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Abstract

The paper considers the first-passage time problem for an integrated Brownian motion

process in the presence of two fixed boundaries located at ±b. For a process starting

at X (0) = x with V (0) = v, where V (t) = dX (t) / dt is Brownian motion, an asymptotic

expansion (as v -* oo) is developed for the mean of the passage time distribution. A

truncated version of this expansion is proposed as an approximation to the true mean

first passage time. In an extensive series of simulations the approximation is found to

perform well even for small v.

Key words: Mean first-passage time, integrated Brownian motion, two barrier prob-
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1. Introduction

In many physical systems, chemical reactions and economic models (see e.g.

Oppenheim et. al (1977) van Kampen (1981), Ross (1989)) a state variable X(t)

evolves according to the stochastic differential equation

dX(t) = V (t) + F (X (t))
dt

where F (X (t)) represents the total of deterministic forces acting on the state variable at

time t and V (t) is a Wiener process. Frequently, in these systems the question arises

when the state variable first reaches an upper or lower threshold, exits from an inter-

val, crosses one of two boundaries etc. The present paper makes a contribution to this

problem context in the absence of deterministic forces and aims to approximate the

expected time until thresholds are reached, boundaries are crossed, etc. More gen-

erally still, the problem under consideration has applications to any situation where the

rate of change of a stochastic process (rather than the process itself) follows a Wiener

process. For example, when modelling the price X (t) of a certain stock it is some-

times assumed in econometrics that the rate of change of X (t) equals the current

inflation rate which in turn is assumed to behave as a Wiener process (Ross (1989)).

The question when the stock price X (t) first leaves a specified interval given that the

inflation rate is V (0) = v leads to the above first-passage problem. Another example is

given by the evolution of the (one-dimensional) position process X (t) of a particle
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driven by white noise. Again, the expected time until exit from a prescribed interval

may be approximated by the results of this paper.

First-Passage Time Problems (henceforth referred to as FPT problems) for these

integrated Markov processes (of which X (t) is an example) are unsolved in even the

simplest cases (see e.g. Abrahams (1984)) Part of the complication is due to the fact

that the integral of a Markov process is no longer Markovian. This implies, among

other things, that the technology involving Kolmogorov backward and forward equa-

tions can no longer be used directly. However, the two-dimensional process

(dX (t) / dt, X (t))

is Markovian and this provides a starting point for analysis.

Unfortunately it turns out, as we will see, that the boundary and initial conditions

provided by the respective contexts are often insufficient to constitute a well-posed

problem in two dimensions. This impass can be circumvented by introducing a mov-

ing boundary with a specification and then letting the boundary approach infinity in a

controlled fashion. We then use techniques for global asymptotic analysis on the

resulting system hence obtaining asymptotic expansion for the mean first passage time.

This is demonstrated in Sections 2 and 3. Section 4 reports the results of a series of

simulations. The truncated asymptotic expansion for the mean turns out to be an

extremely accurate approximation. For related work see Lefebure (1989), Lachal



- 4 -

(1990).

2. The Model

Consider the system

dX (t) = V (t) dt, V (t) = 3w (t) + v

where w (t) is a standard Wiener process. Let b be positive and let

X (b, v) = inf (t: X (t) = b) A inf(t: X (t) = -b)

be the first time the process hits +b or -b. We will approximate E (t (b, v)) for fixed b

and v. Towards this end consider the bivariate Markov process

(X(s), V(s), s 2 0) X(0) = x, V(0) = v

with two absorbing planes at X = b and X* = -b and let p (xt, vt, t, x,v) be the proba-

bility density associated with:

X(0) = x, V(O) = v, X(t) = xp, V(t) = vt and (X(s),V(s)} has not hit either of the

absorbing planes in [ 0, t).

The density p depends on b, of course, but still satisfies both the Kolmogorov forward

and backward equations. Define, for positive a

a oo

P (a, t, x, v) = J J p(xt, vt, t,x,v) dvtdxt
-a --

so that for the density f (t, x, v, b) of X (b, v)

f (t, x, v, b) = P(b, t, x, v).

Write



- 5 -

(2.1) V,b(x,v) = eStf(t, x, v, b)dt
0

and for t < t (b, v) intoduce the random density f(t',X (t), V (t), b) and the random

Laplace transform f.Msb (X (t), V (t)). Also introduce the notation

a1 Nf1s,b (X, V) = (a / aX) s,,b (X, V)

a2 Nf.s,b (X, V) = (a / aV) Nf1s,b (X, V)

a22 Nfs,b (Xi V) = (a / aV2) MVsb (X, V).

Then we have the following

Theorem 1: With the Laplace transform Vsb( ') of (2.1) the process

{1(t) = exp (-st) Vs,b' (X (t), V (t)); O < t < r (k, v)) for positive s has stochastic Ito

differential

dr (t) = exp (-st) a2 'fs,b (X (t),V (t)) adW (t)

+ exp (-st) [ -2a22fs,b (X (t), V (t)) + V (t) al fs,b (X (t) V (t))
2

+ SNfs,b(X(t),V(t)) ]dt

where W (t) is standard Brownian motion.

Proof: By Ito's formula or the following argument:

Ar = r(t + At) - r(t)

= (exp (-s (t + At) - exp (-st)) [Nfs,b (X (t + At),V (t + At)

+ (exp (-s (t + At)) - exp (-st)) fs,b (X (t),V (t))

+ exp (-st) [ Nfs,b (X (t + At)), V (t + At))- s,b (X (t), V (t))-

Retaining terms of order At only
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Ar = -s exp (-St) N,s,b (X (t),V (t)) At

+ exp (-st) [ 1'Ws,b (X (t),V (t)) V (t) At + a2 Nfs,b (X (t), V (t)) aV (t) ]

+ -2 a22 Nfs,b (X (t), V (t)) (AV (t))2.

Since V (t) = oCw (t) + v we have

AV (t) = GAW (t)

(AV (t))2 = & (AW (t))2 = o2At

and the claim follows by replacing infinitesimals by differentials.

Theorem 2: The process (F (t),O < t < t(b,v)) as defined in Theorem 1 is a (local)

martingale relative to the filtration generated by F{(s), s < t).

Proof: Theorem 2 follows easily from stopping time arguments. Now, combining

Theorems 1 and 2 and using

E (t (b, v)) = (a / as) Nfs,b (X, V) Is=o
and reparametrizing the space variable in such a way that z now denotes the distance

between the starting position and the boundary on the right we obtain

(2.3) -y (a2 / av2)E ( (z, v)) -v (a / az)E ( (z, v)) = -1

(2.4a) E ( (O, v)) = 0 for v > 0

(2.4b) E ( (2b, v)) = 0 for v < O

if we can demonstrate that the expectation exists. However, this is so, since X (t) for

all t is normally distributed with mean b - z + vt and variance 3-12t3 and

P((z, v) > t) < P(X(t) < x + z)-P (X(t) <-x-z)
< min(1,0 (t-32)}
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so that P (t (z, v) > t) is integrable. The system (2.3) (2.4) is a nonhomogeneous para-

bolic partial differential equation. the handling of which is complicated due to its lack

of sufficient boundary or initial information. Although (2.4) is obvious since

lim lim E ( (z,v)) = E ( (0, )) = 0 for all v >0,

it remains unclear how this limit behaves for v* < 0. On the other hand, to obtain

lim* lim*E (, (z, v))
z-+z v-*v

for a given v* and all z* e (0, 2b) is as difficult as the original FPT problem itself.

Therefore, both the boundary-value problem and the initial boundary-value problem are

underspecified and it seems that we have arrived at an impasse. In the following sec-

tion we demonstrate how to circumvent this difficulty and derive an asymptotic expan-

sion for the mean FPT.

3. An asymptotic expansion for the mean FPT

Consider the perturbed process (XW(t), V(t)) with

fX(t) for t ' to
XW(t) lX(to) + V(to)o- t) for t > to

where to is the stopping time

to = inf{t: V(t) = w} A inf{t: V(t) = -w)

for some fixed w V 1. Also, define e' (z, v) and *rW, the hitting time and its Laplace

transform, respectively, of (XW(t), V(t)) (-b, +b) x R. Then, with probability one,
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t'w (z, v) - X (z, v) as w -+ oo and E (tW (z, v)) -e E (t (z, v)). Hence, we attempt to

solve

(3.1) a2 a2E (tw (z, v)) v DE (tw (z, v)) -1

with

E (w (0, v) = 0 for v > 0
E(w (2b, v)) = 0 for v < 0

(3.2) E(W(z,w)) = zw1l = E (tw (2b - z,-w)) for z < 2b
E (w (z,-w)) = (2b - z)w-1 = E (2b - z, w) for z < 2b

in combination with the limit as w -+ co is taken. A possible approach to the system

(3.1), (3.2) is the use of perturbation methods to transform the problem into a

boundary-layer problem for the Laplace transform of E (tW (z, v)). One then aims to

approximate the system by a sequence of equations valid in the inner region and near

the boundaries and combines the respective solutions by asymptotic matching tech-

niques to obtain a globally valid approximation. Since we were unable to carry

through this program in a fashion resulting in a mathematically simple global approxi-

mation, we decided on a different and simpler strategy.

Let

00

lw (C v) = J E (rw(z, v)) dz
0

and

y = 213Cl3 -V
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yo = 21/3 C1/3 cr-23 w.

The homogeneous part of the transformed system

(3.3) d2m (c,Y) - yom (c, y) = -21/3 c513
dy2

(3.4) JihYo (c,yO) = 21/3 ar-/3 c-5/3 1

is a one-dimensional Schrodinger-equation which becomes amenable to techniques of

global asymptotic analysis such as the method of dominant balance (for an irregular

singular point at oo).

The basic strategy is to first peel off the leading asymptotic behavior then, after having

removed this, to determine the leading behavior of the remainder, and so on. To ini-

tiate this procedure set

(3.5) d2m (c,y) _ O as y °oo,
dy2

where here by the notation f(x) - g(x) as x -* xD ("f is asymptotic to g as x - xo")

for functions f and g is meant that lim f(x) / g(x) = 1 if g (x) != 0) and lim f (x) = 0
X-4xO X-4Xo

if g (x) 0O. If g(x) = £ a(n)x-n is a power series then by f(x) - g(x) as x - oo is
n=O

N
meant that lim (f (x) - £ a (n) x7n) /xN = 0 for every N. This yields

x-400 n=O

m (c, y) - 21/3 d-V/3 c-5/3 y-1 as y -+ oo.

Corrections to this leading term are determined by setting

(c,y) = 21/3 2/3 c-5/3 (3-1 + e(y)), y -

where the correction term £ (y) is of smaller order than y-1 and satisfies
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d2 (y) + 2 y £ (y)
dy2 y3

Setting d /dy)(y) _0 (as y-4c) gives e(y) 2y4 and. continuing in this
dy2

fashion the full asymptotic power series expansion:

m (c, y) 21/3 c-213 c-5X3 E (3n)! Y-3n1n=-O 3n n!

and hence

(o3Qn)!a. 2n en+l
(3.6) E(r (z,v)) - In=O n!(n+ 1)!6nv3n+l
It is easily checked by differentiating termwise that E (r (z, v)) formally satisfies (2.3),

(2.4a) and (2.4b) as v -e -ce, although the sum in (3.6) does not converge for any

nonzero value of a2 z v-3. It is well-known that many problems in perturbation

analysis and the theory of dominant balance lead to such divergent series. These

series are still useful; under certain conditions formal solutions (such as divergent

series) of differential equations are asymptotic expansions of actual solutions. In fact

one can even go a step further: Typically, optimally truncated divergent series are very

good approximations for these actual solutions (see Bender and Orszag (1978)). We

chose to use the first 3 terms of the divergent series as our approximation

(3.7) E* ((z v)) = + a2 +54 4 z3
v 2 v4 3 v7

4. Simulations
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It seems complicated to find an analytic bound for the error term introduced by the

various approximations and asymptotic expansion arguments which led to (3.7).

Therefore, we performed an extensive series of simulations, for different values of a2

and several distances z and initial velocities v, to compare the approximation (3.7)

with simulated sample mean first-passage times and their sample standard deviations.

These simulations indicate that the approximation performs well whenever

a2 z v-3 < 1 / 4 (i.e. even for positive starting velocities which in view of the derivation

is expected to be the last accurate case for the approximation). For the given values of

a2 this is the case for all the listed values of z and v in Tables 1-4.

The basis for simulations is provided by

t+At

(4.1) X(t+ At) = X(t)+ J V(s)ds,
t

but of course, it is impossible to obtain complete (for all s 2 0) realizations of the

velocity process V (s). Instead, we deduce the entire trajectory from the subset

V (k At), k = 0,1,2.... In view of this an assumption is necessary that governs the

behavior of the velocity process between discrete time points k At. The only assump-

tion which makes sense both physically and analytically is to require constant accelera-

tion during [k At, (k + 1) At) for all k. This leads to position being a quadratic spline

and hence necessitates a quadratic interpolation scheme to obtain the approximate first

passage-time of the realization. Numerically, the effect of the constant acceleration
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assumption is the approximation of the integral in (4.1) by the trapezoidal rule of qua-

drature.

If X ((k - 1)At) = xl - b < 0, V ((k - 1)At) = v1 and V (kAt) = v2 then by quadratic

interpolation first-passage occurs during an increment at time ((k - 1) At + c0) with

TO = (-V1 + (V2 + 2X1 (V2 -V1) /At)112At) / (V2 - V1)

if either (vl + v2)At/2 2 xl or v? + 2x1 (v2 - v1)/At 0 with v1 > 0> v2.

The simulations were performed in the Statistical Laboratory at Queens University in

Kingston, Canada. At time t = 0 we started 2000 realizations of the bivariate process

(X (t), V(t)) with X(0) = x = b - z and V (0) = v. The time increment At was chosen

in such a way that always of the order of one thousand steps were needed for the par-

ticle to reach the boundary. This being a compromise between desired accuracy and

computation cost. For each realization it was determined, via quadratic interpolation,

when it crossed boundaries for z = 1,2,..., and ensemble averages were taken.

For a = .1,.3,.5,.7 the results of the simulations are reported in Tables 1,2,3,4 at the

end of this section. The constant b was set equal to 50. The following notation is

used (for convenience the dependence on z, v, a2 will not be explicitly indicated):

ms: sample averages of simulated first-passage times for given z, v, a2.

z CY2 Z2 5 . cY4 z3
Al =-, A =- - A3 =

Ml= 103. ms-Al 3 mS - (A+A2) M 103 S(A23)
A 1 M2=10' A1 ' 3V= Al
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SD(MK): sample standard deviation of Mi, i = 1,2,3.

- DMj) i1,2,3.SD (Mi)
In summary, the findings are as follows:

1. In 105 out of 224 cases (i.e. the total of different combinations of z, v, C;2),

It1 I < 2.00 and in 21 cases t1 < 0.00, indicating clearly that the l't order approxi-

mation A1 tends to underestimate the mean first-passage time. This is confirmed

by the following summary statistics of tl:

Mean = 2.57, STDEV = 4.15, SEMEAN = 0.14

2. In 197 out of 224 cases, It21 < 2.00 and in 118 cases t2 < 0.00. Hence, in 88%

of the cases the 2nd order approximation is within 2 standard errors of the simu-

lated mean. Also, the frequencies of underestimation and overestimation (relative

to the simulated sample means) are about equal and the summary statistics of t2

are:

MEAN = -0.04, STDEV = 1.27, SEMEAN = 0.09

3. In 199 out of 224 cases, It3I < 2.00 and in 126 cases t3 < 0.00. The 3rd order

adjustment terms in the approximation and hence the difference between t2 and t3

are small, especially for large v and small z and a2. Hence the precision of the

experiments (i.e., 2000 particles for given a2 z, v) is not sufficiently high to

determine whether the 3rd order approximation improves over the 2nd order
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approximation. The summary statistics of t3 are:

MEAN = -0.22, STDEV = 1.32, SEMEAN = 0.09
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TABLE 1: NL, tL for im1.2,3; o.1,
and various z, v

N1 K2 N3 tC t2 t3 H11 2 M3 t1 t2 t3

1 - 1.4 - 7.61 - 7.64 -0.30 -1.66 -1.69 5.3 3.42 3.42 2.12 1.38 1.3
2 6.1 - 6.41 - 6.51 0.95 -1.00 -1.02 11.4 7.70 7.69 3.24 2.19 2.1'
4 9.4 -15.59 -16.01 1.03 -1.71 -1.75 21.3 13.90 13.87 4.13 2.69 2.6
6 14.3 -23.15 -24.12 1.28 -2.07 -2.16 27.1 15.97 15.89 4.24 2.50 2.4'
6 26.0 -24.02 -25.69 1.99 -1.84 -1.97 33.1 18.26 18.12 4.49 2.48 2.4'

12 54.9 -20.13 -23.66 3.33 -1.22 -1.43 42.4 20.19 19.86 4.66 2.23 2.1
16 63.6 -16.18 -22.65 4.33 -0.84 -1.18 50.0 20.33 19.75 4.77 1.94 1.8,
20 110.0 -14.97 -25.38 5.00 -0.68 -1.15 56.1 19.09 18.18 4.78 1.63 1.5

v n4 -. V 5
N N2 3 42 3 H .. t - -

I - 1.0- 1.682 - 1.52 -0.68 -1.20 -1.20 - 0.5 1.20 - 1.20 -0.72 -1.07 -1.*0;
2 - 0.6 - 2.12 - 2.12 -0.25 -0.95 -0.95 - 1.2 - 1.98 - 1.96 -0.72 -1.22 -1.2:
4 2.1 - 1.07 - 1.08 0.63 -0.33 -0.33 - 0.5 - 2.06 - 2.06 -0.20 -0.90 -0.9(
6 4.7 0.05 0.03 1.20 0.01 0.01 2.4 - 0.03 - 0.03 0.64 -0.01 -0.0:
a 6.3 2.09 2.06 1.81 0.45 0.45 4.0 0.77 0.76 1.21 0.24 0.2:

12 12.9 3.49 3.43 2.26 0.61 0.60 4.6 0.03 0.01 1.20 0.01 0.Ot
16- 16.8 4.31 4.21 2.54 0.65 0.64 5.4 - 0.96 - 0.99 1.17 -0.21 -0.22
20 19.4 3.78 3.62 2.62 .0.51 0.49 5.6 - 2.40 - 2.44 1.06 -0.46 -0.4;

v- 6 v -7
a x1 N2 3 til t2 t3 H1 N2 N3 t1 t2 t3
1 0.6 0.33 0.33 0.70 0.41 0.41 1.0 0.82 0.82 1.535 1.32 1.32
2 0.7 0.22 0.22 0.56 0.16 0.18 1.1 0.78 0.78 1.14 0.83 0.83
4 0.1 - 0.66 - 0.86 0.04 -0.49 -0.49 0.9 0.30 0.30 0.64 0.22 0.22
6 0..0 - 1.39 - 1.39 0.00 -0.64 -0.64 0.6 - 0.11 - 0.12 0.45 -0.07 -0.07
6 - 0.4 - 2.23 - 2.23 -0.15 -0.69 -0.89 1.1 - 0.08 - 0.08 0.55 -0.04 -0.04

12 - 0.1 - 2.91 - 2.92 -0.04 -0.94 -0.95 1.5 - 0.27 - 0.27 0.61 -0.11 -0.11
16 1.0 - 2.70 - 2.71 0.28 -0.76 -4.76 1.7 - 0.66 - 0.66 0.59 -0.23 -0.23
20 2.2 - 2.39 - 2.41 0.56 -0.60 -0.60 2.1 - 0.79 - 0.60 0.68 -0.25 -0.25

vi 8 Vm9
a N1 N2 N3 t1 C2 t3 m1 2 M3 t1 t2 t3
I - 0.2 -0.26 - 0.26 -.30n -4 04 h 0-73 073 03.7 070 0.70m 'we* - - * - -

2 0.6 0.65
4 1.5 1.15
6 1.6 1.05
6 1.3 0.53

12 1.2 - 0.01
16 1.6 0.17
20 1.9 - 0.03

- W o 4bw

0.65
1.15
1.05
0.53

- 0.01
0.17

- 0.03

--I * W - -*w6 -wl lw *
lw

1.17 0.90 0.90
1.38 1.03 1.03
1.20 0.77 0.77
0.83 0.33 0.33
0.60 -0.00 -0.00
0.76 0.06 0.07
0.78 -0.01 -0.01

0.2
- 0.0
- 0.1

0.1
0.5

1.4
1.6

0.03
-0.28
- 0.50
- 0.40
-0.02
0.27
0.44

IW 0 *

0.03
- 0.28
- 0.50
- 0.40
- 0.02

0.26
0.44

lw *
l w

0.28
- 0.01
- 0.08

0.11
0.51
0.75
0.68

,w -

0.05
0.31
-0.45
-0.31
-0.02
0.15
0.21

0.05
-0.31
-0.45
-0.31
-0.02
0.15
0.21
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TABLE 2: Mi. ti for 1-1,2,3;

and various z, v

I jj.a
2 81.0
4 238.4
6 645.0
8 846.9

12 1601.0
16 1945.2
20 3063.4

-31.52
13.44

307.53
396.91
926.05

1045.22
1938.43

-39.96
-20.31
231.60
261.91
622.29
505.22

1094.68

3.8
6.3
4.1
6.1
4.3
6.5
4.0

-1.49
0.36
1.98
2.85
2.50
3.48
2.53

-1.89
-0.54
1.49
1.81
1.68
1.68
1.43

1;12
31
91

ml M2 M3 ti t2 t3
3.2 -13.44 -13.63 0.4 -1.84 -1.86

20.0 -13.38 -14.*12 1.9 -1.27 -1.34
11.0 -15.68 -18.65 3.4 -1.04 -1.23
17.5 -12.50 -19.17 4.5 -0.64 -0.99

Z6.4 - 6.92 -18.78 5.4 -0.30 -0.80
)9.9 9.92 -16.75 6.8 0.32 -0.54

L3.0 46.32 - 1.09 7.5 1.11 -0.03
L3.1 579.75 505.67 2.5 1.61 1.4C

vW 4 vm 5

2 Ml M2 M3 ti t2 t3 Ml -X2- 3 ti t2 t3

1 11.0 4.01 3.98 2.2 0.11 0.81 7.9 4.35 4.34 2.3 1.26 1.2'
2 16.5 2.44 2.31 2.3 0.35 0.33 15.8 8.63 8.59 3.3 1.78 1.77
4' 26.5 - 1.60 - 2.13 2.7 -0.16 -0.22 28.2 13.85 13.71 4.1 1.99 1.97
6 33.2 - 9.00 -10.19 2.7 -0.74 -0.84 40.3 18.67 18.36 4.6 2.14 2.11
8 43.3 -12.92 -15.02 3.1 -0.91 -1.06 50.2 21.45 20.89 4.9 2.11 2.05

12 67.9 -16.46 -21.21 3.8 -0.93 -1.20 69.1 25.91 24.66 5.5 2.05 1.95
16 99.8 -12.66 -21.10 4.8 -0.61 -1.01 85.0 27.41 25.19 5.7 1.85 1.70
20 133.9 - 6.69 -19.87 5.6 -0.28 -0.83 102.3 30.29 26.84 6.2 1.82 1.61

(1 2 V 6 V2 7

z Ml K2 M3 ti t2 t3 | Ml M2 M3 ti t2 t3

1 1.6 - 0.50 - 0.51 0.6 -0.20 -0.20 - 0.7 - 2.02 - 2.02 -0.3 -0.99 -0.99
2 10.1 5.90 5.89 2.7 1.57 1.57 - 0.2 - 2.81 - 2.81 -0.1 -0.94 -0.95
4 16.4 8.07 8.02 3.1 1.53 1.52 2.5 - 2.79 -2.81 0.6 -0.66 -0.67
6 22.9 10.39 10.29 3.5 1.60 1.59 5.0 - 2.85 - 2.90 1.0 -0.55 -0.56
8 25.8 9.15 8.96 3.4 1.22 1.19 9.1 - 1.40 - 1.47 1.5 -0.23 -0.24

12 31.9 6.87 6.45 3.5 0.74 0.70 17.1 1.33 1.17 2.3 0.17 0.15
16 41.8 8.51 7.76 3.9 0.80 0.73 23.4 2.40 2.10 2.7 0.28 0.24
20 52.4 10.76 9.60 4.4 0.90 0.80 28.7 2.52 2.07 2.9 0.26 0.21

tv 8 t_ 9
Z 1 K2 3 ti t2 t3 m1 M2 M3 ti t2 e3

~~~~~~~~-- _ _ _ _- _ __ _A _ tf I £I ^1sn1

1 0.0
2 0.1
4 - 1.3
6 -0.4
8 0.9

12 3.4
16 6.4
20 10.2

- 0.88
- 1.68
- 4.85
- 5.65
- 6.11
- 7.13
- 7.66
- 7.37

- 0.8s
- 1.68
_ 4.86
- 5.67
- 6.14
- 7.21
- 7.79
- 7.58

0.0
0.0

-0.4
-0.1

0.2
0.6
1.0
1.4

-0.55
-0.70
-1.43
-1.36
-1.28
-1.22
-1.14
-0.99

-0.55
-0.70
-1.43
-1.37
-1.28
-1.24
-1.16
-1.01

Z.9
2.0
2.6
4.3
5.0
7.1
9.3
12.2

0.78
0.13
0.64
0.09

- 0.29
- 0.59
- 0.10

0.78
0.13
0.63
0.08

- 0.32
- 0.65
- 0.21

1.0
0.9
1.2
1.2
1.4
1.6
1.8

0.39
0.05
0.18
0.02

-0.06
-0.10
-0.02

0.39
0.04
0.18
0.02

-0.06
-0.11
-0.03

o-. 3,

ml
I
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TABLE 3: Hi. ti for i-1,2,3; o-5.

and various z, v

v- 4 V 5
z Ml H2 M3 t3 H1M2 H3 ti t2 t

1 21.2 1.71 1.45 2.61 0.21 0.18 4.0 - 6.00 - 6.07 0.72 -1.07 -1
2 47.3 8.24 7.22 4.01 0.70 0.61 10.5 - 9.55 - 9.82 1.31 -1.19 -1
4 85.2 7.05 2.96 4.92 0.41 0.17 27.5 -12.55 -13.62 2.35 -1.07 -1
6 130.2 13.01 3.86 5.96 0.60 0.18 49.9 -10.06 -12.46 3.41 -0.69 -
8 173.3 16.08 - 0.20 6.56 0.61 -0.01 71.5 - 8.49 -12.76 4.19 -0.50 -

12 269.9 35.53 - 1.09 7.57 1.00 -0.03 122.6 2.64 - 6.96 5.73 0.12 -
16 409.9 97.42 32.32 7.96 1.89 0.63 185.8 25.i92 8.75 7.16- 0.99 C
20 5121.1 4730.44 4628.71 1.47 1.36 1.33 245.9 45.94 19.28 8.00 1.49 C

v- 6 v- 7
z ml M2 H3 ti t2 t3 M1 K2 3 t t2 t

1 8.8 3.05 3.03 2.06 0.71 0.71 1.2 - 2.39 -2.40 0.36 -0.70 -C
2 14.9 3.33 3.24 2.41 0.54 0.52 4.3 - 2.96 -2.99 0.86 -0.59 -C
4 26.8 3.66 3.30 3.09 0.42 0.38 10.2 - 4.39 -4.53 1.44 -0.62 -C
6 40.8 6.07 5.26 3.78 0.56 0.49 14.9 - 6.93 -7.25 1.70 -0.79 -C
8 56.0 9.74 8.31 4.44 0.77 0.66 20.8 - 8.38 -8.94 2.03 -0.82 -0

12 87.2 17.78 14.57 5.47 1.12 0.91 37.0 - 6.77 -8.05 2.92 -0.54 -0
16 123.1 30.49 24.78 6.44 1.60 1.30 58.3 - 0.04 -2.31 3.91 -0.00 -0
20 159.3 43.55 34.62 7.17 1.96 1.56 76.9 3.97 0.43 4.54 0.23 0

V 8 VW 9
z MH M2 93 t t2 t3 Ml M2 3 ti t2 t

I -1 f A-6A O 1 13 0.22 0.22 00 173 173 -0.00 -0.78 -0.
2 6.2
4 13.3
6 22.3
8 30.2

12 43.2
16 56.9
20 69.2

1.36
3.53
7.62

10.70
13.86
17.80
20.42

1.34
3.47
7.48

10.44
13.28
16.79
18.83

1.55
2.32
3.09
3.59
4.16
4.71
5.09

0.34
0.62
1.06
1.27
1.34
1.47
1.50

0.33
0.61
1.04
1.24
1.28
1.39
1.38

2.4
3.4
5.3
8.9

16.0
22.4
27.9

- 1.05
- 3.43
- 4.96
- 4.83
- 4.57
- 5.00
- 6.44

- 1.06
-3.46
- 5.03
- 4.95
- 4.85
- 5.50
- 7.22

0.72
0.73
0.91
1.30
1.88
2.26
2.51

-0.32
-0.73
-0.85
-0.71
-0.53
-0.50
-0.58

-0.
-0.
-0.
-0.
-0.
-0.:
-0. i
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TE4 t1 for 1-1,2.3; a-. 7 ,

and various z, v

v -4 V m5
Z H1 K2 K3 ti t2 t3 KMl2 K3 ti t2 t3

1 15.4 - 22.92 - 23.90 1.34 -2.00 -2.09 11.2 - 8.40 - 8.66 1.41 -1.05 -1.
2 52.8 - 23.76 - 27.61 3.12 -1.41 -1.64 20.3 - 18.93 - 19.95 1.75 -1.64 -1.
4 107.6 - 45.49 - 61.13 4.42 -1.87 -2.51 53.5 - 24.88 - 28.97 3.14 -1.46 -1.
6 158.6 - 71.13 -106.30 5.28 -2.37 -3.54 83.9 - 33.66 - 42.88 4.00 -1.61 -2.
8 213.6 - 92.68 -155.21 6.00 -2.61 -4.36 128.6 - 28.19 - 44.58 5.25 -1.15 -1.

12 300.4 -158.96 -299.64 6.87 -3.63 -6.85 217.8 - 17.42 - 54.30 7.02 -0.56 -1.
16 3811.9 3199.31 2949.21 1.10 0.92 0.85 511.5 197.94 132.38 3.45 - 1.L[3 0
20 3195.5 2429.93 2039.14 1.15 0.87 0.74 580.9 198.87 96.43 4.71 l58- 0.

v- 6 -7
z K1 M2 K3 t2 t2 t3 M1 K2 M3 ti t2 t3

1 9.0 - 2.32 - 2.41 1.46 -0.38 -0.39 - 2.9 -10.02 -10.06 -0.59 -2.07 -2.'
2 13.6 - 9.11 - 9.45 1.56 -1.04 -1.08 0.1 -14.19 -14.33 0.01 -2.08 -2.
4. 34.6 -10.75 -12.12 2.77 -0.86 -0.97 8.3 -20.30 -20.85 0.84 -2.07 -2.'
6 61.9 - 6.12 - 9.20 4.02 -0.40 -0.60 16.8 -26.10 -27.33 1.38 -2.14 -2.:
8 88.8 - 1.96 - 7.45 4.94 -0.11 -0.41 32.1 -25.03 -27.21 2.26 -1.76 -1.'

12 138.4 2.28 -10.07 6.05 0.10 -0.44 58.7 -26.97 -31.87 3.31 -1.52 -1.t
16 197.1 15.58 - 6.39 6.94 0.55 -0.22 90.4 -23.89 -32.60 4.31 -1.14 -1.!
20 262.7 35.90 1.59 7.57 1.04 0.05 121.8 -21.10 -34.70 5.07 -0.88 -1.

v - 8 1= 9
K1 K2 3 ti t2 t3 K1 K2 M3 t1 t2 t3

_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~@ *''1 -1.0
2 - 4.4
4 - 7.0
6 - 2.5
8 4.4

12 23.9
16 43.1
20 64.0

- 5.75
-13.97
-26.18
-31.19
-33.89
-33.54
-33.51
-31.74

- 5.76
-14.03
-26.42
-31.74
-34.87
-35.74
-37.42
-37.84

-0.24
-0.80
-0.87
-o0.25
0.38
1.66
2.57
3.40

-1.46
-2.52
-3.25
-3.15
-2.93
-2.33
-2.00.
-1.69

-1.46
-2.53
-3.28
-3.21
-3.02
-2.49
-2.24
-2.01

5.0
10.4
18.0
28.5
39.3
55.4
70.0
80.8

4.64
3.66
4.52
8.36
12.40
15.03
16.27
13.56

4.63
3.63
4.40
8.08

11.92
13.95
14.35
10.55

2.*X
2.15
2.65
3.40
4.03
4.55
4.95
5.10

I .(44
0.76
0.66
1.00
1.27
1.23
1.15
0.86

1L . 4
0.;

0.5
1.2
1.1
1.0
0.6




