\mathcal{V}_{t \in I^{2}} \in \underline{\underline{C}}}^{\underline{\underline{C}}}\right.$, the map $\Phi: \underline{\underline{U}} \rightarrow \mathbf{R}$ defined by

$$
\Phi(\mu)=E\left(\int_{\mathrm{I}^{2}} \mathrm{X}_{\mathrm{t}}(\cdot) \mu(\cdot, \mathrm{dt})\right)
$$

is continuous on $\underline{\underline{U}}$ and is an extension of $T \mapsto E\left(X_{T}\right)$. Hence, the existence of an optimal randomized stopping point is clear in this case. Now since Φ is affine and $\underline{\underline{U}}$ is convex, Φ attains its maximum at an extremal element of $\underline{\underline{U}}$. Thus we will have shown the existence of an optimal stopping point provided $\underline{\underline{T}}=$ ext $\underline{\underline{U}}$. This method was in fact used by Ghoussoub [G] for continuous single-parameter processes.

Now for two-parameter processes, it is clear that $T \subset$ ext \mathbb{U}, but as mentioned in the introduction, the converse inclusion is false in general. Our purpose here is to show that the property $\underset{\underline{T}}{ }=\operatorname{ext} \underline{\underline{U}}$ also holds in continuous time when Ω is a nonstandard (Loeb) space and the two-parameter filtration satisfies Hypothesis F4.

To see why this extension is feasible, let us first look at the set $\underline{\underline{U}}$ when $\mathrm{I}=\mathbb{N}$. In this case, a randomized stopping point can be identified with a positive weight process $\left(a_{\nu^{\prime}} \overline{\mathbb{N}}^{2}\right.$ defined by $a_{t}(\omega)=\mu(\omega,\{t\})$ (i.e. a_{t} is the random weight of t for μ). This weight process satisfies the following conditions:
(2.1) $a_{t} \geq 0$ a.s.,
(2.2) a_{t} is ${\underset{\underline{F}}{t}}$-measurable, $\mathrm{Vt} \in \mathbb{N}^{2}$,
(2.3) $\sum_{t \in \mathbf{N}^{2}} a_{t}=1$ a.s.

These three properties characterize weight processes that correspond to randomized stopping points. The weights $\left(a_{t}\right)_{t \in \overline{\mathbf{N}}^{2}}$ are very convenient to work with, and this was exploited in [D2]. Now when $\mathrm{I}=\mathbf{R}_{+}^{2}$, a randomized stopping point can only be identified with a right-continuous non-negative adapted process $\left(A_{t}\right)_{t \in \mathbb{R}_{+}^{2}}$ such that $\mathrm{A}_{\infty}=1$ a.s. and $\Delta_{\mathrm{j}, \mathrm{t}]} \mathrm{A} \geq 0$ a.s., where

$$
\begin{array}{ll}
\Delta_{l s, t]} A=A_{t}-A_{\left(s_{1}, t_{2}\right)}-A_{\left(t_{1}, s_{2}\right)}+A_{s} & \text { if } s \ll t \\
\Delta_{l s, t]} A=A_{t}-A_{s} & \text { if } s \leq t \text { and } s_{1}=t_{1} \text { or } s_{2}=t_{2}
\end{array}
$$

The main idea of this paper will be to "lift" a continuous time randomized stopping point to an (internal) weight process indexed by a hyperfinite set (the terminology from non-standard probability theory will be recalled in Section 3). This weight process can then be manipulated as in the discrete case. Of course this procedure can only be carried out on a Loeb space and as mentioned in the introduction, it is not
clear that a discretisation on a standard space can lead to a continuous time solution to the question of equality of $\underline{\underline{T}}$ and ext $\underline{\underline{U}}$. A corollary of this study will be a proof of the existence of optimal stopping points in continuous time.

Before introducing the nonstandard framework we will be working in, we recall the discrete case result of [D2]. For this, we need the notion of optional increasing path ([W]).
2.1. Definition. A family $Z=\left(Z_{u}\right)_{u \in I}$ of stopping points is an optional increasing path (o.i.p.) provided $Z_{0} \equiv(0,0)$ a.s., $u \leq v \Rightarrow Z_{u} \leq Z_{v}$ a.s., and $\left|Z_{u}\right|=u$ a.s., $V u \in \bar{I}$ (for $t=\left(t_{1}, t_{2}\right),|t|$ denotes the sum $t_{1}+t_{2}$). If $I=D_{n}$, we impose the supplementary condition $\mathrm{Z}_{\mathrm{u}+2^{-\mathrm{a}}}$ is $\mathrm{F}_{\mathrm{Z}_{\mathrm{a}}}$-measurable, $\mathrm{Vu} \in \mathbf{D}_{\mathrm{n}}$ (these o.i.p.'s are often called tactics: see [MV]).

Though the theorem below was proved under the weaker hypothesis CQI of Krengel and Sucheston [KS], we only need it for filtrations that satisfy Hypothesis F4.
2.2. Theorem. Let $(\Omega, \underset{=}{\mathrm{F}}, \mathrm{P})$ be a (complete) probability space, and $(\underset{\underline{E}}{ })_{t \in \mathbb{N}^{2}}$ be a twoparameter filtration satisfying Hypothesis F4. Then:
(a) all extremal elements of the set of randomized stopping points are stopping points;
(b) furthermore, for any randomized stopping point $\left(a_{t}\right)_{t \in \mathbf{N}^{2}} \in \underline{\underline{U}}$, there are $\left(a_{t}\right)_{t \in \mathbf{N}^{2}}$,

(b1) $a_{t}=\frac{1}{2} a_{t}^{1}+\frac{1}{2} a_{t}^{2}$ a.s., $V t \in \overline{\mathbb{N}}^{2}$;
(b2) for almost all $\omega \in \Omega$,

$$
\begin{aligned}
& t \wedge Z_{|t|}(\omega) \Rightarrow a_{t}^{1}(\omega)=2 a_{t}(\omega), a_{t}^{2}(\omega)=0 \\
& Z_{t \mid}(\omega) \wedge t \Rightarrow a_{t}^{1}(\omega)=0 \quad, a_{t}^{2}(\omega)=2 a_{t}(\omega)
\end{aligned}
$$

(for a proof, see [D2; (4.22) and Theorem 4.23]).

In order to apply the Transfer Principle of Nonstandard Analysis (see 3.3), we shall only need this result for index sets I^{2} of the form $\left\{\mathrm{s} \in \mathbb{N}^{2}: s \leq(n, n)\right\}$, for some $\mathrm{n} \in \mathbb{N}$.

3. Preliminaries from nonstandard probability theory.

The nonstandard framework will be that of Keisler [K]: we work in an $\omega_{1^{-}}$ saturated enlargement $V\left({ }^{*} S\right)$ of a superstructure $V(S)$, where $S \supset \mathbf{R}$. The reader interested in familiarizing himself with the basics of non-standard analysis should consult [HL]. The non-standard theory of single-parameter stochastic processes is contained in [SB], and we follow their notation. In the hyperfinite setting, a comprehensive presentation with applications is given in [AFHL].
(3.1) Internal functions will generally be written \tilde{f}, \tilde{g}.
(3.2) The standard part of a finite element $\mathrm{r} \in{ }^{*} \mathbf{R}$ is denoted $s t(r)$. When $\mathrm{x}, \mathrm{y} \in{ }^{*} \mathbf{R}$ are such that $|x-y|<1 / n, V n \in \mathbb{N}$, we write $x \approx y$. If $s, t \in{ }^{*} R^{2}, s \approx t$ means $s_{1} \approx t_{1}$ and $\mathrm{s}_{2} \approx \mathrm{t}_{2}$.
(3.3) Transfer Principle: Let $S_{1}, \ldots, S_{n} \in V(S)$. Any elementary statement which is true of S_{1}, \ldots, S_{n} is true of ${ }^{*} S_{1}, \ldots,{ }^{*} S_{n}$.
(3.4) Countable Comprehension Principle: Let X be an internal set, and $\left(x_{n}\right)_{n \in N}$ be a sequence of elements of X. Then there exists an internal sequence $\left(y_{n}\right)_{n \epsilon} * N$ of elements of X such that $y_{n}=x_{n}, V n \in \mathbb{N}$.
(3.5) We fix $n_{0} \in{ }^{*} \mathbb{N} \backslash \mathbb{N}$, and set $L=n_{0}!, \Delta u=1 / L$. T denotes the internal set $\{0, \Delta u, 2 \Delta u, \ldots, 1\}$. Since L is an infinite factorial, \mathbf{T} contains $\mathbf{Q} \cap[0,1]$.
(3.6) If $(\Omega, \underset{=}{A}, \bar{P})$ is an internal probability space, $(\Omega, L(\underset{=}{\mathrm{A}}), \mathrm{P})$ denotes the corresponding Loeb space, that is $L(\underset{=}{\mathrm{A}})$ is the (external) σ-algebra generated by $\underset{=}{\mathrm{A}}$, and P is the unique σ-additive extension of $s t(\overline{\mathrm{P}})$ to $\mathrm{L}(\underset{=}{\mathrm{A}})$ [HP; Sect. 3].
(3.7) An internal two-parameter filtration will be an internal family $\left({ }_{=}^{\mathrm{A}_{t}}\right)_{t \in \mathbf{T}^{2}}$ of internal *-sub- σ-algebras of $\underset{=}{\mathrm{A}}$, such that

$$
\mathrm{s} \leq \mathrm{t}, \mathrm{~s}, \mathrm{t} \in \mathbf{T}^{2} \Rightarrow{\underset{\underline{\mathrm{~A}}}{\mathrm{~s}}}^{\sim} \underset{\underline{\mathrm{A}_{t}}}{ } .
$$

This filtration is complete provided any internal subset N of an internal set $M \in \underset{=}{A}$ with $\overline{\mathrm{P}}(\mathrm{M})=0$ belongs to ${\underset{\underline{A}}{0,0}}$. The standard part of $\left({\underset{\underline{A}}{t}}^{)_{t \in}} \mathrm{~T}^{2}\right.$ is the (ordinary) filtration
$\left(\underline{F}_{\left.V_{t \in[0,1}\right]^{2}}\right.$ defined by

$$
\underline{F}_{t}=\left(\underset{s t}{ } \bigcap_{(s)>t} \sigma\left(\underset{=}{A_{s}}\right)\right) \vee \underset{=}{N}, t \in[0,1]^{2},
$$

where $\underset{=}{N}$ denotes the family of null sets of P. It is easy to see that properties F1, F2 and F3 are satisfied.
(3.8) The family $\left(\mathrm{A}_{\mathrm{t}}\right)_{t \in \mathrm{~T}^{2}}$ satisfies Hypothesis $\overline{\mathrm{F} 4}$ provided $\mathrm{s}, \mathrm{t}, \mathrm{u} \in \mathbf{T}^{2}$, $\mathbf{s} \underline{\wedge} \mathrm{t}, \mathrm{u}=\left(\mathrm{s}_{1}, \mathrm{t}_{2}\right), \mathrm{B} \in{\underset{\underline{A}}{\mathrm{~A}}}^{\mathrm{A}}$, and $\mathrm{C} \in \underset{\underline{A_{t}}}{ }$ imply

$$
\overline{\mathrm{P}}\left(\mathrm{~B} \cap \mathrm{C} \mid \underline{\underline{A}}_{u}\right)=\overline{\mathrm{P}}\left(\mathrm{~B} \mid{\underset{\underline{\underline{A}}}{u}}^{\mathrm{A}_{\mathrm{P}}}\right) \overline{\mathrm{P}}(\mathrm{C} \mid{\underset{\underline{A}}{\mathbf{A}}}) .
$$

(3.9) A lifting of a random variable X defined on $(\Omega, \mathrm{L}(\mathrm{A}), \mathrm{P})$ is an internal function $\tilde{\mathbf{X}}: \Omega \rightarrow^{*} \mathbf{R}$ which is $\underset{\underline{A}}{\text { A-measurable (i.e. constant on atoms of }} \underset{=}{\mathbf{A}}$), and such that $X=s t(\tilde{X}) P$-a.s.

Throughout this paper, we will work on a fixed filtered Loeb space $\left(\Omega, \underline{\underline{F}}=\mathrm{L}(\underset{=}{\mathrm{A}}), \mathrm{P},(\underline{\underline{F}})_{t \in[0,1]^{2}}\right)$, where P is the Loeb measure associated with an internal probability measure on $\underset{=}{A}$, and $\left(\underset{\underline{F}}{\mathrm{~F}_{\mathrm{t} \in}} \mathrm{l}_{[0,1]^{2}}\right.$ is the standard part of an internal (complete) filtration $(\underset{=}{A})_{t \in T^{2}}$.
3.1. Lemma. Fix $t \in[0,1]^{2}$. A random variable X is ${\underset{\underline{F}}{t}}^{t}$-measurable provided X has a lifting \tilde{X} which satisfies the following condition:

The proof of this lemma is omitted, as it is similar to the single-parameter case (see [HP; Theorem 3.2])
3.2. Lemma. Let X be a bounded random variable, and \tilde{X} a bounded lifting of X. Fix $t \in[0,1]^{2}$. Then there is $u \approx t, u \in \mathbf{T}^{2}$ (depending on X) such that for $s \geq u$, $s \approx t, \bar{E}\left(\tilde{X} \mid{\underset{\underline{A}}{s}}^{s}\right)$ is a lifting of $E(X \mid \underline{\underline{F}})$.

Proof. By [HP; Lemma 3.3],

$$
\operatorname{st}\left(\overline{\mathrm{E}}\left(\tilde{\mathrm{X}} \mid \underline{\underline{A}}_{s}\right)\right)=\mathrm{E}\left(\mathrm{X} \mid \mathrm{L}\left(\underline{\underline{A}}_{s}\right)\right) \text { a.s., } \mathrm{Vs} \in \mathbf{T}^{2}
$$

Hence it is only necessary to prove that for some $u \in \mathbf{T}^{2}, u \approx t$,

$$
\mathbf{s} \in \mathbf{T}^{2}, \mathbf{s} \geq \mathbf{u}, \mathbf{s} \approx \mathbf{t} \Rightarrow \mathrm{E}\left(\mathrm{X} \mid \mathrm{L}\left({\underset{\underline{\mathrm{~A}}}{s}}^{s}\right)\right)=\mathrm{E}(\mathrm{X} \mid \underline{\underline{F}}) \text { a.s. }
$$

The proof of this statement is the straightforward two-parameter extension of the Remark following Lemma 8.4 in [Ke].
3.3. Proposition. Suppose $\left(A_{\nu}\right)_{t \in T^{2}}$ satisfies Hypothesis $\overline{\mathrm{F}}$. Then $\left(\underline{F}_{t}\right)_{t \in[0,1]^{2}}$ satisfies Hypothesis F4.

Proof. Fix $s, t \in[0,1]^{2}$ such that $s \underline{\Delta} t$, and set $u=\left(s_{1}, t_{2}\right)$. Let $B \in \underset{\sim}{F}, C \in \underset{=}{F} r$. By Lemma 3.1, there are $\tilde{\mathbf{s}}, \tilde{t} \in \mathbf{T}^{2}, \tilde{s} \approx \mathrm{~s}, \tilde{t} \approx \mathrm{t}$, and internal sets $\tilde{B} \in \underset{=}{A_{\tilde{s}}}, \tilde{\mathrm{C}} \in \underset{=1}{A_{t}}$ such that $B=\tilde{B}$ a.s. and $C=\tilde{C}$ a.s. Using Lemma 3.2, we get for sufficiently large $\tilde{u} \approx u$, $\tilde{u}^{\prime} \in \mathbf{T}^{2}$:

$$
\begin{aligned}
& P\left(B \cap C \mid \underset{\underline{u}}{F_{u}}\right)=\operatorname{st}\left(\bar{P}\left(\tilde{B} \cap \tilde{C} \mid \underset{\underline{u}}{A_{\tilde{u}}}\right)\right) \\
& =\operatorname{st}\left(\overline{\mathrm{P}}\left(\tilde{\mathrm{~B}} \mid \underset{=\mathbf{u}}{\mathrm{A}_{\tilde{u}}}\right) \overline{\mathrm{P}}\left(\tilde{\mathrm{C}} \mid \underset{\tilde{u}}{\mathrm{~A}_{\tilde{u}}}\right)\right) \\
& =P\left(B \mid \underline{\underline{F}}_{u}\right) P\left(C \mid \underline{\underline{F}}_{u}\right) \text {. }
\end{aligned}
$$

The following proposition provides a canonical example of a filtered hyperfinite probability space which satisfies properties F1-F4.
3.4. Proposition. Let $\Omega=\Omega_{0}^{\mathbf{T}^{2}}$ be the (internal) set of all internal functions from \mathbf{T}^{2} into some hyperfinite set $\Omega_{0}, \underset{=}{A}$ be the algebra of internal sets in Ω, and $\overline{\mathrm{P}}$ the uniform counting measure on $\underset{=}{A}$ (see $[\mathrm{Ke}], \S 1$.). For $t \in \mathbf{T}^{2}$, let $\underset{=}{A_{t}}$ be the algebra of internal sets closed under the equivalence relation \approx_{t} defined by

$$
\omega \approx_{\mathrm{t}} \omega^{\prime} \Longleftrightarrow \omega(\mathrm{s})=\omega^{\prime}(\mathrm{s}), \quad V \mathrm{~s} \leq \mathrm{t}, \quad \mathrm{~s} \in \mathbf{T}^{2}
$$

Then $\left(\Omega, L(\underset{=}{A}), P,\left({\underset{\underline{F}}{t}}^{t}\right)_{t[0,1]^{2}}\right)$ satisfies the properties $F 1, F 2, F 3$ and $F 4$.
Proof. We only check Hypothesis F4. By Proposition 3.3, it is sufficient to check Hypothesis $\overline{F 4}$ for $\left(A_{t}\right)_{t \in T^{2}}$

If A is an internal set, let $|A|$ denote the internal cardinality of A, and let $\rho_{t}(\omega)$ denote the equivalence class of ω for \approx_{t}. Since each element of ${\underset{=}{t}}^{A}$ is a hyperfinite union of disjoint equivalence classes $\rho_{\mathrm{t}}(\omega)$, Hypothesis $\overline{\mathrm{F} 4}$ will hold provided for
$s, t, u \in T^{2}$ such that $s \underline{\wedge} t$ and $u=\left(s_{1}, t_{2}\right)$,

$$
\overline{\mathrm{P}}\left(\rho_{\mathrm{s}}\left(\omega^{\prime}\right) \cap \rho_{\mathrm{t}}\left(\omega^{\prime \prime}\right) \mid \rho_{\mathrm{u}}(\omega)\right)=\overline{\mathrm{P}}\left(\rho_{\mathrm{s}}\left(\omega^{\prime}\right) \mid \rho_{\mathrm{u}}(\omega)\right) \overline{\mathrm{P}}\left(\rho_{\mathrm{s}}\left(\omega^{\prime}\right) \mid \rho_{\mathrm{u}}(\omega)\right)
$$

for all $\omega, \omega^{\prime}, \omega^{\prime \prime} \in \Omega$. Observe that both sides above are zero unless $\omega^{\prime} \approx_{u} \omega \approx_{u} \omega^{\prime \prime}$. In this case, the above equality is equivalent to

$$
\left|\rho_{\mathrm{s}}\left(\omega^{\prime}\right) \cap \rho_{\mathrm{t}}\left(\omega^{\prime}\right)\right|=\left|\rho_{\mathrm{s}}\left(\omega^{\prime}\right)\right|\left|\rho_{\mathrm{t}}\left(\omega^{\prime \prime}\right)\right| /\left|\rho_{\mathrm{u}}(\omega)\right|
$$

Since $\Omega=\Omega \delta^{T^{2}}$, the left-hand side of this equality is equal to

$$
\left|\Omega_{0}\right|^{L^{2}\left(\left(1-s_{2}\right)+\left(1-t_{1}\right) s_{2}+\left(s_{2}-t_{2}\right)\left(t_{1}-s_{1}\right)\right)}=\left|\Omega_{0}\right|^{L^{2}\left(1-s_{1} s_{2}-t_{1} t_{2}+s_{1} t_{2}\right)},
$$

where $L \in * \mathbb{N}$ is defined in (3.5), and the right-hand side is equal to

$$
\left|\Omega_{0}\right|^{L^{2}\left(1-s_{1} s_{2}\right)}\left|\Omega_{0}\right|^{L^{2}\left(1-t_{1} t_{2}\right)} /\left|\Omega_{0}\right|^{L^{2}\left(1-u_{1} u_{2}\right)}
$$

Since $u_{1} u_{2}=s_{1} t_{2}$, these two quantities are equal, completing the proof.

4. The simultaneous lifting theorem.

The first step towards obtaining a lifting theorem for continuous time randomized stopping points is to obtain such a theorem on a finite index set. This is no problem in the single-parameter case, but as will become apparent, it is quite non-trivial in the presence of two parameters.

Throughout the rest of this paper, we make the following assumption.
4.1. Assumption. The internal filtration $\left({\underset{I}{t}}^{\mathrm{t}_{t \in[0,1]^{2}}}\right.$ satisfies Hypothesis $\overline{\mathrm{F} 4}$.
4.2. Simultaneous Lifting Theorem. Fix $n \in \mathbb{N}$, and set $I=\{0,1 / n, 2 / n, \ldots, 1\}$. Let $\left(a_{t}\right)_{t \in I^{2}}$ be a family of real random variables such that

$$
\begin{align*}
& a_{t} \text { is } F_{t} \text {-measurable, } V t \in I^{2}, \tag{4.1}\\
& a_{t} \geq 0 \text { a.s., } V t \in I^{2}, \tag{4.2}\\
& \sum_{t \in I^{2}} a_{t}=1 \text { a.s. } \tag{4.3}
\end{align*}
$$

Then there is a family $\left(\tilde{\mathrm{a}}_{\mathrm{t}}\right)_{\mathrm{t} \in \mathrm{I}^{2}}$ of internal functions from Ω into ${ }^{*} \mathbf{R}$ such that

$$
\begin{equation*}
\operatorname{st}\left(\tilde{a}_{t}\right)=a_{t} \text { a.s. } \tag{4.4}
\end{equation*}
$$

for each $t \in I^{2}$, there is $s \in T^{2}, s \approx t$ such that \tilde{a}_{t} is ${\underset{\underline{A}}{s}}^{s}$-measurable,

$$
\begin{equation*}
\tilde{\mathrm{a}}_{\mathrm{t}}(\omega) \geq 0, \quad \forall \omega \in \Omega, \quad \forall t \in \mathrm{I}^{2} \tag{4.5}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{t \in 1^{2}} \tilde{a}_{\mathfrak{t}}(\omega)=1, \quad V \omega \in \Omega \tag{4.7}
\end{equation*}
$$

4.3. Remark. The difficult point in this theorem is to replace the (external) "a.s." relationships in (4.2) and (4.3) by the internal relations (4.6) and (4.7) valid for each $\omega \in \Omega$. Though the proof seems non-trivial already for $n=2$, and uses the conditional supremum operator introduced in [D2], its proof would be quite straightforward in the single-parameter case, when I^{2} is replaced by I. We briefly indicate how the theorem could be proved in this case.

Let \tilde{b}_{t} be a lifting of $\Sigma_{\mathrm{sst}} \mathrm{a}_{\mathrm{s}}$, such that $0 \leq \tilde{b}_{\mathrm{t}}(\omega) \leq 1, V \omega \in \Omega$, and for some $\mathrm{s}^{\mathrm{t}} \approx \mathrm{t}$, \tilde{b}_{t} is ${\underset{s}{s}}_{A^{1}}$-measurable. Set $\tilde{c}_{t}=\sup _{s s t} \tilde{b}_{s}, \tilde{a}_{0}=\tilde{c}_{0}$, and

$$
\begin{aligned}
& \tilde{a}_{t}=\tilde{c}_{t}-\tilde{c}_{t-1 / n}, t \in I \backslash\{0,1\} \\
& \tilde{a}_{1}=1-\tilde{c}_{(n-1) / n}
\end{aligned}
$$

Then $\left(\tilde{\mathrm{a}}_{\mathrm{t}_{\mathrm{t} \mathrm{I}}}\right.$ has the desired properties.

Before proving Theorem 4.2, we recall the definition and main properties of the conditional supremum operator $\mathrm{S}(\mathrm{Y} \mid \underline{\underline{G}})$ introduced in [D]: given a sub σ-algebra $\underline{\underline{G}}$ of $\underset{\underline{F}}{\mathrm{~F}}$, and a bounded random variable $\mathrm{Y}, \mathrm{S}(\mathrm{Y} \mid \underline{\underline{G}})$ is the $\underline{\underline{G}}$-measurable random variable defined by

$$
S(\mathrm{Y} \mid \underline{\underline{G}})=\operatorname{ess} \inf Z
$$

where the essential infinum is taken over all $\mathrm{Z} \geq \mathrm{Y}$ which are G-measurable. $\mathrm{S}(\cdot \| \cdot)$ has the following properties, which we recall for ease of reference:

$$
\begin{equation*}
\underline{\underline{G}}_{1} \subset \underline{\underline{G}}_{2} \Rightarrow S\left(Y \mid \underline{\underline{G}}_{2}\right) \leq S\left(Y \mid \underline{\underline{G}}_{1}\right) \tag{4.8}
\end{equation*}
$$

(4.9) \quad If X is $\underline{\underline{G}}$-measurable, then $S(X+Y \mid \underset{\underline{G}}{G})=X+S(Y \mid \underline{\underline{G}})$;
(4.10) If $(\underline{\underline{F}})_{t \in I^{2}}$ satisfies Hypothesis $F 4$, and $s, t, u \in I^{2}$ are such that $s \leq t$, $u=\left(s_{1}, t_{2}\right)$, and if Y is $\underline{\underline{F}}_{s}$-measurable, then $S(Y \mid{\underset{\underline{F}}{t}})=S\left(Y \mid \underline{\underline{F}}_{u}\right)$.
((4.8) is clear; (4.9) follows from [D, Lemma 4.7 (f)] and (4.10) follows from [D, Proposition 4.12 (a) and (b)]).

Proof of Theorem 4.2. For $t \in I^{2}$, set $R_{t}^{-}=\left\{s \in I^{2}: s \underline{\wedge} t\right.$, and $A_{t}^{-}=\Sigma_{s \in R_{t}^{-}} a_{s}$. Observe that $0 \leq S\left(A_{t}^{-} \mid \underline{\underline{F}}\right) \leq 1$ a.s., since $0 \leq A_{t}^{-} \leq 1$ a.s. Since a_{t} and $S\left(A_{t}^{-} \mid \underline{\underline{F}}\right)$ are ${\underset{\underline{E}}{t}}^{t}$-measurable, there exist by Lemma 3.1 two internal functions $\tilde{b}_{t}, \tilde{S}_{t}: \Omega \rightarrow^{*}[0,1]$ such that

$$
\begin{equation*}
\text { st }\left(\tilde{b}_{\nu}\right)=a_{t} \quad \text { a.s., } \quad \operatorname{st}\left(\tilde{S}_{\nu}\right)=S\left(A_{t}^{-} \mid \underline{\underline{F}}\right) \text { a.s. } \tag{4.11}
\end{equation*}
$$

(4.12) for some $s^{t} \approx t, \quad \tilde{b}_{t}$ and \tilde{S}_{t} are $\underset{=}{A_{s}} t^{\text {-measurable. }}$

We can now define $\tilde{a}_{t}, t \in I^{2}$, by induction in increasing order for \leq_{1} (the lexicographic order on I^{2}). Throughout this proof, k and l will denote elements of I . Set

$$
\tilde{\mathrm{a}}_{0,0}=\min \left(\tilde{\mathrm{b}}_{0,0}, \tilde{\mathrm{~S}}_{0,0}\right)
$$

and suppose by induction that $\tilde{\mathrm{a}}_{\mathrm{s}}$ has been defined, for $\mathrm{s}<_{1} \mathrm{t}$. Then set
if $t \neq(1,1)$, and

$$
\tilde{\mathrm{a}}_{1,1}=1-\sum_{\mathrm{t} \in \mathbb{1}^{2} \backslash\{(1,1)\}} \tilde{\mathrm{a}}_{\mathrm{t}} .
$$

Then property (4.7) is trivially satisfied. Before showing that properties (4.4), (4.5) and (4.6) hold, we prove the following lemmas.
4.4. Lemma. Fix $t \in I^{2}$, and $0 \leq k<t_{1}, 0 \leq l \leq t_{2}$. Then

$$
a_{t} \leq S\left(A_{t_{1}, l}^{-} \mid{\underset{=}{t_{1}, l}}\right)-S\left(A_{k, t_{2}}^{-} \mid F_{k, t_{2}}\right)-\sum_{\substack{u<t \\ u \in R_{t_{1}}, l}} a_{R_{k, t}^{-}}^{-}
$$

Proof. Since $(\underset{\sim}{F})_{t \in I^{1}}$ satisfies Hypothesis F4, (4.10) implies that

$$
S\left(A_{k, t_{2}}^{-} \mid F_{k, t_{2}}\right)+\sum_{\substack{u \leq t \\ u \in R_{t_{1}}, \backslash \backslash R_{k, t}^{-}}} a_{u}=S\left(A_{k, t_{2}}^{-} \mid F_{\underline{t}}\right)+\sum_{\substack{u \in R_{t_{1}, i}^{u} \leq R_{k, 2}^{-}}} a_{u},
$$

which, by (4.9), is equal to

$$
S\left(A_{k, t_{2}}^{-}+\sum_{\substack{u \in R_{t_{1}, l}^{u} \leq t}} a_{R_{k, t}^{-}}| |_{\underline{t}}\right) \leq S\left(A_{t_{1}, l}^{-} \mid \underline{F}_{t}\right) .
$$

By (4.8), this is not greater than $S\left(\mathrm{~A}_{\mathrm{t}_{1}, l}^{-} \mid \underline{\underline{F}}_{\mathrm{t}_{1}, l}\right)$. This clearly implies the statement of the lemma.
4.5. Lemma. Fix $t_{1}, l \in I$, and $\omega \in \Omega$, and suppose $\tilde{\mathrm{a}}_{\mathrm{t}_{1}, t_{2}}(\omega)>0$, for some $\mathrm{t}_{2} \geq l$ with $\left(t_{1}, t_{2}\right) \neq(1,1)$. Then

$$
\sum_{\substack{s \in R_{4}^{-}, s \neq(1,1)}} \tilde{\mathrm{a}}_{\mathbf{s}}(\omega) \leq \tilde{S}_{\mathbf{t}_{1}, l}(\omega) .
$$

Proof. We first show that the statement of the lemma holds when $t_{1}=0$. Suppose $\tilde{a}_{0, t_{2}}(\omega)>0$ for some $t_{2} \geq l$. Let $t_{2} \in I$ be maximal with this property. Then

$$
\begin{equation*}
\sum_{s \in R_{0, l}^{-1}} \tilde{a}_{s}(\omega)=\sum_{l \leq s_{2} \leq t_{2}} \tilde{a}_{0, s_{2}}(\omega) \tag{4.14}
\end{equation*}
$$

Now by (4.13), $\tilde{\mathrm{a}}_{0, \mathrm{t}_{2}}(\omega)>0$ implies

$$
\tilde{\mathrm{a}}_{0, \mathrm{t}_{2}}(\omega) \leq \tilde{\mathrm{S}}_{0, l}(\omega)-\sum_{l \leq s_{2}<\mathrm{t}_{2}} \tilde{\mathrm{a}}_{0, \mathrm{~s}_{2}}(\omega),
$$

and thus

$$
\sum_{l \leq s_{2} \leq t_{2}} \tilde{a}_{0, s_{2}}(\omega) \leq \tilde{S}_{0, l}(\omega)
$$

By (4.14), the lemma holds for $t_{1}=0$.
Suppose now by induction that the statement of the lemma holds for $0 \leq t_{1}{ }^{\prime}<t_{1}$, and show that it holds for t_{1}. Fix $l \in I$, and suppose $\tilde{\mathrm{a}}_{\mathrm{t}_{1}, t_{2}}(\omega)>0$, for some $\mathrm{t}_{2} \geq l$, with $\left(t_{1}, t_{2}\right) \neq(1,1)$. Let t_{2} be maximal with this property.

Case 1: $\tilde{\mathrm{a}}_{\mathrm{t}_{1}^{\prime}, \mathrm{t}_{2}^{\prime}}(\omega)=0, \mathrm{Vt}_{1}{ }^{\prime}<\mathrm{t}_{1}, \mathrm{t}_{2}{ }^{\prime} \geq \mathrm{t}_{2}$. Then

By (4.13), $\tilde{\mathrm{a}}_{\mathrm{t}_{1}, \mathrm{t}_{2}}(\omega)>0$ implies that the last expression above is not greater than

$$
\tilde{S}_{t_{1}, l}(\omega)-\tilde{S}_{\mathrm{t}_{1}-1, \mathrm{t}_{2}}(\omega) \leq \tilde{\mathrm{S}}_{\mathrm{t}_{1}, l}(\omega),
$$

which implies the desired property.

Case 2: For some $\mathrm{k}<\mathrm{t}_{1}$ and $\mathrm{t}_{2}{ }^{\prime} \geq \mathrm{t}_{2}, \tilde{\mathrm{a}}_{\mathrm{k}, \mathrm{t}_{2}^{\prime}}(\omega)>0$. Let k be maximal with this property. Then

Applying the induction hypothesis to the first term on the right-hand side of (4.15) and using the fact that $\tilde{\mathrm{a}}_{\mathrm{t}_{1}, t_{2}}(\omega)>0$, we see by (4.13) that this last expression is not greater
than

$$
\tilde{S}_{k_{1}, t_{2}}(\omega)+\tilde{S}_{\mathrm{t}_{1}, l}(\omega)-\tilde{\mathrm{S}}_{\mathbf{k}, \mathfrak{t}_{2}}(\omega)=\tilde{\mathrm{s}}_{\mathrm{t}_{1}, l}(\omega) .
$$

This completes the proof of the lemma.

End of the proof of Theorem 4.2. To see (4.4), we proceed by induction in increasing order for s_{1}. Use Lemma 4.4 and (4.11) and (4.13) to see that

$$
\begin{aligned}
\operatorname{st}\left(\tilde{a}_{t}\right) & =\max \left(0, \min \left(\operatorname{st}\left(\tilde{b}_{t}\right), \min _{\substack{0 \leq k<t_{1} \\
0 \leq l \leq t_{2}}}\left(\operatorname{st}\left(\tilde{S}_{t_{1}, l}-\tilde{S}_{k_{,} t_{2}}-\sum_{u \in R_{\mathfrak{l}_{1}, l}^{u}, \backslash R_{k, k_{2}}^{-}} \tilde{\mathrm{a}}_{u}\right)\right)\right)\right) \\
& =\operatorname{st}\left(\tilde{b}_{\downarrow}\right)=a_{t} \text { a.s. }
\end{aligned}
$$

Again proceeding by induction in increasing order for \leq_{1}, we see that (4.5) is implied by (4.12) and (4.13). Now (4.6) clearly holds for all $t \in I^{2} \backslash\{(1,1)\}$ by (4.13). To see that (4.6) holds for $t=(1,1)$, we must show that

$$
\sum_{s<(1,1)} \tilde{\mathrm{a}}_{\mathbf{s}}(\omega) \leq 1, \quad \forall \omega \in \Omega
$$

Let $t \in I^{2} \backslash\{(1,1)\}$ be \leq_{1}-maximal such that $\tilde{a}_{t}(\omega)>0$. Using Lemma 4.5, we see that

$$
\sum_{s<(1,1)} \tilde{a}_{s}(\omega)=\sum_{s \in R_{\mathrm{t}_{1}}^{-}, 0 \backslash\{(1,1)\}} \tilde{\mathrm{a}}_{\mathrm{s}}(\omega) \leq \tilde{\mathrm{S}}_{\mathrm{t}_{1}, 0}(\omega) \leq 1
$$

This concludes the proof of the theorem.

5. A lifting theorem and a projection theorem for randomized stopping points.

5.1. Definition. An internal weight process on \mathbf{T}^{2} is an internal function $\delta \alpha: \Omega \times \mathbf{T}^{2} \rightarrow^{*}[0,1]$. Such a weight process defines a random internal additive measure $\bar{\alpha}$ on the internal algebra of internal subsets of \mathbf{T}^{2} by the formula

$$
\bar{\alpha}(\omega, B)=\sum_{t \in B} \delta \alpha(\omega, t),
$$

where $\omega \in \Omega$ and B is an internal subset of T^{2}. If $\bar{\alpha}$ is finite a.s., the σ-additive extension of st $(\bar{\alpha}(\omega, \cdot))$ to the Borel σ-algebra on \mathbf{T}^{2} is denoted $\alpha(\omega, \cdot)$ (the Borel σ algebra is generated by the algebra of all internal subsets of \mathbf{T}^{2}).

The object of this section is to show how to lift a randomized stopping point to an internal weight process, and conversely, how to obtain a randomized stopping point from an internal weight process. Our method for lifting relies on the Simultaneous Lifting Theorem 4.1, and is quite different from the single-parameter lifting theorem of
[SB], Chap. 7.1, which uses Skorohod's topology on right-continuous processes with left limits. Recall that Assumption 4.1 is in force.
5.2. Lifting Theorem. Let $\left(A_{t}\right)_{t \in[0,1]^{2}}$ be a randomized stopping point. Then there is $h \in{ }^{*} \mathbb{N} \backslash \mathbb{N}, h \leq n_{0}\left(n_{0}\right.$ is defined in (3.5)), an internal weight process $\delta \alpha$, and a (generally external) P-null set $N \subset \Omega$ such that
(a) for each $t \in \mathbf{T}^{2}, \delta \alpha(., t)$ is ${\underset{=}{A}+(1 / h, 1 / h)}$-measurable;
(b) $\left.\left.\Delta_{\mathrm{l}, \mathrm{t}]} \mathrm{A}(\omega)=\alpha\left(\omega,{ }^{*}\right] \mathrm{s}, \mathrm{t}\right] \cap \mathrm{T}^{2}\right), V \mathrm{~s}, \mathrm{t} \in \mathrm{D}^{2}, \mathrm{~s}<\mathrm{t}, \quad V \omega \in \Omega \backslash \mathrm{~N}$;
(c) $\bar{\alpha}\left(\omega, T^{2}\right)=1, V \omega \in \Omega$.
(D denotes the dyadics in $[0,1]$. Throughout this section we use the following convention: $\left.t+(1 / h, 1 / h)=\left(\min \left(t_{1}+1 / h, 1\right), \min \left(t_{2}+1 / h, 1\right)\right)\right)$.
Proof. Set $\mathbf{k}=\left(\mathbf{k}_{1}, \mathrm{k}_{2}\right), \mathbf{k}^{-}=\left(\mathbf{k}_{1}-1, \mathrm{k}_{2}-1\right), \mathrm{k}^{+}=\left(\mathrm{k}_{1}+1, \mathrm{k}_{2}+1\right)$. Using Theorem 4.2, we see that for each $n \in \mathbb{N}$ and $0 \leq k_{1}, k_{2} \leq 2^{n}$, there is a P-null set $N_{\left(k_{1}, k_{2}\right)}^{n}$ and an internal function $\delta \alpha_{\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)}^{\mathrm{n}}: \Omega \rightarrow{ }^{*}[0,1]$ such that

$$
\begin{equation*}
\omega \in \Omega \backslash N_{k}^{n} \Rightarrow \operatorname{st}\left(\delta \alpha_{k}^{n}(\omega)\right)=\Delta_{\left.\left.2^{-n}\right] k^{-}, k\right]} A(\omega) \tag{5.1}
\end{equation*}
$$

$$
\begin{equation*}
\delta \alpha_{k}^{n} \text { is }{\underset{=2^{-n} k^{+}}{ } \text {-measurable }, ~}_{\text {and }} \tag{5.2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{0 \leq k_{1}, k_{2} \leq 2^{\mathrm{n}}} \delta \alpha_{\left(\mathbf{k}_{1}, \mathrm{k}_{2}\right)}^{\mathrm{n}}(\omega)=1, \quad \forall \omega \in \Omega \tag{5.3}
\end{equation*}
$$

Let B denote the set of internal functions from $\Omega \times \mathrm{T}^{2}$ into ${ }^{*}[0,1]$. B is internal (see [HL], Ex. II.6.12). For $n \in \mathbb{N}$, we define an element $\delta \alpha^{n}$ of B by setting

$$
\delta \alpha^{\mathrm{n}}(\omega, \mathrm{t})=\left\{\begin{array}{l}
\delta \alpha_{\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)}^{\mathrm{n}}(\omega) \text { if } \mathrm{t}=\mathrm{k} 2^{-\mathrm{n}}, \text { for some } 0 \leq \mathrm{k}_{1}, \mathrm{k}_{2} \leq 2^{\mathrm{n}} \tag{5.4}\\
0
\end{array}\right.
$$

Observe that by (5.2),

$$
\begin{equation*}
\delta \alpha^{\mathrm{n}}(., \mathrm{t}) \text { is }{\left.\left.\underset{=2^{-\mathrm{n}} \mathbf{k}^{+}}{ } \text {-measurable, } \mathrm{Vt} \in{ }^{*}\right] 2^{-\mathrm{n}} \mathrm{k}^{-}, 2^{-\mathrm{n}} \mathrm{k}\right] \cap \mathrm{T}^{2}}^{\text {. }} \tag{5.5}
\end{equation*}
$$

Set $\tilde{N}=\cup_{n \in \mathbf{N}} \cup_{0 \leq k_{1}, k_{2} \leq 2^{n}} N_{\left(k_{1}, k_{2}\right)}^{n}$. Then there is a sequence $\left(N^{n}\right)_{n \in \mathbf{N}}$ of internal subsets of Ω such that $\mathbf{N}^{\mathbf{n}} \supset \tilde{\mathbf{N}}$ and

$$
\begin{equation*}
\overline{\mathrm{P}}\left(\mathrm{~N}^{\mathrm{m}}\right)<1 / \mathrm{n} \text { and } \mathrm{N}^{\mathrm{m}} \supset \mathrm{~N}^{\mathrm{n}}, \quad \forall \mathrm{~m} \leq \mathrm{n} \tag{5.6}
\end{equation*}
$$

$$
0 \leq \mathrm{k}_{1}, \mathrm{k}_{2} \leq 2^{\mathrm{n}}, \mathrm{~m} \leq \mathrm{n}, \omega \in \Omega \backslash \mathrm{~N}^{\mathrm{n}}
$$

=>

$$
\left.\right|_{\left.\left.t \in \epsilon^{*}\right] k^{-2} 2^{-m}, k 2^{-m}\right] \cap \mathbf{T}^{2}} \delta \alpha^{m}(\omega, t)-\sum_{\left.\left.t \epsilon^{*}\right] k^{-} 2^{-m}, k 2^{-m}\right] \cap \mathbf{T}^{2}} \delta \alpha^{n}(\omega, t) \left\lvert\,<\frac{1}{n}\right.,
$$

$$
\begin{equation*}
\sum_{t \in \mathrm{~T}^{2}} \delta \alpha^{\mathrm{n}}(\omega, \mathrm{t})=1, \quad \forall \omega \in \Omega . \tag{5.8}
\end{equation*}
$$

Using the Countable Comprehension Principle, we can extend the sequence $\left(\delta \alpha^{\mathrm{n}}, \mathbf{N}^{\mathrm{n}}\right)_{\mathrm{n} \in \mathrm{N}}$ to an internal sequence $\left(\delta \alpha^{\mathrm{n}}, \mathrm{N}^{\mathrm{n}}\right)_{\mathrm{n} \epsilon}{ }^{*} \mathbf{N}$. Set

$$
C=\left\{n \in{ }^{*} \mathbb{N}:(5.5),(5.6),(5.7) \text { and (5.8) hold, and } 2^{n+1} \leq n_{0}\right\}
$$

By the Internal Definition Principle (see [HL], Theorem 6.4), C is an internal set, which contains the (external) set \mathbb{N}. Hence there is $\underline{m} \in C \backslash \mathbb{N}$.

We set $\delta \alpha=\delta \alpha \underline{m}$. Observe that (c) is satisfied by (5.8), and (a) holds by (5.5) with $h=2^{m+1}$. Set $N=\tilde{N} \cup N \underline{m}$. Then $P(N)=0$ by (5.6), and for all $m \in \mathbb{N}$ and $0 \leq \mathrm{k}_{1}, \mathrm{k}_{2} \leq 2^{\mathrm{m}}$, (5.7) implies that

$$
\left.\left.\left.\omega \in \Omega \backslash N \Rightarrow\right|_{\left.\left.t \epsilon^{*}\right] \mathrm{k}^{-} 2^{-\mathrm{m}}, \mathrm{k} 2^{-\mathrm{m}}\right] \cap \mathbf{T}^{2}} \delta \alpha^{\mathrm{m}}(\omega, \mathrm{t})-\bar{\alpha}\left(\omega,{ }^{*}\right] \mathrm{k}^{-} 2^{-\mathrm{m}}, \mathrm{k} 2^{-\mathrm{m}}\right] \cap \mathbf{T}^{2}\right) \left\lvert\,<\frac{1}{\underline{m}} .\right.
$$

By (5.1) and (5.4), this implies that for all $m \in \mathbb{N}$ and $0 \leq k_{1}, k_{2} \leq 2^{m}$,

$$
\begin{aligned}
\left.\left.\alpha\left(\omega,{ }^{*}\right] \mathrm{k}^{-} 2^{-\mathrm{m}}, \mathrm{k} 2^{-\mathrm{m}}\right] \cap \mathbf{T}^{2}\right) & \left.\left.=\operatorname{st}\left(\bar{\alpha}\left(\omega,{ }^{*}\right] \mathbf{k}^{-} 2^{-\mathrm{m}}, \mathrm{k} 2^{-\mathrm{m}}\right] \cap \mathbf{T}^{2}\right)\right) \\
& =\operatorname{st}\left({ }_{\left.\mathbf{t}^{*}{ }^{*}\right] \mathrm{k}^{\left.--2^{-\mathrm{m}}, \mathrm{k} 2^{-\mathrm{m}}\right] \cap \mathbf{T}^{2}}} \delta \alpha^{\mathrm{m}}(\omega, \mathrm{t})\right) \\
& =\Delta_{\left.\left.2^{-\mathrm{m}}\right] \mathrm{k}^{-}, \mathrm{k}\right]} A(\omega) .
\end{aligned}
$$

This proves (b), and concludes the proof.
5.3. Corollary. Let $\left(A_{\nu_{t \in[0,1]^{2}}}\right.$ be a randomized stopping point, and let $\delta \alpha$ be the internal weight process and N the null set given by Theorem 5.2. For any Borel set $\mathrm{B} \subset[0,1]^{2}$,
(a) $\mathrm{st}^{-1}(\mathrm{~B}) \cap \mathbf{T}^{2}$ is a Borel subset of \mathbf{T}^{2};
(b) $\int_{B} d_{t} A_{t}(\omega)=\alpha\left(\omega, s t^{-1}(B) \cap T^{2}\right), \quad \forall \omega \in \Omega \backslash N$.

Proof. (a) is a consequence of Theorem (2.2.6) of [SB]. Furthermore, by a classical Monotone Class argument, it is sufficient to prove (b) when B is a rectangle with dyadic edges, $B=] s, t\left[, s<t, s, t \in \mathbf{D}^{2}\right.$. We fix $\omega \in \Omega \backslash N$, and only consider the case $\mathrm{s} \ll \mathrm{t}$.

Let μ_{ω} be the random measure on $[0,1]^{2}$ whose distribution function is $t \mapsto A_{t}(\omega)$. By Theorem 5.2 (b),

$$
\begin{equation*}
\left.\left.\mu_{\omega}([\mathrm{s}, \mathrm{t}])=\alpha\left(\omega,{ }^{*}\right] \mathrm{s}, \mathrm{t}\right] \cap \mathbf{T}^{2}\right) . \tag{5.9}
\end{equation*}
$$

The remainder of the proof follows that of Lemma (2.3.2) of [SB]. Since

$$
\left.\left.s t^{-1}(] s, t[) \subset{ }^{*}\right] s, t\right] \subset \operatorname{st}^{-1}([s, t]),
$$

we get by (5.9) that

$$
\left.\left.\alpha\left(\omega, s t^{-1}(] s, t\left[\cap \mathbf{T}^{2}\right)\right) \leq \mu_{\omega}(] s, t\right]\right) \leq \alpha\left(\omega, s t^{-1}([s, t]) \cap \mathbf{T}^{2}\right)
$$

Now

$$
\begin{aligned}
\alpha\left(\omega, s t^{-1}(] s, t\left[\cap T^{2}\right)\right) & =\lim _{n \rightarrow \infty} \alpha\left(\omega, s t^{-1}([s+(1 / n, 1 / n), t-(1 / n, 1 / n)]) \cap T^{2}\right) \\
& =\mu_{\omega}(] s, t[)
\end{aligned}
$$

since

$$
\begin{aligned}
\mu_{\omega}(] s, t[) & \left.\left.=\lim _{n \rightarrow \infty} \mu_{\omega}(] s+(1 / n, 1 / n), t-(1 / n, 1 / n)\right]\right) \\
& \leq \lim _{n \rightarrow \infty} \alpha\left(\omega, s t^{-1}([s+(1 / n, 1 / n), t-(1 / n, 1 / n)]) \cap T^{2}\right) \\
& \leq \lim _{n \rightarrow \infty} \alpha\left(\omega, s t^{-1}(] s+(1 / 2 n, 1 / 2 n), t-(1 / 2 n, 1 / 2 n)[) \cap T^{2}\right) \\
& \left.\left.\leq \lim _{n \rightarrow \infty} \mu_{\omega}(] s+(1 / 2 n, 1 / 2 n), t-(1 / 2 n, 1 / 2 n)\right]\right) \\
& =\mu_{\omega}(] s, t[) .
\end{aligned}
$$

This completes the proof.

Theorem 5.2 and Corollary 5.3 provide the desired liftings of randomized stopping points. The projection theorem is simpler.
5.4. Projection Theorem. Let $\delta \alpha: \Omega \times \mathbf{T}^{2} \rightarrow{ }^{*}[0,1]$ be an internal weight process, such that

$$
\sum_{t \in \mathbf{T}^{2}} \delta \alpha(\omega, \mathrm{t})=1, \quad V \omega \in \Omega \backslash M
$$

where M is an (internal) $\overline{\mathrm{P}}$-null set. Suppose that for some $\mathrm{h} \in{ }^{*} \mathbb{N} \backslash \mathbf{N}, \delta \alpha$ is adapted

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{t}}(\omega)=\inf _{\left.\left.\mathrm{q} \in \mathbf{D}^{2} \cap\right] \mathbf{t},(1,1)\right]} \alpha\left(\omega,^{*}[0, q] \cap \mathbf{T}^{2}\right), \mathrm{t} \in[0,1]^{2} \backslash\{(1,1)\}, \\
& \mathrm{A}_{(1,1)}(\omega) \equiv 1
\end{aligned}
$$

Then $A=\left(A_{\mathcal{V}_{t \in[0,1]^{2}}}\right.$ is a randomized stopping point such that for almost all $\omega \in \Omega$,

$$
\int_{B} d_{t} A_{t}(\omega)=\alpha\left(\omega, s^{-1}(B) \cap \mathbf{T}^{2}\right)
$$

for all Borel sets $\mathrm{B} \subset[0,1]^{2}$ (A is termed the projection of $\delta \alpha$).

Proof. The definition of A clearly implies that A. (ω) is right-continuous and has positive planar increments. Since $A_{(1,1)} \equiv 1$ a.s., A will be a randomized stopping point
 continuous and $\alpha\left(\cdot{ }^{*}[0, q] \cap \mathrm{T}^{2}\right)$ is ${\underset{\underline{F}}{ }}^{q}$-measurable by Lemma 3.1. As for the last statement of the theorem, it is sufficient to observe that by the definition of A, $A_{q}(\omega)=\alpha\left(\omega, t^{-1}([0, q]) \cap T^{2}\right), V q \in D^{2}$.

6. Extremal elements of the set of randomized stopping points.

The purpose of this section is to show that on any filtered Loeb probability space that satisfies properties F1 to F4, all extremal elements of the set of randomized stopping points are (ordinary) stopping points. As mentioned in Section 2, this will be the key step in our proof of existence of optimal stopping points.

Throughout this section, we work, under Assumption 4.1, with a fixed randomized stopping point $A=\left(A_{)_{t \in}}[0,1]^{2}\right.$. Using the Lifting Theorem 5.2, together with Theorem 2.2 and the Transfer Principle (3.3), we shall build two randomized stopping points $A^{i}=\left(A_{t}^{i}\right)_{t \in[0,1]^{2}}, i=1,2$, and an optional increasing path Z^{*} such that

$$
\begin{equation*}
A=\frac{1}{2} A^{1}+\frac{1}{2} A^{2} \tag{6.1}
\end{equation*}
$$

and Z^{*} splits $[0,1]^{2}$ into two parts, one of which contains the support of the random probability measure associated with A^{1}, and the other, the support of the random measure associated with A^{2} (of course, if A is a stopping point, the supports of A, A^{1} and A^{2} will be contained in Z^{*}).

Let $\delta \alpha$ be the internal weight process given by Theorem 5.2, together with $\mathrm{h} \in{ }^{*} \mathbb{N} \backslash \mathbb{N}$ and the P-null set $\mathrm{N}: \delta \alpha$ is adapted to the internal (complete) filtration $\left({\underset{\underline{A}}{t}}_{h}^{t}\right)_{t \in T^{2}}$, which satisfies Hypothesis $\overline{F 4}$.

Let $\mathbf{T}+\mathbf{T}=\{0, \Delta \mathrm{u}, 2 \Delta \mathrm{u}, \ldots, 2\}$. The Transfer Principle, applied to Theorem 2.2 in the case of a finite index set, affirms the existence of an internal $\overline{\mathrm{P}}$-null set M , an internal function $\tilde{\mathbf{Z}}: \Omega \times(\mathbf{T}+\mathbf{T}) \rightarrow \mathbf{T}^{2}$ and of two internal weight processes $\delta \alpha^{1}$, $\delta \alpha^{2}: \Omega \times \mathbf{T}^{2} \rightarrow^{*}[0,1]$ with the following properties for all $t \in \mathbf{T}^{2}, \omega \in \Omega \backslash M$, $p \in \mathbf{T}+\mathbf{T}$:
$\delta \alpha(\omega, \mathrm{t})=\frac{1}{2} \delta \alpha^{1}(\omega, \mathrm{t})+\frac{1}{2} \delta \alpha^{2}(\omega, \mathrm{t}) ;$

$$
\begin{equation*}
\sum_{\mathbf{s} \in \mathbf{T}^{2}} \delta \alpha^{\mathrm{i}}(\omega, \mathrm{~s})=1, \quad \mathrm{i}=1,2 \tag{6.3}
\end{equation*}
$$

$$
\begin{align*}
& \tilde{Z}(\omega, p+\Delta u) \in\{\tilde{Z}(\omega, p)+(\Delta u, 0), \tilde{Z}(\omega, p)+(0, \Delta u)\} \tag{6.5}\\
& \{\omega \in \Omega: \tilde{Z}(\omega, p) \leq t\} \in{\underset{\underline{t}}{t}}_{\mathrm{h}}\{ \tag{6.6}\\
& t \wedge \tilde{Z}(\omega,|t|) \Rightarrow\left(\delta \alpha^{1}(\omega, t)=2 \delta \alpha(\omega, t), \delta \alpha^{2}(\omega, t)=0\right) \tag{6.7}\\
& \tilde{Z}(\omega,|t|) \wedge t \Rightarrow\left(\delta \alpha^{1}(\omega, t)=0, \quad \delta \alpha^{2}(\omega, t)=2 \delta \alpha(\omega, t)\right) \tag{6.8}
\end{align*}
$$

Let A^{i} be the projection of $\delta \alpha^{i}, i=1,2$. It follows from the definition of A^{i} (see Theorem 5.4) and from (6.2) that (6.1) holds. It remains to be shown that if A is not in fact a stopping point, then $A^{1} \neq A \neq A^{2}$.

Recall that a map $\mathrm{f}: \mathbf{T} \rightarrow \mathbf{T}^{2}$ is termed S -continuous provided $u \approx v \Rightarrow f(u) \approx f(v), V u, v \in T$ (see [SB], App. 1.4).

6.1. Lemma.

(a) For $\omega \in \Omega \backslash M, p \mapsto \tilde{Z}(\omega, p)$ is S-continuous;
(b) Define $Z^{*}=\left(Z_{u}^{*}\right)_{u \in[0,2]}$ by $Z_{u}^{*}(\omega)=\operatorname{st}\left(\tilde{Z}\left(\omega\right.\right.$, st $\left.\left.^{-1}(u)\right)\right), \omega \in \Omega, u \in[0,2]$. Then Z is an optional increasing path.

Proof. Property (a) is a consequence of the equality

$$
|\tilde{Z}(\omega, p)-\tilde{Z}(\omega, q)|=|p-q|, \quad V \omega \in \Omega, p, q \in \mathbf{T}+\mathbf{T}
$$

which follows from (6.5). As for (b), observe that Z_{u}^{*} is well defined by (a), since if ω is not in the $\overline{\mathrm{P}}$-null set M and $\mathrm{u}=\operatorname{st}(\mathrm{p})=\operatorname{st}(\tilde{\mathrm{p}})$, then $\tilde{Z}(\omega, \mathrm{p}) \approx \tilde{\mathrm{Z}}(\omega, \tilde{\mathrm{p}})$, so $\operatorname{st}(\tilde{\mathrm{Z}}(\omega, \mathrm{p}))=\operatorname{st}(\tilde{\mathrm{Z}}(\omega, \tilde{\mathrm{p}}))$. Furthermore, $\mathrm{u} \mapsto \mathrm{Z}_{\mathrm{u}}^{*}($.$) is increasing by (6.5), and if$ $p \in \mathbf{T}+\mathbf{T}$ is such that $\operatorname{st}(p)=u$, then

$$
\left|Z_{u}^{*}(\omega)\right|=\operatorname{st}(|\tilde{Z}(\omega, p)|)=\operatorname{st}(p)=u,
$$

also by (6.5). Now fix $u \in[0,2]$ and $t \in[0,1]^{2}$. We must show that

$$
\left\{\omega \in \Omega: \mathrm{Z}_{\mathrm{u}}^{*}(\omega) \leq \mathrm{t}\right\} \in \underline{\underline{F}}_{\mathrm{t}} .
$$

Since the filtration $\left(\underline{\underline{F}}^{\prime}\right)$ is right-continuous, it is sufficient to show that for $t \in[0,1]^{2} \cap \mathbf{D}^{2}$,

$$
F=\{\omega \in \Omega: \operatorname{st}(\tilde{Z}(\omega, p)) \ll t\} \in{\underset{\underline{F}}{t}}
$$

where $p \in \mathbf{T}+\mathbf{T}$ is such that $p \approx u$. Since t also belongs to \mathbf{T}^{2},

$$
F=\bigcup_{n \in \mathbf{N}}\{\omega \in \Omega: \tilde{Z}(\omega, p) \leq t-(1 / n, 1 / n)\}
$$

But then (6.6) implies that $F \in \underset{=}{F_{v}}$. This completes the proof.

The following lemma shows that A^{1}, A^{2} and Z^{*} have a property similar to that of Theorem 2.2 (b2).
6.2. Lemma. Fix $\omega \in \Omega \backslash M$ and $s, t \in \mathbf{D}^{2}$ such that $\mathrm{s} \leq \mathrm{t}$.
(a) Suppose $\left(t_{1}, s_{2}\right) \wedge Z_{t_{1}+s_{2}}^{*}(\omega)$. Then $\Delta_{] s, t]} A^{2}(\omega)=0$.
(b) Suppose $Z_{s_{1}+t_{2}}^{*}(\omega) \wedge\left(s_{1}, t_{2}\right)$. Then $\Delta_{j, t]} A^{1}(\omega)=0$.

Proof. We only prove (a). By the hypothesis and (6.7), there is $\varepsilon>0, \varepsilon \in \mathbf{R}$, such that

$$
\left.\left.\delta \alpha^{2}(\omega, u)=0, \quad V u \epsilon^{*}\right] s, t+(\varepsilon, \varepsilon)\right] \cap \mathbf{T}^{2}
$$

so if $\left.\left.p, q \epsilon^{*}\right] s, t+(\varepsilon, \varepsilon)\right] \cap D^{2}, p \leq q$,

$$
\sum_{\mathrm{p}<u \leq q} \delta \alpha^{2}(\omega, \mathrm{u})=0
$$

Thus, where $\alpha^{2}(\omega,[a, b])$ is an abbreviation of $\alpha^{2}\left(\omega,{ }^{*}[a, b] \cap T^{2}\right)$,

$$
\alpha^{2}(\omega,[0, \mathrm{q}])-\alpha^{2}\left(\omega,\left[0,\left(\mathrm{p}_{1}, \mathrm{q}_{2}\right)\right]\right)-\alpha^{2}\left(\omega,\left[0,\left(\mathrm{q}_{1}, \mathrm{p}_{2}\right)\right]\right)+\alpha^{2}(\omega,[0, \mathrm{p}])=0
$$

Taking the limit as $q \downarrow t, p \downarrow s$ gives the desired result.

If $\left(Z_{u}\right)_{u \in[0,2]}$ is an o.i.p., we set

$$
\operatorname{Im} Z .(\omega)=\left\{Z_{u}(\omega): 0 \leq u \leq 2\right\}
$$

and if v is a measure, $\operatorname{supp} v$ denotes the support of v.
6.3. Proposition. Suppose $\mu_{\omega}($.$) is the random measure whose distribution function$ is the randomized stopping point $\left(A_{t}\right)_{t \in}[0,1]^{2}$, and suppose

$$
P\left\{\omega \in \Omega: \operatorname{supp} \mu_{\omega}(.) \subset \operatorname{Im} Z .(\omega)\right\}<1
$$

for all o.i.p.'s $\left(Z_{u}\right)_{u \in[0,2]}$. Then $A^{1} \neq A \neq A^{2}$.

Proof. Let $\left(Z_{u}^{*}\right)_{u \in[0,2]}$ be the o.i.p. defined in Lemma 6.1, and set

$$
\mathrm{F}^{*}=\left\{\omega \in \Omega: \operatorname{supp} \mu_{\omega}(.) \notin \operatorname{Im} Z^{*}(\omega)\right\}
$$

Since $P\left(F^{*}\right)>0$, we may suppose for example that $P(F)>0$, where
$F=\left\{\omega \in \Omega\right.$: there is $s, t \in \mathbb{D}^{2}, s \leq t$ such that $\left(t_{1}, s_{2}\right) \wedge Z_{t_{1}+s_{2}}^{*}(\omega)$ and $\left.\Delta_{\mathrm{ls}, \mathrm{t}]} \mathrm{A}(\omega)>0\right\}$.
Now for each $\omega \in F \backslash M$, since $A=1 / 2 A^{1}+1 / 2 A^{2}$, we have by Lemma 6.2:

$$
\Delta_{\mathrm{ls}, \mathrm{t}]} \mathrm{A}^{1}(\omega)=2 \Delta_{\mathrm{ls}, \mathrm{t}]} \mathrm{A}(\omega) \neq \Delta_{\mathrm{ls}, \mathrm{t}]} \mathrm{A}(\omega)
$$

for some $s, t \in D^{2}$ with $s \leq t$. This implies that the sample paths $t \mapsto A_{t}(\omega)$, $t \mapsto A_{t}^{i}(\omega), i=1,2$, are distinct for $\omega \in F \backslash M$. Since $P(F \backslash M)>0, A^{1} \neq A \neq A^{2}$.

The following lemma is a straightforward extension of a result for single-parameter randomized stopping points.
6.4. Lemma. Let $(\Omega, \underset{=}{F}, P)$ be an arbitrary (complete) probability space, and $\left({\underset{\mathrm{F}}{t}}^{)_{t \in[}}[0,1]^{2}\right.$ an arbitrary two-parameter filtration (with or without CQI or F4). Suppose μ_{ω} (.) is a random measure whose distribution function is some randomized stopping point $A=\left(A_{t}\right)_{t \in[0,1]^{2}}$. If there is an optional increasing path $\left(Z_{u}\right)_{u \in[0,2]}$ such that

$$
P\left\{\omega \in \Omega: \operatorname{supp} \mu_{\omega}(.) \subset \operatorname{Im} Z .(\omega)\right\}=1
$$

then \mathbf{A} is an extremal element of the set of randomized stopping points if and only if A is a stopping point.

Proof. Set $B_{t}{ }^{1}=\min \left(2 A_{t}, 1\right), B_{t}^{2}=\max \left(2 A_{t}-1,0\right)$. Clearly $A_{t}=\frac{1}{2} B_{t}^{1}+\frac{1}{2} B_{t}^{2}$, and the sample paths

$$
t \mapsto A_{t}(\omega) \text { and } t \mapsto B_{t}^{i}(\omega), \quad i=1,2
$$

are distinct if and only if $0<A_{t}(\omega)<1$ for some t. If $s, t \in[0,1]^{2}$ are such that $s \leq t$, it is easy to see that $\Delta_{\mathrm{fs}, \mathrm{t}]} \mathrm{B}^{\mathrm{i}} \geq 0$ a.s. by examining the relative positions of s, t and the path $\mathrm{u} \mapsto \mathrm{Z}_{\mathrm{u}}$ (see Figure 1).

Since $B_{(1,1)}^{i} \equiv 1$, this implies that B^{1} and B^{2} are randomized stopping points. Thus if A is extremal, we must have

$$
A_{t} \in\{0,1\} \text { a.s. }
$$

But then \mathbf{A} is a stopping point.

It is now straightforward to prove the continuous time extension of Theorem 2.2.
6.5. Theorem. Let $(\Omega, \underset{=}{A}, \bar{P})$ be an internal probability space, $(\Omega, L(A), P)$ the corresponding Loeb space. Suppose $\left({\underset{\mathrm{F}}{\mathrm{t}}}^{)_{t \in[0,1]^{2}}}\right.$ is the standard part of an internal (complete) two-parameter filtration that satisfies Hypothesis $\overline{\mathrm{F} 4}$. Then all extremal elements of the set of randomized stopping points are stopping points.

Proof. Let $A=\left(A_{t}\right)_{t \in[0,1]^{2}}$ be a randomized stopping point. Suppose

$$
P\left\{\omega \in \Omega: \operatorname{supp} \mu_{\omega}(.) \subset \operatorname{Im} Z .(\omega)\right\}<1
$$

for all optional increasing paths Z , where $\mu_{\omega}($.$) is the measure on [0,1]^{2}$ whose distribution function is $t \mapsto A_{t}(\omega)$. Then by Proposition 6.3, A is the midpoint of two distinct randomized stopping points, and thus is not extremal. This implies that any extremal randomized stopping point must satisfy

$$
P\left\{\omega \in \Omega: \operatorname{supp} \mu_{\omega}(.) \subset \operatorname{Im} Z .(\omega)\right\}=1
$$

for some optional increasing path Z . But then the statement of the theorem is a consequence of Lemma 6.4.
6.6. Remark. It is not known whether the conclusion of this theorem remains valid for filtered probability spaces that satisfy Hypothesis F4 but are not Loeb spaces.

7. Application: the existence of optimal stopping points.

As mentioned in Section 2, Theorem 6.5 leads to a proof of the existence of optimal stopping points. For this we need the following proposition.
7.1. Proposition. Let $(\Omega, \underset{=}{F}, \mathrm{P})$ be an arbitrary complete probability space, and $\mathrm{X}=\left(\mathrm{X}_{\mathrm{t}}\right)_{\mathrm{t} \mathrm{\in}[0,1]^{2}}$ a measurable process with upper semicontinuous (u.s.c.) sample paths such that $E\left(\sup _{t \in[0,1]^{2}}\left|X_{\mathbf{t}}\right|\right)<+\infty$. Then the map $\Phi_{X}: \underline{\underline{U}} \rightarrow \mathbf{R}$ defined by

$$
\Phi_{X}\left(\left(A_{t}\right)_{t \in[0,1]^{2}}\right)=E\left(\int_{[0,1]^{2}} X_{t}(.) d_{t} A_{t}(.)\right)
$$

is u.s.c. (for the weak topology induced by $\sigma\left({\underset{\underline{C}}{ }}^{*}, \underline{=}\right)$: see section 2).

Proof. For separable bounded processes, this was proved in [D1], Th. 3.5. Our proof here is more direct and gives the more general result above.

We should perhaps point out that the map $\omega \mapsto \sup _{t \in[0,1]^{2}}\left|X_{t}\right|$ is measurable since the process X is (see the proof of [DM], IV. 33a), and so it makes sense to speak of sup-norm integrability for X .

If the sample paths of the process X were continuous, then the function Φ_{X} would be continuous by the definition of the weak topology $\sigma\left(\underline{C}^{*}, \underline{\underline{C}}\right)$. Now suppose there were a non-increasing sequence $\left(\mathrm{Y}^{\mathbf{k}}\right)_{\mathrm{k} \in \mathbf{N}}$ of continuous processes in \xlongequal{C} such that

$$
\lim _{k \rightarrow \infty} \downarrow Y_{t}^{k}(\omega)=X_{t}(\omega)
$$

for almost all $\omega \in \Omega$. Then we would have $\Phi_{\mathrm{Y}^{k}} \downarrow \Phi_{\mathrm{X}}$ by monotone convergence, and so Φ_{X}, as the non-increasing limit of a sequence of continuous functions, would be u.s.c. ([B1]. IV.6.2. Th.4). Thus the proposition will be proved if we construct the sequence $\left(Y^{\mathbf{k}}\right)_{\mathbf{k} \in \mathbf{N}}$.

It is well-known that an u.s.c. bounded function defined on a metric space is the non-increasing limit of a sequence of continuous functions, so the problem here is to choose the sequence for fixed $\omega \in \Omega$ in such a way that the resulting $Y_{t}^{k}(\omega)$ are measurable functions of ω and such that $Y^{\mathbf{k}} \in \underset{=}{C}$. In order to do this, we need the following lemma.
7.2. Lemma. Consider $\mathrm{F} \subset \underset{\underline{\mathrm{F}}}{\mathrm{B}} \times \underset{\underline{B}}{\left(\overline{\mathrm{I}}^{\mathrm{n}}\right)}$ such that for each $\omega \in \Omega$, the section $\mathrm{F}_{\omega}=\left\{\mathrm{t} \in \overline{\mathrm{I}}^{\mathrm{n}}:(\omega, \mathrm{t}) \in \mathrm{F}\right\}$ is closed. Then the mapping $\omega \mapsto \operatorname{dist}\left(\mathrm{t}, \mathrm{F}_{\omega}\right)$ is $\underset{\underline{F}}{\mathrm{~F}}$-measurable (dist $\left(\mathrm{t}, \mathrm{F}_{\omega}\right)$ denotes the distance between t and the set F_{ω} for the usual metric on $\overline{\mathrm{I}}^{\mathrm{n}}$).

Proof. For r>0,

$$
A=\left\{\omega \in \Omega: \operatorname{dist}\left(t, F_{\omega}\right)<r\right\}=\left\{\omega \in \Omega: \text { there is } s \in F_{\omega}, d(s, t)<r\right\}
$$

so A is the projection on Ω of the $\underset{=}{\mathrm{F}} \times \underset{=}{\mathrm{B}}\left(\overline{\mathrm{I}}^{\mathrm{n}}\right)$-measurable set $\mathrm{F} \cap(\Omega \times \mathrm{B}(\mathrm{t}, \mathrm{r}))$, where $B(t, r)$ denotes the open ball centered at t with radius r. Thus A is $\underset{=}{F}$-analytic by Theorem II. 13 of [DM], and since $\underset{=}{F}$ is complete, $\mathrm{F} \in \underset{=}{\mathrm{F}}$ by III. 33 of [DM]. This proves the lemma.

End of the proof of Proposition 7.1. Our proof follows that of [B1], LX. §2.7, Prop.11. Since we can always replace the process X by the process $\left(X_{t}-\sup _{t} X_{\mathcal{V}_{t \in}[0,1]^{2}}\right.$, we may suppose without loss of generality that $X \leq 0$. Set

$$
X_{t}^{n}(\omega)=-2^{-\mathrm{n}} \sum_{\mathrm{k}=1}^{\infty} \mathrm{I}_{\mathrm{U}^{\mathrm{k}}}(\omega, \mathrm{t})
$$

where

$$
\mathrm{U}^{\mathrm{k}, \mathrm{n}}=\left\{(\omega, \mathrm{t}) \in \Omega \times \overline{\mathrm{I}}^{\mathrm{n}}: \mathrm{X}_{\mathrm{t}}(\omega)<-\mathrm{k} 2^{-\mathrm{n}}\right\}
$$

and observe that $\left(\mathrm{X}^{\mathrm{n}}\right)_{\mathrm{n} \in \mathrm{N}}$ is a non-increasing sequence which converges to X . Now since X is u.s.c., the section $U_{\omega}^{k, n}$ of $U^{k, n}$ is open for each $\omega \in \Omega$. Furthermore, since $\sup _{\mathrm{t}}\left|\mathrm{X}_{\mathrm{t}}\right|<+\infty$ a.s. there is a measurable $\operatorname{map} \omega \mapsto \mathrm{K}_{\omega}$ from Ω into \mathbb{N} such that $\mathrm{k}>2^{\mathrm{n}} \mathrm{K}_{\omega} \Rightarrow \mathrm{I}_{\mathrm{U}^{\mathrm{x}, \mathrm{n}}}(\omega, \mathrm{t})=0, \mathrm{Vt}$, for almost all $\omega \in \Omega$.

For each fixed k, l, and n , set

$$
\mathrm{Z}_{\mathrm{t}}^{\mathrm{k}, \mathrm{n}, l}(\omega)=\min \left(1, l \operatorname{dist}\left(\mathrm{t}, \overline{\mathrm{I}}^{\mathrm{n}} \backslash \mathrm{U}_{\omega}^{\mathrm{k}, \mathrm{n}}\right)\right) .
$$

Then $\omega \mapsto \mathrm{Z}^{\mathrm{k}, \mathrm{n} l}(\omega)$ is a measurable map by Lemma $7.2, \mathrm{t} \mapsto \mathrm{Z}_{\mathrm{t}}^{\mathrm{k}, \mathrm{n}, l}(\omega)$ is continuous and

$$
\left(\mathrm{t} \in \overline{\mathrm{I}}^{\mathrm{n}} \backslash \mathrm{U}_{\omega}^{\mathrm{k}, \mathrm{n}} \text { or } \operatorname{dist}\left(\mathrm{t}, \overline{\mathrm{I}}^{\mathrm{n}} \backslash \mathrm{U}^{\mathrm{k}, \mathrm{n}}\right)>\frac{1}{l}\right) \Rightarrow \mathrm{Z}_{\mathrm{t}}^{\mathrm{k}, \mathrm{n}, l}(\omega)=\mathrm{I}_{\mathrm{U}^{k, n}}(\omega, \mathrm{t}),
$$

so

$$
\lim _{l \rightarrow \infty} \uparrow \mathrm{Z}_{\mathrm{t}}^{\mathrm{k}, \mathrm{n}, l}(\omega)=\mathrm{I}_{\mathrm{U}^{\mathrm{k}, \mathrm{D}}}(\omega, \mathrm{t}), \quad \mathrm{Vt} \in \overline{\mathrm{I}}^{\mathrm{n}}, \quad \mathrm{~V} \omega \in \Omega
$$

Thus if we define a continuous process $\mathrm{X}^{\mathrm{n}, l}$ by setting

$$
\mathrm{X}_{\mathrm{t}}^{\mathrm{n}, l}(\omega)=-2^{-\mathrm{n}} \sum_{\mathrm{k}=1}^{2^{\mathrm{n}} \mathrm{~K}_{\omega}} \mathrm{Z}_{\mathrm{t}}^{\mathrm{n}, \mathrm{k}, l}(\omega)
$$

we have

$$
\lim _{l \rightarrow \infty} \downarrow X_{\mathrm{t}}^{\mathrm{n}, l}(\omega)=\mathrm{X}_{\mathrm{t}}^{\mathrm{n}}(\omega), \quad V \mathrm{t} \in \overline{\mathrm{I}}^{\mathrm{n}}, \quad \text { for almost all } \omega \in \Omega
$$

But then the sequence $\left(\mathrm{Y}^{\mathbf{k}}\right)_{\mathbf{k} \in \mathbf{N}}$ of continuous processes defined by

$$
\mathbf{Y}_{\mathrm{t}}^{\mathbf{k}}(\omega)=\min _{\mathrm{n}, l \leq \mathbf{k}} \mathrm{X}_{\mathrm{t}}^{\mathrm{n}, l}(\omega)
$$

satisfies the conditions of the theorem.
 tions of Theorem 6.5, and let $\left(X_{\nu}\right)_{t \in[0,1]^{2}}$ be a measurable process with upper semicontinuous sample paths, such that $E\left(\sup _{t \in[0,1]^{2}}\left|X_{t}\right|\right)<+\infty$. Then there is a stopping point T_{0} such that

$$
\mathrm{E}\left(\mathrm{X}_{\mathrm{T}_{0}}\right)=\sup _{\mathrm{T} \in \underline{\underline{T}}} \mathrm{E}\left(\mathrm{X}_{\mathrm{T}}\right) .
$$

Proof. This proof is similar to that of Ghoussoub [G], Proposition II.3. Consider the functional $\Phi: \underset{\underline{U}}{ } \rightarrow \mathbf{R}$ defined by

$$
\Phi\left(\left(A_{t}\right)_{t \in[0,1]^{2}}\right)=E\left(\int_{[0,1]^{2}} X_{t}(.) d_{t} A_{t}(.)\right)
$$

By Lemma 7.1, this functional is u.s.c. on $\underset{=}{\mathrm{U}}$. Since Φ is affine, it attains its maximum on $\underset{\underline{U}}{ }$ at an extremal element $A^{0} \in \operatorname{ext} \underline{\underline{U}}$ ([B2], II. §7, Prop.1). By Theorem 6.5, A° is in fact a stopping point, which we denote T_{0}. This stopping point is clearly optimal.
7.3. Remark. From the point of view of applications, it does not seem too restrictive to impose that the underlying probability space be Loeb. In the single-parameter case, this would be no restriction at all, due to the result of Hoover and Keisler [HK], who showed that these spaces are universal and saturated.
7.4. Remark. The papers [Mi] and [MM] claim, under certain regularity assumptions on the reward process, the existence of optimal stopping points in the two-parameter optimal stopping problem on arbitrary probability spaces (in [MM], there is even no Hypothesis F4 on the filtration). Both these papers use a "randomized" set $\underset{\underline{U}}{ }$ which is different from the one considered here, and both papers use the following theorem: 'a separately continuous bilinear map is jointly continuous', in a situation where the hypothesis of this theorem is not satisfied ([Mi; Theorem 1.5], [MM; Proposition 7]). Thus the problem of existence of optimal stopping points on arbitrary probability spaces, even for continuous processes and under Hypothesis F4, is open.

Acknowledgment. The author thanks the referee for pointing out that the initial proof for hyperfinite probability spaces carried over to all Loeb spaces.

References.

[AFHL] S. Albeverio, J.E. Fenstad, R. Høegh-Kron, T. Lindstrom: Nonstandard Methods in Stochastic Analysis and Mathematical Physics. New York: Academic Press (1986).
[A] R. Anderson: A Non-standard Representation of Brownian Motion and Itô Integration, Israel J. Math. 25 (1976), 15-46.
[Ba] M.T. Barlow: One Dimensional Stochastic Differential Equations with No Strong Solution, J. London Math. Soc. (2) 23 (1982), 335-347.
[BC] J.R. Baxter and R.V. Chacon: Compactness of Stopping Times, Z. Wahr. v. Geb. 40 (1977), 169-181.
[B1] N. Bourbaki, Eléments de Mathématique Topologie Générale Chap I-IV. Paris: Herman (1971), and Chap. V-X. Paris: Herman (1974).
[B2] N. Bourbaki: Eléments de Mathématique Espaces Vectoriels Topologiques Chap. I-V. Paris: Herman (1981).
[CG] R. Cairoli and J.P. Gabriel: Arrêt optimal de certaines suites de variables aléatoires indépendentes, in: Sém. de Prob. XIII, Lect. N. in Math. 721. Berlin-Heidelberg-New York: Springer Verlag (1978), 174-198.
[CW] R. Cairoli and J.B. Walsh: Stochastic Integrals in the Plane, Acta. Math. 134 (1975), 11-183.
[D1] R.C. Dalang: Sur l'arrêt optimal de processus à temps multidimensionnel continu, in: Sém. de Prob. XVIII, Lect. N. in Math. 1059. Berlin-Heidelberg-New York: Springer Verlag (1984), 379-390.
[DTW] R.C. Dalang, L.E. Trotter Jr., D. de Werra: On Randomized Stopping Points and Perfect Graphs, to appear: J. of Comb. Th. (B).
[D2] R.C. Dalang: On Infinite Perfect Graphs and Randomized Stopping Points on the Plane, to appear: Prob. Th. and Rel. Fields.
[DM] C. Dellacherie and P.A. Meyer: Probabilités et Potentiel, Chap. I-IV. Paris: Herman (1975).
[G] N. Ghoussoub: An integral representation of randomized probabilities and its applications, in: Sém. de Prob. XVI, Lect. N. in Math. 920. Berlin-Heidelberg-New York: Springer Verlag (1982), 519-543.
[HK] D.N. Hoover and H.J. Keisler: Adapted Probability Distributions, Trans. of the Amer. Math. Soc. 286-1 (1984), 159-201.
[HP] D.N. Hoover and E. Perkins: Nonstandard Construction of the Stochastic Integral and Applications to Stochastic Differential Equations I, II, Trans. of the Amer. Math. Soc. 275-1 (1983), 1-58.
[HL] A.E. Hurd and P. Loeb: An Introduction to Non-standard Real Analysis. New York: Academic Press (1985).
[K] H.J. Keisler, Foundations of infinitesimal stochastic analysis, Mem. Amer. Math. Soc. 48, no. 297 (1984).
[KS] U. Krengel and L. Sucheston: Stopping Rules and Tactics for Processes Indexed by a Directed Set, J. Mult. Anal. 11 (1981), 199-229.
[L] P.A. Loeb: Conversion from non-standard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113122.
[MV] A. Mandelbaum and R.J. Vanderbei: Optimal stopping and supermartingales over partially ordered sets, Z. Wahr. v. Geb. 57 (1987), 153-264.
[MMe] L. Manewitz and E. Merzbach: Multi-Parameter Stochastic Processes via Non-Standard Analysis (preprint).
[MS] G. Mazziotto and J. Szpirglas: Arrêt optimal sur le plan, Z. Wahr. v. Geb. 62 (1983), 215-233.
[Ma] G. Mazziotto: Two Parameter Optimal Stopping and Bi-Markov Processes, Z. Wahr. v. Geb. 69 (1985), 99-135.
[MM] G. Mazziotto and A. Millet: Points, liques et systèmes d'arrêt flous et problème d'arrêt optimal. In: Sém de Prob. XX, Lect. N. in Math 1204, Berlin-Heidelberg-New York: Springer Verlag (1986), 81-94.
[Me] P.A. Meyer: Convergence faible et compacité des temps d'arrêt d'après Baxter et Chacon, in: Sém. de Prob. XII, Lect. N. in Math. 850. Berlin-Heidelberg-New York: Springer Verlag (1978), 411-423.
[Mi] A. Millet: On Randomized Tactics and Optimal Stopping in the Plane, Ann. Prob. 13 (1985), 946-965.
[SB] K.D. Stroyan and J.M. Bayod: Foundations of Infinitesimal Stochastic Analysis. New York: North-Holland (1986).
[W] J.B. Walsh: Optional increasing paths, in: Proc. Aléatoires à Deux Indices, Lect. N. in Math. 863. Berlin-Heidelberg-New York: Springer Verlag (1981), 172-201.

$\begin{aligned} \Delta_{[\mathrm{s}, t]} \mathrm{B}^{\mathrm{i}}(\omega) & =\mathrm{B}_{\mathrm{w}}^{\mathrm{i}}(\omega)-\mathrm{B}_{\mathrm{v}}^{\mathrm{i}}(\omega) \\ & \geqslant 0\end{aligned}$

$$
\begin{aligned}
\Delta_{\mathrm{ls}, t]} \mathrm{B}^{\mathrm{i}}(\omega) & =\mathrm{B}_{\mathrm{w}}^{\mathrm{i}}(\omega)-\mathrm{B}_{v}^{i}(\omega) \\
& \geqslant 0
\end{aligned}
$$

$\left.\Delta_{|s, l|}\right]^{i}(\omega)=0$

Figure 1.

TECHNICAL REPORTS

Statistics Department

University of California, Berkeley

1. BREIMAN, L. and FREEDMAN, D. (Nov. 1981, revised Feb. 1982). How many variables should be entered in a regression equation? Jour. Amer. Statist. Assoc., March 1983, 78, No. 381, 131-136.
2. BRILLINGER, D. R. (Jan. 1982). Some contrasting examples of the time and frequency domain approaches to time series analysis. Time Series Methods in Hydrosciences, (A. H. El-Shaarawi and S. R. Esterby, eds.) Elsevier Scientific Publishing Co., Amsterdam, 1982, pp. 1-15.
3. DOKSUM, K. A. (Jan. 1982). On the performance of estimates in proportional hazard and log-linear models. Survival Analysis, (John Crowley and Richard A. Johnson, eds.) IMS Lecture Notes - Monograph Series, (Shanti S. Gupta, series ed.) 1982, 74-84.
4. BICKEL, P. J. and BREIMAN, L. (Feb. 1982). Sums of functions of nearest neighbor distances, moment bounds, limit theorems and a goodness of fit test. Ann. Prob., Feb. 1982, $\underset{\sim}{11}$. No. 1, 185-214.
5. BRILLINGER, D. R. and TUKEY, J. W. (March 1982). Spectrum estimation and system identification relying on a Fourier transform. The Collected Works of J. W. Tukey, vol. 2, Wadsworth, 1985, 1001-1141.
6. BERAN, R. (May 1982). Jackknife approximation to bootstrap estimates. Ann. Statist., March 1984, 12 No. 1, 101-118.
7. BICKEL, P. J. and FREEDMAN, D. A. (June 1982). Bootstrapping regression models with many parameters. Lehmann Festschrift (P. J. Bickel, K. Doksum and J. L. Hodges, Jr., eds.) Wadsworth Press, Belmont, 1983, 28-48.
8. BICKEL, P. J. and COLLINS, J. (March 1982). Minimizing Fisher information over mixtures of distributions. Sankhyā, 1983, 45, Series A, Pt. 1, 1-19.
9. BREIMAN, L. and FRIEDMAN, J. (July 1982). Estimating optimal transformations for multiple regression and correlation.
10. FREEDMAN, D. A. and PETERS, S. (July 1982, revised Aug. 1983). Bootstrapping a regression equation: some empirical results. JASA, 1984, 79, 97-106.
11. EATON, M. L. and FREEDMAN, D. A. (Sept. 1982). A remark on adjusting for covariates in multiple regression.
12. BICKEL, P. J. (April 1982). Minimax estimation of the mean of a mean of a normal distribution subject to doing well at a point. Recent Advances in Statistics, Academic Press, 1983.
13. FREEDMAN, D. A., ROTHENBERG, T. and SUTCH, R. (Oct. 1982). A review of a residential energy end use model.
14. BRILLINGER, D. and PREISLER, H. (Nov. 1982). Maximum likelihood estimation in a latent variable problem. Studies in Econometrics, Time Series, and Multivariate Statistics, (eds. S. Karlin, T. Amemiya, L. A. Goodman). Academic Press, New York, 1983, pp. 31-65.
15. BICKEL, P. J. (Nov. 1982). Robust regression based on infinitesimal neighborhoods. Ann. Statist., Dec. 1984, 12, 1349-1368.
16. DRAPER, D. C. (Feb. 1983). Rank-based robust analysis of linear models. I. Exposition and review.
17. DRAPER, D. C. (Feb 1983). Rank-based robust inference in regression models with several observations per cell.
18. FREEDMAN, D. A. and FIENBERG, S. (Feb. 1983, revised April 1983). Statistics and the scientific method, Comments on and reactions to Freedman, A rejoinder to Fienberg's comments. Springer New York 1985 Cohort Analysis in Social Research, (W. M. Mason and S. E. Fienberg, eds.).
19. FREEDMAN, D. A. and PETERS, S. C. (March 1983, revised Jan. 1984). Using the bootstrap to evaluate forecasting equations. J. of Forecasting. 1985, Vol. 4, 251-262.
20. FREEDMAN, D. A. and PETERS, S. C. (March 1983, revised Aug. 1983). Bootstrapping an econometric model: some empirical results. JBES, 1985, 2, 150-158.
21. FREEDMAN, D. A. (March 1983). Structural-equation models: a case study.
22. DAGGETT, R. S. and FREEDMAN, D. (April 1983, revised Sept. 1983). Econometrics and the law: a case study in the proof of antitrust damages. Proc. of the Berkeley Conference, in honor of Jerzy Neyman and Jack Kiefer. Vol I pp. 123-172. (L. Le Cam, R. Olshen eds.) Wadsworth, 1985.
23. DOKSUM, K. and YANDELL, B. (April 1983). Tests for exponentiality. Handbook of Statistics, (P. R. Krishnaiah and P. K. Sen, eds.) 4, 1984.
24. FREEDMAN, D. A. (May 1983). Comments on a paper by Markus.
25. FREEDMAN, D. (Oct. 1983, revised March 1984). On bootstrapping two-stage least-squares estimates in stationary linear models. Ann. Statist., 1984, 12, 827-842.
26. DOKSUM, K. A. (Dec. 1983). An extension of partial likelihood methods for proportional hazard models to general transformation models. Ann. Statist., 1987, 15, 325-345.
27. BICKEL, P. J., GOETZE, F. and VAN ZWET, W. R. (Jan. 1984). A simple analysis of third order efficiency of estimate Proc. of the Neyman-Kiefer Conference, (L. Le Cam, ed.) Wadsworth, 1985.
28. BICKEL, P. J. and FREEDMAN, D. A. Asymptotic normality and the bootstrap in stratified sampling. Ann. Statist. 12 470-482.
29. FREEDMAN, D. A. (Jan. 1984). The mean vs. the median: a case study in 4-R Act litigation. JBES. 1985 Vol 3 pp. 1-13.
30. STONE, C. J. (Feb. 1984). An asymptotically optimal window selection rule for kernel density estimates. Ann. Statist., Dec. 1984, 12, 1285-1297.
31. BREIMAN, L. (May 1984). Nail finders, edifices, and Oz.
32. STONE, C. J. (Oct. 1984). Additive regression and other nonparametric models. Ann. Statist., 1985, 13, 689-705.
33. STONE, C. J. (June 1984). An asymptotically optimal histogram selection rule. Proc. of the Berkeley Conf. in Honor of Jerzy Neyman and Jack Kiefer (L. Le Cam and R. A. Olshen, eds.), II, 513-520.
34. FREEDMAN, D. A. and NAVIDI, W. C. (Sept. 1984, revised Jan. 1985). Regression models for adjusting the 1980 Census. Statistical Science. Feb 1986, Vol. 1, No. 1, 3-39.
35. FREEDMAN, D. A. (Sept. 1984, revised Nov. 1984). De Finetti's theorem in continuous time.
36. DIACONIS, P. and FREEDMAN, D. (Oct. 1984). An elementary proof of Stirling's formula. Amer. Math Monthly. Feb 1986, Vol. 93, No. 2, 123-125.
37. LE CAM, L. (Nov. 1984). Sur l'approximation de familles de mesures par des familles Gaussiennes. Ann. Inst. Henri Poincaré, 1985, 21, 225-287.
38. DIACONIS, P. and FREEDMAN, D. A. (Nov. 1984). A note on weak star uniformities.
39. BREIMAN, L. and IHAKA, R. (Dec. 1984). Nonlinear discriminant analysis via SCALING and ACE.
40. STONE, C. J. (Jan. 1985). The dimensionality reduction principle for generalized additive models.
41. LE CAM, L. (Jan. 1985). On the normal approximation for sums of independent variables.
42. BICKEL, P. J. and YAHAV, J. A. (1985). On estimating the number of unseen species: how many executions were there?
43. BRILLINGER, D. R. (1985). The natural variability of vital rates and associated statistics. Biometrics, to appear.
44. BRILLINGER, D. R. (1985). Fourier inference: some methods for the analysis of array and nonGaussian series data. Water Resources Bulletin, 1985, 21, 743-756.
45. BREIMAN, L. and STONE, C. J. (1985). Broad spectrum estimates and confidence intervals for tail quantiles.
46. DABROWSKA, D. M. and DOKSUM, K. A. (1985, revised March 1987). Partial likelihood in transformation models with censored data.
47. HAYCOCK, K. A. and BRILLINGER, D. R. (November 1985). LIBDRB: A subroutine library for elementary time series analysis.
48. BRILLINGER, D. R. (October 1985). Fitting cosines: some procedures and some physical examples. Joshi Festschrift, 1986. D. Reidel.
49. BRILLINGER, D. R. (November 1985). What do seismology and neurophysiology have in common? - Statistics! Comptes Rendus Math. Rep. Acad. Sci. Canada. January, 1986.
50. COX, D. D. and O'SULLIVAN, F. (October 1985). Analysis of penalized likelihood-type estimators with application to generalized smoothing in Sobolev Spaces.
51. O'SULLIVAN, F. (November 1985). A practical perspective on ill-posed inverse problems: A review with some new developments. To appear in Journal of Statistical Science.
52. LE CAM, L. and YANG, G. L. (November 1985, revised March 1987). On the preservation of local asymptotic normality under information loss.
53. BLACKWELL, D. (November 1985). Approximate normality of large products.
54. FREEDMAN, D. A. (June 1987). As others see us: A case study in path analysis. Journal of Educational Statistics. 12, 101-128.
55. LE CAM, L. and YANG, G. L. (January 1986). Replaced by No. 68.
56. LE CAM, L. (February 1986). On the Bernstein - von Mises theorem.
57. O'SULLIVAN, F. (January 1986). Estimation of Densities and Hazards by the Method of Penalized likelihood.
58. ALDOUS, D. and DIACONIS, P. (February 1986). Strong Uniform Times and Finite Random Walks.
59. ALDOUS, D. (March 1986). On the Markov Chain simulation Method for Uniform Combinatorial Distributions and Simulated Annealing.
60. CHENG, C-S. (April 1986). An Optimization Problem with Applications to Optimal Design Theory.
61. CHENG, C-S., MAJUMDAR, D., STUFKEN, J. \& TURE, T. E. (May 1986, revised Jan 1987). Optimal step type design for comparing test treatments with a control.
62. CHENG, C-S. (May 1986, revised Jan. 1987). An Application of the Kiefer-Wolfowitz Equivalence Theorem.
63. O'SULLIVAN, F. (May 1986). Nonparametric Estimation in the Cox Proportional Hazards Model.
64. ALDOUS, D. (JUNE 1986). Finite-Time Implications of Relaxation Times for Stochastically Monotone Processes.
65. PITMAN, J. (JULY 1986, revised November 1986). Stationary Excursions.
66. DABROWSKA, D. and DOKSUM, K. (July 1986, revised November 1986). Estimates and confidence intervals for median and mean life in the proportional hazard model with censored data.
67. LE CAM, L. and YANG, G.L. (July 1986). Distinguished Statistics, Loss of information and a theorem of Robert B. Davies (Fourth edition).
68. STONE, C.J. (July 1986). Asymptotic properties of logspline density estimation.
69. BICKEL, P.J. and YAHAV, J.A. (July 1986). Richardson Extrapolation and the Bootstrap.
70. LEHMANN, E.L. (July 1986). Statistics - an overview.
71. STONE, C.J. (August 1986). A nonparametric framework for statistical modelling.
72. BIANE, PH. and YOR, M. (August 1986). A relation between Lévy's stochastic area formula, Legendre polynomial, and some continued fractions of Gauss.
73. LEHMANN, E.L. (August 1986, revised July 1987). Comparing Location Experiments.
74. O'SULLIVAN, F. (September 1986). Relative risk estimation.
75. O'SULLIVAN, F. (September 1986). Deconvolution of episodic hormone data.
76. PITMAN, J. \& YOR, M. (September 1987). Further asymptotic laws of planar Brownian motion.
77. FREEDMAN, D.A. \& ZEISEL, H. (November 1986). From mouse to man: The quantitative assessment of cancer risks. To appear in Statistical Science.
78. BRILLINGER, D.R. (October 1986). Maximum likelihood analysis of spike trains of interacting nerve cells.
79. DABROWSKA, D.M. (November 1986). Nonparametric regression with censored survival time data.
80. DOKSUM, K.J. and LO, A.Y. (November 1986). Consistent and robust Bayes Procedures for Location based on Partial Information.
81. DABROWSKA, D.M., DOKSUM, K.A. and MIURA, R. (November 1986). Rank estimates in a class of semiparametric two-sample models.
82. BRILLINGER, D. (December 1986). Some statistical methods for random process data from seismology and neurophysiology.
83. DIACONIS, P. and FREEDMAN, D. (December 1986). A dozen de Finetti-style results in search of a theory. Ann. Inst. Henri Poincaré, 1987, 23, 397-423.
84. DABROWSKA, D.M. (January 1987). Uniform consistency of nearest neighbour and kernel conditional Kaplan - Meier estimates.
85. FREEDMAN, D.A., NAVIDI, W. and PETERS, S.C. (February 1987). On the impact of variable selection in fitting regression equations.
86. ALDOUS, D. (February 1987, revised April 1987). Hashing with linear probing, under non-uniform probabilities.
87. DABROWSKA, D.M. and DOKSUM, K.A. (March 1987, revised January 1988). Estimating and testing in a two sample generalized odds rate model.
88. DABROWSKA, D.M. (March 1987). Rank tests for matched pair experiments with censored data.
89. DIACONIS, P and FREEDMAN, D.A. (April 1988). Conditional limit theorems for exponential families and finite versions of de Finetti's theorem. To appear in the Journal of Applied Probability.
90. DABROWSKA, D.M. (April 1987, revised September 1987). Kaplan-Meier estimate on the plane.

92a. ALDOUS, D. (April 1987). The Harmonic mean formula for probabilities of Unions: Applications to sparse random graphs.
93. DABROWSKA, D.M. (June 1987, revised Feb 1988). Nonparametric quantile regression with censored data.
94. DONOHO, D.L. \& STARK, P.B. (June 1987). Uncertainty principles and signal recovery.

95. CANCELLED

96. BRILLINGER, D.R. (June 1987). Some examples of the statistical analysis of seismological data. To appear in Proceedings, Centennial Anniversary Symposium, Seismographic Stations, University of California, Berkeley.
97. FREEDMAN, D.A. and NAVIDI, W. (June 1987). On the multi-stage model for carcinogenesis. To appear in Environmental Health Perspectives.
98. O'SULLIVAN, F. and WONG, T. (June 1987). Determining a function diffusion coefficient in the heat equation.
99. O'SULLIVAN, F. (June 1987). Constrained non-linear regularization with application to some system identification problems.
100. LE CAM, L. (July 1987, revised Nov 1987). On the standard asymptotic confidence ellipsoids of Wald.
101. DONOHO, D.L. and LIU, R.C. (July 1987). Pathologies of some minimum distance estimators. Annals of Statistics, June, 1988.
102. BRILLINGER, D.R., DOWNING, K.H. and GLAESER, R.M. (July 1987). Some statistical aspects of low-dose electron imaging of crystals.
103. LE CAM, L. (August 1987). Harald Cramér and sums of independent random variables.
104. DONOHO, A.W., DONOHO, D.L. and GASKO, M. (August 1987). Macspin: Dynamic graphics on a desktop computer. IEEE Computer Graphics and applications, June, 1988.
105. DONOHO, D.L. and LIU, R.C. (August 1987). On minimax estimation of linear functionals.
106. DABROWSKA, D.M. (August 1987). Kaplan-Meier estimate on the plane: weak convergence, LIL and the bootstrap.
107. CHENG, C-S. (August 1987). Some orthogonal main-effect plans for asymmetrical factorials.
108. CHENG, C-S. and JACROUX, M. (August 1987). On the construction of trend-free run orders of two-level factorial designs.
109. KLASS, M.J. (August 1987). Maximizing $E \max _{1 \leq k \leq n} \mathrm{~S}_{\mathbf{k}}^{+} / \mathrm{ES}_{\mathrm{n}}^{+}$: A prophet inequality for sums of I.I.D. mean zero variates.
110. DONOHO, D.L. and LIU, R.C. (August 1987). The "automatic" robustness of minimum distance functionals. Annals of Statistics, June, 1988.
111. BICKEL, P.J. and GHOSH, J.K. (August 1987, revised June 1988). A decomposition for the likelihood ratio statistic and the Bartlett correction - a Bayesian argument.
112. BURDZY, K., PITMAN, J.W. and YOR, M. (September 1987). Some asymptotic laws for crossings and excursions.
113. ADHIKARI, A. and PITMAN, J. (September 1987). The shortest planar arc of width 1.
114. RITOV, Y. (September 1987). Estimation in a linear regression model with censored data.
115. BICKEL, P.J. and RITOV, Y. (Sept. 1987, revised Aug 1988). Large sample theory of estimation in biased sampling regression models I.
116. RITOV, Y. and BICKEL, P.J. (Sept.1987, revised Aug. 1988). Achieving information bounds in non and semiparametric models.
117. RITOV, Y. (October 1987). On the convergence of a maximal correlation algorithm with alternating projections.
118. ALDOUS, D.J. (October 1987). Meeting times for independent Markov chains.
119. HESSE, C.H. (October 1987). An asymptotic expansion for the mean of the passage-time distribution of integrated Brownian Motion.
120. DONOHO, D. and LIU, R. (October 1987, revised March 1988). Geometrizing rates of convergence, II.
121. BRILLINGER, D.R. (October 1987). Estimating the chances of large earthquakes by radiocarbon dating and statistical modelling. To appear in Statistics a Guide to the Unknown.
122. ALDOUS, D., FLANNERY, B. and PALACIOS, J.L. (November 1987). Two applications of um processes: The fringe analysis of search trees and the simulation of quasi-stationary distributions of Markov chains.
123. DONOHO, D.L., MACGIBBON, B. and LIU, R.C. (Nov.1987, revised July 1988). Minimax risk for hyperrectangles.
124. ALDOUS, D. (November 1987). Stopping times and tightness II.
125. HESSE, C.H. (November 1987). The present state of a stochastic model for sedimentation.
126. DALANG, R.C. (December 1987, revised June 1988). Optimal stopping of two-parameter processes on nonstandard probability spaces.
127. Same as No. 133.
128. DONOHO, D. and GASKO, M. (December 1987). Multivariate generalizations of the median and trimmed mean II.
129. SMITH, D.L. (December 1987). Exponential bounds in Vapnik-Cervonenkis classes of index 1.
130. STONE, C.J. (Nov.1987, revised Sept. 1988). Uniform error bounds involving logspline models.
131. Same as No. 140
132. HESSE, C.H. (December 1987). A Bahadur - Type representation for empirical quantiles of a large class of stationary, possibly infinite - variance, linear processes
133. DONOHO, D.L. and GASKO, M. (December 1987). Multivariate generalizations of the median and trimmed mean, I.
134. DUBINS, L.E. and SCHWARZ, G. (December 1987). A sharp inequality for martingales and stopping-times.
135. FREEDMAN, D.A. and NAVIDI, W. (December 1987). On the risk of lung cancer for ex-smokers.
136. LE CAM, L. (January 1988). On some stochastic models of the effects of radiation on cell survival.
137. DIACONIS, P. and FREEDMAN, D.A. (April 1988). On the uniform consistency of Bayes estimates for multinomial probabilities.

137a. DONOHO, D.L. and LIU, R.C. (1987). Geometrizing rates of convergence, I.
138. DONOHO, D.L. and LIU, R.C. (January 1988). Geometrizing rates of convergence, III.
139. BERAN, R. (January 1988). Refining simultaneous confidence sets.
140. HESSE, C.H. (December 1987). Numerical and statistical aspects of neural networks.
141. BRILLINGER, D.R. (January 1988). Two reports on trend analysis: a) An Elementary Trend Analysis of Rio Negro Levels at Manaus, 1903-1985 b) Consistent Detec n of a Monotonic Trend Superposed on a Stationary Time Series
142. DONOHO, D.L. (Jan. 1985, revised Jan. 1988). One-sided inference about functionals of a density.
143. DALANG, R.C. (February 1988). Randomization in the two-armed bandit problem.
144. DABROWSKA, D.M., DOKSUM, K.A. and SONG, J.K. (February 1988). Graphical comparisons of cumulative hazards for two populations.
145. ALDOUS, D.J. (February 1988). Lower bounds for covering times for reversible Markov Chains and random walks on graphs.
146. BICKEL, P.J. and RITOV, Y. (Feb.1988, revised August 1988). Estimating integrated squared density derivatives.
147. STARK, P.B. (March 1988). Strict bounds and applications.
148. DONOHO, D.L. and STARK, P.B. (March 1988). Rearrangements and smoothing.
149. NOLAN, D. (March 1988). Asymptotics for a multivariate location estimator.
150. SEILLIER, F. (March 1988). Sequential probability forecasts and the probability integral transform.
151. NOLAN, D. (March 1988). Limit theorems for a random convex set.
152. DIACONIS, P. and FREEDMAN, D.A. (April 1988). On a theorem of Kuchler and Lauritzen.
153. DIACONIS, P. and FREEDMAN, D.A. (April 1988). On the problem of types.
154. DOKSUM, K.A. (May 1988). On the correspondence between models in binary regression analysis and survival analysis.
155. LEHMANN, E.L. (May 1988). Jerzy Neyman, 1894-1981.
156. ALDOUS, D.J. (May 1988). Stein's method in a two-dimensional coverage problem.
157. FAN, J. (June 1988). On the optimal rates of convergence for nonparametric deconvolution problem.
158. DABROWSKA, D. (June 1988). Signed-rank tests for censored matched pairs.
159. BERAN, R.J. and MILLAR, P.W. (June 1988). Multivariate symmetry models.
160. BERAN, R.J. and MILLAR, P.W. (June 1988). Tests of fit for logistic models.
161. BREIMAN, L. and PETERS, S. (June 1988). Comparing automatic bivariate smoothers (A public service enterprise).
162. FAN, J. (June 1988). Optimal global rates of convergence for nonparametric deconvolution problem.
163. DIACONIS, P. and FREEDMAN, D.A. (June 1988). A singular measure which is locally uniform.
164. BICKEL, P.J. and KRIEGER, A.M. (July 1988). Confidence bands for a distribution function using the bootstrap.
165. HESSE, C.H. (July 1988). New methods in the analysis of economic time series I.
166. FAN, JIANQING (July 1988). Nonparametric estimation of quadratic functionals in Gaussian white noise.
167. BREIMAN, L., STONE, C.J. and KOOPERBERG, C. (August 1988). Confidence bounds for extreme quantiles.
168. LE CAM, L. (August 1988). Maximum likelihood an introduction.
169. BREIMAN, L. (August 1988). Submodel selection and evaluation in regression-The conditional case and little bootstrap.
170. LE CAM, L. (September 1988). On the Prokhorov distance between the empirical process and the associated Gaussian bridge.
171. STONE, C.J. (September 1988). Large-sample inference for logspline models.
172. ADLER, R.J. and EPSTEIN, R. (September 1988). Intersection local times for infinite systems of planar brownian motions and for the brownian density process.
173. MILLAR, P.W. (October 1988). Optimal estimation in the non-parametric multiplicative intensity model.
174. YOR, M. (October 1988). Interwinings of Bessel processes.
175. ROJO, J. (October 1988). On the concept of tail-heaviness.
176. ABRAHAMS, D.M. and RIZZARDI, F. (September 1988). BLSS - The Berkeley interactive statistical system: An overview.

Copies of these Reports plus the most recent additions to the Technical Report series are available from the Statistics Department technical typist in room 379 Evans Hall or may be requested by mail from:

Department of Statistics
University of California
Berkeley, California 94720
Cost: \$1 per copy.

