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Abstract
From an urn containing colored balls draw one ball and replace a random number of
differently-colored balls, with the distribution of the added balls depending only on the
color of the ball drawn. Under mild regularity conditions, the proportions of different
colors will converge to deterministic limits. Two applications of this standard result
are described. The average efficiency of binary trees, 2-3 trees and other structures for
information storage has been studied with diverse techniques. One such technique for
estimation is called fringe analysis, and this turns out to involve urn processes. The
other topic is the simulation of quasi-stationary distributions of Markov chains. These
arise when the chain is conditioned to avoid a taboo set. Here urn processes are used
to prove an analog of the classical result on convergence of empirical distributions to
the stationary distribution.

Key Words: urn process, branching process, binary search tree, 2-3 trees, empirical
convergence, quasi-stationary distribution.
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1. Urn Processes

In this section we define a class of um processes and state a limit theorem. Except for
minor differences in hypotheses, these processes and the limit theorem are those
described in Athreya and Ney (1972) section V.9.

Let (c1, C2. . ., cm) be a vector of constants. Consider an urn and a supply of
balls of m colors. The composition of the urn after n draws is described by a random
vector X (n) = (X1 (n), . . . , X. (n)), where Xi (n) is the number of balls of color i. A
draw is performed as follows: pick one ball from the urn, with each ball of color i

having chance X() of being drawn. We see that the vector c gives the relative

probability of an individual i-colored ball being drawn. Now, given that a ball of
color i has been drawn, remove it and replace it by zj¶) balls of color j (1 . j s m).
The random choices on each draw are independent. Finally, let the initial distribution
X (0) be arbitrary.

This describes an urn process parametrized by m constants (cl,... , cm) and m
distributions (Z(i), 1 < j . m), 1 . j s m. We make the following hypotheses concern-
ing these parameters:

(1.1) ci> 0 for all i

(1.2) zfi) is non-negative integer-valued, I . 1 for each i and P (IZ.(i) > 1) > O
. J I

for some i.

(1.3) E (ZJO) log Z-(0)) <oo
Let Q = (qij) be the matrx with entries qij = EZ,(i) We make the last assumption

(1.4) Q is irreducible, that is to say for each pair i,j there exists an n such that

chqj > 0.-

Next, let X (n) be the vector of proportions after n draws:

X (n) Xj(n)

Let R be the matrix with entries rij = ci (%,j - 8j), where Sjj = 1(i=j.
Theorem 1.5. Consider an urn process satisfying (1.1) - (1.4). Then

(a) the equations xi rij = Xxj, 1 . j < m have a unique solution (x, X) for which
1

xi >O, Sxi = 1andX > 0.
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(b) X (n) -+ x a.s. as n .- oo, where x is the eigenvector in (a).
This theorem is essentially the result of Athreya and Ney (1972), except for some
minor changes in hypotheses; they use the hypotheses

(1.1)' ci= 1 for each i

(1.2)' the drawn ball is replaced, so that z(j) 2> 1 for all i and

(1.3)' the matrix Q is regular, that is to say there exists n such that qtj > 0 for all
pairs i,J.

The proof uses the natural embedding of the urn process into a continuous-time multi-
type branching process, where individuals of type i have exponential (mean 1) life-
times and on death are replaced by Zfi) (1 . j . m) offspring of type j. Minor
modifications of the proof allow our relaxations to be made. To modify (1.1)' make
type i individuals have exponential (widt rate ci) lifetimes. Condition (1.2)' is used to
ensure that the branching process is supercritical with extinction probability 0, and our
hypothesis (1.2) has the same effect. Finally, we see (1.3)' is to guarantee that the
process is "positive regular", and our weaker hypothesis (1.4) does the job.

For later use, we remark that in the context of Theorem 1.5,

if Iqijcj = ci + 1 for all i, then x = 1. (1.6)

To show this, we observe

Icj Xj = 2;Icj xirij using (a)

= £F.cj Xici(q%,j - Si,) by definition of r

= cXicx by (1.6).

The purpose of this paper is to exhibit two completely different applications of this
theorem. The "novel content" of the paper is simply the (trivial) observation that the
urn result does apply to the problems discussed (without this observation, the problems
look more difficult). We have chosen to describe the problems in Section 2 in some
detail, rather than refer to other papers. They would perhaps make interesting non-
traditional examples in a course on branching processes or urn models.

2. Fringe Analysis of Search Trees

Binary search trees are a well-known structure for storage, retrieval and addition of
information labelled by numerical keys. Perhaps the simplest example is that
described in Knuth (1973). Keys are stored at the internal nodes. To search for a key
x, one compares x with the key y (say) occupying the top node. If x * y, then move
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to the left or right according to whether x < y or x > y, respectively. At the next
mode, a comparison is made with the key located there. Ultimately, either x is located
or the search terminates at an external node. In the latter case, x may be appended at
that node thus creating two new external nodes. The figure below shows the effect of
adding keys 13 and 1 to the tree. A standard convention is to depict internal nodes
with ovals and external nodes with squares.

Figures 1 and 2 here.

Another scheme for information storage, called "2-3 tree" (see Yao (1978)) allows the
internal nodes to contain either 1 or 2 keys and has all the external nodes at the same
bottom level. To put a new key into a node that contains only one key, we simply
insert it as a second key. If the node already contains 2 keys, the node is split into
two nodes containing respectively the minimum and the maximum of the three keys
and the middle key is inserted into the parent node by repeating the process. When
thee is no node above, a new root is created to hold the middle key. For example, to
this 2-3 tree

Figure 3 here.

we add the keys 20 and 65 to obtain:

Figure 4 here.

Write tn to denote a tree with n keys. With such a tree one may associate various
statistics, f (tn), which measure aspects of the "efficiency" of using the search tree.
For instance, one may be interested in the average number of comparisons needed in a
search or the height of the tree. Consider any tree with j - 1 keys in it. These j - 1
keys divide all possible key values into j intervals (notice that there are as many such
intervals as external nodes). The insertion of a new key into the tree is said to be a
random insertion if the new key has equal probabilities of being in any of the j inter-
vals defined before. A random insertion is accomplished if we take as the successive
keys K1, K2,... a sequence of i.i.d. continuous random variables. Any given algorithm
for tree construction will then generate a random sequence of trees Tn, and we will
speak of "random binary trees", "random 2-3 trees", etc.

One may compare different algorithms by choosing a measure, f, of efficiency and
comparing the random variables f(Tn). It turns out that the algorithm for 2-3 trees is
efficient whereas that of the binary tree is inefficient. The latter algorithm can be



improved by means of a simple heuristic proposed and analyzed by Poblete and Munro
(1985). Trees of the form shown in the following diagram are produced. To this tree

Figure 5 here.

we add the record 8. The elementary addidon algorithm would yield

Figure 6 here.

But this new algorithm would yield the more balanced tree

Figure 7 here.

this algorithm may be described as follows: as comparisons are being made, if the
basic algorithm would dictate a new level to be created emanating from the last node
while the prior level (from this same node) is not full, then rotate the three keys in

order that the median of the three keys is at the top, and the least key is at the left and
the largest is at the right.

Let us define the fringe of a tree as the set of subtrees at the bottom of the tree
which contain the external nodes. Then the algorithm just described produces trees of
two types at the fringe:

Figure 8 here.

Let (x1 (n), x2 (n)) be the number of type 1 and type 2 subtrees in the fringe of the tree
tn produced by this algorithm. Of course, this pair will not uniquely determine the
tree, but it turns out that most statistics f(tn) can be either computed or bounded by
functions g (xl (n), x2 (n)). The same thing can be said of the 2-3 trees, whose fringe
exhibits subtrees of either of these two types:

Figure 9 here.

This technique of estimating efficiency by analyzing the vector x (n) was intro-
duced by Yao (1978) and is now called fringe analysis. It was further studied in

Eisenbarth et al (1982), who proposed the following general framework. Given an

algorithm, suppose we can define m types of subtrees such that

(2.1) the fringe of the sequences of trees, tn, produced by the algorithm consists only
of subtrees of these m types (in our examples m is 2);
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(2.2) when an element is inserted into a subtree t, say, of the fringe, the other sub-
trees of the fringe are unaffected, and t is changed into one or more subtrees in
a way depending only on the type of t.

Consider now the random trees Tn grown from i.i.d. keys K1, K2,... and let
X (n) = (X1 (n),... , Xm (n)) count the number of subtrees of types 1 to m in the
fringe of Tn. Then X (n) is an urn process as described in Section 1 for which:

zfi) is the (usually deterministic) number of type j subtrees created by the inser-
tion into a type i subtree;
ci is the number of external nodes in a type i subtree (= the number of subinter-
vals that the keys of a type i subtree determine).

A draw of a ball is the arrival of a new key, and to select a ball of color i means now
to have the new coming key landing in any one of the subtrees of type i in the fringe
(ci"good" places to land out of a total of cjX1(n) places, yielding the appropriate
value of the probability).

We will assume

the matrix Q with qhj = EZf() is irreducible. (2.3)

This hypothesis is met by every reasonable algorithm that creates random trees, the
reason being the cyclic nature of the creating process: usually insertion into a type i
subtree (i < m) originates a type i + 1 subtree and insertion into a type m subtree ori-
ginates trees of several types including type 1. Of course, more complicated situations
preserving irreducibility can arise. As the hypotheses (1.1) - (1.3) are automatically
satisfied we may apply Theorem (1.5). The conclusion may be simplified by using
some special structure. Because the binary tree grows one node at a time, the urn
processes arising here have a special property:

£cji)= ci+ 1; 1 < i < m (2.4)

and hence

cj qi, = ci+1. (2.5)

This allows us to apply (1.6) and conclude that in Theorem 1.5 we have x = 1. Also,
since the number of external nodes in a search tree equals the number of intervals
determined by the first n keys (n + 1 such intervals) we can conclude that

£cjXj(n) = n + 1.
I

(2.6)
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Theorem 1.5 says

ci Xi (n)
e-+ b =Lcixi,~X.,(n) 1

and then (2.6) gives

Xi(n) e 1/b.
n i

Thus in Theorem 1.5 we can substitute normalization by n for normalization by
;Xi (n), to obtain the following result. Recall rij = ci (cij - BiJ).
I

Theorem 2.7. In a fringe analysis satisfying (23), Xi(n) / n - xi/b a.s. as n -e c*,
where x is the unique solution of 1xi rij = xj, 1 s j s m; xi > 0;Zxi = 1, and where

b = 2 ci xi.i~~~~~~~~~~~~~~~~~

Remarks. Previous fringe analysis - Yao (1978), Eisenbarth et al (1982), Poblete
and Munro (1985), Cunto and Gascon (1987) and references therein - used
recurrence relations for EXi(n) in order to conclude convergence of EXi(n)/n to the
same limit. The urn process representation gives the stronger conclusion of a.s. con-
vergence. Bagchi and Pal (1985) noted that the fringe of 2-3 trees had an urn process
representation, and gave a proof of a central limit theorem: however, they gave an ad
hoc proof, rather than exploiting known theory of urn processes.

For completeness, let us give some examples, even though the numerical calcula-
tions are the same as those in the original papers. We can apply simultaneously
Theorem 2.7 to the trees created by the Poblete-Munro algorithm (P.M. trees from now
on) and to the 2-3 trees. In both cases we have cl = 2, c2 = 3 and Q is the irreducible

0 11'
matrix 0oJ The equations have solution

(x1, x2) = (2/3, 1/3); b =7/3

so that almost surely we have the convergence:

X, (n) X2(n) _+
2 (2.8)[Xl(n) + X2(n) Xl(n) + X2(n) j 3 3

(X,(n) X2(n)) 2* 1] (2.9)
[n ' n ] 7' 7](29

Now in order to be able to compute statistics of the efficiency of the trees using
the above results, we need equations relating the fringe to the totality of the tree. Let
v (n) and ji (n) denote respectively the number of nodes above the fringe and the
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number of internal nodes of a search tree. For P.M. trees we have the equality:

Xi (n) + X2 (n) = v (n) -1 (2.10)

which is a simple consequence of the fact that for binary trees the number of external
nodes equals the number of internal nodes minus one. For the 2-3 trees we have a set
of inequalities (Yao (1978) Lemma 2.2):

3 (Xl(n)+X2(n)) 12 (n)s2(XI(n)+X2(n))-1. (2.11)

Using (2.9) in (2.10) we can conclude that for P.M. trees

v (n) 3
_ 0.43

n 7

which is a measure of the balance of these trees, because for a perfectly balanced com-

plete binary tree n =
-

1
- 0.5 whereas for a totally imbalanced tree (a

linear array) v-(n) = 0. For the 2-3 trees, using (2.9) in (2.11) we get:
n

0.64 -
92 lim 9(n) 6 _ 0.86
14 n n 7

which is basically the corollary to Theorem 2.7 in Yao, except that there, p(n) is
replaced by the expected value Eg(n). Yao defines the storage utilization for a 2-3

n _ntree of n keys as (if all intemal nodes had two keys, there would be - of2E ps (n) 2
them, so the storage utilization is the ratio smallest possible # of interal nodes

expected # of internal nodes
Eisenbarth et.al. (1982) discuss the inverse of this measure) and gives the asymptotic
value log 2 = 0.69 for the storage utilization of a B tree (a generalization of 2-3 trees).
Here, using (2.9) and (2.11) we can obtain for the point storage utilization the inequal-
ities:

0.58 <7 lim n 14 0.78. (2.12)12 n2pi(n) _~18

Our result (2.7) also applies in more complicated settings such as the generalized
k - t binary search trees of Cunto and Gascon (1987), a generalization of P.M.-trees
where there are up to t keys per node and rotations are made each time there is a
linear array of 2k - 1 nodes in the fringe. As a final example, Yao's second order
analysis of 2-3 trees (i.e., the consideration of the two bottom tiers of nodes) from our
viewpoint is simply the fringe problem for which (cl,c2, c3,Pc4,c5,c6,c7) =
(4,5,6,6,7, 8,9) and Q is the (irreducible) matrix



0 1 0 0 0 0 0
0 0 2/5 3/5 0 0 0
O O O 0 1 0 0
O O O 0 1 0 0.
6n/ 0 0 0 04/7 0
3/4 3/4 0 0 0 0 1/4
2/3 2/3 2/3 0 0 0 0

An application of (2.7) yields
138 -132 304 .9xl =- 0.28, x2 =- 0.27, X3= - 0.09,
485 485 3395

-396 ~0215 204
x4 3395 0.12 x5 0.15 x6 007 X7 21 0.01

3395 ~ 97 291 -2 0.0
b = 7991 =

1455

Another combinatorial equation (Yao's lemma 2.8) relates 1± (n) to the two bottom tiers
of nodes:

7 3 9 7 13 7
2 £ Xi (n) + IiSXi (n) - 2 9(n) :5 4 E£ Xi (n) + 5 i£4Xi (n) - 1.

Taking limits after dividing by n and using the values for b and the xi's just found we
get

0.70= 78501 .5 lim j()< 44343
07

111874 n n - 55937 0

the a.s. result analogous to Theorem 2.12 of Yao. We see also that our inequalities in
(2.12) for the storage utilization are improved now to

06 -55937 lm n 55937 071
88686 n 2p (n) 78561

3. Empirical Convergence to Quasi-Stationary Distributions

Let Yn be a Markov chain in a finite state space I with irreducible and aperiodic transi-
tion matrix P. Classical limit theory gives existence and uniqueness of a stationary
distribution X satisfying

£niPij = irj for all j; xj > 0; Ij = 1 (3.1)

P(Yn =) exi as n- oo (3.2)
N

N-1 I1 (yn =j) er a.s. as N -+ oo. (3.3)
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So (3.2) asserts convergence of the distribution of Yn, while (3.3) gives convergence
of the empirical distribution. Next we fix A C I, and let P be the matrix P with the
rows and columns corresponding to states in AC deleted. We suppose P is aperiodic
and irreducible as well. Furthermore, let T be the first hitting time of Yn on AC. For-
mally, T = min (n: Y. e AC). Then there exists a unique quasi-stationary distribution
a on A satisfying

£: ai.PiJ =- kacj; ai > O; Lai = 1 (3.4)
iEA~~~

where X is the largest eigenvalue of P, 0 < X < 1, and x is real. See e.g. Darroch and
Seneta (1965). This a has the interpretation of being the limiting distribution of the
process Yn conditioned on (T > n):

P(Yn=jlT>n)--eaj as n-eoo. (3.5)

Now (3.4) and (3.5) are plainly analogous to (3.1) and (3.2). There is no immediate
analog of (3.3), but we shall motivate an indirect analog.

Consider the setting (3.1) - (3.2). In applications we are usually interested not in
the distribution X itself, but in distributions or expectations of functions defined on the
state space. Since the distribution of a function g can be obtained from expectations
of functions f (i) = 1(g (i) sx), we need only consider expectations. We know the long-
run averages converge:

N
N_1 E f(Yn) -I:f(i)xi, a constant. (3.6)

n=l

To calculate this constant we have two options:

a) Solve (3.1) for i; or

b) run a computer simulation of the chain for N steps, and use the observed value of
(3.6) to estimate the limit.

Method (a) is preferable, but when the number of states is large it becomes impracti-
cal, and 9b) becomes more attractive.

The same issue arises in consideration of the quasi-stationary distribution, a. Here
(3.5) implies E (f(Yn)IT > n) -e If(i) ai, and in the case of a large state space we
would like a method of estimating If(i) aj without having to solve equations (3.4).

In this setting, simulations to estimate a by running the chain and discarding runs that
hit AC are unsatisfactory because P (T > n) may be small. Instead, we define a process
whose empirical distribution converges to a. First, pretend we know a, and consider a

process Vn on A defined as follows: Vn evolves as Y. until the first hit on AC, at

which point the hit on AC is not counted as a transition and instead the chain is put
back into A according to the distribution a. The process Vn defined in this manner is
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a Markov chain with stationary distribution a. And (3.3) shows that the empirical dis-
N

tribution eN converges to a, where (N ) = N1Z ly=j). Of course, since we do not

know a, we cannot simulate this process. However, we can simulate the natural
"adaptive" process for which a transition at step N + 1 which would go into Ac is
instead sent into A according to the empirical distribution ON. Theorem 3.8 below
says for this adaptive process, the empirical distribution does, in fact, converge to a.

We define this Markov process formally.

Definition 3.7. Let M be the set of counting measures on A, and let Bi (i) = 10 = j).
Let (Vn,gn) be the AxM-valued Markov chain with V1 = il, g,1 = 8. and with transi-
tions

P(Vl =is +i = A + j3IVn = i, X = A) = ijP+±()Pk k
keAC

(Here we are using the following notational convention: 1± is an arbitary vector, g1n is
the empirical counting measure at time n, and p (j) is the jti entry of the arbitrary vec-
tor.)

Theorem 3.8. For the process defined in (3.7), n7l P1 -e a a.s. as n - oo, where a is
the quasi-stationary distribution (3.4).
This result was proved in Flannery (1986) in a direct, but complicated manner. It can
be deduced easily from Theorem 1.5. To do so, include in the definition (3.7) the
count C(n of the number of aborted visits to AC prior to step n. Precisely, let C1 = 0
and rewrite (3.7) as

P(Xn+l=J, n+ =g+ 8j, Cn+1 =cIXn= i, = i, Cn =C) = Pij
P (X+1 =j,i1n+1 = j + Sj, Cn+. = c + 1 | Xn = i, pn = AX Cn = C) = A (j) C Pik

keAC

Next, let Sn= min(m: Cm = n) be the time of the nt aborted visit to AC, and let
vn = gs. be the empirical counting measure at that time. It is easy to see that vn is the
urn process where, for each i, ci = 1 and the distribution of (ZJi); j E A) is the distri-

T-1
bution of ( l(V =j) j e A) given Vo = i. We want to apply Theorem 1.5.

Hypotheses (1.1) - (1.3) are clearly satisfied. For Q = (qj) defined above (1.4),

hi j = E Z -(i
T-1

= E( z1l(vn=j)IVO=i)

= E ( I l(V.=j.T>n) I VO = i)
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@0

= £ P(Jr), for P as in (3.4).
n=0Ou

In other words,
00

Q = :£ . (3.9)
n=O

In particular, the hypothesis of irreducibility of P implies irreducibility of Q, condition
(1.4). Setting rij = -hj- BiJ and taking (X, a) as in (3.4), we see that (3.4) implies

i£AairiJ= _ .

vn
Applying Theorem 1.5 we see that a is the required eigenvector and 2 -n a a.s.

J
That is

-+ a a.s. (3.10)
Sn

Since the state space is finite, E (Sn+1 - 5n)2 is bounded, and this easily implies

5n+i -* 1 a.s. (3.11)
Sn

Noting that tn is monotone in n, the desired conclusion -ln -xa a.s. follows from
n

(3.10) and (3.11) by simple analysis.
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