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Abstract. We prove the existence of optimal stopping points for upper semicontinu-
ous two-parameter processes defined on filtered nonstandard (Loeb) probability spaces
that satisfy a classical conditional independence hypothesis. The proof is obtained via
a lifting theorem for elements of the convex set of randomized stopping points, which
shows in particular that extremal elements of this set are ordinary stopping points.
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1. Introduction.

The optimal stopping problem for two-parameter processes has been the object of
much research in recent years, starting with the fundamental paper [CG] of Cairoli and
Gabriel. The discrete time version of the problem was then solved with increasing
generality by Mandelbaum and Vanderbei [MV], Krengel and Sucheston [KS] and
Mazziotto and Szpirglas [MS]. Several papers concerning the continuous time version
of this problem have also appeared: Mazziotto [Ma] shows the existence of optimal
stopping points for bi-Markov processes, and similar results are stated in [Mi] and
[MM] for general two-parameter processes. However, the proofs contained in these
two papers are not complete, and the question of existence of optimal stopping points
for general two-parameter processes in continuous time is to be regarded as open (see
Remark 7.4). However, in this paper, we shall prove the existence of optimal stopping
points for upper semicontinuous two-parameter processes defined on a nonstandard
(Loeb) probability space that satisfies the commutation property F4 of Cairoli and
Walsh [CW].

The approach in this paper was motivated by the following considerations.
- The discrete time optimal stopping problem was well understood, but no continu-

ous time extension had been obtained. In particular, no discretization argument seems
feasible.

- Nonstandard probability theory, as developed by Loeb [L], Anderson [A], Keisler
[K] and Hoover and Perkins [HP] provides a powerful tool for extending discrete case
results to continuous time.

It thus seemed natural to study the optimal stopping problem via these methods,
which have so far been little used in the general theory of two-parameter processes
(the only case we are aware of is [MMe]).

Our main tool in this study of the optimal stopping problem is the notion of ran-
domization. The convex compact set of randomized stopping times was first intro-
duced in continuous time by Baxter and Chacon [BC], and used in the context of the
single-parameter optimal stopping problem by Ghoussoub [G]: the property that makes
this set useful is that extremal elements of the set of randomized stopping times are
exactly ordinary stopping times. Now when trying to follow a similar procedure for
two-parameter processes, one is hindered by the fact that the set U of randomized

stopping points generally contains extremal elements which are not stopping points: a
simple example is provided in [MM]. This fact turns out to be a consequence of the
complex combinatorial structure of two-parameter filtrations (see [DTW]), and led Mil-
let [Mi] and Mazziotto and Millet [MM] to try different randomizations.
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As a matter of fact, the set of extremal elements of U seems to remain the set T of

stopping points when the two-parameter filtration satisfies certain classical conditions,
such as Hypothesis CQI of Krengel and Sucheston [KS] or Hypothesis F4 of Cairoli
and Walsh [CW]. This was proved on finite probability spaces in [DTW] and on arbi-
trary complete probability spaces but in discrete time in [D2].

The main result of this paper is that the property T = ext U is again valid in con-

tinuous time, provided the underlying probability space is a nonstandard (Loeb) space.
Existence of optimal stopping points for upper semicontinuous two-parameter
processes is then obtained using a generalization of the regularity result for functionals
of randomized stopping points obtained in [Dl].

The use of nonstandard probability theory seems particularly natural due to the fol-
lowing: the discrete time proof that T = extU contained in [D2] relies on the construc-

tion of a particular optional increasing path (Zn)nEN by a step by step procedure. In
continuous time, one would imagine that a path (Z.)U\] with similar properties could
be defined as the solution of a (random) differential equation of the form

dZu
(*) (co) = f(u,(Z)Vug c).du

However, no regularity is to be expected from the function f( , ,c(o). Now certain
stochastic differential equations with insufficiently regular coefficients are known not
to have any (strong) solution (see Barlow [Ba]), and so it is improbable that (*) would
have a solution in any useful sense. On the other hand, Keisler [K1] (Theorems 5.2
and 5.5) has shown under minimal regularity assumptions that stochastic differential
equations have a (strong) solution when the probability space is hyperfinite, hence the
use of these spaces in this paper. We feel that nonstandard probability theory may
lead to solutions to several other problems in the theory of two-parameter processes,
particularly in instances where the discrete case is solved, but the continuous time
extension via classical methods does not seem to succeed.

2. The set of randomized stopping points.

Throughout this paper, we will primarily be concerned with stochastic processes
indexed by N, Dn or R+ (single-parameter processes) or N2, D 2 or R 2 (two-
parameter processes). Here Dn denotes the set of dyadic real numbers of order n. In
the continuous case, we will often replace R+ by [ 0, 1 ].

The letter I (respectively J2) will denote a single-parameter (respectively two-
parameter) index set. The set I is equipped with the usual total order, denoted <,
whereas on 12 it is natural to consider the two orders < and A defined by
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s = (S1, S2) < t = (tI t2) < sl < t1 and s2 :5 t2

s = (Sl'2)SO t = (tl,t2) <=> s, < t1 and s2 > t2.

We will use the notation s < t to express that s . t and s * t, whereas s A t will mean
s /\ t and s * t, and s4 t will mean s, < t, and s2 < t2. Several kinds of intervals can
be defined on 12: [s,t] = u e I2:s u <t), ]s,t]= u E 2: s < u < t) and so
forth. In order to avoid introducing special symbols, we will set
]s,t] = (u e I2: s < u . t) when s . t but s, = tl or S2 = t2.

In several instances, we will use the lexicographic (total) order <1 on 12:

s <1 t < > (s, < t1 or (s, = t1 and S2 < t2)).

The notation s <1 t will mean s <1 t and s * t.

We will often add to I or 12 an extra element, denoted in both cases oo, and will set
I = I u (o), 12 = 12 u {oo). These sets will be equipped with their usual metric topo-
logies, making them compact. We will also suppose that t < oo, for all t, in either I or
12. The notations B (I), B (I), B (I2), B (I2) will denote in each case the Borel a-

algebra of the index set.

Let (Q, F, P) be a (complete) probability space. A two-parameter filtration is a

family (Fd)t, I of sub-ca-algebras of F with the following properties:

Fl. FoO0 contains all P-null sets;

F2. s < t cF ' F;

F3. When I= [O, 1 ], Fs = n Ft, Vs E 12.
te]s,(1,1)J

These properties are termed the "usual conditions" ([DM] , IV. 48).

Many results in the theory of two-parameter processes require a supplementary
hypothesis on the two-parameter filtration, usually Hypothesis F4 of Cairoli and Walsh

[CW]:
F4. If s,t,u e 12 are such that s A t and u = (sl, t2), then Fs is conditionally

independent of Ft given Fu.

This condition restricts the combinatorial complexity of the filtration (see [DTW;
Theorems 3.6, 5.8 and 5.9]).

Associated with a two-parameter filtration is a set T of stopping points: a random

variable T: n -+ 2 is a stopping point provided {T < t) E Ft, Vt 612.
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Given a measurable process X = (Xt)tfET, the optimal stopping problem is to deter-
mine a stopping point To such that

E (XT) = suV E (XT);

To is then called optimal. We shall prove that optimal stopping points do exist on
nonstandard filtered Loeb probability spaces that satisfy Hypothesis F4, under suitable
regularity assumptions on the reward process X. This process may or may not be
adapted (a process (Xt)tEp is adapted to (Ft)t& provided Xt is Ft-measurable, for all t).

The problem of existence of optimal stopping points reduces to the following: con-
sider the map : T -+ R defined by T i- (T) = E(XT), and show that this map

attains its maximum on T. It is thus natural to embed T into some larger "random-

ized" set U with certain convexity and compactness properties and on which 4 can be

extended to a function with sufficient regularity that a maximum over U will exist.

The choice of randomization should be such that one can then recover a maximum in
T.

The regularity question for upper-semicontinuous processes will be solved by a
generalization of the result of [Dl]. Furthermore, a natural way to randomize is to
take the convex closure of T in an appropriate sense. This leads to the set of random-

ized stopping points, introduced by Baxter and Chacon [BC] in the single-parameter
setting. The presentation of the set by Meyer [Me] and Ghoussoub [G] will be the
most convenient for our purposes.

A randomized stopping point is a random probability measure . (co, B), col e Q,
B e B (I) such that ("[0, t]) is Ft-measurable, for all t. Each stopping point T

identifies with the randomized stopping point gT defined by

TT(w),B) = I(TEB) (w), o E Q, BE B JI),
so T is "contained" in U.

Let C denote the set of continuous real-valued processes (Xt)tEz2 such that

E (suptL, Xtl ) <+oo. C equipped with the norm IIX II = E (suptJ21 Xtl ) is a Banach

space. It is well-known that U is a subset of the unit ball in the dual C* of C that is

compact in the weak topology a (C*, C) (see [Me], [G]).
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Furthermore, for (X)tETZ e C, the map (I: U -+ R defined by

o(() = E(fXt(-)g(-,dt))

is continuous on U and is an extension of T i-4 E (XT). Hence, the existence of an

optimal randomized stopping point is clear in this case. Now since 4) is affine and U

is convex, (I attains its maximum at an extremal element of U. Thus we will have

shown the existence of an optimal stopping point provided T = ext U. This method

was in fact used by Ghoussoub [G] for continuous single-parameter processes.

Now for two-parameter processes, it is clear that T c ext U, but as mentioned in

the introduction, the converse inclusion is false in general. Our purpose here is to
show that the property T = extU also holds in continuous time when Q is a nonstan-

dard (Loeb) space and the two-parameter filtration satisfies Hypothesis F4.

To see why this extension is feasible, let us first look at the set U when I = N. In

this case, a randomized stopping point can be identified with a positive weight process

(at)tE2 defined by at (@) = ± (co, (t)) (i.e. at is the random weight of t for p). This

weight process satisfies the following conditions:

(2.1) at ' 0 a.s.,

(2.2) at is Fe-measurable, Vt E N2,

(2.3) 2 at = 1 a.s.
tEN

These three properties characterize weight processes that correspond to randomized
stopping points. The weights (at)tEN2 are very convenient to work with, and this was

exploited in [D2]. Now when I - R2, a randomized stopping point can only be
identified with a right-continuous non-negative adapted process (At)t, such that

Aoc = 1 a.s. and A1s tI A > O a.s., where

AIs,A A = At - A(SI, t2 - A(tl,S2) + As if s < t,

AiS,t]A = At-As if s < tands1=t1 ors2=t2.

The main idea of this paper will be to "lift" a continuous time randornized stop-
ping point to an (internal) weight process indexed by a hyperfinite set (the terminology
from non-standard probability theory will be recalled in Section 3). This weight pro-
cess can then be manipulated as in the discrete case. Of course this procedure can

only be carried out on a Loeb space and as mentioned in the introduction, it is not
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clear that a discretisation on a standard space can lead to a continuous time solution to
the question of equality of T and ext U. A corollary of this study will be a proof of

the existence of optimal stopping points in continuous time.

Before intoducing the nonstandard framework we will be working in, we recall the
discrete case result of [D2]. For this, we need the notion of optional increasing path
([WI).

2.1. Definition. A family Z = (Zu),T Of stopping points is an optional increasing
path (o.i.p.) provided ZO (0,0) a.s., u . v =o Zu < Z, a.s., and IZ. = u a.s., Vu e T
(for t = (tl,t2), It! denotes the sum tl + t2). If I = Dn, we impose the supplementary
condition Z2-. is F~Z-measurable, Vu E Dn (these o.i.p.'s are often called tactics: see

[MV]).

Though the theorem below was proved under the weaker hypothesis CQI of
Krengel and Sucheston [KS], we only need it for filtrations that satisfy Hypothesis F4.

2.2. Theorem. Let (Q, F, P) be a (complete) probability space, and (Fi)tE be a two-

parameter filtration satisfying Hypothesis F4. Then:

(a) all extremal elements of the set of randomized stopping points are stopping
points;

(b) furthermore, for any randomized stopping point (aL)tE_R2 E U, there are (a')tER2,

(ab2)tE2 e U and an o.i.p. (Z4)ncR such that:

(bi) at =- 2 at +2 at a.s., Vt E ;

(b2) for almost all XceQ,

t A\ Z, tI (wk) => atl (O) = 2 at (wt)) at2 (CO) =0,
2 t I (Co)) A t :=> at, ((@) = o at2 (co)) 2 at (co))

(for a proof, see [D2; (4.22) and Theorem 4.23]).

In order to apply the Transfer Principle of Nonstandard Analysis (see 3.3), we shall
only need this result for index sets 12 of the form ls e 2: s < (n, n)}, for some
n e N.
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3. Preliminaries from nonstandard probability theory.

The nonstandard framework will be that of Keisler [K]: we work in an co1-
saturated enlargement V (* S) of a superstructure V (S), where S D R. The reader
interested in familianzing himself with the basics of non-standard analysis should con-
sult [HL]. The non-standard theory of single-parameter stochastic processes is con-
tained in [SB], and we follow their notation. In the hyperfinite setting, a comprehen-
sive presentation with applications is given in [AFHL].

(3.1) Internal functions will generally be written f, g.

(3.2) The standard part of a finite element r E * R is denoted st (r). When x, y e * R
are such that Ix - yI< 1/n, Vn E N, we write x - y. If s,te *R2, s - t means si t
and S2 - t2.

(3.3) Transfer Principle: Let Si,... , Sn E V (S). Any elementary statement which is

true of S ...,Sn is true of * Sj . . . *S

(3.4) Countable Comprehension Principle: Let X be an internal set, and (xn)neN be a
sequence of elements of X. Then there exists an internal sequence (Yn)nE*N of ele-
ments of X such that Yn = xn, Vn e N.

(3.5) We fix no e * N\N, and set L = no!, Au = 1/L. T denotes the internal set
{O,Au,2Au . . . , 1). Since L is an infinite factorial, T contains Q n [0, 11.

(3.6) If (Q2, A, P) is an intemal probability space, (Q, L (A), P) denotes the correspond-

ing Loeb space, that is L (A) is the (external) a-algebra generated by A, and P is the

unique a-additive extension of st (P) to L (A) [HP; Sect. 3].

(3.7) An internal two-parameter filtration will be an internal family (At)tET2 of internal

*-sub-.a-algebras of A, such that

s<t, s,teT2 => A cA:.

This filtration is complete provided any internal subset N of an internal set M E A with

P(M) = 0 belongs to A oo. The standard part of (At)t,T2 is the (ordinary) filtration
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(F)te[o,1.2 defined by

F_ = ( fn a(A,))vN, te [0,1]2,
St (s) :t t

where N denotes the family of null sets of P. It is easy to see that properties Fl, F2

and F3 are satisfied.

(3.8) The family (At)tET2 satisfies Hypothesis F4 provided s,t,u e T2,
s A t, u = (sl, t2), B e As, and C e At imply

P(B rCIA) = P(B IAu)P(CIAu).

(3.9) A lifting of a random variable X defined on (Q, L (A), P) is an internal function

X: -Q R which is A-measurable (i.e. constant on atoms of A), and such that

X = st (X) P-a.s.

Throughout this paper, we will work on a fixed filtered Loeb space
(Q,F = L(A), P, (Ft[(01 ]2), where P is the Loeb measure associated with an internal

probability measure on A, and (Ft)t[o 1 12 iS the standard part of an internal (complete)

filtration (A)tET2.

3.1. Lemma. Fix t E [0, 1 ]2 A random variable X is Ft-measurable provided X has

a lifting X which satisfies the following condition:

there exists s e T , s - t such that X is As-measurable.

The proof of this lemma is omitted, as it is similar to the single-parameter case
(see [HP; Theorem 3.2])

3.2. Lemma. Let X be a bounded random variable, and X a bounded lifting of X.
Fix t e [0, 1 12. Then there is u z t, u E T2 (depending on X) such that for s . u,
s = t, E (X I As) is a lifting of E (X I F).

Proof. By [HP; Lemma 3.3],

st (E (X I As)) = E (X I L (As)) a.s., Vs E T2.
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Hence it is only necessary to prove that for some u E T2, u - t,

s e T2, s > u, s - t => E (X I L (As)) = E (X I F) a.s.

The proof of this statement is the straightforward two-parameter extension of the
Remark following Lemma 8.4 in [Ke]. 0

3.3. Proposition. Suppose (At)ET2 satisfies Hypothesis F4. Then (Ft)t.[ol]2 satisfies

Hypothesis F4.

Proof. Fix s,t [O, 1 ]2 such that s A t, and set u = (sl, t2). Let B e Fs, C e Ft. By

Lemma 3.1, there are s-,t- e T2,9 s, t = t, and internal sets B e A, C e A such

that B = B a.s. and C = C a.s. Using Lemma 3.2, we get for sufficiently large iu u,
j.je T2:

P(B n CIFu) = st(P(B r CIA-))

= st(P(BIA-)P(CIA-))

= P (B I Fu) P (C I Fu). °

The following proposition provides a canonical example of a filtered hyperfinite proba-
bility space which satisfies properties F1-F4.

3.4. Proposition. Let Q2 = Q2V be the (internal) set of all internal functions from T2
into some hyperfinite set S2O, A be the algebra of internal sets in Q, and P the uniform

counting measure on A (see [Ke], § 1.). For t E T2, let At be the algebra of internal

sets closed under the equivalence relation zt defined by

t co' <=> co(S) = CO'(S), VS t, S E T2.

Then (2, L (A), P, (Ft)t[o0l]2) satisfies the properties Fl, F2, F3 and F4.

Proof. We only check Hypothesis F4. By Proposition 3.3, it is sufficient to check
Hypothesis F4 for (AL)tET2.

If A is an internal set, let IA I denote the internal cardinality of A, and let pt (co)
denote the equivalence class of co for zt. Since each element of At is a hyperfinite

union of disjoint equivalence classes pt(co), Hypothesis F4 will hold provided for
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s,t,u E T2 such that s A t and u = (slp t2),

P (P5 (w) r Pt (oY') I Pu (o)) = P (Ps (c) I Pu (cO)) P (Ps (d" I Pu (co)),
for all co, co', co" e Q. Observe that both sides above are zero unless o' -u Xo xu co"
In this case, the above equality is equivalent to

I PS(o) n Pt(C') I = I PS (c') I I Pt(0"II PU (O)I1
Since n = nZ5', the left-hand side of this equality is equal to

I CIO IL2((I _S2)+(I-tl)S2+(S2-t2(t-SI)) = 1 IL2(1 -SS2-tt2+St2)

where L e *N is defined in (3.5), and the right-hand side is equal to

I CI IL2 (1 - s, s2) 1 n0 IL2 (1 - t, t2) /I f2o L2 (1 - ul u2).
Since ul u2 = s, t2, these two quantities are equal, completing the proof 0

4. The simultaneous lifting theorem.

The first step towards obtaining a lifting theorem for continuous time randomized
stopping points is to obtain such a theorem on a finite index set. This is no problem
in the single-parameter case, but as will become apparent, it is quite non-trivial in the
presence of two parameters.

Throughout the rest of this paper, we make the following assumption.

4.1. Assumption. The internal filtration (At)t [0, 1]2 satisfies Hypothesis F4.

4.2. Simultaneous Lifting Theorem. Fix n e N, and set I = (0, 1/n, 2/n,..., 1).
Let (at)t,iz be a family of real random variables such that

(4.1) at is Ft-measurable, Vt E 12,

(4.2) at ' 0 a.s., Vt E 12,

(4.3) E a = 1 a.s.
tUI

Then there is a family (at)tI2 of internal functions from Q into *R such that

(4.4) st(a ) = at a.s.,

(4.5) for each t e I2, there is s E T2, s = t such that at is As-measurable,

(4.6) at(co) . 0, Vco E Q, Vt E I2,
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(4.7) £ it(03) = 1,t V(O e- Q.

4.3. Remark. The difficult point in this theorem is to replace the (extemal) "a.s."
relationships in (4.2) and (4.3) by the internal relations (4.6) and (4.7) valid for each
co e Q. Though the proof seems non-trivial already for n = 2, and uses the conditional
supremum operator introduced in [D2], its proof would be quite straightforward in the
single-parameter case, when 12 is replaced by I. We briefly indicate how the theorem
could be proved in this case.

Let bt be a lifting of £S_t as, such that 0. bt (o) < 1, Vco E , and for some st t,

bt is A i-measurable. Set c- = sups o =A c, and

a t =ct - t-1/np t C=I\(O.)1}

al= 1 C(n-lyn.
Then (i )tEj has the desired properties. Cl

Before proving Theorem 4.2, we recall the definition and main properties of the
conditional supremum operator S (Y I G) introduced in [D]: given a sub a-algebra G of

F, and a bounded random variable Y, S (Y I G) is the G-measurable random variable

defined by

S (Y I G) = ess inf Z,

where the essential infinum is taken over all Z > Y which are G-measurable. S (I)

has the following properties, which we recall for ease of reference:

(4.8) G1 cG2 => S(YIG2) c S (Y I G1);

(4.9) If X is G-measurable, then S (X + Y I G) = X + S (Y I G);

(4.10) If (Fdt,I2 satisfies Hypothesis F4, and s, t,u E 12 are such that s A t,

u = (sI, t2), and if Y is F,-measurable, then S (Y I Ft) = S (Y Fu).

((4.8) is clear; (4.9) follows from [D, Lemma 4.7 (f)] and (4.10) follows from [D, Pro-
position 4.12 (a) and (b)]).
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Proof of Theorem 4.2. For t e 12, set R- = {s e 2: s A t), and A- = 1sER a.
Observe that 0 . S (A-IFd) . 1 a.s., since 0 < AC- . 1 a.s. Since at and S (A-IF1) are

Ft7measurable, there exist by Lemma 3.1 two internal functions bt, S : i *[0, 1]

such that

(4.11) st(bt) = at a.s., st(Sd = S(ACIF-) a.s.,

(4.12) for some st = t, bt and St are A i-measurable.

We can now define At, t E I2, by induction in increasing order for .1 (the lexico-
graphic order on I2). Throughout this proof, k and I will denote elements of I. Set

ao,o = min (bo0,o o,o)
and suppose by induction that as has been defined, for s <1 t. Then set

(4.13) t = max(0,min(bt, min (St,,I - Sk,yt2 - UM
Osk<tl u<t
Odl st2 usuER.,1\R-

if t (1, 1), and

'~~~~ttE2\ {(1,1)}

Then property (4.7) is trivially satisfied. Before showing that properties (4.4), (4.5)
and (4.6) hold, we prove the following lemmas.

4.4. Lemma. Fix t e 12, and 0 < k < tl,O < I < t2. Then

at< S(A-, IlF -S(A-t2lFt) - E au a.s.tll =tI, k' =k- t2 u<t
u,ER-l \R-t

Proof. Since (Fd)tEI2 satisfies Hypothesis F4, (4.10) implies that

S (A-t1Ft2 aU = s (A-2 IFt)+ U£t au
u.ERtk ut

k.tu tl, \R-t uE R-,, \R-,

which, by (4.9), is equal to

S (A- + £ aU IF) S (AI Ft).
ti., \R.'

By (4.8), this is not greater than S (A, 1 I Ft_1) This clearly implies the statement of

the lemma. 0
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4.5. Lemma. Fix tl, 1 e I, and . e Q, and suppose atl t2(o) > 0, for some t2 "1

with (t1,t2) $ (1,1). Then

a-.S(co) ' St,, l (Co))
sERt,,
s*(1,1)

Proof. We first show that the statement of the lemma holds when ti = 0. Suppose
0 t2(co) > 0 for some t2 > 1. Let t2 e I be maximal with this property. Then

(4.14) X as(X) = 1 a0,S2(0).
seR, 1 s2St2

Now by (4.13), aO t2(co) > 0 implies

ao.t2(co) s So,I (C)) - < aO,s2(°),

and thus

aa0, S2(c) < SO,1 (c).

By (4.14), the lemma holds for t1 = 0.

Suppose now by induction that the statement of the lemma holds for 0 < t1' < tl,
and show that it holds for tl. Fix I E I, and suppose at,t2(c() > 0, for some t2 ' 1

with (tl, t2) * (1,1). Let t2 be maximal with this property.

Case 1: a-t,,, (Co) = 0, Vt1 < t1, t2' > t2. Then

seRe,,a ss(ta,t2) (W) = at, t2((°) + as 0

t .,\R- ~~~~~~sERtLL\R-~.ts *(1,1) IsRtl, 1t-t2 s tiu \R 1t2-@

By (4.13), t1 t2 (co) > 0 implies that the last expression above is not greater than

Stl (co) -S-1,(t2() < Stl, (i))

which implies the desired property.

Case 2: For some k < t, and t2' > t2, ak,t2' (co) > 0. Let k be maximal with this pro-
perty. Then

(4.15) ; As(co) s(co)+ as (CO) + atl t2(cO).
sERtlul sERKt2 S<(tl.t2)

SERh, \Rk,t2

Applying the induction hypothesis to the first term on the right-hand side of (4.15) and
using the fact that atl t2(cO) > O, we see by (4.13) that this last expression is not greater
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than

SX()) + St,,, (w) - Sk(CO) = Stl,1 (O).

This completes the proof of the lemma. 0

End of the proof of Theorem 4.2. To see (4.4), we proceed by induction in increas-
ing order for .1. Use Lemma 4.4 and (4.11) and (4.13) to see that

st() = max(O,min(st(bt), min (st(St1,, - Sk,t2 - O
0O5k<t1 u<t
Osl s2 ueR½.,\R-

= st(b) = at a.s.

Again proceeding by induction in increasing order for <1, we see that (4.5) is implied
by (4.12) and (4.13). Now (4.6) clearly holds for all t e I2\((1, 1)) by (4.13). To see
that (4.6) holds for t = (1, 1), we must show that

2;as (w) < 1, Vo e= Q.
s<(l,l)

Let t e I2\((1, 1)) be .1-maximal such that at(c) > 0. Using Lemma 4.5, we see that

I; as (c)) = I as 00) < S-t,, 0(w) < 1.
s<(l,l) sERtl,o\l((1 1)}

This concludes the proof of the theorem. 0

5. A lifting theorem and a projection theorem for randomized stopping points.

5. 1. Definition. An internal weight process on T2 is an intemal function
6 cc: Q xT2 - * [0, 1. Such a weight process defines a random internal additive
measure C5 on the internal algebra of internal subsets of T2 by the fonnula

Ce(c),B) = : 5a (co.t),,
teB

where co e Q and B is an internal subset of T2. If C is finite a.s., the a-additive
extension of st (Cx- (o, )) to the Borel a-algebra on T2 is denoted a (o, ) (the Borel a-

algebra is generated by the algebra of all internal subsets of T2).

The object of this section is to show how to lift a randomized stopping point to an

internal weight process, and conversely, how to obtain a randomized stopping point
from an internal weight process. Our method for lifting relies on the Simultaneous
Lifting Theorem 4.1, and is quite different from the single-parameter lifting theorem of
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[SB], Chap. 7.1, which uses Skorohod's topology on right-continuous processes with
left limits. Recall that Assumption 4.1 is in force.

5.2. Lifting Theorem. Let (Ad)tCo,12 be a randomized stopping point. Then there is
h e * N\N, h < no (no is defined in (3.5)), an intemal weight process 8 a, and a (gen-
erally external) P-null set N c Q such that

(a) for each t e T2, a(.,t) isAt+lh l/,,)-measurable;
(b) A]stA(co) = ac(c*Is,t] n T2), Vs,t e D2, s < t, Vco e Q\N;
(c) (o,T2) = 1, Vw e n.

(D denotes the dyadics in [0, 1 ]. Throughout this section we use the following con-
vention: t + (1 / h, 1 / h) = (min (t1 + 1/h, 1), min (t2 + 1 / h, 1))).

Proof. Set k = (kl,k2), k- = (k1 - 1, k2 - 1), k+ = (k1 + 1, k2 + 1). Using Theorem
4.2, we see that for each n e N and 0 < kl, k2 < 2n, there is a P-null set Nkn ) and an

internal function 8 czn1,ka): Q - * [, 1] such that

(5.1) Cl Q\Nkn => St(ak(c)) =X

(5.2) 8 akn is A2nk+-measurable,

Oskl3k2 52n (kl, k2) (O) = 1, VC 6 n

Let B denote the set of internal functions from Q x T2 into *[0, 1]. B is internal
(see [HL], Ex. II.6.12). For n E N, we define an element 6 an of B by setting

(5.4)Sa~(w,t) = f8a(k, k2) (c) if t = k 2-n, for some 0 kl, k2 < 2n;
otherwise.

Observe that by (5.2),

(5.5) 5a (.,t) is Arnk+-measurable, Vt e *]27nk2-,nk]2n T2.

Set N = unNNnOsk1k2s2"N&1, 2 Then there is a sequence (Nn)nEN of internal sub-

sets of Q such that Nn v N and

(5.6) P(Nn) < 1/n and Nm DNn, Vm < n,

0 < k1,k2 <2n, m . n, CO EQ\Nn

(5.7) =>

| *]k2mk2!n]C~T2 tam (co,t)- 6an(co,t)I < 1,
tE] k-2-m, 1,2 I nT2 tE*] k- 2-m, k2-m I nT2 n
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(5.8) 128 a (co,t) =,1 rco e Q.
t,ET2

Using the Countable Comprehension Principle, we can extend the sequence
(6 ae, Nn)nEN to an intemal sequence (8 a", N%).*w. Set

C = (n e *N: (5.5), (5.6), (5.7) and (5.8) hold, and 2I+1 . no).
By the Internal Definition Principle (see [HL], Theorem 6.4), C is an intemal set,
which contains the (extemal) set N. Hence there is m e C\N.

We set 8 a = 8 aE!. Observe that (c) is satisfied by (5.8), and (a) holds by (5.5)
with h =2fl1. Set N = N u N-. Then P (N) = 0 by (5.6), and for all m e N and
0 < k1, k2 s 2m, (5.7) implies that

o e Q\N => 8am(ot) -(w *]k2-m, k2-m]rT2)I< i
tE ]k- 2-n, k2-m T2 m

By (5.1) and (5.4), this implies that for all m e N and 0 < kl,k2 < 2m,

a (C, *]k- 2-m,k2m ]ri T2) = st (a (co, * ]k- 2-m, k2- ] r T2))

= St( *1 Sam(co,,t))
te I] k 2rn,J2m1 nV

= A2--]k-,k]A(co).
This proves (b), and concludes the proof. 0

5.3. Corollary. Let (A)tE[ 0,1]2 be a randomized stopping point, and let 8 a be the
internal weight process and N the null set given by Theorem 5.2. For any Borel set
B c [0,1]2,

(a) st-1 (B) n T2 is a Borel subset of T2;
(b) fdtAt() = a(x,stfl(B) rT2), Vwo E £\N.

B

Proof. (a) is a consequence of Theorem (2.2.6) of [SB]. Furthermore, by a classi-
cal Monotone Class argument, it is sufficient to prove (b) when B is a rectangle with
dyadic edges, B = ] s, t [, s < t, s, t e D2. We fix co e Q\N, and only consider the case
s < t.

Let 6 be the random measure on [0, 1 ]2 whose distribution function is
t ~- At (w). By Theorem 5.2 (b),

(5.9) go) (] s, t ]) = a (co, *] s, t ] r) T2).

The remainder of the proof follows that of Lemma (2.3.2) of [SB]. Since

sC (] s, t [) c *] s, t ] c st7l ([ s, t ]),
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we get by (5.9) that

a(co,st7l(]s tE[r T2)) < p#(s, t]) :5 a(o,,st1([s t]) n T2).
Now

a(co,st-1(]s,t[ n T2)) =lim a (co,st-1([s + (1/n, 1/n),t - (1/n, 1/n)]) ri T2)
n->

= p.,>(]s,t[)

since

pg(]s,t[) = lim ,aOs+ (1/n,1/n),t- (1/n,1/n)])
n a

< lima(co,stl([s+(l/n,1/n),t-(l/n,l/n)])riT2)
n-"

. lim a (ca, st-1 (] s + (1 /2n, 1 /2n), t - (1 /2n, 1 /2n) [) n T2)
n-)oo

. lim >3(] s +(1 /2n, 1/2n),t -(1 /2n, 1/2n)])
n--,

go)l<, (I S, t [).

This completes the proof O

Theorem 5.2 and Corollary 5.3 provide the desired liftings of randomized stopping
points. The projection theorem is simpler.

5.4. Projection Theorem. Let 5 x: Q x T2 *[ 0, 1 ] be an internal weight process,
such that

aa(w,t) = 1, Vc,)e Q\M,
teT2

where M is an (internal) P-null set. Suppose that for some h E *N\N, 5 cc is adapted
to the internal filtration (Ah)t T2, where A h = At+(1,h 1/h) Vt e T2. Set

At(O) = inf ac(co,*[O,q] T2),te [0,1]2\{(l,l)},
cED2n(1,1)]

A(,'1) (CO) 1.

Then A = (At)t,[ol]2 is a randomized stopping point such that for almost all c EQ,

J dt At (co) = a (co, st-1 (B) n T2),
B

for all Borel sets B c [0, 1 ]2 (A is termed the projection of 6 a).
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Proof. The definition of A clearly implies that A. (X) is right-continuous and has posi-
tive planar increments. Since A(1,1) 1 a.s., A will be a randomized stopping point
provided At is Ft-measurable, for all t [O, 1 ]2. This is the case since (Fe) is right-

continuous and a ,*[,q] nTI2) is Fq-measurable by Lemma 3.1. As for the last

statement of the theorem, it is sufficient to observe that by the definition of A,
Aq ((O) = a (co,st-1 ([0,q]) r T2), Vq e D2. 0

6. Extremal elements of the set of randomized stopping points.
The purpose of this section is to show that on any filtered Loeb probability space

that satisfies properties F1 to F4, all extremal elements of the set of randomized stop-
ping points are (ordinary) stopping points. As mentioned in Section 2, this will be the
key step in our proof of existence of optimal stopping points.

Throughout this section, we work, under Assumption 4.1, with a fixed randomized
stopping point A = (A)t[0112. Using the Lifting Theorem 5.2, together with Theorem
2.2 and the Transfer Principle (3.3), we shall build two randomized stopping pQints
Ai = (Al)t[o 1 ]2, i = 1,2, and an optional increasing path Z* such that

(6.1) A = Al+ -A22 2

and Z* splits [ 0, 1 ]2 into two parts, one of which contains the support of the random
probability measure associated with A1, and the other, the support of the random meas-
ure associated with A2 (of course, if A is a stopping point, the supports of A, A1 and
A2 will be contained in Z*).

Let 8 a be the internal weight process given by Theorem 5.2, together with
h E *N\N and the P-null set N: 8 a is adapted to the internal (complete) filtration
(Ah)ET2, which satisfies Hypothesis F4.

Let T + T = {O, Au, 2Au,. . . , 2). The Transfer Principle, applied to Theorem 2.2
in the case of a finite index set, affirms the existence of an internal P-null set M, an
internal function Z: Q2 x (T + T) -+ T2 and of two intemal weight processes 8 a',
a2: Q x 172 0* [0,1] with the following properties for all t e T2, Co e a \ M,

pe 1T+1T:

(6.2) 8a (o, t) = a' (co, t) + a2 (co, t);
2 2

(6.3) 6ai is Ah-measurable, i = 1,2;

(6.4) 25 a1(o.,s) = 1, i = 1,2;
s,ET2
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(6.5) Z (co, p + Au) {Z (co, p) + (Au,O), Z (co,p) + (O, Au));

(6.6) (c e Q: Z(co,p) < t) e A

(6.7) tAZ (),It 1) => (8 a' (o, t) = 2 8 a (o, t), a2 (CO, t) = 0);

(6.8) Z(,It 1)t => (8 a' (, t) = O, 8a2(,t) = 2 a (co, t)).

Let A1 be the projection of 8 a', i = 1,2. It follows from the definition of A1 (see
Theorem 5.4) and from (6.2) that (6.1) holds. It remains to be shown that if A is not
in fact a stopping point, then A1 * A . A2.

Recall that a map f: T -* T2 is termed S-continuous provided
u = v => f(u) - f(v), Vu,v e T (see [SB], App. 1.4).

6. 1. Lemma.

(a) For o e Ql \ M, p ~Z (co, p) is S-continuous;

(b) Define Z* = (Z7')ue[0,2] by Z7' (o)) = st(Z(co,stA(u))), co e Q, u E [0,2].
Then Z is an optional increasing path.

Proof. Property (a) is a consequence of the equality

IZ(Ci,P) - Z(og)q)i = IP qi, Vo E Q, p,qET + T,
which follows from (6.5). As for (b), observe that Z:* is well defined by (a), since if
co is not in the P-null set M and u = st(p) = st(p), then Z (co,p) - Z (), p), so
st (Z (co, p)) = St (Z (co, p)). Furthermore, u '-4 Z (.) is increasing by (6.5), and if
p e T + T is such that st (p) = u, then

IZ7_ (co) I = st ( Z (, p)I) = st (p) = u,

also by (6.5). Now fix u e [ 0, 2 ] and t e [ 0, 1 ]2. We must show that

lco E Q:Z (co) < t) E Ft

Since the filtration (F) is right-continuous, it is sufficient to show that for

t E [0 1 ]2 D2

F = (coE Q: st(Z(co,p)) << t) e Ft,

where p E T + T is such that p z u. Since t also belongs to T

F u f(o r( : Z (c=w, p) < t - (1 / n,1 / n)).
nN

But then (6.6) implies that F E Ft. This completes the proof. C
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The following lemma shows that A1, A2 and Z* have a property similar to that of
Theorem 2.2 (b2).

6.2. Lemma. FixC o e Q \ M and s, t e D2 such that s . t.

(a) Suppose (tl, s2) A Z7'+s (c). Then A1 ,t A2 (o) = 0.

(b) Suppose Z*+ 2(CO) A (sl, t2). Then A]s,t]A () = 0.

Proof. We only prove (a). By the hypothesis and (6.7), there is e > 0, £ e R, such
that

Ba2(c,u) = 0, Vu e ts+ (e,e)] nT,

so if p,q e ]s, t + (e,e)])n D2, p < q,

Z 8a2((O.,u) = 0.
p<usq

Thus, where a2 (co, [ a, b ]) is an abbreviation of a2 (C, * [a, b n T2)
a2(c,[0q]) - a2(CO,[0,(pl,q2)]) - a2(c(O,[0,(ql1P2)]) + a2 ()[0p]) =P 0

Taking the limit as q k t, p L s gives the desired result. 0

If (Zu)uE[0,21 is an o.i.p., we set

ImZ. (co) = (Zu (co): 0< u < 2),

and if v is a measure, supp v denotes the support of v.

6.3. Proposition. Suppose ;i. (. ) is the random measure whose distribution function
is the randomized stopping point (AE)t[o 1 12, and suppose

P 10) Q-C: supp gc( .) ImZ. (co)) < 1

for all o.i.p. s (Zu)u[0,2]. Then A . A * A

Proof. Let (Z4)uE[0,2] be the o.i.p. defined in Lemma 6.1, and set

F* = (co e : suppw, (. ) t Im Z.*(c)).

Since P (F*) > 0, we may suppose for example that P (F) > 0, where

F = (e Q: there is s,t e D2, S < t such that (t1,s2) A Zs+2(co)

and Al,t A (co) > 0)

Now for each co e F \ M, since A = 1/2 A1 + 1/2 A2, we have by Lemma 6.2:
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A],St A' (c) = 2A]StA(co) * A]st]A(co)
for some s,t e D2 with s < t. This implies that the sample paths t + At (o),
ti- Ati(o),i=1,2, aredistinctforo'E F\M. SinceP(F\M)>0, A1.A.A2. Q

The following lemma is a straightforward extension of a result for single-parameter
randomized stopping points.

6.4. Lemma. Let (Q, F, P) be an arbitrary (complete) probability space, and (Ft)tE[Ol]2
an arbitrary two-parameter filtration (with or without CQI or F4). Suppose R (.) is a
random measure whose distribution function is some randomized stopping point
A = (At)t[o,l]2. If there is an optional increasing path (Zu)uE[0,21 such that

P(tX E : supp gM ( . ))C Im Z. (cl)) = 1,

then A is an extremal element of the set of randomized stopping points if and only if
A is a stopping point.

Proof. Set B =min (2A, 1), B2 = max (2A -1,0). ClearlyA= B + B,2and
the sample paths

t- At (co) and t -* B (co), i = 1,2,

are distinct if and only if 0 < At (co) < 1 for some t. If s,t E [ 0, 1 ]2 are such that s < t,
it is easy to see that Al S t] B1 2 0 a.s. by examining the relative positions of s, t and the
path u ^- Z. (see Figure 1).

Since B~,(1) = 1, this implies that B1 and B2 are randomized stopping points. Thus
if A is extremal, we must have

At e {0, 1) a.s.

But then A is a stopping point. O

It is now straightforward to prove the continuous time extension of Theorem 2.2.

6.5. Theorem. Let (Q, A, P) be an internal probability space, (Q, L (A), P) the

corresponding Loeb space. Suppose (Ft)tE[ool ]2 iS the standard part of an internal (com-

plete) two-parameter filtration that satisfies Hypothesis F4. Then all extremal elements
of the set of randomized stopping points are stopping points.
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Proof. Let A = (At)tr[0,1 be a randomized stopping point Suppose

P(co E : supp go) (. ) C ImZ. (co)) < 1

for all optional increasing paths Z, where g.) ( . ) is the measure on [ 0, 1 ]2 whose dis-
tribution function is t + At (c.). Then by Proposition 6.3, A is the midpoint of two

distinct -randomized stopping points, and thus is not extremal. This implies that any
extremal randomized stopping point must satisfy

P(oeQ:supp gLo)(.)CImZ.(co)) = 1

for some optional increasing path Z. But then the statement of the theorem is a conse-
quence of Lemma 6.4. 0

6.6. Remark. It is not known whether the conclusion of this theorem remains valid
for filtered probability spaces that satisfy Hypothesis F4 but are not Loeb spaces.

7. Application: the existence of optimal stopping points.

As mentioned in Section 2, Theorem 6.5 leads to a proof of the existence of
optimal stopping points. For this we need the following proposition.

7. 1. Proposition. Let (Q, F, P) be an arbitrary complete probability space, and

X = (Xt)teo 1]2 a measurable process with upper semicontinuous (u.s.c.) sample paths
such that E(SUptiE[ol1 X2Xt) < oo. Then the map (: U -> R defined by

Ox' ((At)tE[o0l ]2) = E( Xt (.)dt At(.))
[0,112

is u.s.c. (for the weak topology induced by a (C*, C): see section 2).

Proof. For separable bounded processes, this was proved in [Dl], Th. 3.5. Our proof
here is more direct and gives the more general result above.

We should perhaps point out that the map cO + supt[ol ]2 XtI is measurable since
the process X is (see the proof of [DM], IV. 33a), and so it makes sense to speak of
sup-norm integrability for X.

If the sample paths of the process X were continuous, then the function Ox would
be continuous by the definition of the weak topology a (C*, C). Now suppose there

were a non-increasing sequence (Yk)kEN of continuous processes in C such that

lim I yk (CO) = X
k--*

c)
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for almost all co E Q. Then we would have (Dyt 4 (Dx by monotone convergence, and
so Ox, as the non-increasing limit of a sequence of continuous functions, would be
u.s.c. ([B1]. IV.6.2. Th.4). Thus the proposition will be proved if we construct the
sequence (Yk)kEp

It is well-known that an u.s.c. bounded function defined on a metric space is the
non-increasing limit of a sequence of continuous functions, so the problem here is to
choose the sequence for fixed co e Q in such a way that the resulting yk (co)) are

measurable functions of ci) and such that yk E C. In order to do this, we need the fol-

lowing lemma.

7.2. Lemma. Consider F c F x B (P) such that for each co E Q, the section

FM = (t e P: (co, t) e F) is closed. Then the mapping . t-* dist (t, F0,) is F-measurable

(dist (t, F.) denotes the distance between t and the set F.) for the usual metric on P).

Proof. For r > 0,

A = {tco E Q: dist(t,Fw) < r) = {coe Q: there is s e F.), d(s,t) < r),

so A is the projection on Q of the F x B (T)-measurable set F r) (Q x B (t, r)), where

B (t, r) denotes the open ball centered at t with radius r. Thus A is F-analytic by

Theorem 11.13 of [DM], and since F is complete, F e F by I1.33 of [DM]. This

proves the lemma. O

End of the proof of Proposition 7.1. Our proof follows that of [B1], IX. §2.7,
Prop. ll . Since we can always replace the process X by the process

(Xt - supt Xt)t [ 0 1 ]?, we may suppose without loss of generality that X < 0. Set

X n (s)= -2-nl Iuk (c0), t),t ~~~k=1
where

Uk.n = {(c,t)e Qx :XtX(cCO)<- k2-n),

and observe that (XTI)nEN is a non-increasing sequence which converges to X. Now
since X is u.s.c., the section Ukn of Ukn is open for each c E Q. Furthermore, since

supt IXXt <4-co a.s. there is a measurable map coi e- K0, from Q into N such that

k > 2nK.) =* Iu (coi, t) = 0, Vt, for almost all co Q.
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For each fixed k, 1, and n, set

ZtkA(oD) = min(1,Idist(tJ"\Ukn)).

Then co i-+ Zk9lJ (co) is a measurable map by Lemma 7.2, t Z-Znkj (co) is continuous
and

n~~~~~~~~(t e U or dist (t,f\Ukn) > -) * 4 (cO) = IUk.(co, t)

so

lrn t Ztk9n9l @3) = Iuk (c), t), Vt 6 P, VC) 6 Q.

Thus if we define a continuous process XTIl by setting
2r K.

Xn,(o) = -2n I Z4.k,l (CO),

we have

lim a X^1(X) = XTn (co), Vt 6 , for almost all Xi 6 .
1-0

But then the sequence (Yk)kEN of continuous processes defined by

yk (I) mnX n. I (0))Yt" (co) =min Xt' C)

satisfies the conditions of the theorem. 0

7.2. Theorem. Let (Q, F, P, (Ft)tE[ ol ]2) be a filtered Loeb space satisfying the assump-

tions of Theorem 6.5, and let (Xt [0 1 ]2 be a measurable process with upper semicon-
tinuous sample paths, such that E(suptE [0,1 121 XtI)<<+0. Then there is a stopping
point To such that

E (XT) = SU? E (XT).

Proof. This proof is similar to that of Ghoussoub [G], Proposition II.3. Consider the
functional (D: U -+ R defined by

D((At)t[O1]2) = E( J Xt(.)dtAt(.))
[0,1]2

By Lemma 7.1, this functional is u.s.c. on U. Since (D is affine, it attains its maximum

on U at an extremal element AO E extU ([B2], II. §7, Prop.1). By Theorem 6.5, A0 is

in fact a stopping point, which we denote To. This stopping point is clearly optimal.
El
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7.3. Remark. From the point of view of applications, it does not seem too restrictive
to impose that the underlying probability space be Loeb. In the single-parameter case,
this would be no restriction at all, due to the result of Hoover and Keisler [HK], who
showed that these spaces are universal and saturated.

7.4. Remark. The papers [Mi] and [MM] claim, under certain regularity assumptions
on the reward process, the existence of optimal stopping points in the two-parameter
optimal stopping problem on arbitrary probability spaces (in [MM], there is even no
Hypothesis F4 on the filtration). Both these papers use a "randomized" set U which

is different from the one considered here, and both papers use the following theorem:
"a separately continuous bilinear map is jointly continuous", in a situation where the
hypothesis of this theorem is not satisfied ([Mi; Theorem 1.5], [MM; Proposition 7]).
Thus the problem of existence of optimal stopping points on arbitrary probability
spaces, even for continuous processes and under Hypothesis F4, is open.

Acknowledgment. The author thanks the referee for pointing out that the initial proof
for hyperfinite probability spaces carried over to all Loeb spaces.
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