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ESTIMATING THE CHANCES OF LARGE EARTHQUAKES BY RADIOCAR-

BON DATING AND STATISTICAL MODELLING *

David R. Brillinger University of California, Berkeley

Residents in earthquake prone areas are concerned, with the possibility that an earth-

quake might occur and cause them loss of life or property. They seek insurance in

order to reduce the effects of this risk. Their government officials too are concerned

for they have the responsibilities of planning for damage to critical facilities and of

educating the public. Basic to these insurance premium calculations and government

allocation of resources are estimates of the chances of earthquakes and of the associ-

ated destruction.

Fortunately large earthquakes are rare. Unfortunately, however, their rarity has

the statistical disadvantage of making it difficult to estimate their chances of

occurrence confidently. Several procedures have been developed to assess seismic

risk. This article describes a cross-disciplinary approach that has the wonderful aspect

of being based on data for earthquakes that occurred at a location of interest when no

one was there to record the event. In fact nine of the ten earthquakes employed in the

study are prehistoric.

PALLETT CREEK

This story begins with the Stanford geologist Kerry Sieh heading off to the Califomia

desert just after his honeymoon, in the company of his wife and brother. Professor

Sieh's destination is a small piece of ground, straddling the San Andreas fault about 55

*This research was partially supported by the USGS Grant 14-08-OOO1-G1085. Helpful com-
ments were received from Professors R. Purves, K. Sieh, M. Stuiver and from the Editors.
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km. north east of Los Angeles, (see Figure 1 for the general location.) A stream called

Pallett Creek runs nearby. Until 1910 or so this area was a swamp. The swamp had

the characteristic that black peats were formed and periodically buried by sand and

gravel borne by the creek's floodwaters. Sieh and his companions proceed to dig

trenches. They find disrupted layers of peat, wood fragments, charcoal and even old

animal burrows. Examining the trench walls Sieh notes places where the layers are

broken and infers that these breaks occurred during prehistoric earthquakes. All of his

professional training and expertise as a geologist are helping him to decide which disr-

uptions in the layers might correspond to earthquakes. From nearby each of the breaks

he selects specimens that can be dated by radiocarbon techniques.

In the way of background, the most recent large earthquake that affected the Pal-

lett Creek area was in 1857. (A large earthquake is one of Richter magnitude 7.5 or

greater.) It is also to be noted that the study of earthquakes at Pallett Creek is highly

informative concerning destructive events that might hit the greater Los Angeles area.

RADIOCARBON ANALYSIS

After returning from Pallett Creek, Sieh sends the specimens that he has collected to

Professor Minze Stuiver at the Quaternary Isotope Laboratory, University of Washing-

ton. Stuiver's job is to provide an estimate of the date at which each specimen was

deposited (died). This work is done in two stages. In the first stage, Professor Stuiver

uses a technique called radiocarbon dating. This gives him first approximations to the

dates at which the specimens died. In the second stage, Stuiver uses a calibration tec-

nique to improve the approximation. Statistical techniques play important roles in the

two stages.

At the first stage, Stuiver converts Sieh's specimens to the "purest carbon dioxide

in Seattle" and then measures their level of radioactivity. Stuiver wants to find out

how much of the radioisotope, 14C (radiocarbon), is present in each specimen. He is
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following a path set down in 1945 by Professor William Libby at the University of

Chicago. Libby knew that living matter, such as a tree, contains a near constant level

of 14C during its life time. Once the tree dies, however, the 14C decays into another

element at a known rate. This is shown in Figure 2. For example, the 14C will be

reduced to a half of what it was in 5568 years and a fifth of what it was in about

13,000 years. (In Figure 2, the 5568 is indicated by the solid vertical line. It is

referred to as the half-life.) So as Libby saw, it will be possible to find out the date of

a specimen's death if it is known how much 14C there was in it originally, and how

much there is now. The original quantity is impossible to get directly. So at this first

stage, Stuiver makes the assumption that the amount of 14C in living material has

remained about the same across time, and uses a standard material (oxalic acid) to get

an estimate of how much radiocarbon there would have been in each of Sieh's speci-

mens at the time of its death. This gives him a proportion. If for example the propor-

tion is .9 then, using the curve of Figure 2, the timne elapsed is approximately 850

years and the corresponding date at which the specimen died 1987-850 = 1137 . The

1137 would be Stuiver's first approximation to the date of the specimen's death. It is

referred to as the radiocarbon date of the specimen. It should be mentioned that a

variety of corrections eg., for background radiation, are also applied in the course of

determining a specimen's activity and radiocarbon date.

CALIBRATION

Professor Stuiver and others have carried through a variety of radiocarbon datings on

specimens (tree rings) of known date. They have found that that 14C activity in the

atmosphere has not remained precisely constant, as Libby initially assumed, but it has

fluctuated to an extent. Knowing both the radiocarbon and calendar dates of these

specimens, the researchers are able to prepare a calibration curve relating the two.

Now at the second stage of his work Professor Stuiver employs such a curve to
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determine an improved estimate of the calendar date of a given specimen. Figure 3

presents the calibration curve of Stuiver and Pearson (1986). For a given radiocarbon

date one can read off a calendar date. Suppose one has a specimen with radiocarbon

date of 1 100, then the corresponding calendar date is about 1200 AD, see the horizon-

tal and vertical lines in the figure. The calibration operation has been crucial, chang-

ing the date by about 100 years.

In his work Professor Stuiver has had to deal with measurement errors and to

compute estimates of unknown quantities. Further he wishes to provide measures of

the uncertainties of his estimates. Statistics has a variety of techniques for addressing

these items.

THE STATISTICAL APPROACH

Foremost among the concepts fundamental to the statistical approach to scientific prob-

lems is the notion of distribution. Supposing that it makes sense to talk of probabili-

ties attached to a circumstance of interest, then the distribution of a numerically valued

quantity is the function giving the probability that the quantity takes on a value not

greater than a specified number. Figure 4 gives two examples of distribution func-

tions. From the top graph of Figure 4 one may read off the probability of a value, (in

this case a date), occurring that is no greater than 900, is about .70. From the bottom

graph one reads .42 for the probability of a result, (in this case a time interval), no

greater than 130 . Distributions are employed in the construction of statistical models,

manipulable probabilistic descriptions of situations of concern. With a statistical

model, one can address a host of scientific questions in a formal manner.

Distributions generally come in families, individual members of which are

labelled by parameters. The top graph of Figure 4 refers a case of the normal family

with parameters 891.7, 15.7 while the lower refers to a case of the Weibull with parame-
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ters 2.55, 164.4 . (These particular parameter values appear in calculations with the data

later in the paper.)

In statistical work with data a central concern is what is an appropriate distribu-

tion to employ. Probability plotting is one technique for discerning a reasonable fam-

ily. In probability plotting one graphs on special graph paper an estimate of the distri-

bution function versus a member of a contemplated family. If the family is reason-

able, the points plotted will lie near a straight line. Figure 6, to be discussed later,

provides an example of a Weibull probability plot for the data of concern to Kerry

Sieh.

Supposing that a family of distributions has been selected then there is a need to

know the parameter values for the best fitting particular member of the family to the

data. This is the problem of parameter estimation. Parameter estimation is often con-

veniently approached via the likelihood function. The likelihood function of a

hypothesized probability model and given data set is a particular function of the

parameters of the model meant to measure the weight of evidence for the various pos-

sible values of the parameters. Figure 5, to be discused below, provides an example

with the unknown being the calendar date of one specimen of interest.

After an estimate of a parameter has been found, it is usual to provide some indi-

cation of its uncertainty. One particularly convenient means of doing this is via a 95%

confidence interval. These are numerical intervals constructed in such a fashion that

over the long run 95% of them will actually contain the true parameter value. The

interval of dashes cut off by the solid curve in Figure 5 below provides an example.

The above statistical concepts * play a role in the analyses described in this

paper.

*The book Nelson (1982) is a reference to the ideas of probability plotting, the normal and
Weibull distributions and related statistical concepts.
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ESTIMATED DATES

When one of Sieh's recent specimens was processed by Minze Stuiver it was found to

have a radiocarbon date of 891.7, with a standard error of 15.7 . (The standard error

is an estimate of the uncertainty of an estimate.) Figure 5 provides the likelihood func-

tion for the calendar date of deposition of this specimen. In computing this likelihood

function the statistician takes note of the fact that both the specimen's radiocarbon date

estimate and the calibration curve are subject to measurement errors with approximate

normal distributions. The radiocarbon date error depends, in part, on over how long a

time period the specimen's level of radioactivity was measured in Professor Stuiver's

laboratory. The calibration curve error depends, in part, on how many known-age

items were included in its construction. The date for which the likelihood is largest

here is 986 AD, see Figure 5. This particular specimen was selected by Professor Sieh

to provide a date between the earthquakes that he has labelled I and N, see Table 1. A

95% confidence interval for the specimen's calendar date is from 965 AD to 1011 AD.

This interval corresponds to the points where the dotted line in the figure intersects the

curve.

In practice there is sometimes an added difficulty. The calibration curve is not

steadily increasing as a function of the calendar date. Wiggles appear in it due to

things like solar magnetic field disturbances, changes in the Earth's magnetic field and

the measurement error already referred to. The wiggles mean that sometimes one can-

not associate a given radiocarbon date with a unique calendar era. To sort out the

eras, one needs supplementary information.

INTEREVENT TIMES

Sieh (1984) lists the following estimated calendar dates for 10 earthquakes at Pallett

Creek: 1857, 1720, 1550, 1350, 1080, 1015, 935, 845, 735, 590 AD. (These are given
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in Table 1, as well as twice their associated standard errors.) Only one of these dates

was available historically, namely 1857. The other dates were derived by Professor

Sieh by interpolation between the estimated dates of the various specimens he selected

in the course of his excavations.

At this stage of his study, Professor Sieh turns to a statistician for assistance in

infering probabilities of future earthquakes. (The radiocarbon daters had turned to sta-

tisticians earlier in the development of the estimation procedures referred to.) In the

statistical approach to the problem of probability estimation, one seeks a distribution

function for the series of times between the events. From smallest to largest these

times are: 65, 80, 90, 110, 137, 145, 170, 200, 270 years with 130 years now passed in

1987 since the 1857 event. The statistician sets out to determine a statistical model for

these values.

The Weibull family has often been found applicable for the lifetimes of items

subject to destruction and for other related phenomena. A Weibull probability plot

was prepared for Sieh's data. It is given in Figure 6. The vertical bars correspond to

the dating errors of the corresponding interevent times. If the Weibull is adequate for

describing the distribution of times between earthquakes, then the points plotted should

fall near a straight line. For reference, a straight line has been included in the figure.

The Weibull assumption appears reasonable here.

RISK ESTIMATES

Many are interested in questions like: what is the probability of a large earthquake in

the Los Angeles area in the next 5 years, in the next 10 years and so on? These pro-

babilities, (risks), may be estimated once one has a distributional form for the times

between earthquakes. Figure 7 provides preliminary estimates of risk probabilities that

have been prepared, employing the Weibull distribution referred to, by fitting using the
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data of Table 1. From the figure one sees for example that the probability of a large

earthquake in the next 30 years given the last was 130 years ago may be estimated by

.32, (that is there is a chance of 32%). The dotted lines in the figure provide an indi-

cation of the uncertainty in the fitted probability values. They correspond to a 95%

confidence interval. By following the horizontal lines of the figure one is led to a

lower limit of .18 such and an upper limit of .50 for the probability of an earthquake

occurring in the next 30 years. This result may be made use of by insurers, engineers

and planners in their work.

INSURANCE PREMIUMS

Suppose one wishes to set aside funds to cover the cost of rebuilding a facility that

becomes damaged in an earthquake in the coming year. The fair premium to cover the

rebuilding, were an earthquake to take place, per thousand dollars of cost is given by a

thousand times the probability of an earthquake occurring in the coming year. Using

the fitted Weibull, the estimated probability of an earthquake in the coming year is

.0108 and the premium works out to be 10.80 dollars . (Note insurance companies

actually "load" their premiums by adding amounts to cover costs, to allow profits and

to protect themselves against extreme catastrophes, so they would charge more than

10.80 dollars).

CONTRIBUTIONS OF STATISTICS TO THIS PROBLEM

The desired end product of a seismic risk study is a probability. So statistics is bound

to enter, as statistical distributions are basic to the estimation of probabilities. In the

study just described the tool of radiocarbon dating was crucial. Researchers in that

field have long recognized the importance of good statistical technique. As H. A. Pol-

lach (1976) said, 'the application of sound statistical methods has become a radiocar-
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bon dater's "bread and butter".

It is also worth quoting Harold Jeffreys (1967) one of the most important

seismologists and statisticians of this century. He said that "An estimate without a

standard error is practically meaningless." This refers to the staement of conclusions.

Providing standard errors is one tool for this, confidence intervals are another. These

are both central concepts of statistics. In the Risk Estimates section above, the 95%

confidence interval for the probability of a large earthquake at Pallett Creek in the next

30 years ran for .18 to .50 .

CONCLUSION

Science proceeds by building on itself. In the work described, specimens of known

age (tree rings) are employed to construct a calibration curve to be employed in dating

specimens of unknown age. Science employs statistical concepts to address problems

of estimating unknowns, to validate assumptions and to quantify uncertainties in infer-

ences made.

PROBLEMS

1. Using the curve of Figure 2, read off the years elapsed for the radiation to drop to

a quarter of its initial value.

2. Using the curve of Figure 3, read off the calendar year corresponding to a radiocar-

bon year of 500 .

3. Using the curve of Figure 3, find a radiocarbon year that corresponds to several

calendar years, rather than to a unique year. Comment on this phenomenon.

4. There is a bump around the year 900 AD in the curve of Figure 5 . What do you

think its source is? (Hint: consider Figure 3.)
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5. What is the approximate fair insurance premium to pay out to cover 50,000 dollars

worth of damage that might take place in the next 20 years? (Hint: read a probability

estimate from Figure 7.)

6. Evaluate the times between successive events for the earthquakes listed in Table 1.

Does there seem to be any structure in the sequence of values?
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LEGENDS

Figure 1. Map of California showing location of site on San Andreas fault where

specimens were collected for radiocarbon dating. PC indicates the location of Pallett

Creek. LA indicates location of Los Angeles. UCB indicates location of University of

California, Berkeley.

Figure 2. Plot showing exponential decay of radioactivity and half-life corresponding

to radiocarbon. The solid vertical line indicates years passed corresponding to a pro-

portion of .5 . It provides the half-life of 5568 years. The dotted vertical line indi-

cates years passed corresponding to a proportion of .9 .

Figure 3. Calibration curve indicating radiocarbon years and corresponding calendar

years. The vertical solid line near 1200 gives the calendar year corresponding to a

radiocarbon year of 1 100.

Figure 4. Examples of distribution functions for two particular distributions, (a nor-

mal and a Weibull.) The curve gives the probability of not exceeding a specified value

along the x-axis. In the top graph, the probability corresponding to not exceeding 900

is indicated. In the lower graph, the probability of not exceeding 130 is indicated.

Figure 5. A plot of the likelihood function corresponding to a specimen of radiocar-

bon year 891.7 and standard error 15.7 . The central peak corresponds to an estimate

of the calendar date of death of the specimen, here 986 AD. Where the dotted line

intersects the curve provides a 95% confidence interval for the calendar date of the

specimen.

Figure 6. A probability plot to assess the reasonableness of the Weibull distribution

for the interval between earthquakes at Pallett Creek. The points plotted correspond to

the observed intervals. The vertical bars indicate their standard errors. If the
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distribution is reasonable the points should fall near a straight line. For reference a

fitted line has been added.

Figure 7. An estimate of the probability of a future earthquake occurring at Pallet

Creek within the indicated number of years. The dotted lines give the upper and lower

values of a corresponding 95% confidence interval for the probability. The horizontal

lines provide these values for the case of the probability of an earthquake in the next

30 years.



Estimated Dates of Events

Event Date AD
Z 1857
X 1720± 50
V 1550± 70
T 1350 ± 50
R 1080 ± 65
N 1015 ± 100
I 935 ± 85
F 845 ± 75
D 735 ± 60
C 590± 55
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Radiocarbon Decay Curve
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Radiocarbon Calibration Curve
O

0

0
0

L()

0
0

LO

0 500 1000 1500 2000

calendar year (AD)



Examples of Distribution Functions
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Relative Likelihood for RC Date
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Probability of Future Earthquake at Pallett Creek
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