On the convergence of a maximal correlation algorithm with alternating projections

By

Y. Ritov ${ }^{(1)}$
The Hebrew University of Jerusalem

Technical Report No. 117
October 1987
${ }^{(1)}$ Research Supported by ONR Grant N00014-80-C-0163

Department of Statistics
University of California
Berkeley, California

Abstract

In this paper a maximal correlation algorithm using alternating projections is investigated. This algorithm was suggested by Breiman and Friedman (1985) without a proof. We prove the convergence of a slightly modified version of the algorithm. The convergence is exponentially fast.

1. Introduction.

Let $S_{0}, S_{1}, \ldots, S_{k}$ be linear subspaces of a Hilbert space H. Breiman and Friedman (1985) considered the following problem:
(1.1) Find, if exist, $s_{i}^{*} \in \mathbf{S}_{\mathrm{i}}, \quad \mathrm{i}=0,1, \ldots, \mathrm{k}$ such that $\left\|\mathrm{s}_{0}^{*}\right\|=1$ and $\left\|\sum_{0}^{k} s_{i}^{*}\right\|=c_{0} \equiv \min \left\{\left\|\sum_{0}^{k} s_{i}\right\|: s_{i} \in S_{i}, i=0, \ldots, k,\left\|s_{0}\right\|=1\right\}$.
If s_{i}^{*} exist then s_{0}^{*} and $\sum_{1}^{k} s_{k}^{*}$ is the pair of elements belonging to S_{0} and $S_{1}+S_{2}+\cdots+S_{k}$ respectively with maximum "correlation'" (or, with minimal angle between them). Breiman and Friedman (1985) considered the situation where Y, $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{k}}$ are random variables defined on the same probability space and one looks for function $\mathrm{s}_{0}, \ldots, \mathrm{~s}_{\mathrm{k}}$ that maximize the correlation between $\mathrm{s}_{0}(\mathrm{Y})$ and $\Sigma \mathrm{s}_{\mathrm{i}}\left(\mathrm{X}_{\mathrm{i}}\right)$.

Breiman and Friedman (1985) suggested the following algorithm for an approximate solution of (1.1). Let P_{i} be the orthogonal projection on $\mathbf{S}_{\mathrm{i}}, \mathrm{i}=0, \ldots, \mathrm{k}$ and let

$$
\begin{equation*}
T=\left(I-P_{k}\right)\left(I-P_{k-1}\right) \cdots\left(I-P_{1}\right) \tag{1.2}
\end{equation*}
$$

Then define

$$
\begin{align*}
& s_{0}^{(n+1)}=-P_{0} \sum_{1}^{k} s_{i}^{(n)} /\left\|P_{0} \sum_{1}^{k} s_{i}^{(n)}\right\| \\
& \sum_{0}^{k} s_{i}^{(n+1)}=T^{m(n)}\left(s_{0}^{(n+1)}+\sum_{1}^{k} s_{i}^{(n)}\right) \tag{1.3}
\end{align*}
$$

where $m(n)$ is appropriate large number and $\Sigma_{i=0}^{k} s_{i}^{(1)}$ is arbitrary. It is well known that $\mathrm{T}^{\mathrm{m}} \rightarrow \mathrm{I}-\mathrm{P}$ where P is the projection on $\mathrm{S}=\mathrm{S}_{1}+\ldots+\mathrm{S}_{\mathrm{k}}$.

Breiman and Friedman (1985) suggested without a proof a 'single-loop" algorithm which is more symmetrical with respect to $\mathrm{P}_{0}, \ldots \mathrm{P}_{\mathrm{k}}$. It is defined essentially as the above algorithm but with $\mathrm{m}(\mathrm{n}) \equiv 1$. They report that this single loop algorithm has a better performance.

We prove in this paper that this single loop algorithm converges exponentially fast if $\mathrm{PP}_{0} \mathrm{P}$ is compact and A 2 below is satisfied. Then we prove that the algorithm actually converges to $\mathrm{s}_{0}^{*}, \ldots, \mathrm{~s}_{\mathrm{k}}^{*}$ if the algorithm is modified as follows.

Let

$$
\begin{equation*}
T=\left(I-P_{1}\right)\left(I-P_{2}\right) \cdots\left(I-P_{k}\right)\left(I-P_{k-1}\right) \cdots\left(I-P_{1}\right) \tag{1.4}
\end{equation*}
$$

and define

$$
u_{n}=\sum_{j=1}^{k} s_{j}^{(n)}
$$

Then replace (1.3) by

$$
u_{n+1}+s_{\delta^{(n+1)}}=\left[\left(1-\alpha_{n}\right) I+\alpha_{n} T\right]\left(u_{n}+s_{0}^{(n+1)}\right)
$$

where $\alpha_{i} \in(0,1)$ is a predeterminant sequence of positive numbers (their actual values has no influence on the theoretical result).

2. Preliminaries.

Let $\mathrm{Q}=\mathrm{PP}_{0} \mathrm{P}: \mathbf{S} \rightarrow \mathrm{S}$. We assume
$\mathrm{A} 1: \mathrm{Q}$ is a compact operator (e.g. $\mathrm{P}_{0} \mathrm{~S} \rightarrow \mathrm{~S}_{0}$ compact) and $\|\mathrm{Q}\|>0$
A2: $\left.\quad \inf \left\{\left\|\sum_{j=1}^{k} s_{j}\right\|: s_{j} \in \mathbf{S}_{j}, j=i+1, \ldots, k, s_{i} \in S_{i} \cap\left(S_{i+1}+\cdots+S_{k}\right)\right\}^{\prime},\left\|s_{i}\right\|=1\right\}>0$, $\mathrm{i}=1,2, \ldots, \mathrm{k}-1$.

Let $\sigma_{0} \geq \sigma_{1} \geq \cdots$ be the eigenvalues of Q (including multiplicities) and let σ (Q) denotes the spectrum of Q . For any operator $\mathrm{H}, \mathbf{N}(\mathrm{H})$ denotes its null space.

Proposition 1.

i) $\quad \mathrm{s}_{0}^{*}=-\mathrm{P}_{0} \Sigma_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{s}_{\mathrm{i}}^{*} /\left\|\mathrm{P}_{0} \Sigma_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{s}_{\mathrm{i}}^{*}\right\|, \quad \quad \Sigma_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{s}_{\mathrm{i}}^{*}=-\mathrm{P} \mathrm{s}_{0}^{*}$ and

$$
\mathrm{Q} \Sigma_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{~s}_{\mathrm{i}}^{*}=\left\|\mathrm{P}_{0} \Sigma_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{~s}_{\mathrm{i}}^{*}\right\| \sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{~s}_{\mathrm{i}}^{*}
$$

ii) If $\quad u \in S_{1}+\cdots+S_{k}, \quad Q u=\sigma u \quad$ and $\quad\left\|P_{0} u\right\|=\sigma$. Then $\left\|u-P_{0} u /\right\| P_{0} u\| \|^{2}=1-\sigma . \quad$ In particular, $\quad Q \Sigma_{i=1}^{k} s_{i}^{*}=\sigma_{0} \Sigma_{i=1}^{k} s_{i}^{*} \quad$ and $c_{0}=1-\sigma_{0}$.
iii) $\quad(I-T)(I-P)=0 \quad$ and $\quad u_{i+1}=\left\{\left(1-\alpha_{i}\right) I+\alpha_{i} T+\alpha_{i} \lambda_{i}(I-T) Q\right\} u_{i} \quad i=1,2, \ldots$ where $\lambda_{i}=\left\|P_{0} u_{i}\right\|^{-1}, i=1,2, \ldots$

Proof.

i) Consider the problems:
(a) minimize $\left\|\mathrm{s}_{0}+\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{s}_{\mathrm{i}}^{*}\right\|$ subject to $\mathrm{s}_{0} \in \mathrm{~S}_{0}$ and $\left\|\mathrm{s}_{0}\right\|=1$
(b) minimize $\left\|\mathrm{s}_{0}^{*}+\mathrm{u}\right\|$ subject to $\mathrm{u} \in \mathbf{S}$

We get immediately that $\mathrm{s}_{0}^{*}=-\mathrm{P}_{0} \Sigma_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{s}_{\mathrm{i}}^{*} /\left\|\mathrm{P}_{0} \Sigma_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{s}_{\mathrm{i}}^{*}\right\|$ and
(c) $\quad \Sigma_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{s}_{\mathrm{i}}^{*}=-\mathrm{Ps}_{0}^{*}$

$$
=P_{0} \Sigma_{i=1}^{k} s_{i}^{*} /\left\|P_{0} \Sigma_{i=1}^{k} s_{i}^{*}\right\|
$$

$$
=\mathrm{Q} \Sigma_{i=1}^{\mathrm{k}} \mathrm{~s}_{\mathrm{i}}^{*} /\left\|\mathrm{P}_{0} \Sigma_{\mathrm{i}=1}^{\mathbf{k}} \mathrm{s}_{\mathrm{i}}^{*}\right\|
$$

ii) Let u be any eigenvector of $Q, Q u=\sigma u$, normalized such that $\left\|P_{0} u\right\|=\sigma$. Then

$$
\begin{aligned}
<u, u\rangle & =\left\langle u, \sigma^{-1} P P_{0} u\right\rangle \\
& \left.=\sigma^{-1}<u, P_{0} u\right\rangle \\
& \left.=\sigma^{-1}<P_{0} u, P_{0} u\right\rangle=\sigma .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
c_{0} & \geq\left\|u-P_{0} u /\right\| P_{0} u\| \|^{2} \\
& =\|u\|^{2}-2 \sigma^{-1}<u, P_{0} u>+1 \\
& =1-\sigma .
\end{aligned}
$$

Since $\Sigma_{i=1}^{k} s_{i}^{*}$ satisfies (c) we conclude that it corresponds to $\sigma_{0}, c_{0}=1-\sigma_{0}$ and $\|u\|^{2}=\sigma_{0}$.
iii) The first claim follows since $\left(I-P_{i}\right)(I-P)=I-P$. Hence

$$
\begin{aligned}
u_{i+1} & =\left(1-\alpha_{i}\right) u_{i}+\alpha_{i} T u_{i}+\alpha_{i} \lambda_{i}(\mathrm{I}-\mathrm{T}) \mathrm{P}_{0} u_{i} \\
& =\left(1-\alpha_{\mathrm{i}}\right) \mathrm{u}_{\mathrm{i}}+\alpha_{\mathrm{i}} \lambda_{\mathrm{i}}(\mathrm{I}-\mathrm{T}) \mathrm{PP}_{0} \mathrm{Pu}_{\mathrm{i}} .
\end{aligned}
$$

3. Main result.

In this section we prove the following theorem.
Theorem: Suppose A1 and A2 hold. Let $u_{i} i=2,3, \ldots$ be defined recursively as in Proposition 1(iii). Let $c_{i}=\left\|u_{i}-P_{0} u_{i} /\right\| P_{0} u_{i}\| \|^{2}$.
i) Suppose $0<\alpha^{*} \leq \alpha_{\mathrm{i}} \leq 1$ and that T is given either by (1.2) or by (1.4). Then c_{1}, c_{2}, \ldots converges exponentially fast and $\sigma_{\infty} \equiv 1-\lim _{i \rightarrow \infty} c_{i} \in \sigma(Q) . u_{1}, u_{2}, \ldots$ converges exponentially fast and $\lim _{\mathrm{i} \rightarrow \infty} \mathrm{u}_{\mathrm{i}} \in \mathbf{N}\left(\sigma_{\infty} \mathrm{I}-\mathrm{Q}\right)$. Both rates have uniform bounds which depend only on σ_{∞}. In particular the convergence is uniform on $\left\{\mathrm{u}_{1}:\left\|\mathrm{u}_{1}-\mathrm{P}_{0} \mathrm{u}_{1} /\right\| \mathrm{P}_{0} \mathrm{u}_{1}\| \|^{2} \leq \bar{c}<1\right\}$.
ii) If further $0<\alpha^{*} \leq \alpha_{i}<1$ and T is given by (1.4) then $\left\{u_{1}: u_{i} \rightarrow N\left(\sigma_{0} I-Q\right)\right\}$ is an open everywhere dense set.
The theorem will be proved by the following lemmas. See in particular Lemmas 3(ii), 4 and 7.

We assume for simplicity that $\left\|P_{0} u_{1}\right\|>1 / 2\left\|u_{1}\right\|^{2}$, which can always be achieved by normalization except in the trivial case where $u_{1}=u_{2}=\cdots$. Then $\left\|u_{1}-P_{0} u_{1} /\right\| P_{0} u_{1}\| \|^{2}=\left\|u_{1}\right\|^{2}-2\left\|P_{0} u_{1}\right\|+1<1$. Note that this is the case in particular if $\mathrm{u}_{1}=(\mathrm{I}-\mathrm{T}) \mathrm{s}_{0} \neq 0$ for arbitrary $\mathrm{s}_{0} \in \mathrm{~S}_{0},\left\|\mathrm{~s}_{0}\right\|=1$.

In the following K_{1}, K_{2} and $\mathbf{C}_{1}, \mathbf{C}_{2}, \ldots$ are constants which do not depend on the particular sequence u_{1}, u_{2}, \ldots or on i as long as $c_{i}<\bar{c}<1$. In particular they hold uniformlly on $\left\{u_{1}: c_{1} \leq \bar{c}<1\right\}$. They may depend on \bar{c}.

In the remaining, all operators except $\mathrm{P}, \mathrm{P}_{\mathrm{i}}: \mathrm{H} \rightarrow \mathrm{H}$ are considered as operating from \mathbf{S} to \mathbf{S}.

Lemma 1. $\|\mathrm{T}\|<1$.
Proof. The lemma will be proved by induction on the number of subspaces $\mathbf{S}_{1}, \ldots, \mathbf{S}_{\mathrm{k}}$. For $\mathrm{k}=1$ the result is trivial $(\|\mathrm{T}\|=0)$. Suppose the lemma holds for $\mathrm{k}-1$ subspaces. Assume T is given by (1.4). Let $\mathrm{T}^{\prime}=\left(\mathrm{I}-\mathrm{P}_{2}\right)\left(\mathrm{I}-\mathrm{P}_{3}\right) \cdots\left(\mathrm{I}-\mathrm{P}_{\mathrm{K}}\right)\left(\mathrm{I}-\mathrm{P}_{\mathrm{K}-1}\right) \cdots\left(\mathrm{I}-\mathrm{P}_{2}\right)$, thus $\quad \mathrm{T}=\left(\mathrm{I}-\mathrm{P}_{1}\right) \mathrm{T}^{\prime}$ ($\mathrm{I}-\mathrm{P}_{1}$). We prove now that $\|\mathrm{T}\|<1$. Assume otherwise, that

$$
\begin{equation*}
\|\mathrm{T}\|=1 \tag{3.1}
\end{equation*}
$$

Since T is self adjoint operator, there are w_{1}, w_{2}, \ldots such that $T w_{i}=\beta_{i} w_{i},\left\|w_{i}\right\|=1$ $i=1,2, \ldots \quad$ and $\quad \beta_{i} \rightarrow 1$. Since $\left\|\left(I-P_{i}\right)\right\| \leq 1, \quad i=1,2, \ldots, k \quad$ we have: $\left\|\left(I-P_{1}\right) w_{i}\right\| \geq\left\|\left(I-P_{1}\right) T^{\prime}\left(I-P_{1}\right) w_{i}\right\|=\beta_{i}$. Therefore:

$$
\begin{equation*}
\left\|P_{1} w_{i}\right\|^{2}=\left\|w_{i}\right\|^{2}-\left\|\left(I-P_{1}\right) w_{i}\right\|^{2} \leq 1-\beta_{i}^{2} \quad i=1,2, \ldots \tag{3.2}
\end{equation*}
$$

In a similar way; $\left\|w_{i}\right\| \geq\left\|T^{\prime}\left(I-P_{1}\right) w_{i}\right\| \geq\left\|\left(I-P_{1}\right) T^{\prime}\left(I-P_{1}\right) w_{i}\right\|=\beta_{i}\left\|w_{i}\right\|$ and

$$
\begin{align*}
\left\|\mathrm{P}_{1} \mathrm{~T}^{\prime}\left(\mathrm{I}-\mathrm{P}_{1}\right) \mathrm{w}_{\mathrm{i}}\right\|^{2} & =\left\|\mathrm{T}^{\prime}\left(\mathrm{I}-\mathrm{P}_{1}\right) \mathrm{w}_{\mathrm{i}}\right\|^{2}-\left\|\left(\mathrm{I}-\mathrm{P}_{1}\right) \mathrm{T}^{\prime}\left(\mathrm{I}-\mathrm{P}_{1}\right) \mathrm{w}_{\mathrm{i}}\right\|^{2} \tag{3.3}\\
& \leq 1-\beta_{\mathrm{i}}^{2}, \quad \mathrm{i}=1,2, \ldots
\end{align*}
$$

Now, $\left(I-P_{1}\right) T^{\prime}\left(I-P_{1}\right) w_{i}=\beta_{i} w_{i}$ hence

$$
\begin{equation*}
\left(I-T^{\prime}\right) w_{i}=\left(1-\beta_{i}\right) w_{i}-P_{1} T^{\prime}\left(I-P_{1}\right) w_{i}-T^{\prime} P_{1} w_{i} \quad i=1,2, \ldots \tag{3.4}
\end{equation*}
$$

Together (3.2) - (3.4) imply that

$$
\begin{equation*}
\left\|\left(I-T^{\prime}\right) w_{i}\right\| \leq 1-\beta_{i}+2\left(1-\beta_{i}^{2}\right)^{1 / 2} \rightarrow 0 \tag{3.5}
\end{equation*}
$$

Let P^{\prime} be the (orthogonal) projection on $\mathrm{S}_{2}+\cdots+\mathrm{S}_{\mathrm{k}}$ operator. By proposition 1(iii), $\left\|\left(\mathrm{I}-\mathrm{T}^{\prime}\right) \mathrm{w}_{\mathrm{i}}\right\|=\left\|\left(\mathrm{I}-\mathrm{T}^{\prime}\right) \mathrm{P}^{\prime} \mathrm{w}_{\mathrm{i}}\right\| \mathrm{i}=1,2, \ldots$. Therefore (3.5) and the induction hypotheses imply that

$$
\begin{equation*}
\lim _{i \rightarrow \infty}\left\|P^{\prime} w_{i}\right\|=0 \tag{3.6}
\end{equation*}
$$

Write $\quad w_{i}=w_{i}^{\prime}+w_{i}^{\prime \prime} \quad$ where $\quad w_{i}^{\prime} \in \mathbf{S}_{1} \cap\left\{\mathbf{S}_{1} \cap\left(\mathbf{S}_{2}+\cdots+\mathbf{S}_{\mathrm{k}}\right)\right\}^{\perp} \quad$ and $\mathrm{w}_{\mathrm{i}}{ }^{\prime \prime} \in \mathbf{S}_{2}+\cdots+\mathbf{S}_{\mathrm{k}}$. we conclude from (3.2) and (3.6) that

$$
\begin{align*}
& \mathrm{w}_{\mathrm{i}}^{\prime}+\mathrm{P}_{1} \mathrm{w}_{\mathrm{i}}^{\prime \prime} \rightarrow 0 \text { and } \mathrm{P}^{\prime} \mathrm{w}_{\mathrm{i}}^{\prime}+\mathrm{w}_{\mathrm{i}}^{\prime \prime} \rightarrow 0, \quad \text { hence } \tag{3.7}\\
& \mathrm{P}_{1} \mathrm{P}^{\prime} \mathrm{P}_{1} \mathrm{w}_{\mathrm{i}}^{\prime}-\mathrm{w}_{\mathrm{i}}^{\prime} \rightarrow 0
\end{align*}
$$

Clearly $\quad w_{i}^{\prime} \nrightarrow 0 . \quad$ (Otherwise $\quad \lim w_{i}^{\prime \prime}=-\lim P_{1} w_{i}^{\prime}=0 \quad$ contradicting $\left\|w_{i}^{\prime}+w_{i}^{\prime \prime}\right\|=1$). Now, $\mathrm{P}_{1} \mathrm{P}^{\prime} \mathrm{P}_{1}$ is a self adjoint and by (3.7) its spectral radius is 1 . This contradicts assumption A2 by Proposition 1. Hence (3.1) was contradicted. Now, if T is given by (1.2) the same argument applies since $\|\mathrm{Tw}\|^{2}=w^{T} \mathrm{~T}^{\mathrm{T}} \mathrm{Tw}$.

Lemma 2.

i) $\mathrm{c}_{1} \geq \mathrm{c}_{2} \geq \cdots$
ii) $\left\|u_{i}-u_{i+1}\right\|^{2} \leq(2 k-1) \alpha_{i}\left(c_{i}-c_{i+1}\right) \quad i=1,2, \ldots$

Proof.

i) Fix any $i \geq 1$ let $v=P_{0} u_{i} /\left\|P_{0} u_{i}\right\|$ and define $w_{0}, w_{1} \cdots$, by:

$$
\begin{array}{ll}
w_{0}-v=u_{i}-v, \tag{3.8}\\
w_{j+1}-v=\left(I-P_{j}\right)\left(w_{j}-v\right) & j=1, \ldots, k-1, \\
w_{j+1}-v=I-P_{2 k-1-j}\left(w_{j}-v\right) & j=k, \ldots, 2 k-2 .
\end{array}
$$

Then

$$
\begin{equation*}
u_{i+1}=\left(1-\alpha_{i}\right) u_{i}+\alpha_{i} w_{2 k-1} \tag{3.9}
\end{equation*}
$$

Now,

$$
\begin{equation*}
\left\|w_{j+1}-v\right\|^{2}=\left\|w_{j}-v\right\|^{2}-\left\|w_{j+1}-w_{j}\right\|^{2} \quad j=0, \ldots, 2 k-2 . \tag{3.10}
\end{equation*}
$$

Hence:

$$
\begin{equation*}
\left\|w_{2 k-1}-v\right\|^{2}=\left\|u_{i}-v\right\|^{2}-\Sigma_{j=0}^{2 k-2}\left\|w_{j+1}-w_{j}\right\|^{2} \tag{3.11}
\end{equation*}
$$

A convexity argument, (3.9) and (3.11) together imply that

$$
\begin{align*}
\left\|u_{i+1}-v\right\|^{2} & \leq\left(1-\alpha_{i}\right)\left\|u_{i}-v\right\|^{2}+\alpha_{i}\left\|w_{2 k-1}-v\right\|^{2} \tag{3.12}\\
& =\left\|u_{i}-v\right\|^{2}-\alpha_{i} \Sigma_{j=0}^{2 k-1}\left\|w_{j+1}-w_{j}\right\|^{2} .
\end{align*}
$$

Therefore

$$
\begin{align*}
c_{i+1} & =\left\|u_{i+1}-\right\| P_{0} u_{i+1}\left\|^{-1} P_{0} u_{i+1}\right\|^{2} \tag{3.13}\\
& \leq\left\|u_{i+1}-v\right\|^{2} \\
& \leq c_{i}-\alpha_{i} \sum_{j=0}^{2 k-1}\left\|w_{j+1}-w_{j}\right\|^{2} .
\end{align*}
$$

Which proves part (i).
ii) The second part follows (3.13) and the Schwartz inequality since

$$
\begin{align*}
\left\|u_{i+1}-u_{i}\right\|^{2} & =\alpha_{i}^{2}\left\|w_{2 k-1}-u_{i}\right\|^{2} \tag{3.14}\\
& \leq \alpha_{i}^{2}\left(\sum_{j=0}^{2 k-1}\left\|w_{j+1}-w_{j}\right\|\right)^{2} \\
& \leq \alpha_{i}^{2}(2 k-1) \sum_{j=0}^{2 k-1}\left\|w_{j+1}-w_{j}\right\|^{2} \\
& \leq(2 k-1) \alpha_{i}\left(c_{i}-c_{i+1}\right) .
\end{align*}
$$

Establishing Lemma 2, we are ready to prove a stronger convergence result.

Lemma 3.

i) $\quad\left\|u_{i}-\lambda_{i} Q u_{i}\right\|^{2} \leq(2 k-1)(1-\|T\|)^{-2} \alpha_{i}^{-1}\left(c_{i}-c_{i+1}\right) \quad i=1,2, \ldots \quad$ where $\lambda_{i}=\left\|P_{0} u_{i}\right\|^{-1}$.
ii) $\lim _{\mathrm{i} \rightarrow \infty}\left(1-\mathrm{c}_{\mathrm{i}}\right) \equiv \sigma_{\infty} \in \sigma(\mathrm{Q})$
iii) $\left|\lambda_{i}^{-1}-\sigma_{\infty}\right| \leq K_{1}\left(c_{i}-1+\sigma_{\infty}\right)^{1 / 2} \quad$ i $=1,2, \ldots$ where $\mathrm{K}_{1}=1+\left\{(2 \mathrm{k}-1) \alpha_{\mathrm{i}}^{*}\right\}^{1 / 2}(\mathrm{I}-\|\mathrm{T}\|)^{-1}$.
iv) $\left\|u_{i}\right\| \geq 1-c_{i}^{1 / 2}, \quad i=1,2, \ldots$.
v) $2 / 5 \leq \lambda_{i} \leq\left(1-c_{i}^{1 / 2}\right)^{-1}, \quad i=1,2, \ldots$

Proof.

By proposition (iii) $u_{i+1}-u_{i}=\alpha_{i}(I-T)\left(\lambda_{i} Q u_{i}-u_{i}\right), i=1,2, \ldots$, and part (i) follows Lemmas 1 and 2(ii). Write

$$
\begin{align*}
u_{i} & =\lambda_{i} Q u_{i}+w_{i} \tag{3.15}\\
& =\lambda_{i} P P_{0} u_{i}+w_{i} \quad i=1,2, \ldots
\end{align*}
$$

where $\left\|w_{i}\right\|^{2} \leq \frac{(2 k-1)}{(1-\|T\|)^{2} \alpha_{i}}\left(c_{i}-c_{i+1}\right)$. This proves part (i). Now

$$
\begin{align*}
1 & =<\lambda_{i} P_{0} u_{i}, \lambda_{i} P_{0} u_{i}> \tag{3.16}\\
& =\lambda_{i}<u_{i}, \lambda_{i} P_{0} u_{i}> \\
& =\lambda_{i}<u_{i}, \lambda_{i} P P_{0} u_{i}> \\
& =\lambda_{i}<u_{i}, u_{i}-w_{i}>\quad \text { by (3.15) } \\
& =\lambda_{i}\left\|u_{i}\right\|^{2}-\lambda_{i}<u_{i}, w_{i}>, \quad i=1,2, \ldots
\end{align*}
$$

Therefore

$$
\begin{align*}
c_{i} & =\left\|u_{i}-\lambda_{i} P_{0} u_{i}\right\|^{2} \tag{3.17}\\
& =\left\|u_{i}\right\|^{2}-2<u_{i}, \lambda_{i} P_{0} u_{i}>+1 \\
& =1-\lambda_{i}^{-1}-<u_{i}, w_{i}>\quad i=1,2, \ldots .
\end{align*}
$$

Since $\left\|u_{i}\right\| \leq\left\|u_{i}-\lambda_{i} P_{0} u_{i}\right\|+1 \leq 2$, (3.15) and (3.17) together imply that

$$
\begin{equation*}
\left|c_{i}-1-\lambda_{i}^{-1}\right| \leq 2\left\{\frac{2 k-1}{(1-\|T\|)^{2} \alpha_{i}}\left(c_{i}-c_{i+1}\right)\right\}^{1 / 2}, \quad i=1,2, \ldots \tag{3.18}
\end{equation*}
$$

Therefore $\lambda_{\infty}^{-1}=\lim _{i \rightarrow \infty} \lambda_{i}^{-1}=1-\lim _{i \rightarrow \infty} c_{i}$. Now, Q is compact and $\left\|u_{i}\right\|<2$ $\mathrm{i}=1,2, \ldots$, hence the RHS of (3.15) has a converging subsequence, $i(1), i(2), \ldots$, say. But (3.15) implies that $u_{i(1)}, u_{i(2)}$,... converges to u, say, such that $u-\lambda_{\infty} Q u=0$. This proves part (ii). To prove the third part conclude from (3.18) and the monotonicity of $\left\{c_{i}\right\}$ that:

$$
\begin{align*}
\left|\lambda_{i}^{-1}-\sigma_{\infty}\right| & \leq\left|c_{i}-1+\lambda_{i}^{-1}\right|+\left|1-c_{i}-\sigma_{\infty}\right| \tag{3.19}\\
& \leq 2\left\{\frac{2 k-1}{(1-\|T\|)^{2} \alpha_{i}}\left(c_{i}-1+\sigma_{\infty}\right)\right\}^{1 / 2}+c_{i}-1+\sigma_{\infty}
\end{align*}
$$

Part (iv) is proved by $\left\|u_{i}\right\| \geq\left\|\lambda_{i} P_{0} u_{i}\right\|-\left\|u_{i}-\lambda_{i} P_{0} u_{i}\right\| \equiv 1-c_{i}^{1 / 2}$.
Finally, $c_{i} \equiv\left\|u_{i}-\right\| P_{0} u_{i}\left\|^{-1} P_{0} u_{i}\right\|^{2}=\left\|u_{i}\right\|^{2}-2\left\|P_{0} u_{i}\right\|+1$, hence

$$
\begin{equation*}
\lambda_{i} \equiv\left\|P_{0} u_{i}\right\|^{1}=2\left(1+\left\|u_{i}\right\|^{2}-c_{i}\right)^{-1}, \quad i=1,2, \ldots \tag{3.20}
\end{equation*}
$$

Since $0 \leq c_{i} \leq 1$ and $\left(1-c_{i}^{1 / 2}\right)^{-2} \leq\left\|u_{i}\right\|^{2} \leq 4$ the proof of the lemma is completed by (3.20).

We need the following lemma to complete the proof of the first part of the Theorem.

Lemma 4.

$u_{\infty}=\lim _{i \rightarrow \infty} u_{i}$ exists and there are $\varepsilon>0, K_{2}$ and $b \in(0,1)$ which depend on u_{1} only through σ_{∞}, such that $\mathrm{c}_{\mathrm{m}}-1+\sigma_{\infty}<\varepsilon$ implies:
i) $\mathrm{c}_{\mathrm{i}}-1+\sigma_{\infty} \leq\left(\mathrm{c}_{\mathrm{m}}-1+\sigma_{\infty}\right) \mathrm{b}^{\mathrm{i}-\mathrm{m}}, \quad \mathrm{i} \geq \mathrm{m}$
ii) $\left.\left|\lambda_{i}-\sigma_{\infty}\right| \leq K_{2}\left(c_{m}-1+\sigma_{\infty}\right)\right)^{i-m}, \quad$ i $\geq m$
iii) $\left\|u_{i}-u_{\infty}\right\| \leq K_{2}\left(c_{m}-1+\sigma_{\infty}\right) b^{i-m}, \quad i \geq m$.

Proof. Let $\xi_{\mathrm{j}}, \mathrm{j}=0,1,2, \ldots$ satisfy $\mathrm{Q} \xi_{\mathrm{j}}=\sigma_{\mathrm{j}} \xi_{\mathrm{j}}, \quad<\xi_{\mathrm{j}}, \xi_{l}>=\delta_{\mathrm{j} l}$. Let $\mathrm{J}=\left\{\mathrm{j}: \sigma_{\mathrm{j}}=\sigma_{\infty}\right\}$ and $\mathrm{J}_{\mathrm{c}}=\left\{\mathrm{j}: \sigma_{\mathrm{j}} \neq \sigma_{\infty}\right\}$. Let $\mathrm{v}_{\mathrm{j}}=\mathrm{P}_{0} \xi_{\mathrm{j}}$. Note that $\mathrm{P} v_{\mathrm{j}}=\sigma_{\mathrm{j}} \xi_{\mathrm{j}},\left\langle\mathrm{v}_{\mathrm{j}}, \xi_{l}\right\rangle=0$ for $\mathrm{j} \neq l$ and $\left\langle v_{\mathrm{j}}, v_{l}\right\rangle=\left\langle v_{\mathrm{j}}, \mathrm{P}_{0} \xi_{l}\right\rangle=\left\langle v_{\mathrm{j}}, \xi_{l}\right\rangle=\left\langle P v_{\mathrm{j}}, \xi_{l}\right\rangle=\sigma_{\mathrm{j}} \delta_{\mathrm{j} l}$. Since $\sigma_{\infty} \geq 1-c_{i}>0$ and Q is compact operator there is $\gamma>0$ such that $2 \gamma \leq \min _{j \in J_{c}}\left|\sigma_{j}-\sigma_{\infty}\right|$. Suppose ε is small enough such that (3.21) and (3.25) below are satisfied when $c_{i}-1+\sigma_{\infty}<\varepsilon$.

First note that if ε is small enough then for $\mathrm{i} \geq \mathrm{m}$:

$$
\begin{align*}
\min _{j \in J_{c}}\left|1-\lambda_{i} \sigma_{j}\right| & =\min _{j \in J_{c}} \lambda_{i}\left|\lambda_{i}^{-1}-\sigma_{j}\right| \tag{3.21}\\
& \geq \lambda_{i}\left(2 \gamma-\left|\lambda_{i}^{-1}-\sigma_{\infty}\right|\right) \\
& \geq \frac{2 \gamma-K_{1}\left(c_{i}-1+\sigma_{\infty}\right)^{1 / 2}}{\sigma_{\infty}+K_{1}\left(c_{i}-1+\sigma_{\infty}\right)^{1 / 2}} \quad \text { by Lemma 3(iii) } \\
& \geq \gamma .
\end{align*}
$$

Now write $u_{i}=\Sigma \alpha_{i j} \xi_{j}, i \geq m$. Then

$$
\begin{align*}
\left\|u_{i}-\lambda_{i} Q u_{i}\right\|^{2} & =\left\|\sum_{j=0}^{\infty} \alpha_{i j}\left(1-\lambda_{i} \sigma_{j}\right) \xi_{j}\right\|^{2} \tag{3.22}\\
& =\sum_{j=0}^{\infty} \alpha_{i j}^{2}\left(1-\lambda_{i} \sigma_{j}^{2} \quad i \geq m\right.
\end{align*}
$$

Therefore, by Lemma 3(i)

$$
\begin{equation*}
\sum_{j=0}^{\infty} \alpha_{i j}^{2}\left(1-\lambda_{i} \sigma_{j}\right)^{2} \leq C_{1}\left(c_{i}-c_{i+1}\right) \quad i \geq m \tag{3.23}
\end{equation*}
$$

where $\mathbf{C}_{1}=(2 \mathrm{k}-1)(1-\|\mathrm{T}\|)^{-2} \alpha^{*-1}$. Combine (3.21) and (3.23) and get

$$
\begin{equation*}
\sum_{j \in J_{c}} \alpha_{i j}^{2} \leq \frac{C_{1}}{\gamma}\left(c_{i}-c_{i+1}\right) \quad i \geq m \tag{3.24}
\end{equation*}
$$

Lemma 3(iv) and (3.24) imply that

$$
\begin{align*}
\sum_{j \in J} \alpha_{i j}^{2} & =\left\|u_{i}\right\|^{2}-\sum_{j \in J_{c}} \alpha_{i j}^{2} \tag{3.25}\\
& \geq 1-c_{i}^{1 / 2}-\frac{C_{1}}{\gamma}\left(c_{i}-c_{i+1}\right) \\
& \geq 1 / 2\left(1-c_{m}^{1 / 2}\right)
\end{align*}
$$

We conclude from (3.23) and (3.25) that

$$
\begin{equation*}
\left(1-\lambda_{i} \sigma_{\infty}\right)^{2} \leq \frac{2 C_{1}}{1-c_{m}^{1 / 2}} \quad i \geq m \tag{3.26}
\end{equation*}
$$

Our last preliminary result is:

$$
\begin{align*}
1 & =\lambda_{i}^{2}\left\|P_{0} u_{i}\right\|^{2} \tag{3.27}\\
& =\lambda_{i}^{2}\left\|\sum_{j=0}^{\infty} \alpha_{i j} v_{j}\right\|^{2} \\
& =\lambda_{i}^{2} \sum_{j=0}^{\infty} \alpha_{i j}^{2} \sigma_{j} \quad i \geq m .
\end{align*}
$$

Now,

$$
\begin{align*}
c_{i} & =\left\|u_{i}-\lambda_{i} P_{0} u_{i}\right\|^{2} \tag{3.28}\\
& =\left\|\Sigma_{j=0}^{\infty} \alpha_{i j}\left(\xi_{j}-\lambda_{i} v_{j}\right)\right\|^{2} \\
& =\sum_{j=0}^{\infty} \alpha_{i j}^{2}\left(1-2 \lambda_{i}<\xi_{j}, v_{j}>+\lambda_{i}^{2}\left\|v_{j}\right\|^{2}\right) \\
& =\Sigma_{j=0}^{\infty} \alpha_{i j}^{2}\left(1-2 \lambda_{i} \sigma_{j}+\lambda_{i}^{2} \sigma_{j}\right) \\
& =\sum_{j=0}^{\infty} \alpha_{i j}^{2}\left(1-\lambda_{i} \sigma_{j}\right)^{2}+\lambda_{i}^{2} \sum_{j=0}^{\infty} \alpha_{i j}^{2} \sigma_{j}-\lambda_{i}^{2} \Sigma_{j=0}^{\infty} \alpha_{i j}^{2} \sigma_{j}^{2} \quad i \geq m
\end{align*}
$$

The last term in the RHS of (3.28) can be rewritten as:

$$
\begin{equation*}
\lambda_{i}^{2} \sum_{j=0}^{\infty} \alpha_{i j}^{2} \sigma_{j}^{2}=\sigma_{\infty} \sum_{j \in J} \alpha_{i j}^{2} \lambda_{i}^{2} \sigma_{j}+\sum_{j \in J_{c}} \alpha_{i j}^{2} \lambda_{i}^{2} \sigma_{j}^{2} \quad i \geq m \tag{3.29}
\end{equation*}
$$

where we have used (3.27). Combine now (3.24), (3.26), (3.27) and (3.29) and get

$$
\begin{align*}
c_{i} & =1-\sigma_{\infty}+\sigma_{\infty} \sum_{j \in J_{c}} \alpha_{i j}^{2} \lambda_{i}^{2}\left(\sigma_{j}-\sigma_{j}^{2}\right)+\sum_{j=0}^{\infty} \alpha_{i j}^{2}\left(1-\lambda_{i} \sigma_{j}\right)^{2} \tag{3.30}\\
& \leq 1-\sigma_{\infty}+1 / 2 \sigma_{\infty} \frac{C_{1}}{\gamma} \lambda_{i}^{2}\left(c_{i}-c_{i+1}\right)+C_{1}\left(c_{i}-c_{i+1}\right) \quad i \geq m .
\end{align*}
$$

Lemma 3(v) and (3.30) imply that:

$$
\begin{equation*}
c_{i}-1+\sigma_{\infty} \leq \mathbf{C}_{1}\left(1+1 / 2 \sigma_{\infty} \frac{\lambda_{i}^{2}}{\gamma}\right)\left(c_{i}-c_{i+1}\right) \leq C_{2}\left(c_{i}-c_{i+1}\right) \quad i \geq m \tag{3.31}
\end{equation*}
$$

for some $\mathbf{C}_{2}>0$.
Hence (note that $\mathrm{c}_{\mathrm{i}+1} \geq 1-\sigma_{\infty}$):

$$
\begin{align*}
c_{i+1}-1+\sigma_{\infty} & \leq \frac{\mathbf{C}_{2}-1}{\mathbf{C}_{2}}\left(c_{i}-1+\sigma_{\infty}\right) \tag{3.32}\\
& \leq\left(c_{m}-1+\sigma_{\infty}\right)\left(\frac{\mathbf{C}_{2}-1}{\mathbf{C}_{2}}\right)^{i-m} \quad i \geq m
\end{align*}
$$

which proves Part (i). Part (ii) follows Part (i) and (3.26). Finally, Part (iii) is proved by Part (i) and Lemma 2(i).

The first part of the theorem is now proved. We introduce now some new notation to simplify the proof of the second part. Let $x_{i}=(I-T)^{-1 / 2} u_{i} i=1,2, \ldots$ and $\mathrm{M}=(\mathrm{I}-\mathrm{T})^{1 / 2} \mathrm{Q}(\mathrm{I}-\mathrm{T})^{1 / 2}$ where $(\mathrm{I}-\mathrm{T})^{1 / 2}$ is the self adjoint operator such that $(\mathrm{I}-\mathrm{T})^{1 / 2}(\mathrm{I}-\mathrm{T})^{1 / 2}=\mathrm{I}-\mathrm{T}$. Then it is easy to see that $x_{i+1}=\left(1-\alpha_{i}\right) x_{i}+\alpha_{i}\left(T+\lambda_{i} M\right) x_{i}$ and $\lambda_{i}=\left\langle x_{i}, M x_{i}\right\rangle^{-1 / 2}, i \geq 1$. Define

$$
\begin{equation*}
\mathrm{f}_{\mathrm{i}}(\mathrm{x})=\left(1-\alpha_{\mathrm{i}}\right) \mathrm{x}+\alpha_{\mathrm{i}} \mathrm{Tx}+\alpha_{\mathrm{i}}<\mathrm{x}, \mathrm{Mx}>^{-1 / 2} \mathrm{Mx}, \quad \mathrm{x} \in \mathrm{~S}, \mathrm{i} \geq 1 \tag{3.33}
\end{equation*}
$$

Clearly $\mathrm{x}_{\mathrm{i}+1}=\mathrm{f}_{\mathrm{i}}(\mathrm{x}) \mathrm{i} \geq 1$.
In the next lemma we establish some properties of the operator $f_{i}(\cdot)$.

Lemma 5.

i) $f_{i}(\cdot)$ is monotone coerctive self adjoint operator with F-derivative at $x \in S$ given by

$$
\begin{equation*}
\dot{f}_{i}(y ; x)=\left(1-\alpha_{i}\right) y+\alpha_{i} T y+\alpha_{i}<X, M x>^{-1 / 2} M y \tag{3.34}
\end{equation*}
$$

$-\alpha_{\mathrm{i}}<\mathrm{x}, \mathrm{Mx}>^{-1 / 2}<\mathrm{Mx}, \mathrm{y}>\mathrm{Mx}, \quad \mathrm{y} \in \mathrm{S} \quad \mathrm{i} \geq 1$.
ii) f_{i} has a bounded inverse.
iii) If $x \in S, f_{i}(x)=x$ and $<x, M x><\sigma_{0}^{2},(I-T)^{1 / 2} x \in \mathbb{N}\left(\sigma_{0} I-Q\right)$ then $\left\|\dot{f}_{i}(\cdot ; x)\right\|>1$.
iv) For any $\varepsilon>0$, and $x \in S, \dot{f}_{i}(\cdot ; x)$ has a finite number of eigenvalues including multiplicities greater than $\alpha_{i}+\left(1-\alpha_{i}\right)\|T\|+\varepsilon$.

Proof.

i) Immediate.
ii) Since M is self adjoint positive semidefinite operator, $\langle x, M x\rangle$ $\langle\mathrm{y}, \mathrm{My}\rangle-\langle\mathrm{x}, \mathrm{My}\rangle^{2} \geq 0$ (Schwartz inequality). T is self adjoint positive semidefinite operator. Hence

$$
\begin{align*}
\left\langle\mathrm{y}, \dot{\mathrm{f}}_{\mathrm{i}}(\mathrm{y} ; \mathrm{x})>=\right. & \left.\left(1-\alpha_{\mathrm{i}}\right)\|\mathrm{y}\|^{2}+\alpha_{\mathrm{i}}<\mathrm{y}, \mathrm{Ty}\right\rangle \tag{3.35}\\
& +\alpha_{\mathrm{i}}<\mathrm{x}, \mathrm{Mx}>^{-3 / 2}\left(<\mathrm{x}, \mathrm{Mx}><\mathrm{y}, \mathrm{My}>-<\mathrm{x}, \mathrm{My}>^{2}\right) \\
\geq & \left(1-\alpha_{\mathrm{i}}\right)\|\mathrm{Y}\|^{2} .
\end{align*}
$$

Therefore $\dot{f}_{i}(\cdot ; x)$ is invertible (Joshi and Bose, (1985)).
iii) Let $\lambda=\langle x, M x\rangle^{-1 / 2}$ and $y=(I-T)^{-1 / 2} u_{0}$ where $u_{0} \in N\left(\sigma_{0} I-Q\right)$. Then

$$
\begin{equation*}
\mathrm{y}=\left(\mathrm{T}+\sigma_{0}^{-1} \mathrm{M}\right) \mathrm{y} . \tag{3.36}
\end{equation*}
$$

If $x=(T+\lambda M) x, \quad x \in S$ with $\lambda>\sigma_{0}^{-1}$ then

$$
\begin{align*}
\langle y, x\rangle & =\langle y,(T+\lambda M) x\rangle \tag{3.37}\\
& =<(T+\lambda M) y, x\rangle \\
& =\left\langle y+\left(\lambda-\sigma_{0}^{-1}\right) M y, x\right\rangle \\
& \left.=\langle y, x\rangle+\left(\lambda-\sigma_{0}^{-1}\right)<M y, x\right\rangle
\end{align*}
$$

Hence $<y, M x>=0$ implying that $\dot{f}_{i}(y ; x)=\left(1-\alpha_{i}\right) y+\alpha_{i} T y+\alpha_{i} \lambda M y$ and

$$
\begin{align*}
\left\langle y, \dot{f}_{i}(y ; x)\right\rangle & =\left(1-\alpha_{i}\right)\|Y\|^{2}+\alpha_{i}<(T+\lambda M) y, y> \tag{3.38}\\
& =\|y\|^{2}+\alpha_{i}\left(\lambda-\sigma_{0}^{-1}\right)<y, M y>.
\end{align*}
$$

Since $\|T\|<1$, (3.36) implies that $<y, M y \gg 0$ hence $<y, \dot{f}_{i}(y ; x)>\geq\|y\|^{2}$ which proved part (iii).
iv) Suppose $i \geq 1, \quad x \in S$ and $\dot{f}_{i}\left(y_{n} ; x\right)=\gamma_{n} y_{n}, \quad n=1,2, \ldots$ where $y_{n} \in S$, $<y_{n}, y_{m}>=\delta_{n m}$ and $\gamma_{\mathrm{n}}>1-\alpha_{\mathrm{i}}(1+\|\mathrm{T}\|)+\varepsilon$.

Then

$$
\begin{equation*}
\left(1-\alpha_{i}\right) y_{n}+\alpha_{i}\left(T y_{n}+\lambda M y_{n}-\lambda^{3}<x, M y_{n}>M x\right)=\gamma_{n} y_{n} \quad n \geq 1 \tag{3.39}
\end{equation*}
$$

where $\lambda=\langle x, M x\rangle^{-1 / 2}$. Now \dot{f}_{i} is bounded and M is compact hence, after passing if necessary to a subsequence, $\gamma_{n} \rightarrow \gamma \geq \alpha_{i}+\left(1-\alpha_{i}\right)\|T\|+\varepsilon$ and $M y_{n} \rightarrow \mathrm{y} \in \mathrm{S}$, say. Therefore

$$
\begin{align*}
& y_{n}=\left[\gamma_{n}-\alpha_{i} 1-\left(1-\alpha_{i}\right) T\right]^{-1}\left(\lambda M y_{n}-\lambda^{3}<x, M y_{n}>M x\right) \tag{3.39}\\
& \underset{n \rightarrow \infty}{\rightarrow}\left[\gamma-\alpha_{i}-\left(1-\alpha_{i}\right) T\right)^{-1}\left(\lambda y-\lambda^{3}<x, y>M x\right)
\end{align*}
$$

contradicting the assumption $\left\|y_{n}-y_{m}\right\|=2 \delta_{n m}$.

Let $\psi(x)$ denote the linear space spaned by the eigenvector of $\dot{f}_{i}(\cdot ; x), x \in S$ with eigenvalues greater than 1. (Note that $\psi(x)$ is independent of α_{i}). For any vector $\mathrm{e} \neq 0$ and linear spaces $\psi_{1}, \psi_{2}, k\left(e, \psi_{1}\right)$ is the arccos of the norm of the orthogonal projection of $\mathrm{e} /\|\mathrm{e}\|$ on $\psi,\left(K\left(e, \psi_{1}\right) \in[0, \pi / 2]\right)$ and $K\left(\psi_{1}, \psi_{2}\right)=\max \left\{K\left(e, \psi_{1}\right)\right.$, $\left.e \in \psi_{2},\|e\|=1\right\}$. Recall that by Lemma $4 \quad x_{i} \rightarrow x_{\infty}=\left(T+\lambda_{\infty} M\right) X_{\infty}$ and $u_{i}=(I-T)^{1 / 2} x_{i} \rightarrow u_{\infty}=\lambda_{\infty} Q u_{\infty}$.
Lemma 6. Suppose that $\mathrm{x}_{\mathrm{i}} \rightarrow \mathrm{x}_{\infty}=\left(\mathrm{T}+\sigma_{\infty}^{-1} \mathrm{M}\right) \mathrm{x}_{\infty}$ where $\sigma_{\infty}<\sigma_{0}$. Let

$$
\begin{aligned}
& x_{m}^{\prime}=x_{m}+e_{m} \\
& x_{i+1}=f_{i}\left(x_{i}^{\prime}\right), e_{i+1}=x_{i+1}^{\prime}-x_{i+1} \quad i>m
\end{aligned}
$$

Then there are $\varepsilon>0$ and $\bar{\theta}>0$ such that $u_{i}^{\prime}=(I-T)^{1 / 2} x_{i}{ }^{\prime} \rightarrow u_{\infty}{ }^{\prime}=\lambda_{\infty}{ }^{\prime} Q u_{\infty}$, $\lambda_{\infty}{ }^{\prime} \neq \sigma_{\infty}^{-1}$ whenever $\left|\mathrm{c}_{\mathrm{m}}-1+\sigma_{\infty}\right|<\varepsilon, 0<\left\|\mathrm{e}_{\mathrm{m}}\right\|<\varepsilon$ and $k\left\{\mathrm{e}, \psi\left(\mathrm{x}_{\infty}\right)\right\}<\bar{\theta}$.
Proof.
Suppose $\quad \mathrm{c}_{\mathrm{m}}-1+\sigma_{\infty}<\varepsilon, \quad 0<\left\|\mathrm{e}_{\mathrm{m}}\right\|<\varepsilon, \quad \neq\left(\mathrm{e}, \psi\left(\mathrm{x}_{\infty}\right) \leq \bar{\theta} \quad\right.$ and $\mathrm{x}_{\mathrm{i}}{ }^{\prime} \rightarrow \mathrm{N}\left(\mathrm{I}-\mathrm{T}-\sigma_{\infty}^{-1} \mathrm{M}\right)$. We will show that if $\bar{\theta}>0$ and $\varepsilon>0$ are small enough this is contradiction.

In the following $\mathbf{C}_{1}, \ldots, \mathbf{C}_{\mathrm{s}}$ are appropriate constants which depends on u_{1} only through σ_{∞}.

Let $c_{i}^{\prime}=\left\|u_{i}^{\prime}-\right\| P_{0} u_{i}^{\prime}\left\|^{-1} P_{0} u_{i}^{\prime}\right\|^{2}, i \geq m$. Then $\left|c_{m}^{\prime}-c_{m}\right| \leq C_{1} \varepsilon$ for some $C_{1}>0$. Lemma 4(iii) implies therefore that

$$
\begin{align*}
\left\|u_{i}^{\prime}-u_{i}\right\| & \leq\left\|u_{i}-u_{m}\right\|+\left\|u_{i}^{\prime}-u_{m}^{\prime}\right\|+\left\|u_{m}-u_{m}^{\prime}\right\| \tag{3.40}\\
& \leq C_{2} \varepsilon \quad i \geq m
\end{align*}
$$

for some constant \mathbf{C}_{2}.

Hence

$$
\begin{equation*}
\left\|e_{i}\right\|=\left\|(I-T)^{-1 / 2}\left(u_{i}^{\prime}-u_{i}\right)\right\| \leq C_{3} \varepsilon \quad i \geq M . \tag{3.41}
\end{equation*}
$$

Moreover, $\mathrm{x}_{\mathbf{i}}{ }^{\prime} \rightarrow \mathrm{x}_{\infty}{ }^{\prime}$, say, again by Lemma 4(iii). Therefore:

$$
\begin{align*}
e_{i+1} & =f_{i}\left(x_{i}^{\prime}\right)-f_{i}\left(x_{i}\right) \tag{3.42}\\
& =\dot{f}_{i}\left(e_{i} ; x_{i}^{*}\right) \quad x_{i}^{*}=x_{i}+\beta_{i} e_{i}, \quad \beta_{i} \in[0,1] \\
& =\dot{f}_{i}\left(e_{i} ; x_{\infty}^{*}\right)+\Delta_{i} \varepsilon_{i} \quad i \geq m
\end{align*}
$$

where $\mathrm{x}_{\mathrm{i}}^{*} \rightarrow \mathrm{x}_{\infty}$ and $\Delta_{\mathrm{m}}, \Delta_{\mathrm{m}+1}, \ldots$ are self adjoint operator such that

$$
\begin{equation*}
\left\|\Delta_{\mathrm{i}}\right\| \leq \mathrm{C}_{4} \varepsilon \mathrm{~b}^{\mathrm{i}-\mathrm{m}} \quad \mathrm{i} \geq \mathrm{m} \tag{3.43}
\end{equation*}
$$

Let $\gamma>0$ be such that $\dot{\mathrm{f}}_{\mathrm{i}}\left(\cdot ; \mathrm{x}_{\infty}\right)$ does not have any eigenvalue in $(1,1+3 \gamma)$. The existence of such γ is ensured by Lemma 5(iv). Now, Lemma 5(iii) ensures that $\dot{f}_{\mathrm{i}}\left(\cdot, \mathrm{x}_{\infty}\right)$ has p (including multiplicities) eigenvalues greater than $1+2 \gamma(1 \leq \mathrm{p}<\infty)$. If $\left\|\dot{f}_{i}\left(\cdot ; x_{i}^{*}\right)-\dot{f}_{i}\left(\cdot, x_{\infty}\right)\right\|<\gamma$ then $\dot{f}_{i}\left(\cdot, x_{i}^{*}\right)$ has exactly p eigenvalues greater than $(1+2 \gamma)$ and none in $\left(1+\gamma, 1+2 \gamma\right.$). Let $\theta_{i}=\nless\left(e_{i}, \psi\left(x_{i}^{*}\right)\right), \delta_{i}=\nless\left\{\psi\left(x_{i}^{*}\right), \psi\left(x_{i+1}^{*}\right)\right\}$ and $\xi_{i}=k\left\{e_{i+1}, \psi\left(x_{i}^{*}\right)\right\} i \geq M$. Then,

$$
\begin{equation*}
\sin \left(\delta_{\mathrm{i}}\right) \leq \frac{\left\|\Delta_{\mathrm{i}}-\Delta_{\mathrm{i}+1}\right\|}{\gamma} \quad \mathrm{i} \geq \mathrm{M} . \tag{3.44}
\end{equation*}
$$

See Davis and Kahan (1970).
Now if $\left(\left\|\Delta_{\mathrm{i}}\right\|+\left\|\Delta_{\mathrm{i}+1}\right\|\right) / \gamma \leq 1 / 2$ then (3.44) is equivalent to

$$
\begin{align*}
\delta_{i} & \leq 2 \sin \delta_{i} \tag{3.45}\\
& \leq 2 C_{4} \varepsilon b^{i-m} \quad i \geq m
\end{align*}
$$

(the last inequality follows (3.43)). Clearly $\xi_{\mathrm{i}} \leq \theta_{\mathrm{i}}, \mathrm{i} \geq \mathrm{m}$. Hence

$$
\begin{align*}
\theta_{i+1} & \leq \xi_{i}+\delta_{i} \tag{3.46}\\
& \leq \theta_{i}+\delta_{i} \\
& \leq \theta_{m}+\sum_{j=m}^{i} \delta_{j} \quad i \geq m
\end{align*}
$$

So, (3.45) and (3.46) can be combined to give

$$
\begin{equation*}
\theta_{i} \leq \theta_{m}+2 C_{4}(1-b)^{-1} \varepsilon \quad i \geq m . \tag{3.47}
\end{equation*}
$$

If $k\left(\mathrm{e}_{\mathrm{m}}, \psi\left(\mathrm{x}_{\infty}\right)\right)<\bar{\theta}$ then

$$
\begin{equation*}
\left.\theta_{\mathrm{m}} \leq \bar{\theta}+k \psi\left(\mathrm{x}_{\infty}\right), \psi\left(\mathrm{x}_{\infty}^{*}\right)\right\} \leq \bar{\theta}+\mathbf{C}_{5} \varepsilon . \tag{3.48}
\end{equation*}
$$

Choose now $\bar{\theta}$ and ε such that

$$
\begin{equation*}
(1+2 \gamma) \cos \left\{\bar{\theta}+2 \mathrm{C}_{4} \varepsilon(1-\mathrm{b})^{-1}+\mathrm{C}_{5} \varepsilon\right\}>1 \tag{3.49}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\|e_{i+1}\right\| \geq(1+2 \gamma)\left\|e_{i}\right\| \cos \theta_{i} \rightarrow \infty \text { as } i \rightarrow \infty \tag{3.50}
\end{equation*}
$$

contradicting (3.41).

Lemma 7.

i) Suppose $u_{i} \rightarrow u_{\infty}=\sigma_{\infty}^{-1} Q u_{\infty}$ and $\sigma_{0}<\sigma_{\infty}$. Then for any open ball B_{0} such that $u_{1} \in B_{0}$ there is an open ball $B_{1} \subseteq B_{0}$ such that the algorithm starting at any $u_{1}{ }^{\prime} \in B_{1}$ converges to $\mathrm{N}\left(\sigma_{0} \mathrm{I}-\mathrm{q}\right)$.
ii) If $u_{i} \rightarrow N\left(\sigma_{0} I-Q\right)$ then there is an open ball $B_{2}, u_{1} \in B_{2}$ and the algorithm starting at any point of B_{2} converges to $\mathrm{N}\left(\sigma_{0} \mathrm{I}-\mathrm{Q}\right)$.

Proof.

Let $\quad \mathrm{g}_{\mathrm{i}}(\mathrm{u})=\left(1-\alpha_{\mathrm{i}}\right) \mathrm{u}+\alpha_{\mathrm{i}} \mathrm{Tu}+\alpha_{\mathrm{i}}\left\|\mathrm{P}_{0} \mathrm{u}\right\|^{-1}(\mathrm{I}-\mathrm{T}) \mathrm{Qu} \quad \mathrm{i}=1,2, \ldots$ and let $g_{1, \mathrm{~m}}=g_{m-1} \circ g_{m-2} \circ \cdots \circ g_{1}$. Then $u_{m}=g_{1, m}\left(u_{1}\right)$. By Lemma $5 g_{1 m}$ and its inverse have continuous bounded derivatives, hence both take open sets to open sets. But by Lemma 6 , for m large enough, $g_{1 m}\left(\mathrm{~B}_{0}\right)$ has an open subset such that for any point in the later the algorithm does not converge to $N\left(I-\sigma_{\infty}^{-1} Q\right) . g_{1 m}^{-1}$ maps this open set to an open set $\mathrm{B}_{1}{ }^{\prime}$ included in B_{0}. Since $\tilde{\sigma}: \sigma(Q) \cap\left\{\sigma: \sigma>1-\left\|u_{1}-\right\| P_{0} u_{1}\left\|^{-1} P_{0} u_{1}\right\|^{2}\right\}$ is a finite set by taking B_{1}^{\prime} small enough we ensure that the algorithm starting at points in B_{1} converge to k $\bigcup_{j=0} N\left(\sigma_{i} I-Q\right)$ for finite k. Repeating the above argument k times results in an open set $B_{1} \subseteq B_{0}$ such that the algorithm starting at points of B_{1} converges to $N\left(\sigma_{0} I-Q\right)$.
ii) If $u_{i} \rightarrow N\left(\sigma_{0} I-Q\right)$, then $c_{i} \rightarrow 1-\sigma_{0}$ and for some $m, c_{m}<1-\sigma_{I}$ where $\sigma_{0}=\sigma_{1}=\cdots=\sigma_{\mathrm{I}-1}>\sigma_{\mathrm{I}}$. Now take B_{2}^{\prime} open such that $\|\mathrm{u}-\| \mathrm{P}_{0} \mathrm{u}\left\|^{-1} \mathrm{P}_{0} \mathrm{u}\right\|^{2}<1-\sigma_{\mathrm{I}}$ for all $u \in B_{2}^{\prime}$ and $u_{m} \in B_{2}^{\prime}$. Let $B_{2}=g_{1 m}^{-1} B_{2}^{\prime}$. Then B_{2} is open, $u_{1} \in B_{2}$, and the algorithm, starting at points of B_{2}, converges to $N\left(\sigma_{0} I-Q\right)$.

References

Breiman, L. and Friedman (1985). Estimating optimal transformations for multiple regression and correlation. J. of Amer. Statist. Asc. 80, 580-619.

Davis, C. and Kahan, W. (1970). The notation of Eigenvectors by a perturbation III SIAM J. Num. Anal. 7, 1-46.

Joshi, M.C. and Bose R.K. (1985). Some Topics in Nonlinear Functional Analysis. A Halsted Press, Wiley Eastern, New Delhi.

TECHNICAL REPORTS

Statistics Department

University of California, Berkeley

1. BREIMAN, L. and FREEDMAN, D. (Nov. 1981, revised Feb. 1982). How many variables should be entered in a regression equation? Jour. Amer. Statist. Assoc.. March 1983, 78, No. 381, 131-136.
2. BRILLINGER, D. R. (Jan. 1982). Some contrasting examples of the time and frequency domain approaches to time series analysis. Time Series Methods in Hydrosciences, (A. H. El-Shaarawi and S. R. Esterby, eds.) Elsevier Scientific Publishing Co., Amsterdam, 1982, pp. 1-15.
3. DOKSUM, K. A. (Jan. 1982). On the performance of estimates in proportional hazard and log-linear models. Survival Analysis, (John Crowley and Richard A. Johnson, eds.) IMS Lecture Notes - Monograph Series, (Shanti S. Gupta, series ed.) 1982, 74-84.
4. BICKEL, P. J. and BREIMAN, L. (Feb. 1982). Sums of functions of nearest neighbor distances, moment bounds, limit theorems and a goodness of fit test. Ann. Prob. Feb. 1982, $\underset{\sim}{11}$. No. 1, 185-214.
5. BRILLINGER, D. R. and TUKEY, J. W. (March 1982). Spectrum estimation and system identification relying on a Fourier transform. The Collected Works of J. W. Tukey vol. 2, Wadsworth, 1985, 1001-1141.
6. BERAN, R. (May 1982). Jackknife approximation to bootstrap estimates. Ann. Statist. March 1984, $\underset{\sim}{12}$ No. 1, 101-118.
7. BICKEL, P. J. and FREEDMAN, D. A. (June 1982). Bootstrapping regression models with many parameters. Lehmann Festschrift (P. J. Bickel, K. Doksum and J. L. Hodges, Jr., eds.) Wadsworth Press, Belmont, 1983, 28-48.
8. BICKEL, P. J. and COLLINS, J. (March 1982). Minimizing Fisher information over mixtures of distributions. Sankhy $\overline{\mathrm{a}}$, 1983, 45, Series A, Pt. 1, 1-19.
9. BREIMAN, L. and FRIEDMAN, J. (July 1982). Estimating optimal transformations for multiple regression and correlation.
10. FREEDMAN, D. A. and PETERS, S. (July 1982, revised Aug. 1983). Bootstrapping a regression equation: some empirical results. JASA, 1984, 72, 97-106.
11. EATON, M. L. and FREEDMAN, D. A. (Sept. 1982). A remark on adjusting for covariates in multiple regression.
12. BICKEL, P. J. (April 1982). Minimax estimation of the mean of a mean of a normal distribution subject to doing well at a point. Recent Advances in Statistics, Academic Press, 1983.
13. FREEDMAN, D. A., ROTHENBERG, T. and SUTCH, R. (Oct. 1982). A review of a residential energy end use model.
14. BRILLINGER, D. and PREISLER, H. (Nov. 1982). Maximum likelihood estimation in a latent variable problem. Studies in Econometrics. Time Series, and Multivariate Statistics, (eds. S. Karlin, T. Amemiya, L. A. Goodman). Academic Press, New York, 1983, pp. 31-65.
15. BICKEL, P. J. (Nov. 1982). Robust regression based on infinitesimal neighborhoods. Ann. Statist.. Dec. 1984, 12, 1349-1368.
16. DRAPER, D. C. (Feb. 1983). Rank-based robust analysis of linear models. I. Exposition and review.
17. DRAPER, D. C. (Feb 1983). Rank-based robust inference in regression models with several observations per cell.
18. FREEDMAN, D. A. and FIENBERG, S. (Feb. 1983, revised April 1983). Statistics and the scientific method, Comments on and reactions to Freedman, A rejoinder to Fienberg's comments. Springer New York 1985 Cohort Analysis in Social Research. (W. M. Mason and S. E. Fienberg, eds.).
19. FREEDMAN, D. A. and PETERS, S. C. (March 1983, revised Jan. 1984). Using the bootstrap to evaluate forecasting equations. J. of Forecasting, 1985, Vol. 4, 251-262.
20. FREEDMAN, D. A. and PETERS, S. C. (March 1983, revised Aug. 1983). Bootstrapping an econometric model: some empirical results. JBES. 1985, 2, 150-158.
21. FREEDMAN, D. A. (March 1983). Structural-equation models: a case study.
22. DAGGETT, R. S. and FREEDMAN, D. (April 1983, revised Sept. 1983). Econometrics and the law: a case study in the proof of antitrust damages. Proc, of the Berkeley Conference, in honor of Jerzy Neyman and Jack Kiefer. Vol I pp. 123-172. (L. Le Cam, R. Olshen eds.) Wadsworth, 1985.
23. DOKSUM, K. and YANDELL, B. (April 1983). Tests for exponentiality. Handbook of Statistics, (P. R. Krishnaiah and P. K. Sen, eds.) 4, 1984.
24. FREEDMAN, D. A. (May 1983). Comments on a paper by Markus.
25. FREEDMAN, D. (Oct. 1983, revised March 1984). On bootstrapping two-stage least-squares estimates in stationary linear models. Ann. Statist. 1984, 12, 827-842.
26. DOKSUM, K. A. (Dec. 1983). An extension of partial likelihood methods for proportional hazard models to general transformation models. Ann. Statist. 1987, 15, 325-345.
27. BICKEL, P. J., GOETZE, F. and VAN ZWET, W. R. (Jan. 1984). A simple analysis of third order efficiency of estimate Proc. of the Neyman-Kiefer Conference, (L. Le Cam, ed.) Wadsworth, 1985.
28. BICKEL, P. J. and FREEDMAN, D. A. Asymptotic normality and the bootstrap in stratified sampling. Ann. Statist. 12 470-482.
29. FREEDMAN, D. A. (Jan. 1984). The mean vs. the median: a case study in 4-R Act litigation. JBES. 1985 Vol 3 pp. 1-13.
30. STONE, C. J. (Feb. 1984). An asymptotically optimal window selection rule for kernel density estimates. Ann. Statist., Dec. 1984, 12, 1285-1297.
31. BREIMAN, L. (May 1984). Nail finders, edifices, and Oz.
32. STONE, C. J. (Oct. 1984). Additive regression and other nonparametric models. Ann. Statist. 1985, 13, 689-705.
33. STONE, C. J. (June 1984). An asymptotically optimal histogram selection rule. Proc. of the Berkeley Conf. in Honor of Jerzy Neyman and Jack Kiefer (L. Le Cam and R. A. Olshen, eds.), II, 513-520.
34. FREEDMAN, D. A. and NAVIDI, W. C. (Sept. 1984, revised Jan. 1985). Regression models for adjusting the 1980 Census. Statistical Science. Feb 1986, Vol. 1, No. 1, 3-39.
35. FREEDMAN, D. A. (Sept. 1984, revised Nov. 1984). De Finetti's theorem in continuous time.
36. DIACONIS, P. and FREEDMAN, D. (Oct. 1984). An elementary proof of Stirling's formula. Amer. Math Monthly. Feb 1986, Vol. 93, No. 2, 123-125.
37. LE CAM, L. (Nov. 1984). Sur l'approximation de familles de mesures par des familles Gaussiennes. Ann. Inst. Henri Poincaré, 1985, 21, 225-287.
38. DIACONIS, P. and FREEDMAN, D. A. (Nov. 1984). A note on weak star uniformities.
39. BREIMAN, L. and IHAKA, R. (Dec. 1984). Nonlinear discriminant analysis via SCALING and ACE.
40. STONE, C. J. (Jan. 1985). The dimensionality reduction principle for generalized additive models.
41. LE CAM, L. (Jan. 1985). On the normal approximation for sums of independent variables.
42. BICKEL, P. J. and YAHAV, J. A. (1985). On estimating the number of unseen species: how many executions were there?
43. BRILLINGER, D. R. (1985). The natural variability of vital rates and associated statistics. Biometrics, to appear.
44. BRILLINGER, D. R. (1985). Fourier inference: some methods for the analysis of array and nonGaussian series data. Water Resources Bulletin. 1985, 21, 743-756.
45. BREIMAN, L. and STONE, C. J. (1985). Broad spectrum estimates and confidence intervals for tail quantiles.
46. DABROWSKA, D. M. and DOKSUM, K. A. (1985, revised March 1987). Partial likelihood in transformation models with censored data.
47. HAYCOCK, K. A. and BRILLINGER, D. R. (November 1985). LIBDRB: A subroutine library for elementary time series analysis.
48. BRILLINGER, D. R. (October 1985). Fitting cosines: some procedures and some physical examples. Joshi Festschrift. 1986. D. Reidel.
49. BRILLINGER, D. R. (November 1985). What do seismology and neurophysiology have in common? - Statistics! Comptes Rendus Math. Rep. Acad. Sci. Canada. January, 1986.
50. COX, D. D. and O'SULLIVAN, F. (October 1985). Analysis of penalized likelihood-type estimators with application to generalized smoothing in Sobolev Spaces.
51. O'SULLIVAN, F. (November 1985). A practical perspective on ill-posed inverse problems: A review with some new developments. To appear in Journal of Statistical Science.
52. LE CAM, L. and YANG, G. L. (November 1985, revised March 1987). On the preservation of local asymptotic normality under information loss.
53. BLACKWELL, D. (November 1985). Approximate normality of large products.
54. FREEDMAN, D. A. (June 1987). As others see us: A case study in path analysis. Joumal of Educational Statistics. 12, 101-128.
55. LE CAM, L. and YANG, G. L. (January 1986). Distinguished Statistics, Loss of information and a theorem of Robert B. Davies.
56. LE CAM, L. (February 1986). On the Bernstein - von Mises theorem.
57. O'SULLIVAN, F. (January 1986). Estimation of Densities and Hazards by the Method of Penalized likelihood.
58. ALDOUS, D. and DIACONIS, P. (February 1986). Strong Uniform Times and Finite Random Walks.
59. ALDOUS, D. (March 1986). On the Markov Chain simulation Method for Uniform Combinatorial Distributions and Simulated Annealing.
60. CHENG, C-S. (April 1986). An Optimization Problem with Applications to Optimal Design Theory.
61. CHENG, C-S., MAJUMDAR, D., STUFKEN, J. \& TURE, T. E. (May 1986, revised Jan 1987). Optimal step type design for comparing test treatments with a control.
62. CHENG, C-S. (May 1986, revised Jan. 1987). An Application of the Kiefer-Wolfowitz Equivalence Theorem.
63. O'SULLIVAN, F. (May 1986). Nonparametric Estimation in the Cox Proportional Hazards Model.
64. ALDOUS, D. (JUNE 1986). Finite-Time Implications of Relaxation Times for Stochastically Monotone Processes.
65. PITMAN, J. (JULY 1986, revised November 1986). Stationary Excursions.
66. DABROWSKA, D. and DOKSUM, K. (July 1986, revised November 1986). Estimates and confidence intervals for median and mean life in the proportional hazard model with censored data.
67. LE CAM, L. and YANG, G.L. (July 1986). Distinguished Statistics, Loss of information and a theorem of Robert B. Davies (Fourth edition).
68. STONE, C.J. (July 1986). Asymptotic properties of logspline density estimation.
69. BICKEL, P.J. and YAHAV, J.A. (July 1986). Richardson Extrapolation and the Bootstrap.
70. LEHMANN, E.L. (July 1986). Statistics - an overview.
71. STONE, C.J. (August 1986). A nonparametric framework for statistical modelling.
72. BIANE, PH. and YOR, M. (August 1986). A relation between Lévy's stochastic area formula, Legendre polynomial, and some continued fractions of Gauss.
73. LEHMANN, E.L. (August 1986, revised July 1987). Comparing Location Experiments.
74. O'SULLIVAN, F. (September 1986). Relative risk estimation.
75. O'SULLIVAN, F. (September 1986). Deconvolution of episodic hormone data.
76. PITMAN, J. \& YOR, M. (September 1987). Further asymptotic laws of planar Brownian motion.
77. FREEDMAN, D.A. \& ZEISEL, H. (November 1986). From mouse to man: The quantitative assessment of cancer risks. To appear in Statistical Science.
78. BRILLINGER, D.R. (October 1986). Maximum likelihood analysis of spike trains of interacting nerve cells.
79. DABROWSKA, D.M. (November 1986). Nonparametric regression with censored survival time data.
80. DOKSUM, K.J. and LO, A.Y. (November 1986). Consistent and robust Bayes Procedures for Location based on Partial Information.
81. DABROWSKA, D.M., DOKSUM, K.A. and MIURA, R. (November 1986). Rank estimates in a class of semiparametric two-sample models.
82. BRILLINGER, D. (December 1986). Some statistical methods for random process data from seismology and neurophysiology.
83. DIACONIS, P. and FREEDMAN, D. (December 1986). A dozen de Finetti-style results in search of a theory.
84. DABROWSKA, D.M. (January 1987). Uniform consistency of nearest neighbour and kernel conditional Kaplan - Meier estimates.
85. FREEDMAN, D.A., NAVIDI, W. and PETERS, S.C. (February 1987). On the impact of variable selection in fitting regression equations.
86. ALDOUS, D. (February 1987, revised April 1987). Hashing with linear probing, under non-uniform probabilities.
87. DABROWSKA, D.M. and DOKSUM, K.A. (March 1987, revised January 1988). Estimating and testing in a two sample generalized odds rate model.
88. DABROWSKA, D.M. (March 1987). Rank tests for matched pair experiments with censored data.
89. DIACONIS, P and FREEDMAN, D.A. (April 1988). Conditional limit theorems for exponential families and finite versions of de Fineti's theorem.
90. DABROWSKA, D.M. (April 1987, revised September 1987). Kaplan-Meier estimate on the plane.

92a. ALDOUS, D. (April 1987). The Harmonic mean formula for probabilities of Unions: Applications to sparse random graphs.
93. DABROWSKA, D.M. (June 1987, revised Feb 1988). Nonparametric quantile regression with censored data.
94. DONOHO, D.L. \& STARK, P.B. (June 1987). Uncertainty principles and signal recovery.
95. RIZZARDI, F. (Aug 1987). Two-Sample t-tests where one population SD is known.
96. BRILLINGER, D.R. (June 1987). Some examples of the statistical analysis of seismological data. To appear in Proceedings, Centennial Anniversary Symposium, Seismographic Stations, University of California, Berkeley.
97. FREEDMAN, D.A. and NAVIDI, W. (June 1987). On the multi-stage model for carcinogenesis.
98. O'SULLIVAN, F. and WONG, T. (June 1987). Determining a function diffusion coefficient in the heat equation.
99. O'SULLIVAN, F. (June 1987). Constrained non-linear regularization with application to some system identification problems.
100. LE CAM, L. (July 1987, revised Nov 1987). On the standard asymptotic confidence ellipsoids of Wald.
101. DONOHO, D.L. and LIU, R.C. (July 1987). Pathologies of some minimum distance estimators.
102. BRILLINGER, D.R., DOWNING, K.H. and GLAESER, R.M. (July 1987). Some statistical aspects of low-dose electron imaging of crystals.
103. LE CAM, L. (August 1987). Harald Cramér and sums of independent random variables.
104. DONOHO, A.W., DONOHO, D.L. and GASKO, M. (August 1987). Macspin: Dynamic graphics on a desktop computer.
105. DONOHO, D.L. and LIU, R.C. (August 1987). On minimax estimation of linear functionals.
106. DABROWSKA, D.M. (August 1987). Kaplan-Meier estimate on the plane: weak convergence, LIL and the bootstrap.
107. CHENG, C-S. (August 1987). Some orthogonal main-effect plans for asymmetrical factorials.
108. CHENG, C-S. and JACROUX, M. (August 1987). On the construction of trend-free run orders of two-level factorial designs.
109. KLASS, M.J. (August 1987). Maximizing $E \max _{1 \leq \mathrm{k} \leq \mathrm{n}} \mathrm{S}_{\mathbf{k}}^{+} / \mathrm{ES}_{\mathrm{n}}^{+}$: A prophet inequality for sums of I.I.D. mean zero variates.
110. DONOHO, D.L. and LIU, R.C. (August 1987). The "automatic" robustness of minimum distance functionals.
111. BICKEL, P.J. and GHOSH, J.K. (August 1987). A decomposition for the likelihood ratio statistic and the Bartlett correction - a Bayesian argument.
112. BURDZY, K., PITMAN, J.W. and YOR, M. (September 1987). Some asymptotic laws for crossings and excursions.
113. ADHIKARI, A. and PITMAN, J. (September 1987). The shortest planar arc of width 1.
114. RITOV, Y. (September 1987). Estimation in a linear regression model with censored data.
115. BICKEL, P.J. and RITOV, Y. (September 1987). Large sample theory of estimation in biased sampling regression models I.
116. RITOV, Y. and BICKEL, P.J. (September 1987). Unachievable information bounds in non and semiparametric models.
117. RITOV, Y. (October 1987). On the convergence of a maximal correlation algorithm with alternating projections.
118. ALDOUS, D.J. (October 1987). Meeting times for independent Markov chains.
119. HESSE, C.H. (October 1987). An asymptotic expansion for the mean of the passage-time distribution of integrated Brownian Motion.
120. DONOHO, D. and LIU, R. (October 1987, revised March 1988). Geometrizing rates of convergence, II.
121. BRILLINGER, D.R. (October 1987). Estimating the chances of large earthquakes by radiocarbon dating and statistical modelling. To appear in Statistics a Guide to the Unknown.
122. ALDOUS, D., FLANNERY, B. and PALACIOS, J.L. (November 1987). Two applications of um processes: The fringe analysis of search trees and the simulation of quasi-stationary distributions of Markov chains.
123. DONOHO, D.L. and MACGIBBON, B. (November 1987). Minimax risk for hyperrectangles.
124. ALDOUS, D. (November 1987). Stopping times and tightness II.
125. HESSE, C.H. (November 1987). The present state of a stochastic model for sedimentation.
126. DALANG, R.C. (December 1987). Optimal stopping of two-parameter processes on hyperfinite probability spaces.
127. Same as No. 133.
128. DONOHO, D. and GASKO, M. (December 1987). Multivariate generalizations of the median and trimmed mean II.
129. SMITH, D.L. (December 1987). Exponential bounds in Vapnik-Cervonenkis classes of index 1.
130. STONE, C.J. (November 1987). Uniform error bounds involving logspline models.
131. Same as No. 140
132. HESSE, C.H. (December 1987). A Bahadur - Type representation for empirical quantiles of a large class of stationary, possibly infinite - variance, linear processes
133. DONOHO, D.L. and GASKO, M. (December 1987). Multivariate generalizations of the median and trimmed mean, I.
134. DUBINS, L.E. and SCHWARZ, G. (December 1987). A sharp inequality for martingales and stopping-times.
135. FREEDMAN, D.A. and NAVIDI, W. (December 1987). On the risk of lung cancer for ex-smokers.
136. LE CAM, L. (January 1988). On some stochastic models of the effects of radiation on cell survival.
137. DIACONIS, P. and FREEDMAN, D.A. (January 1988). On the consistency of Bayes estimates.
138. DONOHO, D.L. and LIU, R.C. (January 1988). Geometrizing rates of convergence, III.
139. BERAN, R. (January 1988). Refining simultaneous confidence sets.
140. HESSE, C.H. (December 1987). Numerical and statistical aspects of neural networks.
141. BRILLINGER, D.R. (January 1988). Two reports on trend analysis: a) An Elementary Trend Analysis of Rio Negro Levels at Manaus, 1903-1985 b) Consistent Detection of a Monotonic Trend Superposed on a Stationary Time Series
142. DONOHO, D.L. (Jan. 1985, revised Jan. 1988). One-sided inference about functionals of a density.
143. DALANG, R.C. (February 1988). Randomization in the two-armed bandit problem.
144. DABROWSKA, D.M. and DOKSUM, K.A. (February 1988). Graphical comparisons of cumulative hazards for two populations.
145. ALDOUS, D.J. (February 1988). Lower bounds for covering times for reversible Markov Chains and random walks on graphs.
146. BICKEL, P.J. and RITOV, Y. (February 1988). Estimating integrated squared density derivatives.
147. STARK, P.B. (March 1988). Strict bounds and applications.
148. DONOHO, D.L. and STARK, P.B. (March 1988). Rearrangements and smoothing.
149. NOLAN, D. (March 1988). Asymptotics for a multivariate location estimator.
150. SEILLIER, F. (March 1988). Sequential probability forecasts and the probability integral transform.
151. NOLAN, D. (March 1988). Limit theorems for a random convex set.

Copies of these Reports plus the most recent additions to the Technical Report series are available from the Statistics Department technical typist in room 379 Evans Hall or may be requested by mail from:

Department of Statistics
University of California
Berkeley, California 94720
Cost: \$1 per copy.

