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Abstract.

Start two independent copies of a reversible Markov chain from arbitrary initial
states. Then the expected time until they meet is bounded by a constant times the
maximum first hitting time for the single chain. This and a sharper result are proved,
and several related conjectures are discussed.
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1. Introduction.

Let (X) be an irreducible continuous-time pure jump Markov chain on finite state
space I = {i,j, k,...) with stationary distribution n. Classical theory says
P (Xt = j) - nj as t -e oo for all j, regardless of the initial distribution. The modem
"coupling" proof goes as follows. Let (Ye) be an independent copy of the chain.
Then (Xt, Y), considered as a chain on I x I, is irreducible and hence the meeting time

TM = in(t: Xt =Yt)
is a.s. finite, regardless of the initial distributions. Now give YO the stationary distribu-
tion and define

Xt = Xt, t < TM

= Yt,t 2 TM.

Then (Xe) has the same distribution as (X). So

IP (Xt =)-Xj I= IP(Xt=i)-P(Yt=i)I
< P(Xt.Yt)
= P(TM>t) -Oast -oo.

Asmussen (1987) gives a good account of this and other coupling arguments.

Given a simple proof of a fundamental result, it is natural to probe more deeply
into the surrounding issues. The argument above can be quantified as follows. Let
di (t) be the total variation distance between rc and the distibution of Xt given XO = i:

di(t) = 2 Pi(Xt=j)-'x-

Then one obtains
D

(l) d¢(t) < P(TM >tJXO=i,YO= n).

This leads to the idea of maximal coupling: there is a dependent construction of Xt and

Yt such that equality holds in (1). See Thorisson (1986) for a recent account. This
paper goes in a different direction, to study the meeting time of independent chains as

a quantity in its own right, and to compare this quantity with other quantities associ-
ated with the Markov chain.

A natural object of study is the worst-case mean meeting time

(2) M - maxE (TM IXO = i,YO= j).
ij

Inequality (1) can be used to relate this to a parameter tl indicating the time taken for
the distribution of the single chain to approach the stationary distrbution. Define



- 3 -

d(t) = max dj (t)
1

(3) t=mi(t: d(t) < 1/(2e))

(the constant 1 / (2e) has no special significance beyond algebraic convenience). Then
(1) and Markov's inequality give

(4) 1 < 2evm.
Aldous (1982) studied r1 and showed that for reversible chains it is "equivalent"

to various other parameters c, in the sense that

,1 < Kt; X < Kt1

where here and throughout K denotes an absolute constant, not depending on the chain
or the number of states (K varies from line to line).

In this paper we seek similar results for cM. It is easy to see that tM may be much
larger than t1: consider the chain which holds at a state for an exponential (1) time
and then jumps to a uniforn random state. It seems natural to try to relate tM to hit-
ting times

Hj = min(t: Xt=j)
for the single chain. Let us consider two examples.

(5) Example. Consider continuous-time simple symmetric random walk on the
integer lattice Zd modulo q. Then the distance Xt- Yt between independent walks
behaves precisely as X2t, the single walk with transition rates doubled. Hence in this

example tM = -max E .

(6) Example. Consider the continuous-time analog of deterministic cycling. That is,
take I= tO,1,... ,N- 1) and transition rates 1=i+lc==qN-10 Then
max EiHi = N - 1. Now if Xt, Yt are independent walks then Xt- Yt modulo N is

symmetric random walk. So by considering XO = [ N], the central limit
2~ ~ 2

theorem shows that cM is of order N2.

The behavior in example 6 is in a sense a pathology caused by cyclicity: we can
eliminate this by restricting attention to reversible chains. The exact equality in exam-
ple 5 arises from spatial homogeneity and cannot be expected elsewhere, but it turns
out there is a bound.
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(7) Proposition. tM 5 Kmax EiHj for all reversible chains.
ij

Our argument for (7) is indirect and yields a large K, but it is conceivable that K = -
2

suffices. Example 6 shows no such bound can hold for irreversible chains, but sug-
gests

(8) Conjecture. tM < KN max Ei Hi for all chains, where N = number of states.
iJ

This conjecture seems curiously difficult: the author can do no better than a N3 bound.

Retuming to the reversible case, adding a very rarely-visited state j may make EiHj
large without affecting rM, so the bound in (7) may not be the correct order of magni-
tude. There is a better bound, in which the EiHj are averaged using the stationary dis-
tribution.

(9) Proposition. For all reversible chains

TM < KM{E i r-1

Here a v b max (a, b) and Es denotes the stationary initial distribution, so

E-Hi= '7rkEkH-. In words, the bound is the n-weighted harmonic mean of the
k

tl \ ExHi. Though complicated, the bound does involve only quantities associated
with the single chain. We conjecture that this is the correct bound, in that the opposite
inequality holds:

(10) Conjecture. For all reversible chains

{£ 7cH < KrM.

The author can obtain only the weaker result

minEHIi ' KcM.
i

The mathematical content of this paper is the proof of Proposition 9: we shall see that
Proposition 7 is a consequence. The proof is an interesting use of the "harmonic
mean formula" idea for estimating probabilities of rare events: see Aldous (1989a,b)
for different applications. The form of the bound in (9) may look like an artifact of
the proof, but example 12 below is rather convincing that (9) is the correct bound.
Calculations with 2-state chains show that the r1 term in Proposition 9 cannot be omit-
ted.
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Although these meeting time questions have (apparently) not been studied before in
this generality, a more complicated related question has been studied. Start a copy of
the Markov chain from every state, and let the chains run independently except that
chains coalesce when they meet. At some random time Tc all the chains have
coalesced into one chain. This process, where the underlying chain is simple random
walk on an infinite integer lattice, arises as a dual process to voter models - see Lig-
gett (1985) - and in finite settings has been studied by Donnelly and Welsh (1983),
Cox (1989). Write xc = ETC. Clearly xc 2 cM. It is easy to see that xc < K tmlog N,
where N is the number of states. In natural examples, such as random walk on the d-
dimensional torus, it turns out that c < KIM. Ted Cox (private communication) has
observed this is false in general (consider random walk on a "star" graph), but the
following (partly vague) conjecture is open.

(11) Conjecture. (a) For all reversible chains, cc ' K max Ei Hj.
(b) Under suitable symmetry conditions, xc < KMM.

We end this introduction with an instructive example.

(12) Example. Take state space {O, 1,... , N - 1; A) with transition rates

qij= 1 if j = i± I modulo N

qi,A - N-b,qaj=N-a-l,O<iN-1.
Here 0 < a < b < 2 are fixed, and it is easy to see the order of magnitude (as N -* oc)
of the various quantities:

x (A) - Na-b; n (i) z N-1 for i * A

1+ 1b
E,Ha = Nb; E,Hi - N 2 for i * A

X1 = Nb.

Now the first meeting time TM for two independent chains Xt, Yt can be regarded as
mn (T1, T2), where

T, = min {t: Xt = Yt =A)

T2 = min (t: Xt = Yt Al.
One can show

1+1b
ET1= N2b-a ET2 N 2

(2b-a)A (1+ 1 b)
and hence rM = N 2 Now looking at the bound in Proposition 9,
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-(1+-b)
(A)/EHA N 2b; I X (i)/ExHZ= N

i.A

(2b-a)A (1+ 1 b)
and the bound works out as = N 2 Thus although the qualitative behavior

of TM changes according to whether 2b - a or 1 + - b is larger, our bound tracks this
2

change correctly.

(13) Remark. Though stated for finite-state chains, the fact that the constants K do
not depend on the number of states implies the results extend to general state space.
In most cases such extensions are uninteresting since the bounds will be infinite. An
exception is that one can construct "Brownian motion" on certain compact fractal sets
in Rd as a limit of random walks on graphs: see e.g. Lindstrom (1990), Barlow and
Perkins (1988). If such a process hits single points a.s., then our results suggest that
two independent processes will meet a.s., and this is indeed true (Krebs (1990)).

2. Ingredients of the Proof.

The proof to be given in section 3 is a concoction of three rather diverse
ingredients, which will be set out in this section.

The first is the recurrent-potential formula for mean hitting times. In any finite
state Markov chain,

(14) ExHi = Ri/;i, where
00

(15) Ri = J(pii(s) - ti)ds.
0

This can be deduced from matrix expressions for EjHi in Kemeny and Snell (1960) in
discrete time, and then extended to continuous time: a simpler argument based on
renewal theory is in Aldous (1983). Though (15) does not assume reversibility, its use
for bounding mean hitting times is helped by the fact

(16) in a reversible chain, pii (t) decreases to ni as t e oc.

This follows from the spectral representation: Keilson (1979) Section 3.3.

The second set of ingredients are bounds from Aldous (1982) which relate the
parameter 'r of (3) to other quantities. As in section 1, K denotes an absolute con-

stant, different from line to line.



- 7 -

(17) Proposition. For reversible chains,

(a) 'r1 < Kmax, IEj IHEi - EkHjI
Lk j

(b) There exist stopping times Ui such that EiUi < Kj1 and dist (Xu. I XO = i) = I.

Note that (a) implies the much weaker result

(18) 'l < KmaxEiHj.

This enables us to deduce Proposition 7 from Proposition 9. For Proposition 9 cer-
tainly plies

,cM < Kmax (X1vv EsHi)

and then (18) gives Proposition (7). Next, consider independent copies of the chain
(Xt, Y) as a chain on state space I x I, and let r be defined as at (3) for this product
chain. It is easy to show, using the submultiplicative property of 2d(t) (see Aldous
(1982)), that ' < Kr1. So (17b) gives

(19) Corollary. For independent copies (Xt,Y) of a reversible chain, and for any
i,j, there exists a stopping time U such that

dist (Xu,Yu I Xo = i, Yo = j) = n x n;

E(UIXo=i,Yo=i) < Kr1.

The third ingredient is the starting idea of what the author calls "harmonic mean
formulas" for estimating first hitting times. Let (Zr) be a stationary process, and sup-
pose A is such that the sojourns of Z in A and in AC form successive non-trivial time
intervals. Write L for the Lebesgue measure of (O < s < t: Z, e A). Then

t

kl(>o) = fl-1 (A)ds

(intexpreting the integrand as 0 for Z. e Ac). So taking expectations,

P(Z, e A for some 0< s < t) = P(Lt >0)
t

(20) = E (LA; ZS e A) ds.

3. Proof of Proposition 9.

We first give the proof under the extra assumption

max ni < 2 min xi
i 1

(21)
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and will then show the general case can be reduced to this case by a "splitting states"
technique.

Let Xt, Yt be independent copies of the chain with the stationary initial distribution

rt. Applying (20) to the stationary process (Xt, Yt) and to A = ((k, k) : k e I) gives
t

P(XS = Ys for some 0 .s < t) = JE(L-1; XS= Ys)ds

t

where Lt = Jl(x. = y,)ds;
0

t

= JIE(L-1IZS=YS=i)-x;ds
oii

t

> (2N)-21JE(L- IX =Y =i)ds
io

where N is the number of states, since (21) implies ;i ' (2N)-1;
t

(22) > (2N)-21J{E(LtX, = Y= i)V-1ds
io

by Jensen's inequality.
So we consider, for 0 < s < t,

t

E(LtX = Y.= i) < 2JP(X8 = YsIXo = Yo = i)ds using reversibility
0
t

= 2J£ p, (s) ds by independence
0J

= 2 pij (s) pji (s) ij/ i ds by reversibility
oJ
t

. 4 pij(s)pji(s)ds by (21)
o0J

= 4 pii (2s) ds
0

2t

= 2 pii (s) ds
0

2t

= 2 (pii (s) - 7c) ds + 4t;
0
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< 2Rj + 4t;l by (16), for Ri as at (15);

. 4ni(En 1-i + t) by (14)

< 16N-1 max(E,l, t) since ;i < 2/N by (21).

Putting this together with (22), and putting t =,

P (Xs = Y. for some 0 < s ' 1) 2 (64N)-Y11:£(max (E,Hj,t1)Y

(23) . (128)-1tl/th = a, say,

where th= {nifmax (E. Hi, t-1) is the desired bound for Proposition 9, and where

we used ;i < 2/N again.

The inequality (23) applies to the case where XO, YO are independent with distribu-
tion i. Consider now the case where XO and YO are arbitrary. Using Corollary 19 we

n
can construct stopping times Sn = £ Um such that

m=l
um > 1j;

(Xs., Ys.) has distibution t x n and is independent of Fn-l =

a(Xt, Yt: t < Sn-1 + '1);

(24) E (Un I Fn_1) ' Kt1.
Then the meeting time TM satisfies

(25) TM ' S4 + 1l
where = min {n: Xs.+u = Ys,+u for some 0 < u c r1). By (24) and the optional

sampling theorem,

ES4 < Kc1 Et.

But by (23) and the independence property of our construction,

P(4 >m) < ( - a)M9 m 2 1,

and so E4 < aCl. Thus from (25) and (23),

ETM < tl+Ktl/a
C r1 +KTh
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(26) < Kth since th 2 Xr by definition.

This completes the proof under assumption (21). Consider now a reversible chain
(X) on I with arbitrary x: we shall show that (26) remains true with the same K. We
can choose integers M>. 1 such that (;i/Mi) satisfies (21). Define a chain

Zt = (Xt,Vt) on I* = ((i,m): i E I, 1 < m < Mi) with transition rates

(i,m) - (j,m') rate qij/Mj (i .j e I; 1 < m < MK, 1 < m' < Mj)
(i,m) e im) rate (ie I; 1 < m *6 m' <M,

where qij are the transition rates of X and y is arbitrary. Then (Xe) is a copy of (Xi).
And (Z) is reversible and has stationary distribution 7c"* (i, m) = xi;/Mi. So Z satisfies
(21) and hence (26). This is true for any value of y. As y -- co there is probability
-< 1 that, during a visit of Xt to i, Vt will visit all states 1 . m < Mi. It is easy to

deduce that, writing H' and Ty for hitting and meeting times for Z,

E*t*(H) e-EHi as y-oo.

Also, for all y,

E(TMIXO= i, YO =j) < E(TIXO= i,YO =j).
Thus we can pass to the limit in (26) and see that (26) holds for (X).



- 11 -

References

Aldous, D.J. (1982). Some inequalities for reversible Markov chains. J. London
Math. Soc. 25 564-576.

Aldous, D.J. (1983). Random walks on finite groups and rapidly mixing Markov
chains. In: Seminaire de Probabilites XVII (Springer Lecte Notes 986) pp243-
297.

Aldous, D.J. (1989a). Probability Approximations via the Poisson Clumping Heuristic.
Springer, New York.

Aldous, D.J. (1989b). The harmonic mean fomula for probabilities of unions: applica-
tions to sparse random graphs. Discrete Math. 76 167-176.

Asmussen, S. (1987). Applied Probability and Queues. Wiley, New York.

Barlow, M.T. and Perkins, E.A. (1988). Brownian motion on the Sierpinski gasket.
Probab. Th. Rel. Fields 79 543-624.

Cox, J.T. (1989). Coalescing random walks and voter model consensus times on the
torus in Zd. Ann. Probab. 17 1333-1366.

Donnelly, P. and Welsh, D. (1983). Finite particle systems and infection models.
Math. Proc. Cambridge Phil. Soc. 94 167-182.

Keilson, J. (1979). Markov Chain Models: Rarity and Exponentiality. Springer, New
York.

Kemeny, J.G. and Snell, J.L. (1960). Finite Markov Chains. Van Nostrand, New
York.

Krebs, W.B. (1990). Hitting time bounds for Brownian motion on a fractal. Technical
Report, Florida State Univ.

Liggett, T.M. (1985). Interacting Particle Systems. Springer, New York.

Lindstrom, T. (1990). Brownian motion on nested fractals. Memoirs of the Amer.
Math. Soc. 420.

Thorisson, H. (1986). On maximal and distributional coupling. Ann. Probab. 14 873-
876.


