
Program Synthesis By Sketching

Armando Solar Lezama

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-176

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-176.html

December 19, 2008

Copyright 2008, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Program Synthesis by Sketching

by

Armando Solar-Lezama

B.S. (Texas A&M University) 2003

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor in Philosophy

in

Engineering-Electrical Engineering and Computer Science

in the

GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Rastislav Bodik, Chair

Sanjit Seshia
Leo Harrington

Fall 2008

The dissertation of Armando Solar-Lezama is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 2008

Program Synthesis by Sketching

Copyright 2008
by

Armando Solar-Lezama

1

Abstract

Program Synthesis by Sketching

by

Armando Solar-Lezama
Doctor in Philosophy in Engineering-Electrical Engineering and Computer Science

University of California, Berkeley

Rastislav Bodik, Chair

The goal of software synthesis is to generate programs automatically from high-
level speci�cations. However, e�cient implementations for challenging programs require a
combination of high-level algorithmic insights and low-level implementation details. Deriving
the low-level details is a natural job for a computer, but the synthesizer can not replace the
human insight. Therefore, one of the central challenges for software synthesis is to establish a
synergy between the programmer and the synthesizer, exploiting the programmer's expertise
to reduce the burden on the synthesizer.

This thesis introduces sketching, a new style of synthesis that o�ers a fresh ap-
proach to the synergy problem. Previous approaches have relied on meta-programming,
or variations of interactive theorem proving to help the synthesizer deduce an e�cient im-
plementation. The resulting systems are very powerful, but they require the programmer
to master new formalisms far removed from traditional programming models. To make
synthesis accessible, programmers must be able to provide their insight e�ortlessly, using
formalisms they already understand.

In Sketching, insight is communicated through a partial program, a sketch that
expresses the high-level structure of an implementation but leaves holes in place of the low-
level details. This form of synthesis is made possible by a new SAT-based inductive synthesis
procedure that can e�ciently synthesize an implementation from a small number of test
cases. This algorithm forms the core of a new counterexample guided inductive synthesis
procedure (CEGIS) which combines the inductive synthesizer with a validation procedure
to automatically generate test inputs and ensure that the generated program satis�es its

2

speci�cation. With a few extensions, CEGIS can even use its sequential inductive synthesizer
to generate concurrent programs; all the concurrency related reasoning is delegated to an
o�-the-shelf validation procedure.

The resulting synthesis system scales to real programming problems from a variety
of domains ranging from bit-level ciphers to manipulations of linked datastructures. The
system was even used to produce a complete optimized implementation of the AES cipher.
The concurrency aware synthesizer was also used to synthesize, in a matter of minutes, the
details of a �ne-locking scheme for a concurrent set, a sense reversing barrier, and even a
solution to the dining philosophers problem.

The system was also extended with domain speci�c knowledge to better handle the
problem of implementing stencil computations, an important domain in scienti�c computing.
For this domain, we were able to encode domain speci�c insight as a problem reduction that
converted stencil sketches into simpli�ed sketch problems which CEGIS resolved in a matter
of minutes. This specialized synthesizer was used to quickly implement a MultiGrid solver
for partial di�erential equations containing many di�cult implementation strategies from
the literature.

In short, this thesis shows that sketching is a viable approach to making synthesis
practical in a general programming context.

3

Acknowledgments

The work described in this thesis has bene�ted from intense collaboration with a number
of individuals both at Berkeley and at IBM Research. First among these is my advisor,
whose unwavering optimism and encouragement helped me push the project forward past
the inevitable setbacks towards ever more ambitious milestones. His gift for capturing the
big picture behind complex ideas was invaluable in moving this project from its humble
beginnings as a tool to write bit permutations into a general code synthesis tool. Most
importantly, his dedicated mentorship made my graduate school experience a happy and
ful�lling one.

This project also owes a debt to IBM Research for its �nancial, intellectual and
moral support. Vijay Saraswat collaborated with us extensively in the early stages of the lan-
guage design, and he was my main motivation to explore the domain of stencil computations.
Vivek Sarkar also provided us with ample support through the early stages of the project.
Many of the insights behind the Sketch language came from the lessons we learned through
the user studies he encouraged us to undertake for the StreamBit system. The project also
bene�ted from the collaboration of Kemal Ebcio§lu and Rodric Rabbah in its early stages,
and Eran Yahav and Martin Vechev in the context of concurrency. More generally, my
summers spent at T.J. Watson were an invaluable complement to my education at Berkeley,
not to mention much of my graduate school was supported through IBM Fellowships.

The project also owes a special debt to Chris Jones, Liviu Tancau and Gilad Arnold.
The section on concurrent sketching is derived from the joint work that Chris and I did with
Ras on sketching concurrent datastructures. Liviu contributed signi�cantly to the imple-
mentation of the Sketch infrastructure and to the work on sketching stencils. Gilad was
also my co-author for the work on stencils; moreover, as his o�cemate, my work bene�ted
greatly from his insights and from his careful attention to details.

The project also bene�ted greatly from the insights of Sanjit Seshia, and from the
support of Robert Brayton and Alan Mishchenko who developed ABC, a circuit analysis
tool that we used extensively with great results.

Finally, this work wouldn't have been the same without the support and encour-
agement from my wife, Sabrina, my parents and my friends. I especially want to thank
my friend Alejandro de la Fuente for his help �ling this thesis and for his unconditional
support.

4

Contents

I The Sketching Approach to Software Synthesis 7

1 Introduction 8
1.1 The promise and the challenges of software synthesis 9
1.2 Rethinking the role of synthesis . 10

1.2.1 Example: Linked List Reversal . 11
1.2.2 Example: Sketching for concurrency 17

1.3 The challenge of sketch based synthesis . 20

2 The Sketching Programming Model 23
2.1 The Basics . 23

2.1.1 Stating it formally . 27
2.2 Abstraction in Sketch . 30

2.2.1 Stating it formally . 33
2.3 Concurrency in Sketch . 34
2.4 Syntactic Sugar . 36

2.4.1 Higher level constructs . 36
2.4.2 Reference Implementations as Speci�cations 40

II Solution of Sequential Sketches 42

3 Synthesis Semantics of Sketch 43
3.1 Preliminaries . 44
3.2 The Semantics . 46

3.2.1 Procedures and Generators . 51
3.2.2 Additional Constructs . 53

3.3 The Sketch Resolution equation . 53
3.4 Important properties of the semantics . 54

3.4.1 Soundness of the Partial Evaluation Rules 54
3.4.2 Some Algebraic Properties of the Semantic Rules. 60

4 Counterexample Guided Inductive Synthesis 63
4.1 Overview . 63

4.1.1 Solving Sketches with Inductive Synthesis 64

5

4.2 Formalization of Algorithm and Termination Issues 67
4.3 Empirical Validation of Bounded Observation Hypothesis 69

5 SAT Based Inductive Synthesis and Validation 75
5.1 Symbolic Evaluation of Synthesis Semantics 75

5.1.1 Inductive Synthesis . 80
5.1.2 Validation . 81

5.2 Preprocessing of Symbolic Representations . 83
5.3 Translation to SAT . 88

5.3.1 From dag to boolean circuit . 88
5.3.2 From boolean circuit to SAT . 93

6 Empirical Evaluation 94
6.1 Performance of Selected Benchmarks . 95
6.2 Factors a�ecting performance of the Sketch synthesizer 104

6.2.1 Synthesis time Vs. Holes . 104
6.2.2 Synthesis Time Vs. Test Size . 106

6.3 Analysis of the Optimizations . 107
6.3.1 E�ect of ABC . 108
6.3.2 E�ect of High-Level Optimizations . 113

6.4 Comparison with QBF . 117
6.5 Case Study: Sketching AES . 119
6.6 Conclusions . 121

III Sketching for Concurrent Programs 123

7 Semantics for Concurrent Sketches 124
7.1 The Concurrent Sketch Resolution Equation 124
7.2 Tracing Semantics . 125

7.2.1 Traces of Sketches . 126
7.2.2 Conditional atomics and deadlock . 131

7.3 E�ect of program transformations . 133

8 Concurrent CEGIS 136
8.1 The Algorithm . 136
8.2 Trace Projection . 139

8.2.1 Mechanics of Trace Projection . 142
8.3 Related Work . 145

9 Empirical Evaluation of the Sketch System 147
9.1 Overview of Experiments . 148

9.1.1 Benchmarks . 149
9.2 Overall Performance of the Sketch Synthesizer 157
9.3 Trace projection through if-conversion . 160
9.4 Conclusions . 161

6

IV Domain Speci�c Sketching for Stencils 163

10 Motivation for Domain Speci�c Sketching 164
10.1 Characterization of the Stencil Domain . 165
10.2 The Complexity of Stencil Implementations 166

11 Specializing the Synthesizer 171
11.1 Algorithm Overview . 171
11.2 Algorithm Details . 178

11.2.1 Preliminaries . 178
11.2.2 Synthesizing Scalar Functions . 179

12 Empirical Evaluation 187
12.0.3 Sketching for MultiGrid . 189

13 Conclusion 198

A List of sequential benchmarks 201

Bibliography 205

7

Part I

The Sketching Approach to Software
Synthesis

8

Chapter 1

Introduction

Modern programming tools and methodologies have proved invaluable in tackling
the challenges of scale and emergent complexity in software, but remarkably little help is
available for programmers facing more basic programming challenges. Domains as diverse
as scienti�c computing, concurrent datastructures and low-level systems programming all
require programmers to produce small but inherently complex routines that demand clever
algorithmic insights and careful orchestration of details; the kind of hard problems that
separate the winners from the losers in programming competitions.

For these programming problems, pencil and paper remain the most e�ective pro-
gramming tools. Modern tools and languages can help ensure that once written, such rou-
tines can be reused, managed, and distributed easily, so that only a handful of star pro-
grammers ever has to cope with them. But for these programmers, the challenges involved
are as big today as they were thirty years ago.

Fortunately, things are changing. Over the last eight years, veri�cation technol-
ogy has matured to become a practical programming tool. Modern model checking tools,
for example, are now able to expose errors in complex routines with relatively little user
e�ort [7,21,37,68]. By automating the validation process, programmers gain the freedom to
experiment; they are able to formulate hypothesis and to use the validation tool to expose
errors in their thinking. But automated validation is only part of the solution; it would be
far better if the programmer could focus on the high-level algorithmic insights, and leave
the low-level details to the programming tools. This is the dream of software synthesis; to
capture the high-level insights of the programmer and automatically derive e�cient imple-
mentations.

9

Software synthesis has a long and fruitful history, but its impact on general pro-
gramming practice has been limited. This thesis introduces sketching, a synthesis technology
that blends seamlessly into an imperative programming model, completely rede�ning the re-
lationship between the synthesizer and the programmer, and potentially bringing synthesis
closer to widespread adoption.

1.1 The promise and the challenges of software synthesis

Software Synthesis has been one of the Holly Grails of computer science research at
least since the late 60s; it was considered by Pnueli to be �one of the most central problems
in the theory of programming� [50]. The promise of synthesis is that we should be able to tell
the computer what to do, and let the synthesizer discover how to do it. From a speci�cation,
the synthesizer should automatically produce a correct and e�cient implementation.

But the pioneers in the �eld soon realized that fully automatic synthesis was im-
practical for several reasons. First, the problem was simply too di�cult; as Manna and
Waldinger pointed out, � programming is among the most demanding human activities, and
is among the last tasks computers will do well� [45]. It was unreasonable to expect a syn-
thesizer to rediscover algorithms and implementation techniques whose original discovery
had challenged the ingenuity of the brightest minds in the �eld. Moreover, professional
programmers want to have control over their implementations; they want to explore the
tradeo�s between di�erent design decisions, and they often have deep knowledge over the
problem they are solving and the platform they are targeting. For these reasons, all e�orts
at synthesis have had to incorporate human insight into the synthesis process. For some sys-
tems, this has meant restricting their domain of application and programming the insights
for that domain directly into the synthesizer. Other systems have coped with this limitation
by providing mechanisms for users to direct the synthesis process, and to provide insights
either for an individual problem or for an entire class of programs. Establishing a proper
synergy between the human and the synthesizer is fundamental to the success of synthesis.

Domain speci�c systems take the human insight and build it directly into the syn-
thesizer. This limits the range of programs they can synthesize, but allows them to operate
fully automatically for problems that fall into their domain. Some examples of these sys-
tems include AutoBayes [28] which produces data analysis programs from statistical models,
FFTW [29] which produces fast Fourier transforms optimized for speci�c architectures, and

10

StreamIt [64] which can produce very e�cient signal processing kernels from a high-level
speci�cation. All of these systems are able to generate implementations that often out-
perform hand-written code. In order to do this, they rely on domain speci�c analysis and
transformation algorithms which encode a lot of accumulated knowledge about how to solve
problems in their particular domain. While these systems constitute the most successful
instances of synthesis in the �eld, their speci�city has tended to limit the impact they've
had on general programming practice.

By contrast, there is a class of synthesis systems which allow the user to provide
insight directly into the synthesizer. Most of these systems can trace their roots back to the
work on deductive synthesis of Manna and Waldinger [46]. The central idea in deductive
synthesis is that a program can be extracted from a constructive proof of the satis�ability
of a speci�cation. Today, NuPRL [23] and KIDS [59] are the most successful systems of
this kind. They allow the programmer to provide insight about the implementation at a
high level, in the form of axioms and theorems about the problem domain, and use these
to derive a correct implementation from a high level speci�cation. In the hands of experts,
these systems are extremely powerful; for example, KIDS has been used to synthesize very
complex programs, including an Airlift Scheduler for the Air Force [26], and a communication
protocol for the interoperation of agents [17]. NuPRL, for its part, played a central role in
the development of the Ensamble group communication system. It was used, for example,
to synthesize an adaptive network protocol from formal speci�cations [10].

The main drawback of the deductive approach is the level of expertise it demands
from its users. It takes a high degree of mathematical maturity to translate insights about
an implementation into theorems about the domain, and to guide the interactive theorem
prover to produce a derivation of the implementation. To broaden the impact of synthesis
technology, we need to lower the expertise barriers that keep most programmers away from
these tools.

1.2 Rethinking the role of synthesis

To make synthesis more accessible, we had to rethink the way the programmer
communicates insight to the synthesizer. Our inspiration came from a system called A-
Lisp [4]. This system allows users to write partial lisp programs expressing their high-level
knowledge about the desired behavior of an intelligent agent. These partial programs help

11

the learning algorithm by constraining the set of behaviors that it may consider. Sketching is
our attempt to use the insights of A-Lisp to rede�ne the relationship between the programmer
and the synthesizer.

In traditional deductive systems, the programmer is provided with a language and a
set of formalisms to describe how the implementation is to be derived from the speci�cation.
Our early experience with the StreamBit [63] synthesis system made us realize it is di�cult
for programmers to reason in terms of derivations. Instead, programmers often have an idea
about the general form of a solution; a high-level strategy that will solve the problem at
hand. To turn the strategy into a program, however, they have to orchestrate many low-
level details; a process that is di�cult and error prone. It therefore made sense to focus the
synthesizer on those low-level details, leaving control of the high-level strategy in the hands
of the programmer.

The example of A-Lisp made us realize that partial programs o�ered an ideal way
for programmers to de�ne the high-level implementation strategy while leaving the details
unspeci�ed. We observed that in many implementations, the implementation strategy is re-
�ected in the overall structure of the code, while the implementation details are encoded in
the individual expressions and assignments. Therefore, partial programs o�er a very natural
way to express the insight about the implementation strategy without resorting to sepa-
rate formalisms, allowing synthesis to be embedded directly into a standard programming
language. The synthesizer becomes a programming assistant in a familiar programming
setting.

This was the genesis of sketching, a form of synthesis that uses partial programs
as a communication device between the programmer and the synthesizer. The following
examples illustrate how this process works in practice for real programming problems.

1.2.1 Example: Linked List Reversal

Manipulations of linked data-structures are hard to implement because they require
the programmer to visualize how the data structure is going to be transformed by each
memory update. On the other hand, this is an ideal problem for sketching: the details are
hard to get right, but the programmer usually has a good idea of the overall structure of
the solution.

Consider the problem of reversing a linked list. If one does not care about e�ciency

12

at all, a na ive implementation can be written as follows.

list reverse(list l){

if(isEmpty(l)){

return l;

}else{

node n = popHead(l);

return append(reverse(l) , n);

}

}

This implementation is very easy to read and understand; it pops the head of the
list, reverses the remainder of the list, and then adds the former head to the end of the
new list. However, this implementation is very ine�cient, as it requires a linear amount
of storage to reverse the list. A more e�cient implementation would use a loop instead of
recursion, and would construct the new list backwards to avoid the linear storage. Without
having to think too much about the details of the implementation, we can express these
insights in a sketch. First, we know we are going to have to create a new empty list, and we
know the implementation is going to need a while loop.

list reverseEfficient(list l){

list nl = new list();

while(2){ 2 }

}

What we have above is a partial program, but there are an in�nite number of ways
to complete it. However, we know much more about the solution than what this partial
program communicates. For example, we know that the condition for the loop must be a
pointer comparison involving some of the memory locations reachable from l and nl. With
the right notation, we can express this information very concisely to the synthesizer. In the
Sketch language, we can de�ne sets of expressions by using regular expression syntax. For
example, the set of memory locations which are likely to appear in the comparison can be
described as:

#define LOC {| (l | nl).(head | tail)(.next)? | null |}

Therefore, the set of possible comparison expressions can be de�ned as

13

#define COMP {| LOC (== | !=) LOC |}

These sets of expressions are called generators, and by using them we can begin to
bound the set of possible completions for the sketch with little additional e�ort.

list reverseEfficient(list l){

#define LOC {| (l | nl).(head | tail)(.next)? | null |}

#define COMP {| LOC (== | !=) LOC |}

list nl = new list();

while(COMP){ 2 }

}

We can do the same thing with the body of the loop. We know that the body will
consist of a sequence of assignments to some of the available pointers. We also suspect that
not all assignments should happen in all the iterations, so we want to guard them with some
condition. We also suspect that a temporary variable will be needed to keep information
from one iteration to another, and for good measure, we also allow the synthesizer to use
a di�erent iteration condition for the �rst iteration than for the rest. All of this insight is
encoded in the sketch in Figure 1.1. The sketch encodes everything we can easily say about
the implementation, and it constraints the search space enough to make it possible for the
synthesizer to discover the correct implementation of the list reversal in less than 5 minutes.

In order to solve the sketch, the synthesizer also needs a speci�cation. For this
example, the correctness is best de�ned in terms of the recursive implementation which
is easy to check by hand. In sketch, this is done by providing a main method like the
one shown in Figure 1.2. The main procedure has a set of inputs, and a body containing
code and assertions. The synthesizer will try to complete the sketch to ensure that no
assertions are violated for any inputs. The type of inputs is limited to integers, bits and
�xed length arrays thereof. This is because, as I will show later, the synthesizer relies on
an independent validation procedure to establish the correctness of the generated program,
and the validation procedures we use can only handle bounded inputs.

The main procedure in Figure 1.2 creates two identical lists of length n with each
node in the list containing a single bit value. It will then ensure that reversing one list with
the recursive method and the other one with the resolved sketch results in two identical lists.
This is the correctness condition for the sketch, and for large enough values of N, it is enough

14

#define LOC {| (l | nl).(head | tail)(.next)? | null |}

#define LOC2 {| LOC | tmp |}

#define LHS {| (l | nl).(head)(.next)? | nl.tail | tmp |}

#define COMP {| LOC (== | !=) LOC |}

list reverseEfficient(list l){

list nl = new list();

node tmp = null;

bit c = COMP;

while(c){

if(COMP){ LHS = LOC2; }

if(COMP){ LHS = LOC2; }

if(COMP){ LHS = LOC2; }

if(COMP){ LHS = LOC2; }

if(COMP){ LHS = LOC2; }

c = COMP;

}

}

Figure 1.1: Complete sketch for the linked list reversal problem

15

main(bit[N] elems, int n){

if(n < N){

// create an n element list from the input bit-vector.

list l1 = populate(elems, n);

list l2 = populate(elems, n);

l1 = reverse(l1);

l2 = reverseEfficient(l2);

assert compare(l1, l2) ;

}

}

Figure 1.2: Speci�cation for lthe linked list reversal

to guarantee the correctness of the resulting program. In the case of our experiment, N was
set to be equal to 3; values of 4 or 5 work too, but the synthesis process takes longer. The
resulting code is shown in Figure 1.3; the code is exactly what the synthesizer produced,
except for the fact that I removed a few intermediate temporaries to make the code more
readable (for example, the original code had t1 = l0.head; t2 = t1.next; l_0.tail = t2;

instead of l_0.tail = l_0.head.next;). Note that the synthesizer actually discovered a
�clever� solution that doesn't use the temporary variable, using the tail pointer of the original
list for that purpose instead.

In this example, sketching allowed the programmer to produce an implementation
from a clean speci�cation together with a sketch that outlined the programmer's insight
about the implementation, but left most of the details unspeci�ed. This was done without
resorting to meta-programming or other external formalisms. Moreover, as the next example
will show, the technologies developed in this thesis allow the same methodology to be applied
to the development of concurrent programs, something that had proved an elusive goal in
the �eld of software synthesis.

16

list reverseSK(list l_0)

{

list nl_2=new list();

nl_2.head = null;

nl_2.tail = null;

bit c_3=0;

c_3 = (l_0.head) != (null);

while(c_3)

{

l_0.tail = l_0.head.next;

l_0.head.next = nl_2.head;

if((nl_2.tail)!=(l_0.tail)){ nl_2.head = l_0.head; }

if((null)==(nl_2.tail)){ nl_2.tail = l_0.head; }

if((nl_2.head)==(l_0.head)){ l_0.head = l_0.tail; }

c_3 = (nl_2.tail.next)!=(l_0.head);

}

return nl_2;

}

Figure 1.3: Solution to listReverse sketch

17

1.2.2 Example: Sketching for concurrency

One of the most compelling applications of sketching is in the domain for concurrent
data structures, arguably one of the biggest challenges facing modern systems programming.
The challenge comes from the need to maintain the consistency of the data structure in
the presence of many simultaneous updates. Moreover, programmers must maintain this
consistency while keeping mutual exclusion to a minimum, in order to prevent the data
structure from becoming a sequential bottleneck in a highly concurrent application. In
order to achieve this, data-structure designers must resort to complex schemes to maintain
consistency using only �ne grained locking, or even without using locks at all, relying only
on atomic primitives provided by the hardware. Additionally, the composition of concurrent
objects is far from trivial, so library-based approaches will not shield programmers from the
complexities of this domain.

These di�culties make concurrent data structures an ideal domain for sketching.
As an example, consider the problem of implementing a concurrent set based on a sorted
linked list with sentinel nodes at either end. The basic idea is due to Herlihy [38] and is
relatively simple. I show only the remove method. The sequential remove method is quite
simple: it traverses the list in search of the element to remove, and when it �nds it, it swings
the pointer from its predecessor to its successor.

bit remove (Set S, int key) {

bit ret = 0;

Node prev = null;

Node cur = S.head;

find(S, key, prev, cur);

if (key == cur.key) {

prev.next = cur.next;

ret = 1;

} else {

ret = 0;

}

return ret;

}

18

void find (Set S, int key, ref Node prev, ref Node cur) {

while(cur.key < key){

prev = cur;

cur = cur.next;

}

}

A trivial way of making this method concurrent would be to grab a lock upon entry
to the remove method and release it on exit. However, this is overly conservative, eliminating
any trace of concurrency from the method. Instead, our implementation must use what is
called a hand-over-hand locking strategy; the idea is to maintain a sliding window of two
locks around some neighborhood of the cur and prev pointers as the list is traversed. The
details of the scheme are tricky; for example, it is not clear how to coordinate the acquiring
and releasing of the locks with the update of the pointers. Fortunately, Sketch can take
care of these details for us if we just express the key idea in a sketch.

First, within the �nd method, we know that as we traverse the list, we are going to
have to release one lock and acquire one lock, but we do not know how to coordinate this with
the pointer updates, so we give the synthesizer the freedom to discover this. Additionally,
we also give the synthesizer the freedom to select exactly which lock to acquire and release,
and the option to do it conditionally.

#define COMP {| ((cur|prev)(.next)? | null) (== | !=) (cur|prev)(.next)? |}

// locations in the neighborhood of cur/prev.

#define LOC {| (cur | prev)(.next)? |}

void find (Set S, int key, ref Node prev, ref Node cur) {

while(cur.key < key){

reorder{

prev = cur;

cur = cur.next;

if(COMP){ lock(LOC); }// conditionally acquire some lock

if(COMP){ unlock(LOC); } // conditionally release some lock

}

}

}

19

In the sketch, LOC corresponds to a set of locations in the neighborhood of the pointers
traversing the list, while COMP is a predicate on those locations. The reorder construct gives
the synthesizer the freedom to search for the correct strategy for sequencing the moving of
the pointers with the acquiring and releasing of locks.

For the remove method itself, we know we want to keep a sliding window of size
two. The way to enforce this is by telling the synthesizer explicitly that at the end of the
remove method, it should release two locks in the neighborhood of the cur pointer. As for
the beginning of the remove method, we do not know whether we should acquire one lock,
both, or none, so we also give this choice to the synthesizer.

bit remove (Set S, int key) {

bit ret = 0;

Node prev = null;

Node cur = S.head;

// let the synthesizer decide whether to acquire locks before find

// or afterwards. The code is prevented from just acquiring

// a global lock and releasing it at the end because LOC must be in the

// neighborhood of cur/prev.

if(??){ lock (LOC); }

if(??){ lock (LOC); }

find(S, key, prev, cur);

if (key == cur.key) {

prev.next = cur.next;

ret = 1;

} else {

ret = 0;

}

//release the locks.

unlock (LOC);

unlock (LOC);

return ret;

}

20

Writing the sketch was not trivial; the programmer had to know about the hand-
over-hand strategy. But sketching allowed the programmer to communicate the insight to
the synthesizer in a natural way, by writing what she already knows about the desired
implementation and leaving the rest unspeci�ed. This allows the programmer to view the
synthesizer as a programming aid; lowering the cost of adoption, and potentially making
synthesis accessible to programmers at large.

Making sketching possible, however, poses new challenges in the design of synthesis
algorithms that can make e�ective use of insight provided as a partial program. The central
question for this thesis is whether this approach can be made to work e�ciently and reliably
enough to have an impact on real world programming problems.

1.3 The challenge of sketch based synthesis

The �rst challenge in supporting a synthesis approach based on partial programs
was to de�ne a language that allows programmers to write these partial programs. The
language must have clearly de�ned semantics, so that the set of programs that the sketch
can generate and the behavior of such programs can be de�ned unambiguously. Chapter 2
de�nes the Sketch language and its underlying programming model. The semantics of this
language are de�ned in Chapter 3 using a new formalism that allows us to reason about the
behavior of a sketch as a function of the choices made for the completion of the holes. The
semantics also allows us to reason about the set of solutions to the sketch problem, and how
this set is a�ected by di�erent constructs in the language.

The second challenge is to develop a solution algorithm that implements the se-
mantics de�ned for the sketching language. This requires a di�erent class of algorithms
from those used by deductive synthesis systems. Deductive systems rely on derivation, but
this makes it hard to take advantage of partial information about the solution. To see why
this is the case, consider the analogy with another well known derivation system: the Rubik
cube. In a Rubick cube you have a prede�ned set of transformations that you must use to
transform the cube from an initial state into a �nal con�guration satisfying some constraints
(e.g. one color per face). In a Rubick cube, it is very hard to use partial information about
the �nal con�guration to speed up the solution. For example, if I know that two red pieces
will go together in the �nal con�guration, it is still a lot of work to �nd a set of transfor-
mations that will bring the two pieces together without undoing any partial progress I may

21

have already achieved. The same is true for synthesis systems based on derivation.
Our solution strategy relies instead on e�cient search techniques that can use

partial knowledge about the solution to rule out large swaths of the search space and hone
into a solution quickly. One of the biggest challenges in turning the synthesis problem into
a search problem is the di�culty of establishing the correctness of a candidate solution to
the sketch. In deductive synthesis, correctness is often achieved by construction, since the
implementation is derived from the speci�cation through semantics preserving derivation
rules. By giving up the deductive approach, we lose the correctness by construction, and we
are forced to rely on an external validation procedure. The sketch synthesizer we developed
uses this apparent limitation to its advantage in a technique we have named counterexample
guided inductive synthesis, or CEGIS.

Counterexample guided inductive synthesis is based on an important empirical
hypothesis: for most sketches, only a small set of inputs is needed to fully constrain the
solution. In other words, it is possible to �nd a small set of inputs covering all the corner
cases in the sketch, such that only a valid solution to the sketch can work correctly for
all these inputs. CEGIS uses an e�cient SAT based inductive synthesis procedure to pro-
duce candidate solutions from small sets of inputs. The crucial observation in the CEGIS
algorithms is that the set of corner cases can be discovered automatically by coupling the
inductive synthesizer with a validation procedure. Initially, the set of inputs contains only
a random input, but once the inductive synthesizer produces its �rst candidate solution,
the solution is checked by the validation procedure. If the candidate is incorrect, the coun-
terexample produced by the validation procedure is fed to the inductive synthesizer, so the
next candidate it produces will be guaranteed to work correctly for this corner case. After
only a few iterations, the inductive synthesizer will have gathered a representative set of
counterexample inputs and will produce a valid candidate which the validation procedure
will accept and deliver to the user.

Because of the empirical hypothesis, which we validate in Section 4.3, the CEGIS
algorithm is able to converge to a solution after only a handful of iterations, and therefore
a handful of calls to the validation procedure. We have observed this even for sketches with
candidate and input spaces of astronomical proportions. For example, in one sketch for the
AES encryption cipher, shown in Section 6.5, the synthesizer was able to derive the contents
of over 1024 32-bit integer constants after analyzing only 600 candidates.

Additionally, the algorithm has the advantage of separating the synthesis and the

22

validation tasks. The most dramatic consequence of this will be seen in Chapter 8, where we
will show that CEGIS can be extended to synthesize concurrent programs without the need
to reason about concurrency in the inductive synthesizer. I will show that by separating
the synthesis and the validation tasks, we are able to combine our sequential inductive
synthesizer with SPIN, a bounded model checker that handles concurrency, to e�ciently
synthesize concurrent programs in a matter of minutes.

The power and generality of the CEGIS algorithm, even allows us to develop spe-
cialized synthesizers for important domains through problem reduction. Chapter 11 de-
scribes how we developed a sketch synthesizer for the domain of stencil computations, an
important domain in scienti�c computing that �nds uses in �uid dynamics, signal processing,
and a number of other branches of science and engineering. For this synthesizer, we were
able to encode domain speci�c insight as a problem reduction procedure that was able to
take stencil sketches and produce from them simpli�ed sketch problems which CEGIS could
handle in a matter of minutes. We were able to use this specialized synthesizer to quickly
implement a MultiGrid solver for partial di�erential equations containing many di�cult
implementation strategies from the literature.

Ultimately, this thesis will demonstrate that using the above techniques, the Sketch
system can take very clean and general sketches for a variety of challenging programming
problems, and produce working implementations in much less time than what the compara-
ble implementation would take by hand.

23

Chapter 2

The Sketching Programming Model

The �rst major contribution of this thesis is to develop Sketching, a new pro-
gramming model that relies on synthesis from partial programs. We have implemented this
programming model in Sketch, a simple language intended to serve as a model on how
to incorporate synthesis support into existing languages. Sketch is a simple procedural
language extended with a single new construct: a basic integer hole. Together with some
simple syntactic sugar, this new construct gives the programmer a robust mechanism to
express insight about an implementation while leaving unspeci�ed a lot of the challenging
details. The goal is to give the programmer the tools to exploit the synthesizer's ability to
derive low level implementation details while maintaining full control over the shape of the
resulting code.

In this section we describe the Sketching programming model as implemented in
the Sketch language. The section shows how the basic integer hole can be used in con-
junction with standard language features to harness the power of the synthesizer, relieving
the programmer from some of the most tedious aspects of programming. The section also
gives a formal description of the set of programs that can be synthesized from a sketch. The
goal is to provide a complete picture of the sketching programming model.

2.1 The Basics

The Sketch language is built on top of a very small core consisting of a simple
procedural language and a single sketching construct: the integer hole denoted by the token
??. Form the point of view of the programmer, the integer hole is a placeholder that the

24

synthesizer must replace with a suitable integer constant. The synthesizer ensures that the
resulting code will avoid any assertion failures under all possible inputs. For example, the
following code snippet can be regarded as the �Hello World� of sketching.

void main(int x){

int y = x * ??;

assert y == x + x;

}

This program illustrates the basic structure of a sketch. It contains three elements you
are likely to �nd in every sketch: (i) a main procedure, (ii) holes, and (iii) assertions.
The assertions serve as a speci�cation for the sketch; they express safety and correctness
properties which the synthesized program should satisfy under all possible inputs to main1.
The hole is used to de�ne the range of action of the synthesizer. The synthesizer is free to
replace the integer hole with a constant, but not to add additional statements or to change
the behavior of the program in other ways. For the sketch above, the synthesized code will
look like this.

void main(int x){

int y = x * 2;

assert y == x + x;

}

Discovering the correct value of a constant may seem insigni�cant in the context
of the challenges faced by programmers, but for many di�cult programming tasks, this is
all that is needed to take a high level insight and turn it into an e�cient implementation.

As a small but realistic example of this, consider the problem of isolating the
rightmost 0-bit in a word x. For example, for the word 01010011, we would like to produce
a word containing a 1 in the position of the rightmost 0; that is 00000100. There is a trick
to do this using only three instructions. You may remember it: the trick takes advantage of
the fact that adding a 1 to a string of ones preceded by a zero turns all the ones into zeros
and turns the next zero into a one (i.e. 000111 + 1 = 001000) . You may not remember the
details, but with sketching you don't have to; you can let the synthesizer discover them. All

1As we will describe in further chapters, this guarantee will be weaker for many sketches. The strength
of the correctness guarantee is determined by the decision procedure used for validation. Since we restrict
ourselves to bounded decision procedures, we are only able to analyze integer inputs falling within a bounded
range

25

you need to remember is the general form of the solution to encode the problem as a sketch.
Speci�cally, you need to remember that the solution involved the addition of a constant to
x, a negation, and a bitwise and. The expression ~(x + ??) & (x + ??) encodes most of the
expressions matching this criteria, and when given a suitable speci�cation, the synthesizer
can easily �nd the right expression.

int W = 32;

void main(bit[W] x){

bit[W] ret = ~(x + ??) & (x + ??);

//specification: check that ret has the desired property.

bit found = 0;

for (int i = 0; i < W; i++)

if (found || x[i]) { assert ret[i]=0; }

else{ assert ret[i]=1; found = 1; }

}

In less than a second, the synthesizer is able to discover that the correct expression is
~(x+0) & (x + 1). If you think this problem was too easy given the initial hint, consider
this question: Can the same trick be used to �nd the rightmost 1? Without thinking too
hard about the problem, we can ask the sketch synthesizer:

int W = 32;

void main(bit[W] x){

bit[W] ret = ~(x + ??) & (x + ??);

//specification: check that ret has the desired property.

bit found = 0;

for (int i = 0; i < W; i++)

if (found || !x[i]) { assert ret[i]=0; }

else{ assert ret[i]=1; found = 1; }

}

It again takes less than a second for the synthesizer to tell us that yes, the same basic trick
applies, but now the expression is ~(x + 0xFFFFFFFF) & (x+0).

In the above example, it was relatively clear that the tricky details in the implemen-
tation involved discovering a few constants. In many cases, however, the details in question
do not involve any missing constants. For example, consider the problem of swapping two

26

bit-vectors x and y without using a temporary register. The insight is that the numbers can
be swapped by assigning x xor y to x and y repeatedly in a clever way. The challenge is to
�nd the right sequence of assignments. The insight, therefore, involves no integer constants,
but the integer hole can still be used to encode it:

int W = 32;

void main(bit[W] x, bit[W] y){

bit[W] xold = x;

bit[W] yold = y;

if(??){ x = x ^ y; }else{ y = x ^ y; }

if(??){ x = x ^ y; }else{ y = x ^ y; }

if(??){ x = x ^ y; }else{ y = x ^ y; }

assert y == xold && x == yold;

}

The sketch above uses the integer hole to encode the choice between assigning x ^ y

to x or to y. In less than a second, the synthesizer discovers that the three holes should
evaluate to false, true and false respectively. After replacing the holes with constants, the
synthesizer will perform a small amount of cleanup, eliminating the unnecessary conditionals
to produce the code shown below.

int W = 32;

void main(bit[W] x, bit[W] y){

bit[W] xold = x;

bit[W] yold = y;

y = x ^ y;

x = x ^ y;

y = x ^ y;

assert y == xold && x == yold;

}

The cleanup process performs some constant propagation and eliminates unneces-
sary conditionals. Its goal is not so much to optimize the code, but to make it cleaner and
more readable, and to eliminate structures that were there only for the purpose of giving
freedom to the synthesizer. For this reason, the cleanup process is biased towards predictabil-
ity, for example avoiding �xed point computations which may provide higher accuracy, but

27

make the cleanup slower and less predictable.

2.1.1 Stating it formally

The preceding section informally described how the synthesizer replaces the integer
holes to generate concrete programs. This section describes this process more formally by
providing a precise characterization of the set of programs that may be generated by the
sketch. This is accomplished by using the formalisms of online partial evaluation [9,22,41].

In the notation of Beckman et al. [9], online partial evaluation divides the inputs
to a program P (Q,A) into static Q and dynamic A. The idea is that program P is called
repeatedly with di�erent values for A but with identical values for Q. Therefore, it's worth-
while to produce a specialized program PQ(A) such that for all inputs A, PQ(A) = P (Q,A).
The specialized program PQ is generated by statically evaluating any expressions that de-
pend on static data, and generating residual code for those expressions in the program that
depend on the dynamic inputs.

In the case of sketching, each integer hole can be though of as a static input to
the sketch. The job of the synthesizer is to discover a correct value for these static inputs,
and then partially evaluate the sketch with respect to them. More formally, we can de�ne
a function φ : H → Z to denote an assignment of concrete values to holes in the sketch.
The set H is the set of integer holes in the program, so φ(??i) corresponds to the integer
value of the ith hole in the sketch. We call function φ a control, because it controls how the
generated program is going to behave. By partially evaluating a sketch P with respect to a
control φ, we can produce a candidate program PE(P, φ) = Pφ. Of course, not all candidate
programs will be valid solutions to the sketch; the job of the synthesizer is to �nd a control
φ that leads to a candidate program satisfying the speci�cation.

The partial evaluation procedure is de�ned by means of rewrite rules that describe
how the residual code is generated for each program construct. The partial evaluator main-
tains an internal state σ̂ : L → A, where L is the set of all variables in the program, and
A = Z∪{⊥} is a set of abstract values in the spirit of constant propagation: variables found
to be constant are mapped to their constant values; dynamic variables are mapped to the
special value ⊥ 2.

For expressions, the partial evaluation of an expression e under state σ̂ through
2For now, we assume all variables to be integers; the boolean values true and false are represented with

the integers 1 and 0 respectively.

28

control φ results in a residual expression e′ as well as a value v which corresponds to the
static value of expression e, or to ⊥ if expression e is dynamic.

〈e, σ̂〉 φ−→ 〈e′, v〉

The rules for expressions are fairly intuitive. For example, variables are evaluated
according to the following two rules:

σ̂(x) =⊥
〈x, σ̂〉 φ−→ 〈x,⊥〉

σ̂(x) = n 6=⊥
〈x, σ̂〉 φ−→ 〈n, n〉

(E-Var)

The rules encode the fact that if the variable has a known value, it will evaluate to that
value, and will be replaced in the code with a constant; if it has an unknown value, it will
evaluate to ⊥, and remain unchanged in the code.

Holes are replaced by their concrete value according to the control function φ.

φ(??i) ⇒ n

〈??i, σ̂〉 φ−→ 〈n, n〉
(E-Hole)

The rules for arithmetic correspond to standard partial evaluation rules. An integer
literal n is evaluated to a constant n and generates the literal n. In the notation, we use
the symbol ◦ to stand for an arbitrary binary operator, such as addition. The rules for ◦
evaluate the operator if both operands are constants. Otherwise, the residual expression is
generated. For operators with short-circuit behavior, rules like E-AndShort below are able
to produce a static value even if one of the inputs is not static.

〈n, σ̂〉 φ−→ 〈n, n〉 (E-Lit)

〈e1, σ̂〉 φ−→ 〈e′1, n1〉 〈e2, σ̂〉 φ−→ 〈e′2, n2〉 n1 ◦ n2 ⇒ n

〈e1 ◦ e2, σ̂〉 φ−→ 〈n, n〉
(E-Op1)

〈e1, σ̂〉 φ−→ 〈e′1,⊥〉 〈e2, σ̂〉 φ−→ 〈e′2, n2〉
〈e1 ◦ e2, σ̂〉 φ−→ 〈e′1 ◦ e′2,⊥〉

(E-Op2)

〈e1, σ̂〉 φ−→ 〈e′1, false〉 〈e2, σ̂〉 φ−→ 〈e′2, v〉
〈e1 ∧ e2, σ̂〉 φ−→ 〈false, 0〉

(E-AndShort)

Partial evaluation of statements produces a residual statement in addition to mod-
ifying the state.

29

〈c, σ̂〉 φ−→ 〈c′, σ̂′〉

The rule states that, given a state σ̂, a statement c is partially evaluated to a residual
statement c′ and a new state σ̂′ by using the control φ. In future sections, we will sometimes
use the notation PE(c, φ) = c′ as a shorthand for 〈c, σ̂〉 φ−→ 〈c′, σ̂′〉 when the �nal state is
not relevant. The partial evaluation rules for statements are shown below.

〈e, σ̂〉 φ−→ 〈e′, v〉
〈x := e, σ̂〉 φ−→ 〈x := e′, σ̂[x 7→ v]〉

(S-Asgn)

〈e, σ̂〉 φ−→ 〈e′, true〉 〈c1, σ̂〉 φ−→ 〈c′1, σ̂′1〉
〈if e then c1 else c2, σ̂〉 φ−→ 〈c′1, σ̂′1〉

(S-If1)

〈e, σ̂〉 φ−→ 〈e′,⊥〉
〈c1, σ̂〉 φ−→ 〈c′1, σ̂′1〉 〈c2, σ̂〉 φ−→ 〈c′2, σ̂′2〉 σ̂u = σ̂′1 ∩ σ̂′2
〈if e then c1 else c2, σ̂〉 φ−→ 〈if e′ then c′1 else c′2, σ̂u〉

(S-If2)

〈c1, σ̂〉 φ−→ 〈c′1, σ̂′1〉 〈c2, σ̂
′
1〉

φ−→ 〈c′2, σ̂′2〉
〈c1; c2, σ̂〉 φ−→ 〈c′1; c′2, σ̂′2〉

(S-Seq)

〈e, σ̂⊥〉 φ−→ 〈e′, v〉 〈c, σ̂⊥〉 φ−→ (c′, σ̂′)

〈while e do c, σ̂〉 φ−→ 〈while e′ do c′, σ̂ ∩ σ̂′〉
(S-While)

The special state σ⊥ maps all variables to ⊥. The intersection of two states used
in the S-If2 and the S-While rule is de�ned as σ̂1 ∩ σ̂2 = [x 7→ σ̂1(x) ∩ σ̂2(x)]. The ∩
operation on A is commutative, and is de�ned by the following rules: given two di�erent
values v1, v2 ∈ A, we de�ne v1 ∩ v1 = v1, v1 ∩ v2 = ⊥, and v1 ∩ ⊥ = ⊥.

An important property of the above rules is that they are purposely conservative
to avoid surprising the programmer. For example, the rule for loops does not attempt to do
any �xed point computation, allowing one to reason locally about how the body of the loop
will be transformed.

The last rule is the rule that simpli�es a procedure in the program. Each procedure
will be evaluated independently, and the result will be a concrete candidate for the sketch.

〈c, σ̂⊥〉 φ−→ 〈c′, σ̂′〉
〈(def f(in) c), σ̂〉 φ−→ 〈(def f(in) c′), σ̂〉

(F-Declaration)

30

These rules summarize the informal description of the language given earlier. While
the programmer doesn't need to know these rules in order to use the system, the fact that the
synthesizer operates according to them should make it easy for the programmer to develop
an intuition for the kind of code that may be generated by the Sketch synthesizer.

2.2 Abstraction in Sketch

Procedures are one of the most commonly used forms of abstraction in many lan-
guages. Procedures allow the programmer to hide the details of a computation behind a
simple interface. Sketch supports procedures exactly as one would expect: holes within
them are syntactically replaced with integers that ensure the correctness of the generated
program.

int linexp(int x, int y){

return ??*x + ??*y + ??;

}

void main(int x, int y){

assert linexp(x,y) >= 2*x + y;

assert linexp(x,y) <= 2*x + y+2;

}

For example, for the routines above, there are many di�erent solutions for the holes
in linexp that will satisfy the �rst assertion, and there are many that will satisfy the second
assertion, but the synthesizer will chose one of the candidates that satisfy them both.

int linexp(int x, int y){

return 2*x + y;

}

void main(int x, int y){

assert linexp(x,y) >= 2*x + y;

assert linexp(x,y) <= 2*x + y + 2;

}

The procedure linexp originally had holes, and therefore corresponded to a set
of functions. However, the synthesizer completed the holes to give the procedure a single
concrete meaning to be used across all calling sites. This gives procedures the same power of

31

abstraction that they would have in the absence of sketching. But, as the following example
illustrates, sketching creates the need for a mechanism to abstract sets of functions.

int[25] transpose5x5(int[25] mat){

int[25] out;

for(int i=0; i<5; ++i) for(int j=0; j<5; ++j){

out[??*i + ??*j+??] = mat[??*i + ??*j+??];

}

return out;

}

void main(int[25] mat, int i, int j){

int[25] out = transpose5x5(mat);

assert !(i < 5 && j < 5) || mat[i*5 + j] == out[j*5 + i];

}

In the above sketch, transpose5x5 is a procedure which abstracts the matrix trans-
pose function for 5 × 5 matrices. However, within the transpose procedure, the expres-
sion ??*i + ??*j + ?? is repeated twice. We would like to abstract this expression to
avoid redundancy in the code. However, we can not abstract this expression into a pro-
cedure because each use of ??*i + ??*j + ?? has to resolve to a di�erent linear expression.
Therefore, we need an abstraction which represents the entire set of functions encoded by
??*i + ??*j + ??, rather than a single one like the procedure does.

The Sketch language allows the programmer to abstract a set of functions into a
generator. For each use of the generator, the synthesizer is free to chose a di�erent function,
so generators can serve as an abstraction mechanism for what we call rich holes. For the
above example, we can abstract ??*i + ??* j + ?? into a generator that represents the set
of linear expressions involving i and j.

32

generator int legen(int i, int j){

return ??*i + ??*j + ??;

}

int[25] transpose5x5(int[25] mat){

int[25] out;

for(int i=0; i<5; ++i) for(int j=0; j<5; ++j){

out[legen(i,j)] = mat[legen(i,j)];

}

return mat;

}

Each call to the generator will resolve to a di�erent expression, resulting in a correct imple-
mentation for the 5× 5 transpose.

int[25] transpose5x5(int[25] mat){

int[25] out;

for(int i=0; i<5; ++i) for(int j=0; j<5; ++j){

out[5*i + j] = mat[i + 5*j];

}

return mat;

}

Programmers are encouraged to think of generators as procedures which are inlined into
their calling context before the sketch is synthesized, so each call to the generator will be
independent from every other call. They are similar to a macro, but with the advantage of
type safety, and the ability to be recursive.

Recursion greatly enhances the expressive power of generators over simple macros.
For example, the generator below uses recursion to describe the set of polynomials in x of
degree n.

generator int poly(int n, int x){

if(n == 0) return ??;

else return x * poly(n-1, x) + ??

}

33

For recursive generators, the semantics as functions which are inlined into their calling
context are a bit more problematic due to the issue of termination. In general, programmers
should avoid writing generators where the level of inlining is a function of the inputs to main,
but they can usually assume that the synthesizer will inline by the correct amount.

2.2.1 Stating it formally

The advantage of procedures is that we can reason about them locally; the syn-
thesizer can partially evaluate each procedure independently using the F-Declaration rule.
Calls to procedures are handled by partially evaluating their arguments.

(def f(in) c) 〈e, σ̂〉 φ−→ 〈e′, v〉
〈f(e), σ̂〉 φ−→ 〈f(e′), σ̂[@ 7→⊥]〉

(S-CallProc)

To simplify the exposition, procedure calls are assumed to be statements rather than expres-
sions. They return values by writing to a special variable @ and have no other side e�ects
besides writing to this variable.

By contrast, Generators require some additional machinery because the value of
each hole actually depends on the calling context. A calling context is de�ned formally as
a sequence of generator calling sites τ = gi0 · gi1 · . . . · gin , where the gik are the id's of each
calling site, and the · operator is used to denote concatenation. We use the symbol τ∅ to
refer to the empty call stack.

The function φ will now produce values for holes depending on their calling context.
We will use the notations φ(??i, τ) = φτ (??i) interchangeably to refer to the value of hole
??i under calling context τ .

With this extended notation, F-Declaration rule can be restated as follows.

〈c, σ̂⊥〉
φτ∅−−→ 〈c′, σ̂′〉

〈(def f(in) c), σ̂〉 φτ−→ 〈(def f(in) c′), σ̂〉
(F-Declaration)

This rule makes explicit the fact that the body of a procedure will always be partially
evaluated under the empty calling context τ∅.

By contrast, generator declarations are simply eliminated; this is because the gen-
erator doesn't have meaning on its own; its meaning is de�ned by its calling context.

〈(defgen g(in) c), σ̂〉 φτ−→ 〈empty, σ̂〉 (G-Declaration)

34

At each call site, the generator must be partially evaluated under the current calling context
and then inlined.

〈e, σ̂〉 φτ−→ 〈e′, v′〉
(defgen g(in) c) 〈c, σ̂⊥[in 7→ v′]〉 φτ ·gi−−−→ 〈c′, σ̂′〉
〈g(e), σ̂〉 φτ−→ 〈rename(in := e′; c′), σ̂[@ 7→ σ̂′(@)]〉

(S-CallGen)

The rule is a little more involved than some of the previous rules. The rule constructs
a new calling context τ · gi by appending the id of the current call to the current calling
context. The partially evaluated body of the generator is inlined into the original call site,
and variables are renamed to avoid name con�icts.

The handling of generators shares some similarities with polyvariant partial evalu-
ation [16]. Polyvariant partial evaluation deals with the case when a function may be called
with many di�erent values for its static parameters, just like generators can be called under
many di�erent calling contexts. One of the main issues in polyvariant partial evaluation
is how to avoid an explosion in the number of di�erent versions of a given function. In
Section 3.2.1 I will elaborate on how generators deal with the this issue; it will be done
primarily by placing bounds on the recursive application of the S-CallGen rule.

The notation is a little intimidating, but in practice, generators are similar enough
to macros and inlined procedures that they should be easily assimilated by programmers in
the �eld.

2.3 Concurrency in Sketch

One of the most compelling applications of sketching is the synthesis of concurrent
datastructures. In order to express them, we extended the Sketch language to give users the
ability to launch threads and de�ne synchronization primitives. None of these features are
speci�c to sketching; they are just standard concurrency primitives. The insights involved
in concurrent programs can be very di�erent from those involved in sequential programs,
but the same sketching constructs which proved useful in the sequential case can be used
to express insight about synchronization and mutual exclusion in concurrent sketches. The
application of sketching to concurrent data structures did inspire us to create a number
of high-level sketching constructs which are particularly useful when writing concurrent
sketches. However, none of these constructs are speci�c to concurrent datastructures; in
fact, they've proven extremely useful for sequential sketches as well.

35

Sketch supports a fork-join concurrency model. Threads are created with the con-
struct fork (int i, N) c which spawns N threads and blocks until all N threads terminate.
Each thread executes the statement c. Each thread has a unique thread id ranging from 0

to N − 1 that can be read from the index variable i. The current version of the Sketch
system limits the structure of sketches to contain a single fork. This is only for engineering
reasons, as the algorithms used to handle concurrency generalize relatively easily to multiple
and even nested fork statements.

All variables declared inside c are thread-local. All other variables, together with
the heap, constitute sequentially consistent shared memory. In other words, all reads and
writes to shared variables occur atomically, and the result of the computation will always
correspond to some sequential ordering of the operations of all the threads. As we shall see
in Chapter 8, the synthesis algorithm will exploit this property extensively.

The Sketch language also includes support for synchronization primitives. De-
ciding on a set of primitives to support was a challenge because of the variety of synchro-
nization primitives supported by various platforms. Moreover, we also wanted to support
atomic primitives such as compare-and-swap (CAS), which are supported in some platforms,
and which are very useful in de�ning lock-free data structures.

To address this problem while keeping the language small, the Sketch language
has native support for a single synchronization construct: the conditional atomic section [40].
A conditional atomic is an atomic section that blocks until its condition holds. Conditional
atomics are a very high level synchronization construct which is very di�cult to imple-
ment e�ciently in a general setting. However, it can be used to de�ne a wide range of
synchronization primitives, from basic locks, to semaphores, to atomic primitives such as
compare-and-swap. The idea is that implementations of the language can be customized to
support the synchronization primitives available in the target platform, but the primitives
can be can be described at the language level using the conditional atomic section.

As an example of this, consider the basic lock. A lock can be easily expressed in
terms of conditional atomics as shown below.

36

struct Lock {

int owner = -1;

}

lock(Lock lk) {

atomic(lk.owner == -1){

lk.owner = pid;

}

}

unlock(Lock lk) {

assert lk.owner == pid;

lk.owner = -1;

}

It is worth noting that Sketch does not support spin-locks, so even they must
be modeled using conditional atomics. We discuss this limitation in more general terms in
Chapter 7.

2.4 Syntactic Sugar

We conjecture that the language described so far contains the basic ingredients
needed to describe arbitrary sets of programs. Even if this is so, however, the language is
relatively low level, which can sometimes make it di�cult to express programmer's insight in
a sketch. To simplify the sketching process, Sketch o�ers a rich set of higher level sketching
constructs which are implemented as syntactic sugar over the base language, and which allow
users to more naturally express intent without getting bogged down in the details.

2.4.1 Higher level constructs

We currently support three high level sketching constructs which have shown to be
very e�ective in writing sketches: (i) a repeat construct for repeated patterns (ii) regular-
expression expression generators, (iii) a reorder block.

Repetition Often in a sketch, we want to express the fact that a block is composed of N

statements, all of which can be generated from the same sketched statement. The construct
repeat(e){ body; } allows us to express this concept in a clean and concise way as illustrated
by the following example.

Consider the problem of computing the logarithm base two of an integer represented
as a vector of bits. A strategy for this can be succinctly described as follows:

Computing the logarithm base two is equivalent to �nding the index of the most
signi�cant 1 in the word. We can compute this logarithmically through a divide
and conquare approach. Use a bitmask to focus on one half of the current word at
a time. The value of the most signi�cant bit of the answer will be one if the �rst

37

half of the word contains a 1, and zero otherwise. Follow this logic recursively
to compute the subsequent bits of the answer; i.e. take the half which contained
the most signi�cant 1 and divide it in half to �nd the second most signi�cant bit
of the answer, and so forth.

In the above algorithm, the step that has to be repeated involves checking whether
a fragment of the word is equal to zero, and if it isn't, then setting the correct bit in the
answer to 1 and shifting the current value so that on the next iteration, the fragment of
interest will be in the same position regardless of whether the 1 was in the �rst half or the
second half. We need to do this a few times; it's not immediately obvious how many, but
we can use the repeat construct to leave this decision up to the synthesizer.

bit[W] sklog2(bit[W] in){

bit[W] ret = 0;

repeat (??){

if (!iszero(in & ??)) { //Is the chosen fragment equal to zero?

ret = ret | ??; // If not, set a bit in the output to one

in = in >> ??; // and realign

}

}

return ret;

}

Note that repeat is di�erent from a for loop because the body of repeat will
actually be replicated, so the holes in each iteration may contain di�erent values.

In general, writing a statement of the form

. . .

repeat(e){ body; }

. . .

is equivalent to declaring a generator like the one below, and then calling it as repeatGen(vars, e);,
where vars is the set of variables referenced by the body of the loop.

38

generator void repeatGen(ref vars, int i){

if(i > 0){

body;

repeatGen(vars, i-1);

}

}

Regular-expression expression generators Regular-expression generators (hereafter
Re-generators) allow the programmer to sketch both r-value and l-value expressions with a
restricted regular grammar.

The Re-generator construct has the form {|e|}, where e is a regular expression
literal. The semantics of the construct is that the synthesizer substitutes the syntactic
occurrence of the construct with a string from L(e) such that the substitution resolves the
sketch. Re-generators are not simply expanded as macros, however; for programmability,
we require that each component regular expression e be well typed.

Re-generators are typically used to enumerate symbolic memory locations or val-
ues. For example, the following PSketch fragment shows how we sketched the use of a
compare-and-swap (CAS) instruction in a concurrent doubly-linked data structure.

CAS({| head(.next)? (.next)? |},

{| newNode(.next|.prev)? |},

{| newNode(.next|.prev)? |})

The programmer's insight is that the CAS should compare a node in the neighborhood of
head with some node in the neighborhood of newNode, and if they match, replace the �rst
node with a node in the neighborhood of newNode. The Re-generators are used to specify
these sets of nodes, so the code above e�ectively speci�es 27 di�erent possible uses of CAS
that match the programmer's intuition.

We made a design decision to support only two regular expression operators:
choices e1 | e2 and optional expressions e?. The exclusion of Kleene closure might seem
arbitrary at �rst sight, but keep in mind that Re-generators are used to generate bounded
program text. In real code, it is unusual to �nd chains of pointer dereferences of the form
{|p(.next)*|} with more than two or three levels of dereferencing, so adding Kleene closure
would increase the search space without any signi�cant programmability bene�t.

39

#define NODE {| (tprev|cur|prev)(.next)? |}

#define COMP {| (!)? ((null|cur|prev)(.next)? ==

(null|cur|prev)(.next)?) |}

while(cur.key < key){

Node tprev = prev;

reorder {

if (COMP) { lock (NODE); }

if (COMP) { unlock (NODE); }

prev = cur;

cur = cur.next;

}

}

Figure 2.1: A sketch of hand-over-hand locking.

Reorder block Concurrent data structures often depend on careful statement ordering to
satisfy desired invariants. For this reason, we extended PSketch with a reorder construct
that leaves the synthesizer in charge of determining the correct order for the statements
in a block of code. The synthesizer considers all possible orders of these statements and
selects one that, together with other choices made by the synthesizer, turns the sketch into
a program that meets the speci�cation.

One of the most compelling uses of reorder is to describe a �soup� of operations
which, when ordered in the right sequence, can produce a correct program. We saw an
example of this in the introduction, where we used reorder in the hand-over-hand locking
sketch. In this example we knew that we had to acquire and release some locks, and also
walk some pointers, so we placed this soup of operations in a reorder block and allowed the
synthesizer to discover an ordering that would guarantee mutual exclusion. The sketch is
shown in Figure 2.1, and the synthesized code is shown in Figure 2.2. Note how the synthe-
sizer used the freedom to reorder statements to discover the correct strategy for acquiring
and releasing the locks. 3

3Sketch does not necessarily resolve reorder so that it minimizes mutual exclussion. If optimality is
desired, we believe the best way to achieve it is to synthesize many correct candidates and select the best
one by measuring the performance of each, as is done in autotuning [12]. Still, the programmer can use

40

while(cur.key < key){

if (prev != null)

unlock (prev);

lock (cur.next);

prev = cur;

cur = cur.next;

}

Figure 2.2: The sketch from Figure 2.1, resolved.

2.4.2 Reference Implementations as Speci�cations

There is a large class of problems for which it is easy to write a reference imple-
mentation if one doesn't care much for performance. It's only when one tries to write an
e�cient implementation that the programming task becomes di�cult. When sketching such
programs, it makes sense to us a reference implementation as a speci�cation by asserting
that, for all inputs, the output of the sketched implementation must match the output of
the reference one. For example, in Section 2.4.1, we showed a sketch sklog2 for an e�cient
implementation of a procedure to compute the logarithm base two of an integer. To ensure
that the implementation produced by the synthesizer is correct, we can require that sklog2
be equivalent to a simpler but ine�cient implementation of log2.

bit[W] log2(bit[W] in) {

bit[W] i = castInt(W);

bit[W] minusone = 0; minusone = !minusone;

for(int t=0; t<W; ++t){

i = i + minusone;

if (in[(int)i]){

return i;

}

}

}

assert statements to constrain solutions to only those with mutexes that are, e.g., separated by at most two
statements.

41

void main(bit[W] in){

assert sklog2(in) == log2(in);

}

The Sketch language provides some syntactic sugar to make it easier to assert
these equivalences. In Sketch, we use the keyword implements to declare that one proce-
dure should be equivalent to another procedure. Therefore, rather than writing the main
procedure above, we can simply add implements log2 to the declaration of sklog2.

bit[W] sklog2(bit[W] in) implements log2{

. . .

}

The implements keyword can be understood as syntactic sugar. Declaring that
one procedure p1(in) implements another procedure p2(in) is equivalent to adding an extra
input in to main, and adding assert p1(in) == p2(in); at the beginning of main. How-
ever, the Sketch synthesizer also exploits the additional semantic information provided by
implements regarding the equivalence of the two procedures. For example, if the sketch is
recursive, the synthesizer will replace recursive calls to the sketch with calls to the spec.

The sketch language together with these higher-level constructs and syntactic sugar
provides an expressive language to communicate insight through partial programs. The
challenge is to develop a synthesis algorithm that is able to use this insight to e�ciently
produce the implementation desired by the programmer. In the next section I describe the
synthesis algorithms I developed as part of this thesis which make synthesis from partial
programs possible.

42

Part II

Solution of Sequential Sketches

43

Chapter 3

Synthesis Semantics of Sketch

The Sketch synthesizer resolves sketches by formulating the synthesis problem
as a constraint satisfaction problem. In order to do this, it needs a precise de�nition of
the semantics of a sketch that allows it to reason about the correctness of the sketch as a
function of the holes. In principle, the semantics of a sketch can be trivially de�ned in terms
of the semantics of all the programs which the sketch can generate. But in practice, it is
di�cult to answer semantic questions about a sketch if these have to be reduced to semantic
questions about each of its candidate solutions. Instead, we need a formalism which allows
us to: (i) describe the semantics of all the candidates simultaneously, (ii) reason about how
the value of each hole a�ects the meaning of the synthesized program, and (iii) reason about
which values for the holes are valid and which ones are not.

This section introduces the synthesis semantics of the Sketch language, described
using the formalisms of denotational semantics [55]. The semantics satis�es our three desired
attributes. It describes the semantics of all candidates simultaneously by tracking the value
of each variable as a function of the control φ, the concrete values assigned to each hole. This
allows us to understand how changes in the values of holes a�ect the state of the program
and therefore its meaning. Additionally, the synthesis semantics tracks how each statement
in the program a�ects the set of valid controls, and therefore the set of valid candidates.
The semantics will enable a simple constructive de�nition for the set of valid solutions to a
sketch which Chapter 4 will use to frame the synthesis problem as a constraint satisfaction
problem.

44

L The set of variables in the program. x is used to refer to an
arbitrary variable.

H The set of holes in the program. All holes are assumed to be
uniquely labeled as ??i.

T The set of calling contexts. A calling context τ = gi0 · gi1 ·
. . . · gin is a sequence of generator call sites. τ∅ is the empty
context.

Φ = H × T → Z The set of control functions. A control φ corresponds to a
particular assignment of integers to holes, where each hole is
identi�ed by its label ??i together with its calling context τ .

P(Φ) The powerset of Φ. Φ is used to refer to a given subset of
Φ.

Ψ = Φ → Z The set of parameterized values. A parameterized ψ value
produces an integer for each control.

Σ = L → Ψ The set of all states. A state σ maps each variable to a
parameterized value.

Figure 3.1: Notation for the synthesis semantics of Sketch

3.1 Preliminaries

The synthesis semantics tracks the relationships between the values of the holes
and the values of variables in the program for an arbitrary candidate. To better illustrate
how this is done, I will rely on two very simple examples. The �rst one is the �Hello World�
program introduced in Section 2.1; it is shown below with the hole numbered to make it
easier to identify later.

void main(int x){

int y = x * ??0;

assert y == x + x;

}

The second one is a small variation of the �Hello World� program which uses generators
to help illustrate how the semantic rules behave in their presence. The call sites for the
generators have been labeled with an identi�er to help us to refer to them in the text.

generator int linexp(int t){

return t*??0 + ??1;

}

45

generator int linexp2(int t1, int t2){

return linexpg1(t1) + linexpg2 (t2);

}

void main(int x, int z){

int y = linexp2g0(x, z);

assert y == x + x + z;

}

The �rst important concept underlying the synthesis semantics is the concept of a
control function φ : H × T → Z introduced earlier in Section 2.1.1. The control function
describes the value of each hole in the program, and therefore fully characterizes a candidate
solution to the sketch. The control also takes as a parameter a calling context τ because
the value of holes in generators depends on the calling context. In the simple HelloWorld

example, there is only one hole, and because there are no generators, the only calling context
is the empty calling context τ∅, so the domain of any φ for this sketch is just the singleton
set {(??0, τ∅)}. For the second example, there are two holes, and two di�erent valid calling
contexts for these holes: τ1 = g0 · g1 and τ2 = g0 · g2. Therefore, any φ for this sketch must
de�ne a value for each of the following four pairs of holes and calling contexts: (??0, τ1),
(??0, τ2), (??1, τ1), (??1, τ2).

The second important concept is the parameterized value. In order to track the
semantics of all candidate solutions simultaneously, the synthesis semantics must track the
value of each variable as a function of the control φ. We refer to such a function as a
parameterized value because it is parameterized by φ. The greek letter Ψ designates the
set of all parameterized values. For example, for the �rst sketch, y has the parameterized
value λφ.x ∗φ(??0, τ∅), where x is the value of the input x. In the case of the second sketch,
the one with generators, y has the parameterized value λφ.x ∗ φ(??0, τ1) + φ(??1, τ1) + z ∗
φ(??0, τ2) + φ(??1, τ2).

The extensive use of parameterized values wherever standard denotational seman-
tics would have used integers is what allows the synthesis semantics to track the relationship
between the values of holes and the values of variables in the program. The notation is sum-
marized in Figure 3.1.

46

expressions e ::= n | x | x[e] | e ◦ e | ??
statements c ::= x := e | x[e] := e | skip | f(e) | c ; c |

if e then c else c | assert e |
while e do c

functions f ::= def f(x) c

generators g ::= defgen g(x) c

programs p ::= p f | p g | ε

Figure 3.2: Abstract syntax for a simpli�ed subset of the Sketch language

3.2 The Semantics

The synthesis semantics are described formally through a very simple model lan-
guage described by the abstract syntax in Figure 3.2. The language has been simpli�ed in
a few cosmetic ways to make the presentation simpler. For example, the operator ◦ is used
to denote an arbitrary binary operator. Expressions are assumed to have no side e�ects;
expressions that might lead to an error, such as out of bounds array accesses or division by
zero, are assumed to be preceded by an appropriate assertion so the expressions themselves
can be modeled as being side e�ect free. Procedure calls are assumed to be statements
rather than expressions; they return values by writing to a special variable @, and they have
no other side e�ects besides writing to this variable and possibly causing assertion failures.

Parameterized values allow us to de�ne the synthesis semantics following many
of the formalisms of standard denotational semantics. As in denotational semantics, the
meaning of an expression is de�ned recursively through a denotation function.

A[[◦]]τ : Aexp → (Σ → Ψ)

The denotation function de�nes the meaning of any expression as a function from a state
to a parameterized value. The state σ : L → Ψ of the program is a mapping from the set of
variable names L to parameterized values. The τ in the denotation function indicates the
calling context under which the interpretation is taking place.

The denotation function is de�ned recursively for various types of expressions, quite
similar to the way these functions are de�ned in denotational semantics. The only new rule
is the rule for evaluating a hole, which produces a function that takes in a control φ, and

47

produces the value of the hole on that control under the current calling context τ .

A[[x]]τσ = σ(x)

A[[??i]]τσ = λφ.φ(??i, τ)

A[[e1 ◦ e2]]τσ = λφ. A[[e1]]τσφ ◦ A[[e2]]τσφ

For example, for the generator linexp in the second example, the denotation func-
tion for the return expression is de�ned as follows:

A[[t ∗ ??0 + ??1]]τσ = λφ. A[[t ∗ ??0]]τσφ + A[[??1]]τσφ

= λφ. A[[t]]τσφ ∗ A[[??0]]τσφ + φ(??1, τ)

= λφ.σ(t) ∗ φ(??0, τ) + φ(??1, τ)

Unlike expressions, commands have side e�ects. To model these, the denotation
function de�nes the meaning of a command as a transformation on a state and a set of
candidate controls. From the initial state and control set, the command produces an updated
state and a subset of the original control set containing only those controls which are valid
for that command, i.e. those that do not cause assertion failures. Expressions do not need to
track these sets because, as was said earlier, we have assumed that evaluation of expressions
will never lead to errors.

C[[◦]]τ : Command → (〈Σ , P(Φ)〉 → 〈Σ , P(Φ)〉)

The two most basic rules are those for assertions and assignments.

C[[x := e]]τ 〈σ, Φ〉 = 〈σ[x 7→ A[[e]]τσ] , Φ〉
C[[assert e]]τ 〈σ, Φ〉 = 〈σ, {φ ∈ Φ : A[[e]]τσφ = 1}〉

Assignments modify only the state while leaving the set of candidate controls unmodi�ed.
Assertions, on the other hand, narrow the set of valid controls, to include only those that
will cause the assertion to succeed.

Sequencing of commands is easy to de�ne; it is just a composition of two functions.

C[[c1; c2]]τ 〈σ, Φ〉 = C[[c2]]τ (C[[c1]]τ 〈σ, Φ〉)

48

Example. To illustrate how these rules operate, consider the denotation function for the
body of the HelloWorld example. For this example, the initial state will just map the input
variable x to a symbolic input value x.

C[[y = x * ??0; assert y == x + x;]]τ 〈[x 7→ x] , Φ〉
= C[[assert y == x + x]]τ C[[y = x * ??0]]τ 〈[x 7→ x] , Φ〉

In that equation, C[[y = x * ??0]]τ 〈[x 7→ x] , Φ〉 evaluates to the following pair.

C[[y = x * ??0]]τ 〈[x 7→ x] , Φ〉 = 〈[x 7→ x, y 7→ (A[[x * ??0]]τ [x 7→ x])] , Φ〉
= 〈[x 7→ x, y 7→ λφ.x ∗ φ(??0, τ∅)] , Φ〉

Therefore,

C[[assert y == x + x]]τ C[[y = x * ??0]]τ 〈[x 7→ x] , Φ〉
= C[[assert y == x + x]]τ 〈[x 7→ x, y 7→ λφ.x ∗ φ(??0, τ∅)] , Φ〉
= 〈[x 7→ x, y 7→ λφ.x ∗ φ(??0, τ∅)] , {φ ∈ Φ : x ∗ φ(??0, τ∅) == x + x}〉

The resulting pair tells us what we needed to know about the semantics of the
HelloWorld program. On the one hand, it shows the exact relationship between the state
and the choice of value for the hole. On the other hand, it constrains the set of valid control
functions to those satisfying the relationship x ∗ φ(??0, τ∅) == x + x.

The if rule, is a little more involved due to the handling of Φ. In an if statement,
each branch is evaluated under the subset of Φ that would cause the program to take that
branch, and the resulting sets of controls are combined through set union. In the rules below
we use the notational shortcut a?b:c to represent the function that returns b if a is true and
c otherwise.

C[[if e then c1 else c2]]τ 〈σ, Φ〉 = 〈σ′ , Φ′〉

where σ′ and Φ′ are de�ned through the following equations:

Φt = {φ ∈ Φ : A[[e]]τσφ = true}
Φf = {φ ∈ Φ : A[[e]]τσφ = false}

〈σ1 , Φ1〉 = C[[c1]]τ 〈σ, Φt〉
〈σ2 , Φ2〉 = C[[c2]]τ 〈σ, Φf 〉

Φ′ = (Φ1) ∪ (Φ2)

σ′ = λx.λφ. A[[e]]τσφ ? σ1xφ : σ2xφ

49

while loops are handled in a similar way as they are handled in regular denotational
semantics, by de�ning their denotation function recursively.

W (〈σ, Φ〉) = C[[while e do c]]τ 〈σ, Φ〉 = 〈σ′ , Φ′〉
Φt = {φ ∈ Φ : A[[e]]τσφ = 1}
Φf = {φ ∈ Φ : A[[e]]τσφ = 0}
〈σ1 , Φ1〉 = W (C[[c]]τ 〈σ, Φt〉)

Φ′ = (Φ1) ∪ (Φf)

σ′ = λx.λφ. A[[e]]τσφ ? σ1xφ : σxφ

For some loops, it is possible to solve the equation above to derive a closed form
expression for W . For example, consider the loop below.

wihile i < N do

assert ??0 > i

i = i+1

For this loop, the closed form solution for W is

W (σ,Φ) =

σ(i) < N 〈σ[i 7→ N] , Φ ∩ {φ : φ(??0) > N − 1)}〉
else 〈σ, Φ〉

(3.2.1)

One can check that this function satis�es the recursive constraints for W . First,
let i0 = σ(i) and c0 = φ(??0). Then, Φt and Φf are de�ned as follows.

Φt =

i0 < N Φ

else ∅
and Φf =

i0 < N ∅
else Φ

Then, evaluating the body of the loop under 〈σ, Φt〉 becomes

C[[c]]τ 〈σ, Φt〉 =

i0 < N 〈σ[i 7→ i0 + 1] , Φ ∩ {φ : φ(??0) > i0}〉
else 〈σ[i 7→ i0 + 1] , ∅〉

(3.2.2)

Thus, if we let 〈σ1 , Φ1〉 = W (C[[c]]τ 〈σ, Φt〉), then we have the following de�nitions

50

for σ1 and Φ1 by equation Equation (3.2.1).

σ1 =

i0 + 1 < N σ[i 7→ N]

else σ[i 7→ i0 + 1]

Φ1 =

i0 + 1 < N (Φ ∩ {φ : φ(??0) > i0}) ∩ {φ : φ(??0) > N − 1}
i0 + 1 ≥ N ∧ i0 < N (Φ ∩ {φ : φ(??0) > i0})

else ∅

From this, it is easy to see that both Φ′ = Φ1 ∪ Φf satis�es the de�nition of W .

Φ1 ∪ Φf =

i0 + 1 < N ∧ i0 < N (Φ ∩ {φ : φ(??0) > i0}) ∩ {φ : φ(??0) > N − 1}
= Φ ∩ {φ : φ(??0) > N − 1}

i0 + 1 ≥ N ∧ i0 < N Φ ∩ {φ : φ(??0) > i0} = Φ ∩ {φ : φ(??0) > N − 1}
else ∅ ∪ Φ = Φ

Similarly, σ′ = λx.λφ. A[[e]]τσφ ? σ1xφ : σxφ, also satis�es the de�nition for W , since σ′(i)

now has the following value.

σ′(i) =

i0 + 1 < N ∧ i0 < N N

i0 + 1 ≥ N ∧ i0 < N i0 + 1 = N

else i0

Unfortunately, the problem of �nding a closed form for the W function of a loop is
undecidable. In our synthesizer, we will get around this problem by bounding the number of
iterations of loops. For states σ that cause the loop to iterate more than the allowed number
of times, we de�ne W (σ,Φ) = (σ′, ∅). In practice this will mean that our synthesizer may
fail to �nd a solution to a sketch when one actually exists, or more commonly, that the user
will have to make sure that the bounds in the number of iterations are enough to handle all
the inputs that the synthesizer may consider.

There are still some semantics left to describe, namely the semantics of procedures
and generators, and the current limited support for language features such as arrays and heap
allocated objects. However, I have covered the major ideas behind the synthesis semantics,
which will allow us to de�ne the set of valid solutions to a sketch in Section 3.3, and
subsequently to reason formally about our novel counterexample guide inductive synthesis
algorithm (Chapter 4).

51

3.2.1 Procedures and Generators

Procedure calls behave as we would expect from standard denotational semantics.
For a function de�ned as def f(x) c, the semantics of a call to f(e) are de�ned by evalu-
ating the body of the function under the empty calling context τ∅ , and the initial state
σ⊥[x 7→ A[[e]]τσ], where σ⊥ is the empty state.

〈σ′ , Φ′〉 = C[[c]]τ∅〈σ⊥[x 7→ A[[e]]τσ] , Φ〉 (3.2.3)

C[[f(e)]]τ 〈σ, Φ〉 = 〈σ[@ 7→ σ′(@)] , Φ′〉 (3.2.4)

In the de�nition, the return value of f is stored in the special variable @ as explained before.
The evaluation of generators is only slightly di�erent. Instead of evaluating the

body under the empty calling context, the body is evaluated under the calling context τ · gi,
where gi identi�es the current call site for the generator. Therefore, the semantics for a call
to a generator de�ned as defgen g(x) c from a call site gi are de�ned by the formulas below.

〈σ′ , Φ′〉 = C[[c]]τ ·gi〈σ⊥[x 7→ A[[e]]τσ] , Φ〉 (3.2.5)

C[[g(e)]]τ 〈σ, Φ〉 = 〈σ[@ 7→ σ′(@)] , Φ′〉 (3.2.6)

An interesting observation is that procedure calls have the e�ect of forgetting the
calling context, so generators called from a procedure will behave the same regardless of the
calling context of the procedure.

Bounded Semantics for Generators

As we saw in Section 2.2, a generator represents a set of functions, and the synthe-
sizer is free to select any of these functions to replace a call to the generator. However, there
is a problem with the way we de�ned the synthesis semantics for generators: they make
generators too powerful. So powerful, in fact, that they can represents sets which include
functions that are not even computable, a clear problem if we expect to synthesize code
from them.

The problem is that the semantics de�ned so far allow programmers to write
sketches which can only be resolved with an in�nite φ. A trivial example of this would
be the universal generator:

52

generator int univ(int x){

if(abs(x) > 0){ return univ(abs(x)-1); }

else { return ??; }

}

According to the synthesis semantics, the generator above can be made to represent any
function in the set N → Z, even though we know some functions in this set are not com-
putable.

This problem is closely related to the problem of non-termination in the partial
evaluation procedure from Section 2.2.1. Any control φ that causes a generator to resolve
to a non-computable function will lead to non-termination in the partial evaluation of the
generator (the converse is not true).

To address this problem, we provide a slight modi�cation to the semantics which
we call bounded generator semantics. Bounded generator semantics bounds the recursion
of generators by specifying a bounded set of call stacks τ̄ . Thus, for a generator de�ned
as defgen g(x) c, the semantics of a call to g at call site gi now involve a check of whether
τ ∈ τ̄ .

〈σ′, Φ′〉 = C[[c]]τ ·gi〈σ⊥[x 7→ A[[e]]τσ], Φ〉 (3.2.7)

C[[g(e)]]τ 〈σ,Φ〉 =

〈σ[@ 7→ σ′(@)], Φ′〉 if τ ∈ τ̄

〈σ, ∅〉
(3.2.8)

One can see from the formulas that trying to evaluate a generator when the current stack
doesn't belong to τ̄ has the same e�ect as an assertion failure.

In order to keep the synthesis semantics consistent with the partial evaluation
procedure, we need to make a corresponding change to the rules for partial evaluation of
generators.

(defgen g(in) c) 〈e, σ̂〉 φτ−→ 〈e′, v′〉
τ ∈ τ̄ 〈c, σ̂⊥[in 7→ v′]〉 φτ ·gi−−−→ 〈c′, σ̂′〉

〈g(e), σ̂〉 φτ−→ 〈rename(in := e′; c′), σ̂[@ 7→ σ̂′(@)]〉
(S-CallGen)

τ /∈ τ̄

〈g(e), σ̂〉 φτ−→ 〈assert false, σ̂[@ 7→⊥]〉 (S-CallGen2)

With this change it becomes possible to prove a correspondence between the partial
evaluation procedure and the synthesis semantics of Sketch. Bounding the recursion of

53

generators also brings us one step closer towards making the synthesis semantics decidable.

3.2.2 Additional Constructs

The sketch language also supports bounded arrays. It wouldn't be too hard to
de�ne the semantics for unbounded arrays, but bounded arrays are easier to describe, and
they are the only ones our synthesizer supports so far. Bounded arrays are easier to describe
because we simply represent them as a set of individual scalar variables, one for each element.
Thus, for example, an array x of size n will be treated as n independent variables x1 to xn.
This makes the semantics of array reading and writing straightforward. Reading element e

from an array is merely a switch statement.

A[[x[e]]]τσ = λφ.switch(A[[e]]τσφ)(case 1 : σ(x1)φ; . . . case n : σ(xn)φ) (3.2.9)

Similarly, an assignment to element e updates every single element in the array
with a conditional expression.

C[[x[e] := u]]τ 〈σ, Φ〉 = 〈σ[xi 7→ λφ. A[[e]]τσφ = i? A[[u]]τσφ:σ(xi)φ] , Φ〉 (3.2.10)

The Sketch language also o�ers support for pointers and heap allocated objects,
but instead of de�ning them as part of the core language, we implement them as syntactic
sugar by modeling the heap with a set of arrays, one for each �eld for each type of object.
A pointer is an index that is used to access these arrays, making �eld dereference a com-
mon array access. The language also supports reference parameters to functions; these are
currently implemented with copy-in copy-out semantics; in other words, the values of the
actual parameters are copied into the formal parameters before the call. After the call, the
last value of the formal parameters is copied back to the actual parameters.

3.3 The Sketch Resolution equation

In Sketch, it is required that all sketches have a main procedure which constitutes
the entry point to the sketch. The semantics of a program P are thus de�ned in terms of
the e�ect of calling its main procedure.

C[[P]]τ 〈σ, Φ〉 = C[[main(in)]]τ∅〈σ, Φ〉 (3.3.1)

54

From this de�nition, we can de�ne a set of valid controls Φ to be one which satis�es
the sketch resolution equation.

Equation 1 (Sketch Resolution) The set of controls Φ is said to be valid if it is invariant
under C[[P]]τ∅ for any initial state, as expressed in the equation below. The projection
function πΦ extracts the set Φ from a pair 〈σ, Φ〉.

∀ σ πΦ(C[[P]]τ∅〈σ, Φ〉) = Φ (3.3.2)

I will use Φ∗ to denote the maximal set of legal controls, or maximal solution to the sketch.
This maximal set can be de�ned constructively as the greatest �xed point of a function that
processes an input set of controls with a non-deterministically selected initial state.

F (Φin) := let σ ∈ Σ then (C[[P]]τ∅〈σ, Φin〉 = 〈σ′ , Φout〉; return Φout)

Chapter 4 will explain how to use the synthesis semantics to symbolically approx-
imate Φ∗.

3.4 Important properties of the semantics

This section presents a handful of theorems and lemmas that follow from the de�n-
itions of the synthesis semantics. Section 3.4.1 shows that the result of partially evaluating a
program with a control φ is consistent with the behavior of the program as described by the
synthesis semantics. Section 3.4.2 presents a handful of algebraic properties of the synthesis
semantics rules which will enable some optimizations in our sketch synthesis algorithm.

3.4.1 Soundness of the Partial Evaluation Rules

An important feature of the synthesis semantics is that it should be consistent
with the programmer's view of sketching de�ned in Chapter 2 through partial evaluation.
Consistency means that partially evaluating a sketch P under any control φ ∈ Φ∗ in the
maximal solution to the sketch resolution equation, should produce a concrete program
that will satisfy all its assertions under all possible inputs. Additionally, the behavior of
this concrete program should be consistent with the behavior that the synthesis semantics
de�nes for the sketch under control φ, so if a variable x has value v in the concrete program,

55

σ(x)φ in the synthesis semantics should also equal v. These two requirements are stated
formally in the following theorem.

Theorem 3.4.1 (Soundness of Programmer's View) Let Φ∗ be a maximal solution to
sketch P as de�ned in Section 3.3, and let φ ∈ Φ∗ and Pφ = PE(P, φ). Then, the following
three equations must hold for all input states σ whenever the synthesis semantics converge
(i.e. the programs terminate).

C[[P]]τ∅〈σ, Φ∗〉 = 〈σs , Φ∗〉 (3.4.1)

C[[Pφ]]τ∅〈σ, Φ〉 = 〈σφ , Φ〉 (3.4.2)

∀x ∈ L. σs(x)φ = σφ(x)φ (3.4.3)

Note the equations above express two separate properties: 1) The equivalence of the �nal
states. 2) The fact that Pφ will not fail any assertion.

Proof Outline I will only show an outline of the proof, as the actual proof is rather
mechanical. The proof strategy for both claims in the theorem is to do induction on the
structure of the derivation; similar in spirit to the way Gomard proved the correctness of
partial evaluation for lambda calculus [34].

Equivalence of states The proof for the equivalence of states involves three derivations
at once: a derivation to evaluate the semantics on P , a derivation to evaluate the semantics
on Pφ, and the derivation that computes Pφ from P . The idea is to show the equivalence of
statements in P and Pφ by assuming the equivalence of their subcomponents, and showing
how the equivalence is preserved by the partial evaluation rules. This inductive argument
will be well founded as long as the derivation doesn't recur forever.

I begin by de�ning an inductive hypothesis. Let s be an arbitrary statement in P ,
and let sφ be the corresponding statement in Pφ, where the two are related by the partial
evaluation rule.

〈s, σ̂i〉 φ−→ 〈sφ, σ̂i+1〉 (3.4.4)

Now, consider an evaluation of s within the evaluation of P , and the corresponding evaluation
of sφ within the evaluation of Pφ.

C[[s]]τ 〈σi
s,Φ

i
s〉 = 〈σi+1

s ,Φi+1
s 〉 (3.4.5)

C[[sφ]]τ 〈σi
φ, Φi

φ〉 = 〈σi+1
φ ,Φi+1

φ 〉 (3.4.6)

56

These two evaluations will preserve the invariant that the value of any variable x in the
state of the original program evaluated under control φ must equal the value of x in the
state of the partially evaluated program. An additional invariant is that if any variable x

has a constant value in σ̂i, then its parameterized value in σi
s will be equal to that constant

when evaluated with control φ.

∀x ∈ L. σ̂i(x) 6=⊥ ⇒ σ̂i(x) = σi
s(x)φ (3.4.7)

∀x ∈ L. σi
s(x)φ = σi

φ(x)φ (3.4.8)

The invariant establishes a relationship between the three states: the state σ̂i used
to partially evaluate s, and the states σi

s and σi
φ used to evaluate the semantics for both

the original statement and the partially evaluated one. Note that σi
φ(x) will actually be a

constant independent of φ, since sφ has already been partially evaluated. Also note that
this invariant is vacuously satis�ed by the initial states of the partial evaluation and the two
programs in question.

From the inductive hypothesis, it is easy to prove that the partial evaluation of
expressions preserves their semantics under control φ.

Lemma 1 Applying partial evaluation on an expression e preserves its semantics under
control φ. Let e be an expression in P , and let eφ be the corresponding expression in Pφ.

〈e, σ̂i〉 φ−→ 〈eφ, v〉

Then their semantics are equivalent under φ, and if v is a constant, then their parametrized
value evaluates to v under control φ.

A[[e]]τσi
sφ = A[[eφ]]τσi

φφ and v 6=⊥ ⇒ v = A[[e]]τσi
sφ

The lemma can be proved by induction on a case by case basis on the type of e. For example,
if e is a hole ??i, then eφ = φτ (??i) = n according to the E-Hole rule.

φτ (??i) ⇒ n

〈??i, σ̂〉 φτ−→ 〈n, n〉
Then, A[[e]]τσ1φ = A[[eφ]]τσ2φ = n according to the synthesis semantics, satisfying the
lemma. The same logic can be used for variables and arithmetic expressions. 2

Using the lemma, we can show that the inductive hypothesis is preserved by Equa-
tions 3.4.4, 3.4.5 and 3.4.6. This must be proved on a case by case basis for each of the

57

di�erent types of statements. For example, in the case of assignment, partial evaluation
updates the state and replaces the right-hand side with a partially evaluated expression.

〈e, σ̂i〉 φ−→ 〈eφ, v〉
〈x := e, σ̂i〉 φ−→ 〈x := eφ, σ̂i[x 7→ v] = σ̂i+1〉

From the lemma on evaluation of expressions, we have that

A[[e]]τσi
sφ = A[[eφ]]τσi

φφ

Which means that σi+1
s (x)φ = σi+1

φ (x)φ by the assignment rule. Additionally, if σ̂i+1(x) 6=⊥
then it means that v 6=⊥, which means by our lemma on expression evaluation that σi+1

s (x)φ =

v = σ̂i+1(x), as Equation (3.4.7) requires.
The argument becomes somewhat more complicated in the case of loops, because of

the recursive de�nition of the denotation function. Consider a loop of the form while e do c ,
which is partially evaluated to while eφ do cφ according to the partial evaluation rule from
Section 2.1.1.

〈e, σ̂⊥〉 φ−→ 〈eφ, v〉 〈c, σ̂⊥〉 φ−→ (cφ, σ̂′)

〈while e do c, σ̂i〉 φ−→ 〈while eφ do cφ, σ̂i+1 = σ̂i ∩ σ̂′〉
Now, let Ws(〈σ,Φ〉) = C[[while e do c]]τ , and Wφ(〈σ,Φ〉) = C[[while eφ do cφ]]τ ; then, the
equations below de�ne the semantics for both the original and the partially evaluated loops.

Φts = {φ ∈ Φs : A[[e]]τσi
sφ = 1} (3.4.9)

Φtφ = {φ ∈ Φφ : A[[eφ]]τσi
φφ = 1} (3.4.10)

〈σi+1
s , Φ1

s〉 = C[[c]]τ 〈σi
s,Φts〉 (3.4.11)

〈σi+1
φ , Φ1

φ〉 = C[[cφ]]τ 〈σi
φ,Φtφ〉 (3.4.12)

〈σi+2
s , Φ2

s〉 = Ws(σi+1
s , Φ′s) (3.4.13)

〈σi+2
φ , Φ2

φ〉 = Wφ(σi+1
φ ,Φ′φ) (3.4.14)

σi+3
s = πσ(Ws(〈σi

s, Φ〉)) = λx.λφ. A[[e]]τσi
sφ ? σi+2

s xφ : σi
sxφ (3.4.15)

σi+3
φ = πσ(Wφ(〈σi

φ, Φ〉)) = λx.λφ. A[[eφ]]τσi
φφ ? σi+2

φ xφ : σi
φxφ (3.4.16)

Note that the states σ̂⊥, σi
s and σi

φ satisfy the invariants from Equations 3.4.7
and 3.4.8, so by the induction hypothesis, we have that σ̂′, σi+1

s and σi+1
φ also satisfy the

invariants from Equations 3.4.7 and 3.4.8. Now, we want to claim that σ̂i+1, σi+2
s and σi+2

φ

58

satisfy the invariant by an inductive argument on Equations 3.4.13 and 3.4.14. However, we
can not make an inductive argument because we do not know that σ̂i, σi+1

s and σi+1
φ satisfy

the invariant. The way around this problem is to notice that partially evaluating the loop
under state σ̂i is completely equivalent to evaluating under state σ̂′ as a consequence of the
way the partial evaluation rule is de�ned. Therefore, the two states are equivalent for the
purpose of partially evaluating the loop, even if they are actually di�erent. So the inductive
step works, and we can conclude that σ̂i+1, σi+2

s and σi+2
φ satisfy the invariants. Additionally,

by the lemma for evaluation of expressions, we have that A[[eφ]]τσi
φφ = A[[e]]τσi

sφ, so from
this it follows that σ̂i+1, σi+3

s and σi+3
φ satisfy the invariants, and therefore that the invariants

are preserved by partial evaluation of the loop.
The only hole in this argument is that in order for the induction for the loop to be

well founded, the evaluation of the loop must terminate. In the statement of the theorem, we
made an explicit assumption that loops terminate. For a concrete program, this means that
for any input σ, there exists a k such that the loop will always iterate fewer than k times.
In standard denotational semantics, it also means that the denotation function will reach
a �xed point after k recursive evaluations. For the synthesis semantics, we stated earlier
that we could put a k bound on loops by establishing that for the kth recursive evaluation
of W , W (〈σ,Φ〉) = 〈σ, ∅〉. It can be proved that any control φ that is a solution to the
sketch under this bounded de�nition of the semantics will have the property that the loop
in question will not iterate more than k times for any input. It is also possible to show
that the invariant is preserved by the last recursive evaluation due to the fact that the loop
in the concrete program will terminate before k iterations. Therefore, the induction is well
founded and the proof works as promised.

This is the basic argument, and it works the same for all other constructs in the
language, completing this outline of the proof of the equivalence of the states. All that is
left to prove now is the second claim of the theorem, regarding the fact that Pφ will not fail
any assertion.

Absence of errors in Pφ The proof for the absence of assertion failures in Pφ is also
a proof by induction on the structure of the derivation, using again the notation from
Equations 3.4.4, 3.4.5 and 3.4.6. In this case, the inductive hypothesis is that if φ ∈ Φi

s,

59

then Φi
φ = Φ, and otherwise, Φi

φ = ∅.

φ ∈ Φi
s ⇒ Φi

φ = Φ (3.4.17)

φ /∈ Φi
s ⇒ Φi

φ = ∅ (3.4.18)

The intuition for this invariant is that the concrete program Pφ under input σ may not
execute all statements. Those statements that it does execute will have Φi

φ = Φ, and those
statements that are not executed will have Φi

φ = ∅. An assertion failure means that the
assertion executes, but the statement after it does not, so Φi

φ = Φ but Φi+1
φ = ∅. In the case

of the sketch P , those statements that would execute if P were to be partially evaluated
with φ are those that have φ ∈ Φi

s. What the induction proof does is formalize this intuition.
The �rst step is to show that the invariant holds at the beginning of the derivation,

which is true because φ ∈ Φ∗ = Φ0
s and Φ0

φ = Φ. The next step is to show that the invariant
is maintained by all the di�erent classes of statements. The proof is rather mechanical, so I
will only illustrate the case of assertions.

Consider an assertion of the form assert e, and the partially evaluated version of
the assertion assert eφ.

C[[assert e]]τ 〈σi
s , Φi

s〉 = 〈σi
s = σi+1

s , Φi+1
s = {φo ∈ Φi

s : A[[e]]τσi
sφo = 1}〉 (3.4.19)

C[[assert eφ]]τ 〈σi
φ , Φi

φ〉 = 〈σi
φ = σi+1

φ , Φi+1
φ = {φo ∈ Φi

φ : A[[eφ]]τσi
φφo = 1}〉(3.4.20)

Recall that we have established that A[[eφ]]τσi
φφ = A[[e]]τσi

sφ. Additionally, eφ is indepen-
dent of the control, so we have a stronger equality ∀φo. A[[eφ]]τσi

φφo = A[[e]]τσi
sφ. From

these equalities, we can verify the inductive hypothesis through case analysis.

• case 1: φ ∈ Φi
s and A[[e]]τσi

sφ = 1. For this case, Φi
φ = Φ by the inductive hypothesis,

and ∀φo. A[[eφ]]τσi
φφ0 = A[[e]]τσi

sφ = 1, so φ ∈ Φi+1
s and Φi+1

φ = Φ, preserving the
invariant.

• case 2: φ ∈ Φi
s and A[[e]]τσi

sφ = 0. For this case, Φi
φ = Φ by the inductive hypothesis,

and ∀φo. A[[eφ]]τσi
φφ0 = A[[e]]τσi

sφ = 0, so φ /∈ Φi+1
s and Φi+1

φ = ∅, preserving the
invariant.

• case 3: φ /∈ Φi
s. For this case, Φi

φ = ∅ by the inductive hypothesis, and because
assertion is monotonic, then φ /∈ Φi+1

s and Φi
φ = ∅, again preserving the invariant.

60

The proof for other cases follows a similar logic, and this completes the proof. The
theorem makes formal the relationship between the synthesis semantics and the concrete
programs that the sketch may generate.

3.4.2 Some Algebraic Properties of the Semantic Rules.

In this section, I give some useful lemmas that follow directly from the synthesis
semantics. These lemmas will prove useful in supporting some optimizations in our solution
algorithm.

The �rst lemma shows distributivity of the denotation function over the ∩ operator.

Lemma 2

C[[P]]τ (σa, Φx) = (σ′a, Φ′x)

C[[P]]τ (σa, Φy) = (σ′a,Φ′y)
→

(σ′a, Φ′x ∩ Φ′y) or

C[[P]]τ (σa, Φx ∩ Φy) = (σ′a, Φ′x ∩ Φy) or

(σ′a, Φx ∩ Φ′y)

Proof: This lemma can be proved by induction on the structure of the derivation. The
only interesting cases are the proofs for the assert and if rules; all other cases are rather
mechanical.

In the case of assert, this is easy to check. Notice that if we de�ne Φe = {φ :

A[[e]]τσφ = 1}, then

C[[assert e]]τ 〈σ, Φx〉 = 〈σ, Φe ∩ Φx〉
C[[assert e]]τ 〈σ, Φy〉 = 〈σ, Φe ∩ Φy〉

C[[assert e]]τ 〈σ, Φx ∩ Φy〉 = 〈σ, Φe ∩ (Φx ∩ Φy)〉

And the property in the lemma follows from this last equation.
In the case of if, a similar argument holds. First, consider the original rule for

evaluation of an if statement.

Φt = {φ ∈ Φx : A[[e]]τσφ = true}
Φf = {φ ∈ Φx : A[[e]]τσφ = false}

〈σ1 , Φ1〉 = C[[c1]]τ 〈σ, Φt〉
〈σ2 , Φ2〉 = C[[c2]]τ 〈σ, Φf 〉

Φ′x = (Φ1) ∪ (Φ2)

C[[if e then c1 else c2]]τ 〈σ, Φx〉 = 〈σ′ , Φ′x〉

61

It is possible to rewrite the de�nition of Φ′x using the inductive hypothesis. First, lets de�ne
Φe = {φ : A[[e]]τσφ = true}, then we have that

Φt = Φe ∩ Φx

Φf = (¬Φe) ∩ Φx

Now, let

〈σ1e , Φ1e〉 = C[[c1]]τ 〈σ, Φe〉
〈σ2e , Φ2e〉 = C[[c2]]τ 〈σ, (¬Φe)〉

Then, by the inductive hypothesis and the original if rule, we have that

Φ′x = (Φ1e ∩ Φx) ∪ (Φ2e ∩ Φx)

= (Φ1e ∪ Φ2e) ∩ Φx

And, by a similar argument,

Φ′y = (Φ1e ∩ Φy) ∪ (Φ2e ∩ Φy)

= (Φ1e ∪ Φ2) ∩ Φy

And also

πΦ(C[[if e then c1 else c2]]τ 〈σ, Φx ∩ Φy〉) = (Φ1e ∪ Φ2) ∩ (Φy ∩ Φx)

And again, the properties in the lemma follow directly from this last equation. 2

From the distributivity lemma, monotonicity is easy to prove as a corollary. Monotonic-
ity will allow us to make convergence arguments about iterative algorithms.

Corollary 1

πΦ(C[[P]]τ (σa,Φx)) = Φ′x

πΦ(C[[P]]τ (σa,Φy)) = Φ′y

Φx ⊂ Φy → Φ′x ⊂ Φ′y

62

Proof: If Φx ⊂ Φy, then Φx = Φx ∩ Φy, so

πΦ(C[[P]]τ (σa, Φx)) = πΦ(C[[P]]τ (σa, Φx ∩ Φy))

= Φ′x ∩ Φ′y

So Φ′x = Φ′x ∩ Φ′y ⊂ Φ′y. 2

This completes the description of the synthesis semantics of the Sketch language.
The section has shown how the semantics model the behavior of all candidates simultane-
ously, and how they can be used to prove the safety of program transformations, such as
those involved in the partial evaluation. The formal machinery developed in this section
will also enable a formal description of the solution algorithm presented in the next section,
and even its extension to concurrent programs presented in Chapter 8.

63

Chapter 4

Counterexample Guided Inductive
Synthesis

4.1 Overview

In sketching, user insight is provided in the form of a partial program that needs
to be completed, rather than as a set of derivation strategies the way it is in traditional
deductive synthesizers. Therefore, the algorithms used for deductive synthesis are not as
well suited to the problem of solving sketches, which requires algorithms that can search for
the missing code fragments e�ciently and without additional user input.

The problem has been made simpler by the way the Sketch language de�nes
all the sketching constructs in terms of the basic integer hole. This reduces the synthesis
problem to a search for constant values to assign to each hole in the sketch. The synthesis
semantics from the previous section allow this search to be framed as a constraint satisfaction
problem. Speci�cally, the synthesis semantics de�ne the meaning of a program P through a
denotation function C[[P]]τ∅〈σin , Φ〉 → 〈σout , Φ′〉. The function describes how the program
transforms an input state σin into an output state σout, and how an initial set Φ of candidate
solutions is constrained down to a subset Φ′ containing only those solutions which are correct
for input σin. Therefore, a valid candidate is one that satis�es the constraints imposed by
each of the possible inputs to the sketch.

∀ σ ∈ Σ C[[P]]τ∅〈σ, {φ}〉 = 〈σ′ , {φ}〉 (4.1.1)

The synthesis semantics allow us to derive a set of constraints on φ in terms of the

64

input state σ. If we use the predicate Q(φ, σ) to represent these constraints, the synthesis
problem becomes a doubly quanti�ed constraint system.

∃φ ∀σ Q(φ, σ) (4.1.2)

Unfortunately, solving constraint systems involving such universally quanti�ed variables is
di�cult, and many existing approaches do not scale to the size and complexity of the sketches
we want to solve. For example, symbolically eliminating σ from the constraint system Q

works for simple cases like the HelloWorld example, but is infeasible when the constraints
involve tens of thousands of arithmetic and boolean operations. Similarly, we decided early
on to bound the set of possible inputs. This makes it theoretically possible to expand the
equation above to a conjunction of Q(φ, σi) for all the individual inputs σi. But while the
domain of the input variables is bounded, for realistic sketches the space of possible inputs
is still huge, on the order of 2128 elements for some sketches we've solved. In short, none of
the obvious strategies will work.

In fact, there is a competition every year for solvers capable of solving boolean
constraint systems with multiple quanti�ers, such as Equation (4.1.2). But Section 6.4 will
show that even the solver that won the competition last year is incapable of solving the
constraint systems generated by relatively simple sketches. In short, none of the generic
approaches to solving such constraint systems will allow us to solve the sketch synthesis
problem. However, sketches are not arbitrary constraint systems; they are partial programs
written to convey the high level structure of a solution while leaving the details unspeci�ed.
Therefore, a decision procedure that takes advantage of the structure embodied in sketches
can succeed where the general solution strategies failed.

4.1.1 Solving Sketches with Inductive Synthesis

The crucial observation that makes sketch synthesis possible is that for many
sketches, an implementation that works correctly for the common case and for all the di�er-
ent corner cases is likely to work correctly for all inputs. For example, consider the sketch
of a remove method for a doubly linked list.

65

generator cond(list l, node n){

node n1 = {| l.head | l.tail | n | n.next | n.prev | null |}

node n2 = {| l.head | l.tail | n | n.next | n.prev | null |}

return {| n1 (== | !=) n2 | ?? |}

}

generator assign(list l, node n){

{| l.head | l.tail | n.prev | n.next | n.prev.next | n.next.prev |} =

{| l.head | l.tail | n | n.next | n.prev | null |} ;

}

static void remove(list l, node n){

loop(4){

if(cond(l,n)){assign(l, n);}

}

}

The space of candidate solutions for this sketch is enormous, and so is the space of possible
inputs. However, in addition to the common case where an element is removed from the
middle of the list, there are only a handful of corner cases that can cause problems, such
as the cases involving removal of the head, the tail, and removal from a list of size one.
Therefore, the synthesis problem can be simpli�ed enormously by focusing only on a handful
of inputs that are representative of the common case and of the problematic corner cases.
This insight can be made more formal through the following empirical hypothesis.

Hypothesis 1 (Bounded Observation Hypothesis) For a given sketch P , it is possible
to �nd a small set of inputs E that fully represents the entire domain of inputs Σ such that
any set of controls Φ satisfying Equation (4.1.3) will also be a solution to the sketch resolution
equation of Section 3.3.

∀ σ ∈ E πΦ(C[[P]]τ∅〈σ, Φ〉) = Φ (4.1.3)

The function πΦ is the projection operator that selects the candidate set Φ from a pair 〈σ′ , Φ〉.

The hypothesis implies that we can frame the sketch synthesis problem as an
inductive synthesis problem. Inductive synthesis is the process of generating a program from
concrete observations of its behavior, where an observation describes the expected behavior

66

Inductive Synthesizer

BUGGY

candidate implementation

counterexample input

succeed

fail

fail

observation set E

OK
Automated Validation

Your verifier/checker goes here

• Derive candidate implementation

from concrete inputs.

Figure 4.1: Counterexample driven synthesis algorithm.

of the program on a speci�c input [5]. The inductive synthesizer uses each new observation
to re�ne its hypothesis about what the correct program should be until it converges to a
solution. Inductive synthesis had its origin in the work by Gold [33] on language learning, and
the pioneering work by Shapiro [57] on inductive synthesis and its application to algorithmic
debugging among others.

Three important problems must be resolved in order to apply inductive synthesis
to the problem of sketch resolution. First, it is necessary to have a mechanism to generate
observations to drive the inductive synthesis. This mechanism should be able to generate
inputs that exercise the corner cases in the implementation so the inductive synthesis quickly
converges to a correct candidate. Second, the system needs a mechanism to determine
convergence, i.e. to decide when the candidate derived from the set of observations actually
generalizes to work correctly for all inputs. And �nally, the system needs an inductive
synthesis procedure capable of e�ciently solving Equation (4.1.3) for realistic sketches.

To address the �rst two problems, we designed a counterexample guided inductive
synthesis algorithm (CEGIS). This algorithm handles convergence checking and observation
generation by coupling the inductive synthesizer with a validation procedure as illustrated
in Figure 4.1. In the algorithm, a validation procedure checks the candidate implementation
produced by the inductive synthesizer. If the validation succeeds, the candidate is considered
correct, and is returned to the user. If validation fails, then the validation procedure is
expected to produce a concrete input which exhibits the bug in the candidate program. The
witness to the bug can then be used as an observation for the inductive synthesizer.

67

The CEGIS algorithm owes an intellectual debt to the idea of counterexample
guided abstraction re�nement (CEGAR) introduced by Clarke et al. [18] to cope with the
state explosion problem in model checking. CEGAR exploits the observation that a coun-
terexample is much easier to �nd in an abstract model, but abstract models can produce
spurious counterexamples which are infeasible in the concrete model. This drawback can
be alleviated by combining the abstract model checker with a validation procedure that
can check whether a counterexample is indeed feasible for the original model. If it isn't,
the validation procedure can re�ne the abstraction to disallow the spurious counterexample,
and the cycle can be repeated. If we view the input set E as an abstraction of the original
input domain, the CEGIS algorithm can be seen as an application of the CEGAR idea to
the problem of program synthesis.

4.2 Formalization of Algorithm and Termination Issues

The algorithm illustrated in Figure 4.1 can be succinctly expressed in terms of the
synthesis semantics. In the algorithm below, Φi is the set of all controls which satisfy the
speci�cation for the input states E = {σ0, . . . , σi−1}. The control φi is a candidate selected
non-deterministically from Φi, and it constitutes the result of the inductive synthesis, as it
is guaranteed to be correct for all inputs in E. The state σi is an input which exposes an
error in the candidate program represented by φi. The initial control set Φ0 is initialized to
Φ, the set of all controls, while σ0 is initialized to a random initial state.

Algorithm 1 (CEGIS Algorithm) .
σ0 := σrandom

Φ0 = Φ
i := 0
do

i = i + 1

def Φi s.t. C[[P]]τ∅(σi−1, Φi−1) = (σ′, Φi)
if Φi = ∅ then return UNSAT_SKETCH

def φi ∈ Φi

 Inductive Synthesis Phase

def σi s.t. C[[P]]τ∅(σi, {φi}) = (σ′, ∅) }
Validation Phase

while σi 6= null

return PE(P, φi)

68

Each iteration of the CEGIS loop starts with the inductive synthesis phase. In
this phase, a new set Φi is computed by removing from Φi−1 those controls which cause the
speci�cation to be violated for the input σi−1. As will be described in detail in Chapter 5,
Φi is represented symbolically, and it is derived by applying C[[P]]τ∅ to σi−1 and to the
symbolic representation of Φi−1. The symbolic representation is then queried for an element
φi ∈ Φi which is the result of the inductive synthesis phase.

The validation phase of the algorithm checks whether the candidate solution asso-
ciated with φi satis�es the speci�cation for all possible inputs. If it does, then the candidate
generated from control φi is the solution that the algorithm was looking for; if it does not,
then the process is repeated until either a solution is found or Φi becomes empty. In the
latter case, we can assert that the sketch has no valid solutions.

The sets Φi generated by the CEGIS algorithm form a series that approaches
Φ∗, the maximal solution of the sketch equation, in strictly monotonic fashion. To see
this, �rst note that each of the Φi are going to be a superset of Φ∗ by Corollary 1 in
Section 3.4.2. Additionally, for each i > 1, Φi ⊂ Φi−1. This is clear from the fact that for
i > 1, φi−1 ∈ Φi−1, but φi−1 /∈ Φi. This means that if Φ is bounded, then the procedure
above is guaranteed to terminate, and Φi will converge towards Φ∗. In fact, because the
algorithm is only looking for a single φ ∈ Φ∗, it can actually terminate before Φi has
converged to Φ∗ if the φi selected from Φi also happens to be in Φ∗.

The theoretical convergence properties of the algorithm are not great. The number
of iterations is bounded by the maximum of the size of the control space and the size of the
input space. Even for bounded sketches, these sizes can be astronomical. Moreover, if we
don't bound Φ, the CEGIS algorithm can easily iterate forever. A curious example of this
is the sketch below, which requires that the ith bit of ??0 be equal to i mod 2.

void main(int i){

int z = (??0 / pow(2, i)) % 2;

assert z == i % 2;

}

If we didn't bound the set of possible values for ??0, then the CEGIS algorithm would iterate
forever on this sketch which actually has no solution according to the synthesis semantics.

69

240

0

10

20

30

40

50

60

70

80

90

100

ta
ble

Bas
ed

Add
itio

n

log
2VarL

oo
p

log
2

log
co

un
t1

6

re
ve

rs
e

m
or

to
n

m
or

to
n_e

as
ies

t

log
co

un
t1

6_
ea

sy

log
co

un
t8

pa
rity

m
or

to
n_e

as
ier

xp
os

eB
it

log
co

un
t8

_e
as

y

co
m

pr
es

s_
ha

rd

xp
os

e.s
k

lis
tR

eve
rs

eH
ar

der

po
lyn

om
ial

co
m

pr
es

s_
ea

sy

lis
tR

eve
rs

eE
as

y

do
ub

lyL
ink

edL
ist

lss
_h

ard
es

t

Set
Tes

t

lss
_h

ard
er

tu
to

ria
l3

Poll
ar

d

tu
to

ria
l2

m
er

ge_
so

rt

en
qu

eu
e

lss
_e

asy lss

CEGIS Iterations

B
en

ch
m

ar
ks

Figure 4.2: Iterations per Benchmark.

However, the CEGIS algorithm was design to exploit our intuition that a few
inputs covering all the relevant corner cases should allow us to infer the correct solution to
the sketch. As the next section will show, the number of iterations of the CEGIS loop for
real programming problems is surprisingly small; on average, each iteration will cut the size
of the candidate set by a factor of about 215, so sketches with candidate spaces with 2600

elements take on the order of 40 iterations, and sketches with 280 candidates can converge
after about �ve iterations.

4.3 Empirical Validation of Bounded Observation Hypothesis

The CEGIS algorithm was designed to exploit the observation that a small number
of carefully selected inputs should be su�cient to allow an inductive synthesizer to derive a
correct solution to the sketch. In this section, we seek to validate this empirical hypothesis by
analyzing the behavior of the solver on 30 di�erent sketches of various degrees of complexity,
ranging from small bit manipulation routines to complex datastructure manipulations like
the list reversal example from the introduction. The problems are listed in Appendix A,

70

and are also described in more detail in Section 6.1. Each benchmark was run an average of
10 times to get an average number of iterations of the CEGIS loop, as well as the standard
deviation on the number of iterations.

The actual solution times for all these benchmarks are described in detail in Sec-
tion 6.1; they range from a few seconds to about 12 minutes for the hardest benchmark.
For this section, however, we want to focus on the number of iterations because this is a
measure that is fundamental to the CEGIS algorithm. The actual solution time will vary
widely depending on the technology used for the inductive synthesizer and the validation
procedure, but the number of iterations is more a function of the characteristics of the
individual benchmarks.

For all the benchmarks, the number of iterations was very small given the size
of the input and the candidate spaces. The largest number of iterations was for the
tableBasedAddition benchmark, which implements an addition of two 4-bit numbers as
a single table lookup, where all the entries in the table are left empty for the synthesizer
to discover. For this benchmark, the number of iterations was, as we would expect, equal
to the size of the input space, since each input provides information about only one entry
in the table. For less contrived benchmarks, however, the CEGIS algorithm was very good
at abstracting the entire input space into a few representative inputs. For example, for the
listReverseHarder example from the introduction, the synthesizer found a solution to the
sketch from between 4 and 6 representative input lists.

Figure 4.2 also shows error bars of one standard deviation for each benchmark.
The variability in the number of iterations for a given benchmark comes from the non-
deterministic choice the CEGIS algorithm makes in selecting a φi ∈ Φi, and from the choice
of the σi that the validation phase decides to produce. However, you may notice that the
number of iterations was fairly stable for each of the benchmarks. Of the 30 problems we
tested, only 5 had a standard deviation of more than 2 iterations, and only 3 had a standard
deviation larger than 4 iterations. This consistency suggests that there is something intrinsic
to each benchmark that determines the number of observations needed for inductive synthesis
to converge, irrespective of the nondeterministic choices made by the synthesizer.

I was interested in gaining a better understanding of the properties of a sketch that
determine the number of observations needed for convergence, in order to better predict the
scalability of the approach for more complex sketches. In order to do this, I analyzed the
correlation between the number of iterations and a small number of benchmark parameters.

71

y = 0.7695x - 0.4213

R2 = 0.3363

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0 5 10 15 20 25 30 35 40

log2(| Input Space|)

Ite
ra

tio
n

s

Figure 4.3: Iterations vs. Input Size.

y = 0.0469x + 4.1442
R2 = 0.3394

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0.00 100.00 200.00 300.00 400.00 500.00 600.00

Integer and Boolean Holes

C
E

G
IS

 It
er

at
io

n
s

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00

Bits of Holes

C
E

G
IS

 It
er

at
io

n
s

Figure 4.4: Iterations vs. number of holes.

72

y = 0.0663x + 1.734

R2 = 0.6172

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

0.00 100.00 200.00 300.00 400.00 500.00 600.00

log2(| space of completions |)

Ite
ra

tio
n

s

Figure 4.5: Iterations vs. distinct candidates.

I started with three plausible hypothesis regarding the number of iterations of the CEGIS
loop.

• Hypothesis 1: The number of iterations is proportional to the log of the size of the
input space. After all, it seems plausible that more concrete inputs would be needed to
represent a bigger input space, while the small number of iterations for the huge sizes
of the input space suggested that if any relationship existed, it should be logarithmic.

• Hypothesis 2: The number of iterations is proportional to the number of holes
in the program. This sounds plausible; after all, we know that for polynomials, N

independent observations are enough to discover the coe�cients in a polynomial of
degree N . The same is true for linear equations, so it's plausible that sketches could
behave the same way.

• Hypothesis 3: The number of iterations is proportional to the log of the size of the
candidate space. This hypothesis is similar to the previous one, but it acknowledges
the fact that for some skethes, many di�erent controls may produce the exact same
candidate program.

73

Figure 4.3 shows the relationship between the number of iterations and the loga-
rithm of the input size to the benchmark. As we can see, there is a slight correlation, but
it's very weak; R2 is about 0.33, and it's easy to see that the number of iterations may vary
widely, even for benchmarks with the same number of inputs.

Figure 4.4 on the left shows the relationship between the number of iterations
and the number of bits used to represent all the integer and boolean holes in the program.
By default, most integer holes are represented using 5 bits, but some of the higher level
constructs may translate into integer holes that use more or fewer bits. The graph on the
right shows the relationship between the number of iterations and the number of independent
integer holes. When considering the number of bits, the relationship is very weak, although
this is mostly due to a handful of benchmarks that have huge numbers of bits for the holes,
but take very few iterations. When we consider the number of independent integer holes,
the relationship improves, but it's still very weak.

Finally, Figure 4.5 shows the relationship between the number of iterations and
the logarithm of the size of the candidate space of the benchmark. Now, we can see the
correlation is much stronger; R2 is now over 0.61. The reason why the log of the candidate
space is very di�erent from the number of bits of holes is that some sketches exhibit a lot
of redundancy: there are many combinations of hole values that after partial evaluation
produce the same program, and there are some combinations which are simply illegal. For
example, if an integer hole is used to select among three di�erent choices, the sketch may
have a statement of the form int t = ??; assert t<3;. In this case, the synthesizer may
be using 5 bits to represent the hole being assigned to t, but there are only three distinct
candidates. Recall that when we compared the number of iterations against the number of
bits for the holes, there was a set of benchmark which took few iterations even though they
had a huge number of unknowns. These benchmarks were the hardSort, the enqueue and the
tutorial3 benchmarks. All of these benchmarks involved complex generators to describe
large classes of expressions. The generators, however, had a lot of redundancy. For example,
for tutorial3, there was a single generator which represented a family of 4 × 1014 ≈ 249

syntactically distinct expressions, but used 259 integer holes, each represented with 5-bits.
The fact that the number of iterations is better predicted by the number of unique candidates
than the number of holes points to one of the strengths of the CEGIS approach: the ability
to eliminate large classes of equivalent candidates with a single representative input.

These experiments largely validate the bounded observation hypothesis. They have

74

demonstrated that for many real problems, the number of observations needed to �nd a valid
control is quite small. Moreover, they show that the each new iteration is able to eliminate
a fraction of the remaining candidate space, including huge numbers of equivalent solutions.
Having shown this, it remains to be shown how e�ectively the inductive synthesis procedure
is able to generate candidate solutions from sets of observations; this will be the subject of
the next two sections.

75

Chapter 5

SAT Based Inductive Synthesis and
Validation

The CEGIS procedure depends on an inductive synthesizer to generate candidate
implementations from a small set of inputs, and a validation procedure to produce coun-
terexample inputs exposing problems in invalid candidates. In the previous section, I showed
how the inductive synthesizer and the validator could be expressed in terms of the synthesis
semantics. This section will start by showing how the bounded synthesis semantics can be
used to derive constraint systems for both inductive synthesis and validation (Section 5.1).
It will also show how these constraint systems are symbolically manipulated to make them
smaller and easier to solve (Section 5.2), and how the resulting systems are converted to
SAT for e�cient solution (Section 5.3).

5.1 Symbolic Evaluation of Synthesis Semantics

In the formalization of the CEGIS algorithm, I showed how the inductive synthesis
and the validation problems could be expressed in terms of the synthesis semantics.

C[[P]]τ∅(σi−1, Φi−1) = (σ′,Φi) (5.1.1)

C[[P]]τ∅(σi, {φi}) = (σ′, ∅) (5.1.2)

Inductive synthesis is de�ned using Equation (5.1.1), which describes how a set of candidate
controls Φi−1 is constrained to a set Φi by removing from it those controls that are invalid for
input σi−1. The inductive synthesizer must then select a control φi ∈ Φi which represents the

76

Base expressions e ::= c | hi,τ | ini

Arithmetic expressions e ::= +(e1, e2) | − (e) | ∗ (e1, e2) |
div(e1, e2) | mod(e1, e2)

Comparisson expressions e ::= < (e1, e2) | > (e1, e2) |
≥ (e1, e2) | ≤ (e1, e2) | = (e1, e2)

Boolean expressions e ::= ∨(e1, e2) | ∧ (e1, e2) | ⊕ (e1, e2) | ¬(e)

Selection expressions e ::= muxn(eidx, e1, . . . , en) := eeidx

ifc(eind, e 6=, e=) := (eind = c) ? e=: e 6=

Table 5.1: Intermediate language used to represent parameterized values

solution to the inductive synthesis problem. Validation is de�ned through Equation (5.1.2);
it requires the synthesizer to select an input σi that shows that control φi can not be in the
set of solutions to the sketch synthesis equation, i.e. input σi causes an assertion failure on
the candidate represented by control φi.

These two equations describe inductive synthesis and validation respectively, but
they are not algorithmic; the semantic rules describe manipulations on sets and functions
in the abstract, but they don't tell us how these objects should be represented, or how
the manipulations should be implemented. This section describes an implementation of
the synthesis semantics that turns the inductive synthesis and validation problems into
constraint satisfaction problems. The implementation is based on an important idea: that
sets can be represented symbolically as systems of constraints. Speci�cally, a set Φ of
controls can be represented as constraints that must be satis�ed by all the controls in Φ.
For example, the constraint (φ(??0) = 5∧ φ(??1) < 3) represents the set of all controls that
assign 5 to the hole ??0 and a value less than 3 to hole ??1. By representing sets of controls
symbolically as systems of constraints, we will be able to derive systems of constraints for
Φi by manipulating the constraints representing Φi−1 according to the rules of the synthesis
semantics. Extracting a control φ ∈ Φi then becomes a constraint satisfaction problem.

77

To show how the constraint systems are constructed, I begin by describing the
representations of controls. A control φ describes the value of each hole under every possible
calling context. The number of holes in the program is bounded, and because we are
restricting ourselves to bounded semantics, so is the number of calling contexts. Therefore,
if we assume there are k distinct pairs of holes and calling contexts, we can represent φ as a
control vector, 〈h0, . . . , hk〉, where each control value hi corresponds to the value of a speci�c
hole under a speci�c calling context. I will sometimes use the notation hi,τ when I want to
make explicit the exact hole and calling context for a given control value. The constraint
system will describe constraints on the values hi that make up the control vector.

Now, recall that the values of expressions and variables are represented in the
semantics as parameterized values, which are functions mapping controls to concrete values
ψ : Φ → Z. The synthesizer represents parameterized values symbolically as expressions in
the language described in Table 5.1. These expressions are represented in the synthesizer as
dags, rather than trees, to allow sharing of common subexpressions. The base expressions
in this language can be of three types:

• Controls hi,τ indicating a speci�c component in the control vector.

• Integer constants.

• Input nodes ini, which serve as place holders for concrete inputs.

The state σ is a mapping of variable names to parameterized values. Through
the derivation process, the state is read and updated according to the synthesis semantics.
For example, consider the various rules for evaluating expressions. Those rules are easily
adapted to construct expressions in the intermediate language of Table 5.1.

A[[x]]τσ = σ(x)

A[[??i]]τσ = hi,τ

A[[e1 + e2]]τσ = +(A[[e1]]τσ, A[[e2]]τσ)

For example, the expression t * ??0+ ??1 is translated into an expression in the intermediate
language through the following syntax directed translation.

A[[t ∗ ??0 + ??1]]τσ = +(A[[t ∗ ??0]]τσ, A[[??1]]τσ)

= +(∗(A[[t]]τσ, A[[??0]]τσ), h1,τ)

= +(∗(σ(t), h0,τ), h1,τ)

78

The �nal expression is a function of the control values h0,τ and h1,τ , and the input value of
variable t, and is represented graphically by the tree shown below.

h0� h1�
��t)

*
+

Sets of controls are represented as systems of constraints on the control values. To represent
and manipulate these constraints, we exploit the intermediate language used to represent
parameterized values by associating with each set Φ a characteristic function ψΦ related to
Φ through the following equation.

Φ = {φ : ψΦ(φ) 6= 0} (5.1.3)

In other words, a control φ belongs to Φ if and only if it satis�es the constraint ψΦ(φ) 6= 0.
For example, if Φ is the set of controls satisfying φ(??0) = 5 and φ(??1) < 3, this set will
be represented with the characteristic function ∧(= (h0, 5), < (h1, 3)), shown graphically
below.

h0 h1
5

=

^

3

<

Most standard set operations are easy to perform on the symbolic representation.
For example, if ψΦ1 and ψΦ2 are the characteristic functions for the sets Φ1 and Φ2 respec-
tively, then the characteristic functions for the complement, intersection, and union of these

79

sets are easy to construct from ψΦ1 and ψΦ2 as illustrated below.

Complement ¬Φ1 = ¬(ψΦ1) (5.1.4)

Intersection Φ1 ∩ Φ2 = ∧(ψΦ1 , ψΦ2) (5.1.5)

Union Φ1 ∪ Φ2 = ∨(ψΦ1 , ψΦ2) (5.1.6)

(5.1.7)

To make the presentation easier to follow, I give special names to some sets of interest.

• ψΦ := 1 represents the universal set Φ.

• ψ{φ} represents the singleton set containing only φ.

• ψ∅ := 0 represents the empty set.

The rules of the synthesis semantics are used to construct the characteristic func-
tions through syntax directed translation. For example, the basic statements of assignment
and assertion manipulate the state and the set of valid controls according to the following
rules.

C[[x := e]]τ 〈σ, ψΦ〉 = 〈σ[x 7→ A[[e]]τσ] , ψΦ〉 (5.1.8)

C[[assert e]]τ∅〈σ, ψΦ〉 = 〈σ, ∧(A[[σ]]e, ψΦ)〉 (5.1.9)

The same is true of the if statement; for the statement if e then c1 else c2, we can follow
the synthesis semantics to evaluate the two branches of the conditional.

ψe = A[[e]]τσ

ψΦt = ∧(ψΦ, ψe)

ψΦf
= ∧(ψΦ,¬(ψe))

〈σ1 , ψΦ1〉 = C[[c1]]τ 〈σ, ψΦt〉
〈σ2 , ψΦ2〉 = C[[c2]]τ 〈σ, ψΦf

〉

Then, the rule for the if statement becomes

C[[if e then c1 else c2]]τ 〈σ, ψΦ〉
= 〈λx.mux2(ψe, σ2(x), σ1(x)) , ∨(ψΦ1 , ψΦ2)〉

80

The rules for loops and procedure calls follow the same logic; the symbolic representations are
manipulated according to the synthesis semantics, replacing set operations with operations
on the characteristic functions. Because we are using bounded semantics, we do not have to
worry about termination of loops or recursion.

An important advantage of representing sets as a constraint on the value of a
characteristic function is that it is possible to query for a control in the set through a
constraint satisfaction procedure. Any solution φ to the constraint ψΦ(φ) 6= 0 is guaranteed
to belong to Φ; if the constraints are unsatis�able, then it means that Φ is empty.

The idea of representing sets as systems of constraints is not new. In fact, it was
one of the major advances behind symbolic model checking [48]. However, this is the �rst
time this idea has been used for the purpose of software synthesis.

5.1.1 Inductive Synthesis

Inductive synthesis requires the synthesizer to compute a set of candidate solutions
Φi from the input state σi−1 and the previous set of candidates. This can be done directly
by evaluating C[[P]]τ (σi−1,Φi−1) as was described earlier in the section, but the Sketch
synthesizer actually takes a shortcut. To make the process more e�cient, and avoid having
to evaluate C[[P]]τ on each iteration of the CEGIS loop, the synthesizer takes advantage of
the distributivity lemma from Section 3.4.2.

πΦ(C[[P]]τ (σa, Φx)) = Φ′x
πΦ(C[[P]]τ (σa, Φy)) = Φ′y

⇒
= Φ′x ∩ Φ′y

πΦ(C[[P]]τ (σa,Φx ∩ Φy)) = Φ′x ∩ Φy

= Φx ∩ Φ′y

From this lemma, we can derive the following useful corollary.

Corollary 2 The set Φi can be computed without having to evaluate C[[P]]τ∅ on Φi−1 through
the following formula.

πΦ(C[[P]]τ∅(σi−1,Φ)) = Φ′i

Φi = Φ′i ∩ Φi−1

Proof: The corollary follows directly from distributivity,

πΦ(C[[P]]τ (σi−1,Φ)) = Φ′i
πΦ(C[[P]]τ (σi−1, Φi−1)) = Φi

⇒ πΦ(C[[P]]τ (σa,Φ ∩ Φi−1)) = Φ′i ∩ Φi−1

81

Since πΦ(C[[P]]τ (σa,Φi−1)) = Φi, this completes the proof. 2

By applying the corollary to the characteristic functions of the sets, we have that we
can construct ψΦi , the characteristic function of the set Φi, by anding together the functions
ψΦi−1 and ψΦ′i . Thus, if we could construct the function ψΦ′i without having to evaluate
C[[P]]τ∅ , we would be able to construct Φi from Φi−1 without having to do syntax directed
translation for every CEGIS iteration.

To do this, the synthesizer evaluates C[[P]]τ∅ on an input state σsym that maps
each input variable ink to an input node.

πΦ(C[[P]]τ∅(σsym, ψΦ)) = ψsym

Then, Φ′i can be constructed easily by replacing all the input nodes ink in ψsym with constant
nodes with value equal to σi−1(ink).

Φ′i = substitute(ψsym, σi−1)

Consequently, ψΦi can be constructed from ψΦi−1 without having to perform syntax directed
translation on each iteration.

ψΦi = ∧(ψΦi−1 , substitute(ψsym, σi−1))

The resulting function ψΦi is then queried for a concrete control vector by searching for a φ

that satis�es the constraint ψΦi(φ) = 1.
In our synthesizer, computing ψΦi in this way brings a number of advantages, both

from the point of view of performance and from the point of view of software engineering.
First, the denotation function C[[P]]τ only has to be evaluated once, rather than on every
iteration. Second, as I will demonstrate shortly, the function ψsym can also be used to
solve the validation problem without requiring the denotation function to be symbolically
evaluated again; this allows the CEGIS loop to run with very little overhead. In fact, in the
Sketch synthesizer, the evaluation of C[[P]]τ is performed by a clean and modular frontend
written in Java, while the CEGIS loop is implemented very e�ciently in a separate backend
written in C++.

5.1.2 Validation

The result of the inductive synthesis phase is a control φi, from which a concrete
candidate program Pφi = PE(P, φi) can be generated through partial evaluation. The goal

82

of the validation phase is to �nd an input that causes an assertion failure in this candidate
program. This can also be framed directly in terms of the synthesis semantics as the problem
of �nding an input σi that shows that the control φi is not a solution to the sketch equation,
so

C[[P]]τ∅(σi, {φi}) = (σ′, ∅) (5.1.10)

Just like in the case of inductive synthesis, the synthesizer uses the distributiviy
lemma to frame this problem as a constraint satisfaction problem that does not require the
evaluation of C[[P]]τ∅ on each iteration of the CEGIS loop. With the distributivity lemma,
it is possible to restate Equation (5.1.10) as follows.

πΦ(C[[P]]τ∅(σi,Φ)) = Φ′

∅ = Φ′ ∩ {φi}

Thus, the validation becomes a search for a σi such that

ψ∅ = ∧(ψ{φi}, substitute(ψsym, σi)) (5.1.11)

Because ψ{φi}(φ) = 1 i� φ = φi, Equation (5.1.11) above is equivalent to the equation below.

∃ σi. substitute(ψsym, σi)(φi) = 0 (5.1.12)

The Sketch synthesizer searches for an input state σi satisfying the equation above using
the exact same satisfyability procedure used for inductive synthesis.

Interestingly, the validation procedure that results from this symbolic manipulation
is equivalent to the SAT-based bounded model checker developed by Clarke, Kroening and
Yorav [19]. Their tool, called CBMC, also translates a program into a set of Boolean
constraints and uses SAT to solve the system for a counterexample. Some of their encodings
are di�erent from outs, but the high-level ideas are the same.

Saturn [71] is another SAT based validation tool that operates through similar
principles. One of the key features of Saturn is that it's able to abstract procedures into
summaries, allowing for modular veri�cation, which our system does not support. As we
will describe in the following sections, our system uses some of the encoding techniques
created for Saturn. What is most interesting about the similarity between our procedure
with Saturn and CBMC is that the same techniques that proved successful for bug �nding
can be e�ective for inductive synthesis.

83

5.2 Preprocessing of Symbolic Representations

Earlier it was pointed our that parameterized values are represented as dags rather
than trees so that common subexpressions can be shared. This is only one of a number of
optimizations that the Sketch synthesizer applies to the characteristic functions to reduce
their size and make the resulting constraint system easier to solve.

The synthesizer applies four classes of optimizations, most of which are specialized
versions of well known optimizations from the literature. The common theme among all of
these optimizations is that they exploit the structure embodied in the dag representation.

• structural hashing,

• algebraic sympli�cation through pattern matching,

• forward and backward valueset analysis,

• canonicalization of ands and ors.

Structural Hashing. This is an old idea used widely in many circuit level solvers such as
ABC [49] and SMT solvers such as UCLID [15] and STP [31]. The optimization performs
common subexpression elimination similar to the way it is done by compilers. A hash
value is computed for each subexpression based on its operator and operands, and if two
subexpressions are found to be equivalent, one of them is eliminated. This ensures that the
�nal dag will not have many copies of structurally identical nodes.

h0 h1

+

*

+

h2

*

h0 h1

+

*

h2

*

h0 h1

+

*

h2

a b a b a b

Simpli�cation through pattern matching. The dags constructed through direct ap-
plication of the semantic rules often contain a lot of ine�ciency which can be easily elim-
inated through simple pattern matching. The simpli�cation is performed by applying the
rewrite rules in Table 5.2 in tandem with structural hashing. The dag is traversed in topo-
logical order; each node is �rst matched with the patterns on the left hand side of the rules;
if a match is found, the node is replaced with the right hand side of the rule, and then the

84

resulting node is hashed to see if any equivalent nodes are already present in the dag. The
�gure below illustrates this process on a small circuit; red solid arrows correspond to struc-
tural hashing steps, while green dotted arrows correspond to pattern matching steps. The
rewrite rules allow the structural hashing to identify common subexpressions which would
otherwise appear to be structurally di�erent.

h0
ab

<

0

^

<
<

++

^

h0
a

<

0

^

<
<

+

^

h0
a

0

^

<
<

+

^

h0
a

0

<
<

+

^

h0 0

< <

^

h0
0

<

^

h0
0

<

Forward Valueset Analysis. The pattern matching rules achieve constant propagation,
so if the value of an expression is independent of the input and the control, the pattern
matching rules will replace this expression with a constant. However, in a typical program
there are many expressions that do depend on the input, but whose value ranges over a small
set of values. Knowing this set of values will make some optimizations possible; for example,
suppose an expression e can have values 1, 3, or 5; then we know that the expression e < 6

will always evaluate to true, even though simple constant propagation would conclude that
the value of this inequality is dependent on the input.

The forward valueset analysis uses a data�ow analysis to approximate the set of
possible values that all the nodes in the dag may take. These sets are then used to replace
some expressions in the dag with constants.

To de�ne the analysis, let V (e) ⊂ Z be the approximation to the set of possible
values that an expression e may take under di�erent inputs. The set V (e) is de�ned recur-
sively from the sets of values of the subexpressions that make up e according to the following

85

equations.

V (hi) = Z

V (ini) = Z

V (c) = {c}

V (◦(x, y)) =

Z if V (x) = Z ∨ V (y) = Z

{a ◦ b : a ∈ V (x) ∧ b ∈ V (y)} otherwise
V (ifc(t, x, y)) = V (x) ∪ V (y)

V (muxn(t, x1, . . . , xn)) =
⋃

1≤s≤n

V (xs)

The equations use the convention that the letter c corresponds to a constant node and the
operator ◦ stands for an arbitrary operator.

In the actual implementation, the sets V (e) are represent explicitly as lists of values,
so we must give a bound on the maximum length of the set to keep the representation from
getting too big; once the list of values reaches this maximum, the set is widened to the
symbolic value Z.

Once the set of values for each node has been derived, all inequalities are checked
to see if they will hold constant for all their possible inputs. For example, for an expression
of the form > (x, y), if for all t ∈ V (x) and v ∈ V (y), the inequality t > v is true, the node
> (x, y) can be replaced with the constant node with value 1, and if the inequality is false
for all t and v, then it can be replaced with a constant node 0. The same substitution is
performed for the operators >,≥, < and ≤,. Similarly, for expressions of the form ifc(a, x, y),
if c is not in the set V (a), then a can never be equal to c, so the expression can be replaced
with the subexpression y according to the de�nition of ifc(a, x, y).

The combination of structural hashing, simpli�cation through pattern matching
and forward value �ow is applied as the circuit is constructed, preventing redundant nodes
from fragmenting the heap before being optimized away.

Backward Valueset Analysis The motivation for this analysis is that in some cases, the
value of a node is only relevant under certain conditions. For example, if there is a node
mux2(a, x, y), and this node is the only successor of y, then we could simplify y using the
assumption that a = 1, since y is only relevant in this case.

86

For this analysis, we de�ne for each node e in the dag a set κ(e) of facts which
can be assumed to be true when optimizing this node. The facts are of the form (a = n),
where a is a node in the dag, and n is an integer. The algorithm computes the set of facts
for each node and simpli�es nodes based on their collected facts, all in a single backward
traversal of the dag.

The algorithm begins by initializing the set of facts for each node e to κ(e) = U ,
where U is the set of all facts. The set of facts of the output node out is initialized to
the empt set κ(out) = {}. The algorithm traverses the dag backwards, updating κ and
replacing nodes according to the rules in Table 5.3.

preconditions
〈e, κ〉 −→ 〈e′, κupdated〉

Each rule has a set of preconditions, and describes how the node e is transformed into a
node e′, and how κ is updated with new information.

The intuition behind these rules is that for a node e, κ(e) is the intersection of
the facts provided by each of e's children. Most expressions are processed by the default
rule, which says that the facts that the expression contributes to its parents are simply its
own facts, and the expression itself remains unchanged. Some expressions can contribute
additional information to their parents; for example, an expression e = ∧(x, y) can contribute
to its parent x the fact that y = 1, because if y = 0, the value of x does not matter to the
node ∧(x, y). This is expressed in the rules by updating κ(x) to κ(x) ∩ (κ(e) ∪ {y = 1}).
Additionally, the nodes may be simpli�ed or eliminated based on their facts. For example,
if e = ∧(x, y), and κ(e) contains the fact {y = 0}, then the node can be replaced with the
constant 0.

The sequence below illustrates this process on a simple dag. The dag is what the
system will generate for the following sequence of array operations.

int[2] x = ??;

x[t] = a;

out = x[t];

Notice that the assignment to x[t] is handled as a conditional assignment to each element
of x by using the if0 and if1 nodes. However, the optimization discovers that these nodes
are redundant because the value of x[0] is only relevant if t is 0, so it is �ne assume that
x[0] = a regardless of the value of t.

87

h0 h1

t

if0

mux2

a

if1

{}

UU

UU U h0 h1

t

if0

mux2

a

if1

{}

{t=1}{t=0}

UU U h0 h1

t

mux2

a

if1

{}

{t=1}

{t=0} UU h0 h1

t

mux2

a

{}

{} UU

If the dag is traversed backwards form the root as speci�ed, the algorithm will be
well de�ned; for each node, only one rule will match, and by the time node e is reached, κ(e)

will not contain any contradicting facts, such as y = t and y = t′ for t 6= t′. Because this
analysis runs backwards, it can not be applied in the same pass as the previous analysis;
however, its running time is quite small in the context of the overall synthesis process. Both
this optimization and the previous one are applying what amounts to abstract interpretation
to the problem of simplifying systems of constraints; something that, to my knowledge, isn't
done by either UCLID or STP.

Canonicalization of Associative-Commutative Operations. Structural hashing can
eliminate common sub-expressions, but it handles associativity and commutativity very
poorly. For example, structural hashing can recognize that a ∨ b and b ∨ a are equivalent,
but it can not recognize the equivalence of (a ∨ b) ∨ c and (a ∨ c) ∨ b. This optimization
canonicalizes complex expressions involving the operators ∨ and ∧, making it possible to
recognize common subexpressions involving these operators.

This analysis can be applied to any operator that is associative, commutative, and
idempotent (i.e. x∨x = x), which is true only of ∨ and ∧. The reason is that if an operation
has these three characteristics, a complex expression involving this operation can be fully
characterized by the set of its unique operands. For example, any expression involving only
the operator ∨ and the variables a, b and c is equivalent to the expression a ∨ b ∨ c. For
the rest of this explanation, I will assume we are dealing with ∨ nodes, but the exact same
procedure is used to canonicalize ∧ nodes.

As a �rst step, the algorithm computes for each node ∨(x, y) a set S(∨(x, y)),
containing those nodes of type di�erent from ∨ that �ow to ∨(x, y) through a sequence
of ∨ nodes. This computation is straightforward; we can de�ne it recursively through the

88

following formulas: S(∨(x, y)) = tsx ∪ tsy where

tsx =

s(x) if x = ∨(a, b) for some a, b

{x} otherwise
and same for tsy

Because ∨ is idempotent, commutative and associative, nodes whose sets s are equal can be
considered equivalent and merged.

Once the algorithm has computed the S set for all the ∨ nodes, and merged all
nodes with identical S sets, the algorithm proceeds by using dynamic programming to �nd
shared subsets among the S sets, and create ∨ expressions that maximize the amount of
sharing of common subexpressions.

5.3 Translation to SAT

The sketch synthesizer solves the constraint systems generated through the above
process by translation to SAT. The translation proceeds in two steps: the dag is �rst
expanded into a boolean circuit, which is then translated into a SAT problem. I will �rst
describe the translation into a boolean circuit, and then discuss the translation from circuit
to a SAT problem.

5.3.1 From dag to boolean circuit

The translation into a circuit involves primarily the expansion of all arithmetic,
comparison and selection expressions into boolean expressions. A common approach to
this problem, employed by CMBC and Saturn is to use some variation of bit-blasting by
representing integers as bit-vectors and encoding each non-boolean function through its
boolean representation as a circuit that implements the operation.

For Sketch we opted instead for a sparse encoding which represents integers as
a set of guarded values of the form (v, b), where v is an integer constant and the guard b is a
boolean function. If b is true, then the integer has value v. We maintain an invariant that for
all inputs at most one guard will be true. Similarly, we maintain uniqueness of the guarded
values by taking a disjunction of terms guarding the same value, i.e. if after some operation
the representation for a number becomes [(4, b1), (3, b2), (4, b3)], this will be represented as

89

Original Pattern → Replacement

∧(x, x) → x

∧(x,¬x) → 0
∧(c1, c2) → c1 ∧ c2
∧(0, x) → 0

∧(x,∧(y,¬x)) → 0
∨(x, x) → x

∨(x,¬x) → 1
∨(c1, c2) → c1 ∨ c2
∨(1, x) → 1

∨(x,∨(y,¬x)) → 1
⊕(x, x) → 0
⊕(x,¬x) → 1
⊕(c1, c2) → c1⊕ c2

¬c1 → 1− c1
¬¬x → x

+(c1, c2) → c1 + c2
+(x, 0) → x

+(+(x, c1), c2) → +(x, c1 + c2)
+(x,−x) → 0

+(+(x, y),−x) → y

∗(c1, c2) → c1 ∗ c2
∗(x, 0) → 0
∗(x, 1) → x

div(c1, c2) → c1/c2
div(mod(x, y), y) → 0

mod(c1, c2) → c1 mod c2
mod(mod(x, y), y) → mod(x, y)

−(c1) → −c1
−(−(x)) → x

> (c1, c2) → c1 > c2
> (x, x) → 0

> (+(x, y), +(x, z)) → > (y, z)
> (+(x, y), x) → > (y, 0)

Original Pattern → Replacement

≥ (c1, c2) → c1 ≥ c2
≥ (x, x) → 1

≥ (+(x, y),+(x, z)) → ≥ (y, z)
≥ (+(x, y), x) → ≥ (y, 0)

< (c1, c2) → c1 < c2
< (x, x) → 0

< (+(x, y),+(x, z)) → < (y, z)
< (+(x, y), x) → < (y, 0)

≤ (c1, c2) → c1 ≤ c2
≤ (x, x) → 1

≤ (+(x, y),+(x, z)) → ≤ (y, z)
≤ (+(x, y), x) → ≤ (y, 0)

= (c1, c2) → c1 = c2
= (x, x) → 1

= (+(x, y),+(x, z)) → = (y, z)
= (+(x, y), x) → = (y, 0)

= (x, y), x, y : B → ⊕(x, y)
muxN (c1, x1, . . . , xN) → xc1

muxN (y, x, x, . . . , x) → muxN (< (y, N), 0, x)
mux2(x, 1, 0), x : B → x

mux2(x, 0, 1), x : B → ¬x

mux2(x, 0, y), x, y : B → ∧(x, y)
mux2(x, y, 1), x, y : B → ∨(x, y)
mux2(x, x, y), x, y : B → ∧(x, y)

mux2(x,¬x, y), x, y : B → ∨(¬x, y)
mux2(= (x, c1), y, z) → ifc1(x, z, y)

mux2(x, y,mux2(a, y, c)) → mux2(∧(x, a), y, c)
mux2(x, y,mux2(x, b, c)) → mux2(x, y, c)

ifc1(c1, x, y) → x

ifc1(c2, x, y)c2 6= c1 → y

ifc1(x, y, y) → y

The rules use c1 and c2 to refer to constant nodes. On the right hand side, an operation on two
constants, such as c1 + c2, corresponds to the integer node with the resulting value.

Table 5.2: Rewrite rules for circuit optimization

90

Multiplexer rules:
e = muxN (a, x1, . . . , xN) (a = t) ∈ κ(e)

〈muxN (a, x1, . . . , xN), κ〉 −→ 〈xt, κ[xt 7→ κ(xt) ∩ κ(e)]〉
e = muxN (a, x1, . . . , xN) ∀t(a = t) /∈ κ(e)

〈muxN (a, x1, . . . , xN), κ〉 −→ 〈e, κ[a 7→ κ(a) ∩ κ(e), ∀1≤i≤Nxi 7→ κ(xi) ∩ (κ(e) ∪ {a = i}]〉

ifc rules:

e = ifc(a, x, y) (a = t) ∈ κ(e) t 6= c

〈ifc(a, x, y), κ〉 −→ 〈x, κ[x 7→ κ(x) ∩ κ(e)]〉
e = ifc(a, x, y) (a = c) ∈ κ(e)

〈ifc(a, x, y), κ〉 −→ 〈y, κ[y 7→ κ(y) ∩ κ(e)]〉
e = ifc(a, x, y) ∀t(a = t) /∈ κ(e)

〈ifc(a, x, y), κ〉 −→ 〈e, κ[a 7→ κ(a) ∩ κ(e), y 7→ κ(y) ∩ (κ(e) ∪ {a = c}), x 7→ κ(x) ∩ κ(e)]〉

Disjunction rules:

e = ∨(x, y) (x = 1) ∈ κ(e) ∨ (y = 1) ∈ κ(e)
〈∨(x, y), κ〉 −→ 〈1, κ〉

e = ∨(x, y) (x = 0) ∈ κ(e) ∧ (y = 0) ∈ κ(e)
〈∨(x, y), κ〉 −→ 〈0, κ〉

e = ∨(x, y) (y = 0) ∈ κ(e) ∧ (x = t) /∈ κ(e)
〈∨(x, y), κ〉 −→ 〈x, κ[x 7→ κ(x) ∩ κ(e)]〉

e = ∨(x, y) ∀t1,t2(y = t1), (x = t2) /∈ κ(e)

〈∨(x, y), κ〉 −→ 〈∨(x, y), κ[y 7→ κ(y) ∩ (κ(e) ∪ {x = 0}), x 7→ κ(x) ∩ (κ(e) ∪ {y = 0})]〉

Conjunction rules:

e = ∧(x, y) (x = 0) ∈ κ(e) ∨ (y = 0) ∈ κ(e)
〈∧(x, y), κ〉 −→ 〈0, κ〉

e = ∧(x, y) (x = 1) ∈ κ(e) ∧ (y = 1) ∈ κ(e)
〈∧(x, y), κ〉 −→ 〈1, κ〉

e = ∧(x, y) (y = 1) ∈ κ(e) ∧ (x = t) /∈ κ(e)
〈∧(x, y), κ〉 −→ 〈x, κ[x 7→ κ(x) ∩ κ(e)]〉

e = ∧(x, y) ∀t1,t2(y = t1), (x = t2) /∈ κ(e)

〈∧(x, y), κ〉 −→ 〈∧(x, y), κ[y 7→ κ(y) ∩ (κ(e) ∪ {x = 1}), x 7→ κ(x) ∩ (κ(e) ∪ {y = 1})]〉

default rule:

e = ◦(x, y)
〈◦(x, y), κ〉 −→ 〈◦(x, y), κ[x 7→ κ(x) ∩ κ(e), y 7→ κ(y) ∩ κ(e)]〉

Table 5.3: Update rules for backward analysis

91

[(4, b1 ∨ b3), (3, b2)]. This encoding is very similar to the one used by Saturn [71] to encode
pointers, but we use it to encode all integers.

Before describing formally how the sparse representation is used to generate boolean
circuits from arithmetic expressions, I will illustrate the logic behind this representation with
an example.

if(a ⊕ b)

x = 5;

else

x = 7;

if(a)

y = 3;

else

y = 2;

t = x + 3;

v = t + y;

a b

+

7 52 3

mux2mux2

+

+

For this fragment, the sparse representation for x in terms of the input variables
a and b is x = {(5, a ⊕ b), (7,¬(a ⊕ b))}. Adding 3 to x produces the new value t =

{(8, a ⊕ b), (10,¬(a ⊕ b))}; note that in the sparse representation, the boolean formulas
are una�ected by addition or subtraction of integers. The �gure below shows the resulting
boolean circuit for the fragment of code above before and after constant propagation.

a b

[(2,)]

1

[(3,)] [(7,)] [(5,)]

[(2,), (3,)]

¬

^ ^ [(7,), (5,)]

¬

^ ^

[(10,), (8,)]

[(10,), (11,), (12,), (13,)]^ ^ ^ ^

+ a b

¬ ¬

[(10,), (11,), (12,), (13,)]^ ^ ^ ^

+

A bit-vector representation for this snippet of code would require each bit of x to
be described in terms of a and b, and the representation of x + 3 would require a bit-vector
addition. This is not to say that the sparse representation is always better than the bit-vector
representation; it is not. In particular, the representation is ine�cient for integers that may
range over a large number of values. This may happen either when we want to consider a
very large range of values for inputs, or when the sketch contains a lot of multiplications,
which cause a severe growth in the size of the sparse representation. Beyond the e�ciency

92

considerations, however, the most important quality of this representation is the ease of
implementation. Adding support for complex operations such as multiplication, division
and reminder is trivial compared with having to encode the bit-vector representations of
these operations.

The circuits for the various integer operations are constructed using the sparse
representation through a syntax directed translation. For a constant expression n, the
sparse representation uses a single guarded value with a guard equal to 1:

n : spar −→ [(n, 1)]
Arithmetic expressions are handled by applying the arithmetic operation on pairs

of values from the two operands and guarding them with the conjunction of their respective
conditions.

e1 : spar −→ [(v1
1, b

1
1), . . . (v

1
k, b

1
k)]

e2 : spar −→ [(v2
1, b

2
1), . . . (v

2
l , b

2
l)]

◦(e1, e2) : spar −→ [(v1
i ◦ v2

j , b
1
i ∧ b2

j) | 1 ≤ i ≤ k, 1 ≤ j ≤ l]

The multiplexer function may take integer or bit inputs, but its selector input must
always be an integer, so it will be converted according to one of the following formulas.

〈e : spar〉 −→ [(x0, f0), . . . (xs, fs)] bi : bit
〈muxn(e, b0, . . . , bk) : bit〉 −→ (

∨
0≤j≤s(bxj ∧ fj))

〈e : spar〉 −→ [(e0, f0), . . . (es, fs)] 〈xi : spar〉 −→ [(vi
0, b

i
0), . . . , (v

i
li
, bi

li
)]

〈muxn(e, x0, . . . , xk) : spar〉 −→ [(vej

i , b
ej

i ∧ fj) | 0 ≤ j ≤ s, 0 ≤ i ≤ lej]

Below are two sample circuits generated by the above rules; the one on the left corresponds
to bit inputs, while the one on the right corresponds to integer inputs.

[(1,), (3,), (5,)]

^

b0 b1 b3b2 b5b4

^ ^

v

e

[(1,), (3,)]

[(0,), (2,), (5,)] [(1,)][(3,), (4,)] [(1,), (3,), (5,)]

[(3,), (4,), (1,), (3,), (5,)]

^ ^ ^^ ^

[(1,), (3,), (4,), (5,)]

v

e

x0 x1 x2 x3

As the boolean circuit for the constraints is derived, the synthesizer performs con-
stant propagation before converting the resulting boolean constraint into a SAT problem.

93

5.3.2 From boolean circuit to SAT

The Sketch synthesizer has two di�erent options for translating the boolean rep-
resentation into a SAT problem. The �rst method is through direct conversion of the boolean
circuit into CNF clauses. The second method actually constructs the boolean circuit and
feeds it to a boolean circuit analysis tool called ABC [49]. The �rst approach is to convert
each node in the boolean circuit into a small set of CNF clauses by using standard conversion
formulas. When following this approach, the synthesizer never builds a representation of
the boolean circuit as such. Instead, it directly generates the CNF clauses as it traverses
the original dag to perform the conversion described in the previous section. This has the
advantage of simplicity and avoiding additional overhead of an extra translation step.

In the second approach, the synthesizer explicitly builds a graph representation of
the boolean circuit, and feed it to a circuit analysis tool called ABC [49]. ABC uses an
and-inverter-graph (AIG) representation of the circuit to e�ciently analyze and optimize it.
Furthermore, for large circuits it is sometimes able to break the equivalence checking problem
into smaller SAT problems that it's able to solve more quickly. The main disadvantage of
this approach is the additional memory overhead of ABC compared with direct translation
to SAT, which can be signi�cant for larger benchmarks.

This translation completes the process of expressing formulas in the synthesis se-
mantics as boolean constraint systems suitable for solution with a SAT solver. The process
is very general; it is able to handle complex sketches ranging from low-level bit twiddling
to di�cult data-structure manipulations, as the following section will illustrate. The price
paid the power and generality of this approach is the boundedness constraint; the need to
statically unroll loops, and the requirement that all integers be constrained to a small range
of values. This is a major tradeo�, but if the history of model checking over the last ten
years is any guide, this looks like a tradeo� worth making.

94

Chapter 6

Empirical Evaluation

The primary goal of this chapter is to provide some insight into the scope of sketch-
ing problems the synthesizer is currently able to solve, and the time and memory resources
it uses in order to solve them. The chapter also compares the performance of the synthesizer
with o�-the-shelf solvers for quanti�ed boolean formulas, as well as the e�ect on the solution
time of changes to a few properties of the sketch, such as the number of holes, or the size of
the space of inputs. Finally, the section analyzes the bene�ts of the optimizations described
in Section 5.2 and Section 5.3.

The experiments in this chapter were all performed on ThinkPad laptop with a
single core Intel T1300 at 1.66GHz with 2MB of L2 cache and 1GB of memory. All the
performance numbers in this section are averages from 4 to 7 di�erent executions using
di�erent random seeds for the initial counterexample and the random restart in the SAT
solver. The experiments used the 2004 version of MiniSat and version 60513 of ABC. The
following are the highlights of the evaluation.

• Sketch Scales to real problems The performance of the synthesizer is shown for
several variations of 18 representative benchmarks from a variety of domains, all of
which resolve in less than 15 minutes and use less than 250 MB of memory. A complete
implementation of AES was also produced with Sketch; it had a candidate space of
the order of 32K elements but took only about an hour to resolve.

• The Sketch language can naturally express programmer insight The section
uses examples from di�erent domains to show how the insight behind a tricky algorithm
can be succinctly expressed in a sketch.

95

0

5

10

15

20

25

30

35

40

tu
tor

ial
2

po
lyn

om
ial

lss
_e

as
ies

t

lss
_e

as
y

lss
_h

ar
de

st

Poll
ar

d

tu
tor

ial
3

co
m

pr
es

s_
ea

sy

co
m

pr
es

s_
ha

rd

m
or

to
n_

ea
sie

st

m
or

to
n_

ea
sie

r

m
or

to
n

ta
ble

Bas
ed

Add
itio

n

log
co

un
t8_

ea
sy

log
co

un
t8

re
ve

rse
.sk

.tm
p

log
2

do
ub

lyL
ink

ed
Lis

t

Set
Te

st

Easier Benchmarks

S
ec

o
n

d
s

0

50

100

150

200

250

M
eg

a
B

yt
es

0

100

200

300

400

500

600

700

800

900

m
er

ge
_s

or
t

xp
os

e

xp
os

eB
it

ka
ra

tsu
ba

_s
m

all

ka
ra

tsu
ba

pa
rit

y

log
co

un
t16

log
co

un
t16

_e
as

y

log
2V

ar
Lo

op
.sk

.tm
p

lis
tR

ev
er

se
Har

de
r

en
qu

eu
e

Harder Benchmarks

S
ec

on
d

s

0

50

100

150

200

250

M
eg

a
B

yt
es Validation

Ind. Synthesis

Memory Consumption

Figure 6.1: Solution time and memory consumption for selected benchmarks.

• Additional input from the programmer makes synthesis faster The section
shows how on di�erent benchmarks, small amounts of extra information from the
programmer can improve the solution time by orders of magnitude.

• Optimizations can greatly improve performance A couple of benchmarks saw
performance improvements of 10x and 33x from using ABC as the boolean solver, but
the improvement was not uniform. Some saw big performance degradation, so it is
important to pick the correct solver. The high-level optimization had smaller e�ects,
but still were able improve the solution time by an additional factor of 6 for some
benchmarks.

• For sketching problems, CEGIS is better than general QBF solvers Even the
best QBF solver was unable to solve problems which the Sketch synthesizer solves
in a couple of minutes.

6.1 Performance of Selected Benchmarks

Figure 6.1 shows the solution times for several variations of 18 representative bench-
marks. The benchmarks are mostly real programming problems which the synthesizer can
solve in less than 15 minutes. Many of these benchmarks were written by our group, but a
handful of them were developed by students from a graduate introductory programming lan-
guages class held at UC Berkeley in the fall of 2007. The benchmarks can be roughly catego-
rized into three groups: bit manipulations, integer manipulations and linked data structures.

96

log-shift scatter log-shift gather

Figure 6.2: Examples of log-shifting for scattering and gathering bits.

Bit manipulations What characterizes these benchmarks is that they treat machine
words as bit-vectors. All these benchmarks use the implements directive (Section 2.4.2)
to provide speci�cations in the form of reference implementations that manipulate each
bit individually. The sketches contain the necessary insight to take advantage of bit-level
parallelism. These benchmarks were our �rst application of sketching because the low-level
details almost always involve discovering bit-masks and precise shift amounts, so we could
write sketches for them using only the integer hole, even before we had any of the higher
level sketching constructs.
Example A typical benchmark of this category is the morton benchmark, written by grad-
uate student Jacob Burnim. A 32-bit morton number is computed by interleaving the bits
of two 16 bit integers x and y, so that bit r2∗i of the result equals bit xi of x, and bit
r2∗i+1 corresponds to bit yi of y. According to Anderson, �Morton numbers are useful for
linearizing 2D integer coordinates, so x and y are combined into a single number that can be
compared easily and has the property that a number is usually close to another if their x and
y values are close� [3]. It's easy to interleave the bits of two 16-bit integers by selecting the
bits one by one, but it's possible to do it more e�ciently by taking advantage of the ability
to shift all the bits in a word with a single instruction; while the bit-by-bit approach takes
O(W) operations for a word of size W , the task can be achieved with O(log(W)) operations
by using bit-vector parallelism. The high-level insight can be stated as follows.

First, scatter the 16 bits of each of the two inputs across the even bits of a 32
bit word. Then, or together the resulting two words, shifting one of the words
by one to align its bits with the gaps in the other word. The scatter can be
done with log-shifting, a technique for e�ciently scattering or gathering bits
by shifting many bits at a time as illustrated in Figure 6.2. A logshifter can
be implemented by repeatedly shifting some bits, oring them with the original
word, and then masking the result.

97

The insight can be expressed succinctly in a sketch. The logshift generator encap-
sulates the basics of logshifting, but leaves unspeci�ed the tricky details of exactly what bits
to mask and how much to shift on each step; this means that the generator could actually
be reused to implement other scattering patterns di�erent from the one required for this
problem. The sketch also leaves unspeci�ed the number of steps required for the logshifter;
this is a potential problem because it gives the synthesizer the freedom to include more steps
than necessary. The student produced a second version of this benchmark (morton_easiest)
that speci�es that on each iteration the shift amount should be reduced by half. This ver-
sion of the benchmark is guaranteed to produce the desired answer, and resolves much faster
because of the added information.

int W = 16;

generator bit[2*W] logshift(bit[2*W] in){

int pt = 4*W;

repeat(??) {

// Shift some of the bits, and mask out their original positions.

in = (in | (in << ??)) & ??;

}

}

bit[2*W] morton(bit[W] x, bit[W] y) implements mortonSpec{

bit[2*W] x2 = logshift(x);

bit[2*W] y2 = logshift(y);

return x2 | (y2 << 1);

}

2

All the benchmarks in the second group in Figure 6.1 are bit manipulation bench-
marks. These benchmarks are di�cult to solve despite their relatively small size (compress
is the largest one of these sketches and it's only 47 lines of code). There are two reasons for
this. First, their candidate spaces are often huge; a single 32-bit mask will have billions of
possible solutions. Moreover, the holes are often very tightly coupled, in the sense that every
bit in the output potentially depends on the value of every single hole, as was the case in the
morton example. This makes these benchmarks very challenging for the solver. On the other
hand, they are a great domain for sketching because it is very challenging to program by
hand, and there is often a very good match between the insight and the sketch. Moreover,
because these benchmarks are inherently bounded, the SAT-based validation procedure can
provide absolute correctness guarantees.

98

Integer manipulations. These benchmarks manipulate integers or arrays of integers;
with the manipulations typically involving some arithmetic. Their speci�cations also con-
sist of reference implementations, while the sketches often must take advantage of some
mathematical principle to achieve better performance at the expense of clarity. All the
benchmarks in the �rst group in Figure 6.1 are integer manipulation benchmarks.
Example A great example from this domain is the Karatsuba multiplication algorithm for
large integers (karatsuba). The algorithm is a building block of many public key cipher
implementations. It uses a divide and conquer approach to multiply integers with N dig-
its in O(N1.585), as opposed to the standard O(N2) from the grade school multiplication
algorithm.

The algorithm starts by decomposing two N -digit numbers x and y into two halfs:
x = x1b

N/2 + x0, y = y1b
N/2 + y0, where b is the base. The standard multiplication can be

de�ned recursively in terms of the two halfs.

x ∗ y = bNx1 ∗ y1 + bN/2(x1 ∗ y0 + x0 ∗ y1) + x0 ∗ y0

The expensive (big-integer) multiplication is denoted with the ∗ operator. The multiplication
with the base terms is implemented with shifts, so it is not an expensive operation.

Let us illustrate how Karatsuba might have been able to invent (and implement)
his algorithm with the assistance of sketching. He would �rst observe that it may be possible
to replace the four expensive multiplications with three expensive multiplications. He would
guess that one cannot avoid computing terms x0 ∗ y0 and x1 ∗ y1, so he would focus on
replacing the term x1 ∗ y0 +x0 ∗ y1 with a one-multiplication term. This optimization would
be performed at the expense of adding big-integer additions or subtractions, a good trade-o�
since their complexity is linear rather than quadratic. In mathematical notation, the idea
can be expressed in the following sketch, where the generator poly(n, x1, . . . , xk) produces a
polynomial in k variables of degree n.

x ∗ y = poly(??, b) ∗ (x1 ∗ y1)

+ poly(??, b) ∗ (poly(1, x1, x0, y1, y0) ∗ poly(1, x1, x0, y1, y0))

+ poly(??, b) ∗ (x0 ∗ y0)

99

int[N*2] k (bit[N] x, bit[N] y) implements mult {

if (N<=1) return x*y;

int[N/2] x1, x2, y1, y2;

int[N] a=0, b=0, c=0;

int[N*2] out = 0;

x1=x[0::N/2]; x2=x[N/2::N/2];

y1=y[0::N/2]; y2=y[N/2::N/2];

a = multHalf(x1, y1); //perform recursive multiplications

b = multHalf(x2, y2);

c = multHalf(poly1(x1,x2,y1,y2), poly1(x1,x2,y1,y2));

out = a;

out = plus(out, shift(b, No2));

loop(??){

int[N] t = {| a | b | c |};

// shift is equivalent to multiplication by a power of the base.

out = plus(out, shift({| t | minus(t) |}, {| N | N/2 | 0 |}));

}

out = normalize(out);

return out;

}

int[No4] poly1(int[No4] a, int[No4] b, int[No4] c, int [No4] d){

int[No4] out = 0;

if(??) out = plus(out, {| a | minus(a)|});

if(??) out = plus(out, {| b | minus(b)|});

if(??) out = plus(out, {| c | minus(c)|});

if(??) out = plus(out, {| d | minus(d)|});

return out;

}

Figure 6.3: Sketch for Karatsuba's multiplication.

100

It turns out that the idea for this optimization is correct; the correct formula is shown below.

x ∗ y = (b2 + b) ∗ (x1 ∗ y1)

+ b ∗ ((x1 − x0) ∗ (y1 − y0))

+ (b + 1) ∗ (x0 ∗ y0)

Creating an implementation using the Sketch system is just as simple. The sketch
in Figure 6.3 contains the same insight expressed above in more mathematical notation, but
it also addresses the representation issues for the integers and their operations. Integers are
represented as N element arrays of ints; addition, complement and shifting are all provided
through separate routines. The half ranges are read from the original input array using
special array notation available in the language, where A[a::b] correspond to a range of b
elements in A starting with the element at position a. Multiplications by the base term are
encoded through a shift operation.

Ideally, we would like for the routine to be parametrized by N , and the solver to
guarantee the result for all N . Unfortunately, the Sketch solver can not reason about
unbounded operations, so the correct answer was derived by setting N to 4, and limiting
the range of integer values to two bits. 2

The karatsuba benchmark illustrates many relevant aspects of integer benchmarks.
First, because we use bounded model checking as our correctness criteria, we can not provide
strong correctness guarantees. For most of these benchmarks, validation was performed for
all integer inputs in the range [0, 8]. Only the tutorial benchmarks were validated for inputs
in the range [0, 32]. For these benchmarks these ranges happened to be su�cient in the sense
that the programs that were correct for all inputs between 0 and 8 turned out to be correct
programs, but this could only be ascertained through hand examination of the result.

The ranges of inputs are fairly small even by the standards of bounded model
checking. This is partly a consequence of the use of the guarded value representation of
integers described in Section 5.3. This representation is very e�cient when representing
integers ranging over a small set of values, but it grows very quickly, making it impractical
to validate sketches over a wide range of input values. It is very likely that the growing
power and availability of SMT solvers capable of reasoning about integers will have a big
impact on these benchmarks. In spite of this, the synthesizer is able to quickly produce
correct implementations from sketches with a lot of freedom for many interesting kernels.

101

Linked data structures These benchmarks involve manipulation of data structures in
the heap. The linked list reversal from the introduction is an example of this class of
benchmark.
Example Another interesting benchmark in this category is the SetTest benchmark. This
benchmark implements a tree-based set using a hash table as a reference implementation.
One of the problems that make tree manipulation tricky is symmetry: the code for the
di�erent cases is very similar except some cases have to use the left child and some have to
use the right child, and it is easy to get confused about which child should be used where.
Sketching allowed us to eliminate this redundancy by using generators. The fragment of the
SetTest sketch shown below uses a generator to produce the code that decides whether to
add a new node as a child of the current node or to continue traversing.

bit add(Tree t, int v){

TreeNode n =t.root;

if(n == null){

t.root = newTreeNode(v);

return ??;

}

while(n != null){

if(n.val == v){ return ??; }

if(n.val < v){

if(choice(n, v)){

return ??;

}

}else{

if(choice(n, v)){

return ??;

}

}

}

return ??;

}

102

The generator will produce the correct code both for the case when n.val is less
than v and when it is not.

generator bit choice(ref TreeNode n, int v){

if({| n(.left | .right) |} == null){

{| n(.left | .right) |} = newTreeNode(v);

return ??;

}else{

n = {| n(.left | .right) |} ;

return ??;

}

}

2

103

Like the integer manipulation benchmarks, datastructure benchmarks also have to
cope with the limitations of the validation procedure. Our validation procedure can not
guarantee the absolute correctness of the synthesized implementation, only its correctness
against a bounded test harness. For example, the test harness for the enqueue benchmark,
shown below, enforces the equivalence of the sketched queue with an array implementation
on an input directed sequence of operations.

void main(int[N] in, bit[N] ctrl) {

int [N] qarray=0;

int head = 0;

int tail = 0;

Queue q = new Queue();

init(q);

for(int i=0; i<N; ++i){

if(ctrl[i]){ // decide to enqueue or dequeue based on the input.

enqueue(q, in[i]);

qarray[tail] = in[i]; //The same operation is applied

tail = tail+1; //to the queue and to the array.

}else{

bit tmp;

if(q.head != null){

tmp = dequeue(q);

}else{

tmp = -1;

}

if(head != tail){

assert tmp == qarray[head];

head = head + 1;

}else{ // Array queue is empty, sketched queue

assert tmp == -1; // should be empty too.

} } } }

This type of test harness is often referred to in the veri�cation literature as a �most
general client� [2] because verifying that it works correctly for all possible inputs will prove

104

that the queue works correctly for all sequences of up to N operations, which is a very good,
but it's not the same as verifying that the queue is correct.

Another interesting feature of the datastructure benchmarks, especially when com-
pared with the bit manipulations, is that one can leave a great amount of code unspeci�ed
while keeping the search space relatively small. For example, in the listReverseHard bench-
mark, the assignments in the body of the loop speci�ed remarkably little, leaving a lot of
freedom to the synthesizer, but the synthesizer only had 60 di�erent possibilities to search
through for each assignment. By contrast, a single bit-mask in the morton benchmark can
have 232 di�erent possible values. This means that sketches can be allowed to have a lot
of freedom without overwhelming the synthesizer. At the same time, we can see that the
solution times for these benchmarks can be quite large given their small input and candidate
spaces, which seems to suggest that our very naïve representation of the heap as a set of
arrays (Section 3.2.2) may have a lot of room for improvement.

6.2 Factors a�ecting performance of the Sketch synthesizer

This section analyzes how the performance of the synthesizer is a�ected by the
sketch. In particular, it looks at how the solution time is a�ected by features such as
the number of holes, and bounds on the sizes of datastructures. The goal is to give the
programmer some insight into how to cope with sketches that take too long to resolve.

6.2.1 Synthesis time Vs. Holes

We have argued before that sketching o�ers the programmer a very natural way to
help the synthesizer. If the synthesizer is taking too long to resolve a sketch, the programmer
can help by simply writing more of the code. The number of holes in a sketch has a strong
impact on its solution time, so writing even a little more code can help the synthesizer �nd
a solution much faster. Figure 6.4 illustrates precisely how much faster on a handful of
benchmarks.

Overall, we observe that, reducing the number of holes reduces the synthesis time
by orders of magnitude. This is a very intuitive result; reducing the number of holes reduces
the search space that the synthesizer has to consider, and therefore the time it takes to
search through it. Thus, if a sketch is taking too long in the synthesis phase, it may bene�t
from additional information that reduces the number of holes.

105

0.01

0.1

1

10

100

1000

0 100 200 300 400 500 600 700

Number of Control Bits

S
yn

th
es

is
 T

im
e

(s
ec

)

compress_hard
compress_easy

morton_easier
morton
morton_easiest

lss_hardest
lss_easy lss_easier

listReverseHarder
listReverseEasy

logcount8
logcount8_easy

logcount16
logcount6_easy

0.01

0.1

1

10

100

0 100 200 300 400 500 600 700

Number of Control Bits

V
al

id
at

io
n

 T
im

e
(s

ec
)

compress_hard
compress_easy

morton_easier
morton
morton_easiest

lss_hardest
lss_easy
lss_easier

listReverseHarder
listReverseEasy

logcount8
logcount8_easy

logcount16
logcount6_easy

Figure 6.4: parity: Synthesis and Validation against number of control bits for speci�c
sketches.

More surprisingly, reducing the number of holes also has a small e�ect on the
validation time. This may appear surprising because the validation only sees concrete can-
didates, so it should not be a�ected by the size of the candidate space. However, recall that
Section 4.3 observed that bigger candidate spaces often lead to more iterations of the CEGIS
loop, which implies more calls to the validation procedure, so validation time increases even
though the average time per validation stays roughly the same.

The di�erences in synthesis and validation times are more pronounced for some
benchmarks than for others. For example, consider the two versions of listReverse. The
harder one corresponds to the sketch from Section 1.2.1; the simpler one fully speci�es the
left hand side of each assignment while leaving everything else unchanged. The performance
di�erence is dramatic. The more detailed sketch resolves in a matter of seconds, while the
freer one takes several minutes.

The story for the morton benchmark is similar. The hardest version of morton

corresponds to the sketch shown in the previous section. The intermediate version takes
advantage of the fact that the logshift should synthesize to the same function for both
x and y, so it uses a procedure instead of a generator, and asserts the correctness of the
logshift procedure independently. The third version of morton uses a generator like the �rst
one, but exposes in the sketch the insight that the shift amounts for the log shifter should
decrease by half for every step. Just as before, additional information signi�cantly reduces
the solution time.

The morton benchmark is also interesting because it shows the e�ect of providing

106

Synthesis Time (Seconds)

0

50

100

150

200

250

300

350

400

enqueue N=3 enqueue N=4 enqueue N=5 enqueue N=6

Validation Time (Seconds)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

enqueue N=3 enqueue N=4 enqueue N=5 enqueue N=6

Synthesis Time

0

50

100

150

200

250

300

350

reverse N=3 reverse N=4

Validation Time

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

reverse N=3 reverse N=4

Figure 6.5: Solution time with varying test sizes.

di�erent kinds of information. The �rst optimization reduced the number of bits of holes
from 600 to 300, and this reduced the synthesis time from 21.5 to 1.6. On the other hand,
the second optimization reduced the number of holes by less, from 600 to 484, but the e�ect
on the synthesis time was much bigger, from 21.5 to 0.3 seconds. Apparently, knowing the
shift amount was much more useful to the synthesizer than knowing that logshift is the
same for both cases. This was probably due to the fact that knowing the shift amounts
allowed it to infer the number of steps in the logshifter, which meant it had fewer bit-masks
to search through. Overall, the lesson from these experiments is that providing a little more
information in a sketch can usually have a big impact on the time it takes to resolve it.

6.2.2 Synthesis Time Vs. Test Size

Sketches of linked data structures use a bounded test harness to de�ne correctness,
so let us now explore the e�ect that the bounds in the test harness can have on the solution
time for a sketch. Figure 6.5 shows the e�ect of the bound sizes on the solution time for a
couple of the data structure sketches. As expected, changing these sizes has a big impact
on the validation time. After all, the validator has to work harder to prove the correctness

107

of the solution over a bigger input space. As we can see, the e�ect is very clear; for the
enqueue benchmark, for example, the validation time increases linearly with N, the number
of operations performed by the test harness.

More surprisingly, changing the bounds of the test harness has a big impact on
the synthesis time as well. This is surprising because the synthesizer works only with
concrete inputs, so it should not be a�ected by the fact that these inputs came from a
bigger pool of possible inputs. However, bigger bounds allow the validator to produce
bigger counterexamples; in turn, bigger counterexamples mean it took more steps for the
incorrect control values to cause an assertion failure, and therefore the constraint system
for the synthesis problem is bigger and harder to solve. We have observed a similar e�ect
with integer benchmarks; increasing the range of the integers doesn't just make validation
harder, it makes synthesis harder.

In short, users should start by trying to synthesize their code with small bounds
for their test harnesses; the generated code can always be checked with bigger bounds to get
better assurance about its correctness. Doing this automatically in the synthesizer should
help greatly with the performance of datastructure problems.

6.3 Analysis of the Optimizations

This section quanti�es the performance bene�t of the optimizations described in
Section 5.2 and Section 5.3. In Section 5.3, we described how the Sketch synthesizer
can use the circuit analysis tool ABC to solve the boolean constraints, while Section 5.2
described a series of higher-level optimizations that are applied to the dag representation
of the constraints. The combination of boolean and higher-level optimizations raises three
important questions which this section will try to answer.

1. How much performance is gained by the optimizations?

2. Do the optimizations bene�t the benchmarks uniformly? And if not, is it easy to
decide a priori what optimizations should be applied to a given benchmark?

3. How redundant are the higher-level optimizations with the boolean optimizations per-
formed by ABC?

The �rst two questions will be answered independently for the two classes of optimizations in
Section 6.3.1 and Section 6.3.2 respectively. Section 6.3.2 will address the third question by

108

Speedup from using ABC Over MiniSat

0.01

0.1

1

10

100

1000

m
or

ton
_e

asie
r

m
er

ge
_so

rt

lis
tR

ev
er

se
Har

der
log2

m
or

ton
_e

as
iest

en
qu

eue

do
ub

lyL
ink

ed
Lis

t

lss
_ea

sie
st

lss
_ea

sy

lss
_ha

rd
es

t

Poll
ar

d

Set
Tes

t

pa
rity

co
mpre

ss
_h

ar
d

ta
ble

Base
dA

dd
itio

n

tu
tor

ial3

M
in

iS
at

 T
im

e
/ A

B
C

 T
im

e

Synthesis

Validation

Total

Iterations

Figure 6.6: E�ect of ABC on solver performance.

showing that the higher-level optimizations improve the solution time even when the boolean
constraints are solved with ABC, suggesting that higher-level optimizations complement the
boolean optimizations.

6.3.1 E�ect of ABC

First, I will analyze the performance bene�ts of using ABC to solve the boolean
satis�ability problem, as opposed to using MiniSat directly (see Section 5.3). The conclu-
sion from this analysis is that ABC can o�er dramatic performance improvements on some
benchmarks (a factor of 33 for one benchmark), but it can hurt the performance of others,
so it's very important to use the right solver. As a default rule for all our experiments so far,
we used ABC for the linked datastructure benchmarks, and MiniSat for all the others. As
this section will show, this is a fairly good heuristic, although it misses some optimization
opportunities.

Figure 6.6 shows the e�ect on the solution time of using ABC instead of MiniSat.
The y axis shows the solution time for MiniSat divided by the solution time for ABC
(tmini/tabc); a value greater than one means ABC improved the solution time, while a value
less than one implies that using ABC made the synthesizer slower.

We can see in the graph that benchmarks fall into three categories. For a handful
of benchmarks, ABC was uniformly good; in some cases amazingly so. For example, for the
parity benchmark, the solution time went from 257 seconds to 7 seconds. SetTest similarly

109

Iterations Per Benchmark with ABC and MiniSat

0

10

20

30

40

50

60

m
er

ge
_s

or
t

m
or

ton
_e

asie
r

m
or

ton
_e

asie
st

lis
tR

ev
er

se
Har

der
log

2

lss
_ea

sie
st

lss
_ha

rd
es

t

pa
rity

Poll
ar

d

lss
_ea

sy

do
ub

lyL
ink

ed
Lis

t

en
qu

eue

Set
Tes

t

co
mpre

ss
_h

ar
d

ta
ble

Base
dA

dd
itio

n

tu
tor

ial3

Ite
ra

tio
ns Mini Sat Iterations

ABC Iterations

Figure 6.7: E�ect of ABC on the number of iterations.

exhibited a 96% reduction in the solution time, going from 450 seconds to 33 seconds.
A second group of benchmarks, on the other hand, exhibited uniform performance

degradation in the hands of ABC. The table shows a few of them, but overlooks another
group of benchmarks which timed out or exhausted the available memory when using ABC.
This group included mostly bit and integer manipulation benchmarks, including the morton,
xpose, karatsuba and logcount benchmarks.

The most interesting is a third group, which exhibited enormous performance im-
provement on the validation phase, which was completely o�set by a dramatic performance
degradation on the synthesis phase. At �rst, it appears surprising that the synthesis and
validation problems for the same benchmark could be so di�erent that one bene�ts from
ABC while the other is impacted so negatively.

The explanation for this anomaly can be found by noticing the statistically sig-
ni�cant di�erence between the number of CEGIS iterations when using ABC vs. MiniSat,
illustrated in Figure 6.7. The �gure shows the average number of iterations of the CEGIS
loop under both ABC and MiniSat. In the case of MiniSat, it also shows error bars of 1
standard deviation around the average. What jumps out of this graph is that for many

110

benchmarks, ABC caused a statistically signi�cant drop in the number of iterations of the
loop. This was particularly marked for those benchmarks that showed improvements in
validation time but degradation in the synthesis time. As we shall see, this di�erence in the
number of iterations will allow us to explain the anomaly.

The random choices made by the SAT solver can sometimes lead to variability in
the number of iterations. For example, sometimes, the synthesizer �gets lucky� and chooses
a correct candidate even when the inductive synthesis problem was not yet fully constrained
and it could have picked an incorrect one. Sometimes, the validator choses counterexample
inputs that expose more than one bug in a candidate; causing the CEGIS loop to converge
faster. However, the systematic di�erence between the number of iterations for MiniSat and
ABC is probably due to the way the two solvers work. MiniSat �rst tries to set a variables
to zero, and only sets them to one if the zero value lead to a con�ict. As a consequence,
counterexamples tend to change little from one iteration to the next; they only change
enough to expose a new bug. ABC, on the other hand, tends to produce counterexamples
that look more random due to the extensive manipulations it performs on the boolean circuit.
Therefore, counterexamples from ABC are more likely to expose more than one bug, and
therefore lead to fewer CEGIS iterations. This, in turn is the key to why ABC causes some
benchmarks to improve their validation time but degrade their synthesis time.

For a given benchmark, fewer CEGIS iterations usually translate to shorter so-
lution times. For example, Figure 6.8 shows nine individual runs of the solver on the
logcount16_easy benchmark using MiniSat. The x axis is the iteration number, and the
y axis is the sum of the synthesis or veri�cation time up to iteration x. Notice how the
total validation time is nearly constant regardless of the number of iterations; moreover, the
last validation usually takes longer than all the previous validation steps combined. The
synthesis time, in turn, grows exponentially with the number of iterations; more iterations
lead to longer solution times. In fact, most of the variability in the solution time for this
benchmark can be attributed to variation in the number of CEGIS iterations. Therefore,
we expect the di�erence in iterations between ABC and MiniSat to have an e�ect on the
solution time as well.

Figure 6.9 shows detailed plots with aggregate times per iteration for morton and
log2, two benchmarks where the synthesis time su�ered as a result of using ABC. In the case
of morton, we can see that on every iteration ABC is simply slower than MiniSat for both
synthesis and validation. Validation only looks faster because the performance degradation

111

logcount16_easy MiniSat

0.001

0.01

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Iteration

A
g

g
re

g
at

e
T

im
e

Synth 1

Valid 1

Synth 2

Valid 2

Synth 3

Valid 3

Synth 4

Valid 4

Synth 5

Valid 5

Synth 6

Valid 6

Synth 7

Valid 7

Synth 8

Valid 8

Synth 9

Valid 9

Figure 6.8: logcount16_easy: Synthesis and Validation time accross iterations.

morton

0.001

0.01

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iteration

A
g

g
re

g
at

e
T

im
e

ABC Synthesis

MINI Synthesis

ABC Validation

MINI Validation

log2

0.001

0.01

0.1

1

10

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Iteration

A
g

g
re

g
at

e
T

im
e

ABC Synthesis

MINI Synthesis

MINI Validation

ABC Validation

Figure 6.9: Synthesis and Validation time accross iterations for morton and log2.

112

merge_sort

0.01

0.1

1

10

100

1000

1 2 3 4 5 6

Iteration

A
g

g
re

g
at

e
T

im
e

(s
ec

o
n

d
s)

ABC Synthesis

MINI Synthesis

ABC Validation

MINI Validation

Parity

0.001

0.01

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Iteration

A
g

g
re

g
at

e
T

im
e

(s
ec

o
n

d
s)

ABC Synthesis

MINI Synthesis

ABC Validation

MINI Validation

Figure 6.10: Synthesis and Validation time accross iterations for merge_sort and parity.

is o�set by the smaller number of iterations. For log2, we can see something similar: ABC is
mostly slower than MiniSat; the smaller validation time is merely an artifact of the smaller
number of iterations. The merge_sort benchmark, shown in Figure 6.10 had fewer iterations,
so the e�ect was less noticeable. In this benchmark, the validation time is virtually identical
for both ABC and MiniSat, while the synthesis time shows a clear degradation when using
ABC.

A similar plot was created to see the e�ect of ABC on parity, one of the benchmarks
that shows enormous performance improvements with ABC. On the validation side, we can
see that the biggest improvement comes from ABC's far superior performance on the �nal
validation step, which is very hard on MiniSat. On the synthesis side, we can see that
ABC starts slower, but scales much better than MiniSat; this combined with the smaller
number of iterations leads to a dramatic reduction in the overall solution time. For the other
benchmarks that bene�t signi�cantly from ABC, the results are more straightforward. For
most of the linked datastructure benchmarks, ABC is simply much faster across the board
on every iteration.

In summary, ABC produced signi�cant performance improvements on many bench-
marks, but the performance improvements were not uniform. Most linked datastructure
benchmarks bene�ted from ABC, but a few integer and bit manipulation benchmarks suf-
fered large performance degradations; this observation justi�es the rule of using ABC for
datastructure benchmarks and MiniSat for all others. Overall, though, ABC is a very useful
tool to signi�cantly reduce the solution time of some of the hardest benchmarks.

113

0.01

0.10

1.00

10.00

100.00

0 2 4 6 8

0.01

0.10

1.00

10.00

100.00

0 2 4 6 8

Values Averages

0.01

0.10

1.00

10.00

0 2 4 6 8

Change in Validation Time Change in Synthesis Time Change in Solution Time
N

or
m

al
iz

ed
 E

xe
cu

tio
n

T
im

e

Optimization Level Optimization LevelOptimization Level

Figure 6.11: E�ect of optimizations on the solution time for the benchmarks morton,
merge_sort, morton_easier, listReverseHarder, log2, lss_hardest, parity and SetTest.

6.3.2 E�ect of High-Level Optimizations

Section 5.2 described a series of optimizations that the synthesizer performs on
the dag representation of the problem. We refer to these as high-level optimizations to
distinguish them from the low-level circuit optimizations performed by ABC. For this section
we are again interested in how much performance is gained through these optimizations,
and whether the bene�ts are distributed uniformly. Additionally, some of the optimizations
performed at this stage, such as structural hashing, are very similar to optimizations applied
by ABC, so it is important to know if there is any bene�t in applying the two sets of
optimizations, or if ABC just repeats the work done by the high-level optimizations.

To gauge the e�ect of the high-level optimizations from Section 5.2, I de�ned 7
levels of optimization1.

• Level 0 performs no optimization at all. The circuit generated by evaluation of the
completion semantics is fed directly to the SAT solver without further optimization.

• Level 1 performs only structural hashing. Common subexpressions are eliminated,
but nothing more. Moreover, if the implements keyword is used, the structural hashing
is performed independently in the sketch and the speci�cation.

1You may note that Level 4 is missing; This level used to apply another pass of forward optimizations
on the �nal circuit, but we found this second pass to be completely redundant, so it was omitted from the
results

114

• Level 2 performs pattern matching and forward value�ow in addition to structural
hashing; I refer to this combination as the forward optimizations. Again, if the
implements keyword is used, optimizations are performed independently on the spec
and sketch, and not on the �nal constraint system.

• Level 3 performs a second pass of forward optimizations on the �nal constraint system.

• Level 5 performs backwards value �ow analysis in addition to the previous optimiza-
tions.

• Level 6 includes the level 5 optimizations and also canonicalizes ands and ors.

• Level 7 in addition to the level 6 optimizations, applies the forward optimizations to
each individual inductive synthesis problem, so the constraints are specialized for the
speci�c concrete inputs before being converted to SAT.

For these experiments, we selected 8 representative benchmarks, and ran them
under all optimization levels with both ABC and MiniSat. Figure 6.11 shows the e�ect
of performing the optimizations. The graphs, from left to right, show the e�ect of the
optimizations for the synthesis phase, the validation phase and the overall solution time; the
y axis in the graphs is the solution speed normalized by the speed with level 3 optimizations
(tL3/tLi). The line in the chart corresponds to the geometric mean for all the benchmarks in
our sample and for both solvers for each optimization level. All the charts show the expected
trend; as the optimization level goes up, the solution time improves; the only anomalies are
a slight performance degradation in the synthesis time going from level 2 to level 3, and
a slight decrease going from level 5 to level 6. The trends become more pronounced if we
remove the bit manipulation benchmarks from consideration as shown in Figure 6.12. In
this chart, we also show separate average lines for ABC and MiniSat, which show that the
optimizations have an e�ect in performance even on top of ABC.

Averages, however, tell only part of the story. If we look at individual benchmarks,
we can see some clearer trends going up the optimization levels. Figure 6.13 shows the syn-
thesis and validation time for a few selected benchmarks. For merge_sort and SetTest, the
e�ect of the optimizations is clear and signi�cant. The biggest e�ect comes from structural
hashing, but the e�ect of pattern matching is very signi�cant too. Backwards value �ow
is signi�cant also. Surprisingly, the e�ect of optimizing commutative operations is almost

115

0.10

1.00

10.00

0 1 2 3 4 5 6 7 8

Values Geom. Mean

ABC Geom. Mean MiniSat Geom. Mean

0.10

1.00

10.00

0 1 2 3 4 5 6 7 8

0.01

0.10

1.00

10.00

0 1 2 3 4 5 6 7 8

Change in Validation Time Change in Synthesis Time Change in Solution Time

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Optimization Level Optimization LevelOptimization Level

Figure 6.12: E�ect of optimizations on the solution time for the benchmarks the benchmarks
merge_sort, listReverseHarder, lss_hardest and SetTest.

MiniSat merge_sort

0

10

20

30

40

50

60

70

80

90

0 1 2 3 5 6 7

Optimization level

T
im

e
in

 S
ec

o
n

d
s

Validation
Synthesis

ABC SetTest

0

10

20

30

40

50

60

70

0 1 2 3 5 6 7

Optimization level

T
im

e
in

 S
ec

o
n

d
s

Validation
Synthesis

ABC listReverseHarder

0

100

200

300

400

500

600

0 1 2 3 5 6 7

Optimization level

T
im

e
in

 S
ec

o
n

d
s

Validation
Synthesis

MiniSat morton_harder

0

50

100

150

200

250

300

350

400

0 1 2 3 5 6 7

Optimization level

T
im

e
in

 S
ec

o
n

d
s

Validation
Synthesis

ABC doublyLinkedList

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 5 6

Optimization level

T
im

e
in

 S
ec

o
n

d
s

Validation
Synthesis

Figure 6.13: E�ect of optimizations on solution time for individual benchmarks.

116

negligible. This is surprising because this optimization causes a signi�cant reduction in the
size of the circuit for most benchmarks, but this is almost never re�ected in the solution
time.

For listReversal, morton and doublyLinkedList, the results are more mixed. listReverse
responds very well to optimization levels 1 through 5, but the optimization for commutative
operations actually causes a performance degradation which is only partially o�set by reopti-
mizing the circuit at each CEGIS iteration. The morton_harder benchmark responds well to
most of the optimizations, except for a mysterious performance degradation under optimiza-
tion level 1. The degradation was fairly consistent, and remained even after averaging over
seven di�erent runs. Finally, the doublyLinkedList benchmark also showed an inconsistent
response to the optimizations. However, the solution time for this benchmark is relatively
small, so the penalty for selecting the wrong optimization level is not very signi�cant.

The individual performance results also show that the high-level optimizations
compose well with the optimizations performed by ABC. This is somewhat surprising; for
example, ABC performs structural hashing on the boolean problem, and this optimization is
idempotent, i.e. applying it once is the same as applying it twice. Therefore, it is interesting
that applying structural hashing on the dag causes a performance gain even when solving
the boolean problem with ABC. There are two explanations for this; �rst, structural hashing
is able to discover more common subexpressions in the high-level circuit. For example, at
the high level, it is easy to discover that a + b and b + a are equivalent subexpressions;
once the two expressions have been expanded to boolean circuits, structural hashing may
no longer be able to establish their equivalence. The second explanation is that applying
the optimization on the high level circuit prevents many Boolean nodes from being created
only to be eliminated later, thus preventing fragmentation of the heap.

The results can be summarized in the following four observations.

1. Optimization levels 1, 2 and 3 had a positive e�ect that was almost universal. Nev-
ertheless, some benchmarks exhibited some hard-to-explain performance degradations
moving up these optimization levels.

2. The results were mixed for Optimization levels 6 and 7. While a few benchmarks
bene�ted from these, some exhibited signi�cant performance degradations. For this
reason, the Sketch solver uses optimization level 5 by default, allowing you to override
this with a command line �ag.

117

3. Optimizations had their worst e�ects on bit-level benchmarks. A few of these exhibited
performance degradation with higher levels of optimization.

4. None of the benchmarks showed as much performance improvement as they showed
with ABC; however, the optimizations compose well with ABC, making for big overall
performance improvements when the optimizations are used together.

6.4 Comparison with QBF

One of the original motivations for the CEGIS algorithm was the di�culty of
solving constraint systems with multiple quanti�ers. Using the strategies in Section 5.1, we
can de�ne the sketch synthesis problem as the problem of �nding a control φ satisfying the
following equation, where the predicate Q is the constraint substitute(ψsym, σ)(φ) = 1, as
de�ned in Section 5.1.1.

∃φ ∀σ Q(φ, σ) (6.4.1)

The predicate Q is a boolean formula, so the equation above is a satis�ability
problem on a quanti�ed boolean formula (QBF). Over the last few years, there has been
a lot of interest in QBF solvers. Every year, there is even a QBF competition held side
by side with the annual SAT competition at the International Conference on Theory and
Applications of Satis�ability Testing. Therefore, an important question is: How does the
CEGIS algorithm compare with general QBF solvers?

To answer this question, I generated QBF problems for four representative bench-
marks of varying degrees of di�culty: polynomial, doublyLinkedList, lss_hardest and
parity. The QBF problems were generated from the optimized constraint system, so the
QBF solver could bene�t from all the high level optimizations available to the Sketch
synthesizer. It is worth noting that even though there are only two quanti�ers in Equa-
tion (6.4.1), this is actually a 3-QBF problem, because converting Q to conjunctive normal
form requires the introduction of temporary variables which are existentially quanti�ed.

∃φ ∀σ ∃t Qcnf (φ, σ, t) (6.4.2)

The QBF formulas from the four benchmarks were fed to 2clsQ, the winner of the
2006 QBF competition [54], and quantor version 3.0, the winner of the 2008 competition [11].
In both cases the results support the CEGIS approach to resolving sketches.

118

In the case of 2clsQ, the performance di�erence was overwhelming. Of the four
benchmarks, 2clsQ was only able to resolve polynomial, the easiest one. For this benchmark,
2clsQ took 94 seconds to �nd a solution, compared to 0.1 seconds it took Sketch with
MiniSat. 2clsQ was unable to solve any of the other three benchmarks in the 20 minutes of
allotted time, while Sketch was able to solve parity, the hardest of these benchmarks, in
257 seconds using MiniSat, and in only 11 seconds using ABC.

Benchmark Sketch sol. time CEGIS Iters. 2clsQ sol. time
polynomial 0.1 sec 5.3 94 sec.
doublyLinkedList 2.6 sec 4 > 20 min.
lss_hardest 25 sec 4.3 Ran out of memory.
parity 257 sec 15 >20 min.
quantor did much better on the easier benchmarks, but it was still unable to com-

pete with CEGIS on the harder problems. For polynomial and doublyLinkedList, quantor
�nished in about the same time as Sketch. For both parity and lss_hard, however, quantor
exhausted all available memory after the �rst two minutes of execution. After this, the sys-
tem started thrashing and became unresponsive, so the execution had to be stopped. By
contrast, Sketch was able to solve both of these benchmarks using less than 150MB of
memory.

Benchmark Sketch sol. time Sketch Mem. Quantor sol. time
polynomial 0.1 sec 7 MB 0.15 sec.
doublyLinkedList 2.6 sec 16MB 3.4 sec.
lss_harder 25 sec 136MB Ran out of memory.
parity 257 sec 89 MB Ran out of memory.

There is an alternative encoding into a QBF problem with avoids the third quan-
ti�er; the idea is to negate Equation (6.4.1) before converting the predicate into CNF.

∀φ ∃σ Q̄(φ, σ) (6.4.3)

Then, Q̄, the negation of Q, can be converted to CNF without introducing an additional
quanti�er alternation.

∀φ ∃σ ∃t Q̄cnf (φ, σ, t) (6.4.4)

Now, the QBF solver must �nd a φ that falsi�es the equation above. However, this encoding
proved to be even worse than the previous one; with this encoding, quantor was unable to
solve even the polynomial problem without running out of memory.

The CEGIS approach is unlikely to beat the QBF solvers on arbitrary QBF prob-
lems. However, on sketching problems, the CEGIS algorithm is able to exploit the bounded

119

observation hypothesis and e�ciently synthesize a correct candidate from only a small set
of inputs. Moreover, the CEGIS approach has the useful property of separating synthesis
and validation, allowing the best techniques to be used for each of these two functions. The
bene�t of this will become most apparent in Chapter 8, when I discuss the generalization of
CEGIS to concurrent programs.

6.5 Case Study: Sketching AES

As a case study, we used the Sketch synthesizer to create a full implementation
of the AES cipher [27] by synthesizing many of its most di�cult fragments. The core of the
cipher consists of 14 rounds which take a 128-bit input block and a round key and processes
it, followed by a �nal round.

bit[W] round(bit[W] in, bit[W] rkey){

bit [W] t1 = ByteSub(in);

bit [W] t2 = ShiftRows(t1);

bit [W] t3 = MixColumns(t2);

return t3 ^ rkey;

}

The ByteSub transformation performs a set of table lookups to do a substitution
on each byte; ShiftRows permutes the bytes in the block; and MixColumns transforms each
word by treating it as a 4 element vector in the Galois �eld GF (28), then multiplying it
with a matrix whose elements are also in GF (28). The �nal round is like the other rounds
but without the MixColumns transformation.

In the optimized version, all the operations in the round are folded into a set of
table lookups. A programmer implementing AES by traditional means would have to derive
the formula for generating the table entries; this may be di�cult if one is not familiar with
the algebra involved. The programmer would then have to write an ad-hoc code generator
to produce the table from the speci�cation through some algebraic manipulation, and then
would have to incorporate the generated table into the code and check the correctness of
the cipher using known input/output pairs.

By contrast, Sketch is able to synthesize the tables automatically and verify their
correctness. Figure 6.14 shows the sketch for the regular round. The sketch for the �nal
round is similar, except that it uses only one table instead of four, and it combines outputs
from the tables using masks�which are left unspeci�ed�instead of xors.

120

int[4] roundSK(bit[32][4] in, bit[32][4] rkey)

implements round{

bit[32][4][256] T = ??; // synthesize 32768 bits in the table

bit[32][4] output = 0;

bit[32] mask = 0x000000FF;

int[4][4] ch = {{0,1,2,3},{1,2,3,0},

{2,3,0,1},{3,0,1,2}};

for(int i=0; i<4; ++i){

int i0 = (int) in[ch[i][0]] & mask; // 1st 8 bits of in[ch[i][0]]

int i1 = (int)(in[ch[i][1]] >> 8) & mask; // 2nd 8 bits

int i2 = (int)(in[ch[i][2]] >> 16) & mask; // 3rd 8 bits

int i3 = (int)(in[ch[i][3]] >> 24) & mask; // last 8 bits

output[i] = T[0][i0] ^ T[1][i1]

^ T[2][i2] ^ T[3][i3];

output[i] = output[i] ^ rkey[i];

}

return output;

}

Figure 6.14: Sketch for one round of AES.

121

Total Synth: 13.183 min
Total Verify: 65.7 min

Synth MiniSat: 1.17 sec avg time per SAT problem
Synth ABC: 3.4 sec avg time per SAT problem

Verify MiniSat: 5.33 sec avg time per SAT problem
Verify ABC: 50 sec avg time per SAT problem

Table 6.1: Solution time for roundSK in AES benchmark. The times for Synth and Verify
ABC correspond to the times for the last 10 iterations which were solved with ABC.

The roundSK sketch places a lot of stress on the solver since there are 32,768 bits in
the table that have to be generated. Furthermore, each input considered by the solver helps
complete only a small number of table entries, so the synthesize/verify loop has to iterate
655 times. Nonetheless, the solver is able to complete the sketch in about an hour. Table 6.1
shows the exact times spent by the two SAT solvers involved. All instances of synthesis were
solved using MiniSat. For veri�cation, we used MiniSat for the �rst 645 iterations. For the
last 10 iterations we switched our SAT solver to ABC [49] because it provides much better
performance for hard SAT problems.

Performance of generated code. The resulting code was run against a hand optimized
AES implementation from open SSL. The runtime for 50000 encryptions was as follows:

OpenSSL AES 19.652 ms
Sketch 21.307 ms
Spec 19936.100 ms

The di�erence between the hand coded AES and the sketched version is less than 10%.
We can also see that the original speci�cation, which is very close to the speci�cation of
AES [27], is over 1000 times slower.

6.6 Conclusions

The chapter has showcased the power of the Sketch system to synthesize the
low-level details for small but complex programs in a variety of domains. In addition to
that, it has shown some potential avenues for signi�cant improvement in the synthesizer's
performance.

For example, the chapter documented the enormous impact that choosing the best
combination of solvers and optimizations can have on performance. Having a detailed model

122

to predict the best combination of optimizations, or better yet, running many of these in
parallel, could make the system much more e�cient and much easier to use. Programmers
would get an answer faster, and would not have to waste time trying di�erent solver com-
binations. Similarly, the chapter illustrated the e�ect of the model sizes and test harnesses
on the synthesizer performance. This suggests that an intelligent strategy that gradually
increments the size of the models or the complexity of the test harness could have a huge
e�ect on the solution time, especially for problems involving linked datastructures.

There are a number of other strategies that could signi�cantly improve the perfor-
mance of the solver. For example, using constraint solvers that can reason about integers
could make a big di�erence for integer problems. Similarly, improved search strategies that
take advantage of more semantic information about the sketch could make the search more
e�cient. Additionally, there is great room for improvement in the encoding of higher-level
sketching constructs and advanced language features; the current encoding is very simple
and naïve.

Beyond performance, however, it is important to keep in mind that a synthesizer is
a productivity tool. The ultimate test for any optimization is the extent to which it is able to
improve programmer productivity. A detailed analysis of how improvements in performance
a�ect programmer productivity is one of the great omissions in this chapter. Quantifying
this impact requires user studies and analysis of the use of sketching in the �eld; these are
beyond the scope of this thesis. However, from my own experience working with di�erent
versions of the synthesizer, I have observed that performance improvements do have a strong
impact in the way the programmer interacts with the tool. A more powerful synthesizer
expands the scope of programs that the programmer can tackle, and allows for sketches with
more freedom and less detail.

123

Part III

Sketching for Concurrent Programs

124

Chapter 7

Semantics for Concurrent Sketches

Concurrent algorithms and data structures present an especially appealing target
for sketching. First, they constitute a very challenging domain for programmers; a domain
where translating a high-level intuition into a correct implementation requires detailed low-
level reasoning about all possible interactions among threads. Moreover, sketching can help
programmers cope with this complexity by helping with the low-level details involved in
these programs, as was illustrated by the concurrent set example in the introduction.

Unfortunately, the synthesis algorithm presented so far was designed to handle
only sequential sketches. Speci�cally, the synthesis semantics, which we used to derive the
synthesis algorithm, are inherently sequential. In order to solve concurrent sketches, we
need a mechanism to reason formally about their semantics and their sets of valid solutions.
This is achieved in this section by exploiting the concept of a trace.

A trace of a concurrent program is a sequential ordering of the operations executed
by all the threads. Our language assumes sequential consistency, which means that any con-
current execution of the program is equivalent to some sequential interleaving of the threads,
and therefore has a corresponding trace. Because a trace is just a sequential program, we can
reason about the semantics of a concurrent program in terms of the sequential semantics of
all its traces. This idea is illustrated by our generalization of the sketch resolution equation.

7.1 The Concurrent Sketch Resolution Equation

Let tr(P) be the set of all possible traces for a given sketch P . For now, I de�ne a
trace informally as some interleaving of the operations in all the threads. The semantics of a

125

sketch can thus be de�ned in terms of the sequential semantics for each of the traces in tr(P).
In particular, the sketch resolution equation can be restated to account for concurrency as
follows.

Equation 2 (Concurrent Sketch Resolution Equation)

∀t ∈ tr(P)∀ σ πΦ(C[[t]]τ∅〈σ, Φ〉) = Φ (7.1.1)

The equation is very similar to its sequential counterpart; the key di�erence is that
now the set of valid controls must be invariant not just under all inputs, but also under all
traces.

The equation above is incomplete without a precise characterization of the set of
all traces of a sketch. Section 7.2 will describe this set formally, in a way that ensures that
solutions to the sketch equation actually correspond to deadlock free programs that satisfy
all their assertions.

One drawback in our approach is that candidates can only be eliminated based on
violations of safety properties on a trace. This is unfortunate because liveness properties
can be very important for concurrent programs. The synthesizer gets around this problem
through the boundedness assumption; after all, if an execution is bounded, any liveness
property can be expressed as a safety property which must hold after a bounded number
of steps. For example, given a bound N , the synthesizer enforces termination by requiring
that candidates terminate after N execution steps for the bounded inputs it considers.

7.2 Tracing Semantics

The idea of reasoning about concurrent programs in terms of their possible traces is
not new; in his seminal work, Mazurkiewicz used traces to de�ne the concurrent semantics of
Petri nets [47]. However, applying this idea to sketching introduces some unique challenges.
The most notable of these comes from the fact that sketches can not be executed in the
traditional sense because they are incomplete; therefore, one can not talk about traces in
terms of an execution. This requires us to introduce a more abstract concept of traces
suitable for sketch synthesis, one that allows us to apply sequential inductive synthesis
techniques to the problem of synthesizing concurrent programs.

126

7.2.1 Traces of Sketches

For a concrete concurrent program, a trace is some interleaving of the operations
executed by all the threads. A sketch, however, has holes, and therefore can't be executed
like a concrete program can. Thus, a sketch requires a more abstract de�nition of a trace
that is independent of any execution. To illustrate the issues involved, consider the following
simple example.

void main(){

fork(int i; 2){

if(??){

x = 10;

}else{

x = 5;

}

t = x;

x = t + 3;

}

assert x < 15;

}

The sketch above can be resolved to two di�erent concrete programs, shown in
Figure 7.1 together with their set of possible traces. The symbol |〉 is used to separate the
individual atomic steps in a trace, and the underlined steps correspond to steps executed by
thread 0. In the �gure one can see that when φ1(??) = 1, some of the traces cause assertion
failures, whereas all traces satisfy the assertion when φ0(??) = 0, so it is clear that the latter
candidate is the one we expect from the synthesizer. The problem at hand is to produce a
set of traces for the sketch, rather than for the individual candidates, such that {φ0} is the
solution to the sketch synthesis equation.

To address this problem, we de�ne a set of traces for the sketch through a non-
deterministic scheduling function sched that produces an ordering of all the atomic opera-
tions in a sketch. The set tr(P) of traces for a sketch P is then de�ned as the set of all the
possible traces that can be generated by the non-deterministic function sched .

sched(P) → s1|〉s2|〉 . . . |〉sn

127

φ1(??) = 1

void main(){

fork(int i; 2){

x = 10;

t = x;

x = t + 3;

}

assert x < 15;

}

x=10 |〉 t0=x |〉 x=t0+3 |〉 x=10 |〉 t1=x |〉 x=t1+3 |〉 assert x < 15; //x=13

x=10 |〉 t0=x |〉 x=10 |〉 x=t0+3 |〉 t1=x |〉 x=t1+3 |〉 assert x < 15; //x=16

x=10 |〉 t0=x |〉 x=10 |〉 t1=x |〉 x=t0+3 |〉 x=t1+3 |〉 assert x < 15; //x=13
x=10 |〉 t0=x |〉 x=10 |〉 t1=x |〉 x=t1+3 |〉 x=t0+3 |〉 assert x < 15; //x=13

x=10 |〉 x=10 |〉 t0=x |〉 x=t0+3 |〉 t1=x |〉 x=t1+3 |〉 assert x < 15; //x=16

x=10 |〉 x=10 |〉 t0=x |〉 t1=x |〉 x=t0+3 |〉 x=t1+3 |〉 assert x < 15; //x=13
x=10 |〉 x=10 |〉 t0=x |〉 t1=x |〉 x=t1+3 |〉 x=t0+3 |〉 assert x < 15; //x=13
x=10 |〉 x=10 |〉 t1=x |〉 t0=x |〉 x=t0+3 |〉 x=t1+3 |〉 assert x < 15; //x=13
x=10 |〉 x=10 |〉 t1=x |〉 t0=x |〉 x=t1+3 |〉 x=t0+3 |〉 assert x < 15; //x=13

x=10 |〉 x=10 |〉 t1=x |〉 x=t1+3 |〉 t0=x |〉 x=t0+3 |〉 assert x < 15; //x=16
x=10 |〉 x=10 |〉 t0=x |〉 x=t0+3 |〉 t1=x |〉 x=t1+3 |〉 assert x < 15; //x=16

x=10 |〉 x=10 |〉 t0=x |〉 t1=x |〉 x=t0+3 |〉 x=t1+3 |〉 assert x < 15; //x=13
x=10 |〉 x=10 |〉 t0=x |〉 t1=x |〉 x=t1+3 |〉 x=t0+3 |〉 assert x < 15; //x=13
x=10 |〉 x=10 |〉 t1=x |〉 t0=x |〉 x=t0+3 |〉 x=t1+3 |〉 assert x < 15; //x=13
x=10 |〉 x=10 |〉 t1=x |〉 t0=x |〉 x=t1+3 |〉 x=t0+3 |〉 assert x < 15; //x=13

x=10 |〉 x=10 |〉 t1=x |〉 x=t1+3 |〉 t0=x |〉 x=t0+3 |〉 assert x < 15; //x=16

x=10 |〉 t1=x |〉 x=10 |〉 t0=x |〉 x=t0+3 |〉 x=t1+3 |〉 assert x < 15; //x=13
x=10 |〉 t1=x |〉 x=10 |〉 t0=x |〉 x=t1+3 |〉 x=t0+3 |〉 assert x < 15; //x=13

x=10 |〉 t1=x |〉 x=10 |〉 x=t1+3 |〉 t0=x |〉 x=t0+3 |〉 assert x < 15; //x=16

x=10 |〉 t1=x |〉 x=t1+3 |〉 x=10 |〉 t0=x |〉 x=t0+3 |〉 assert x < 15; //x=13

φ0(??) = 0

void main(){

fork(int i; 2){

x = 5;

t = x;

x = t + 3;

}

assert x < 15;

}

x=5 |〉 t0=x |〉 x=t0+3 |〉 x=5 |〉 t1=x |〉 x=t1+3 |〉 assert x < 15; //x=8
x=5 |〉 t0=x |〉 x=5 |〉 x=t0+3 |〉 t1=x |〉 x=t1+3 |〉 assert x < 15; //x=11
x=5 |〉 t0=x |〉 x=5 |〉 t1=x |〉 x=t0+3 |〉 x=t1+3 |〉 assert x < 15; //x=8
x=5 |〉 t0=x |〉 x=5 |〉 t1=x |〉 x=t1+3 |〉 x=t0+3 |〉 assert x < 15; //x=8
x=5 |〉 x=5 |〉 t0=x |〉 x=t0+3 |〉 t1=x |〉 x=t1+3 |〉 assert x < 15; //x=11
x=5 |〉 x=5 |〉 t0=x |〉 t1=x |〉 x=t0+3 |〉 x=t1+3 |〉 assert x < 15; //x=8
x=5 |〉 x=5 |〉 t0=x |〉 t1=x |〉 x=t1+3 |〉 x=t0+3 |〉 assert x < 15; //x=8
x=5 |〉 x=5 |〉 t1=x |〉 t0=x |〉 x=t0+3 |〉 x=t1+3 |〉 assert x < 15; //x=8
x=5 |〉 x=5 |〉 t1=x |〉 t0=x |〉 x=t1+3 |〉 x=t0+3 |〉 assert x < 15; //x=8
x=5 |〉 x=5 |〉 t1=x |〉 x=t1+3 |〉 t0=x |〉 x=t0+3 |〉 assert x < 15; //x=11
x=5 |〉 x=5 |〉 t0=x |〉 x=t0+3 |〉 t1=x |〉 x=t1+3 |〉 assert x < 15; //x=11
x=5 |〉 x=5 |〉 t0=x |〉 t1=x |〉 x=t0+3 |〉 x=t1+3 |〉 assert x < 15; //x=8
x=5 |〉 x=5 |〉 t0=x |〉 t1=x |〉 x=t1+3 |〉 x=t0+3 |〉 assert x < 15; //x=8
x=5 |〉 x=5 |〉 t1=x |〉 t0=x |〉 x=t0+3 |〉 x=t1+3 |〉 assert x < 15; //x=8
x=5 |〉 x=5 |〉 t1=x |〉 t0=x |〉 x=t1+3 |〉 x=t0+3 |〉 assert x < 15; //x=8
x=5 |〉 x=5 |〉 t1=x |〉 x=t1+3 |〉 t0=x |〉 x=t0+3 |〉 assert x < 15; //x=11
x=5 |〉 t1=x |〉 x=5 |〉 t0=x |〉 x=t0+3 |〉 x=t1+3 |〉 assert x < 15; //x=8
x=5 |〉 t1=x |〉 x=5 |〉 t0=x |〉 x=t1+3 |〉 x=t0+3 |〉 assert x < 15; //x=8
x=5 |〉 t1=x |〉 x=5 |〉 x=t1+3 |〉 t0=x |〉 x=t0+3 |〉 assert x < 15; //x=11
x=5 |〉 t1=x |〉 x=t1+3 |〉 x=5 |〉 t0=x |〉 x=t0+3 |〉 assert x < 15; //x=8

Figure 7.1: Two possible completions for a sketch with their respective traces.

128

The symbol |〉 is used to separate each of the atomic steps si that make up the trace. The
individual atomic statements si can be of any of the following four types.

• Assignments.

• Atomic Blocks.

• Assumptions.

• Assertions.

Assignments and atomic blocks are interpreted according to their sequential semantics. We
didn't de�ne assumptions in the core language, but they are easy to de�ne as syntactic sugar
by introducing a variable 4 that becomes false when an assumption is violated.

C[[assume e]]τ 〈σ, Φ〉 = 〈σ[4 7→ σ(4) ∧ A[[e]]τ] , Φ〉 (7.2.1)

This forces us to alter slightly the semantics of assertions, so that they become conditional
on the value of 4; in other words, assert e will now be interpreted as if (4) then assert e.
The net e�ect is that an assumption failure causes the reminder of the trace to be ignored
for the purpose of eliminating candidates.

The sched function works by generating a non-deterministic interleaving of the
statements in the sketch, in much the same way as a scheduler would for a concrete pro-
gram. The main di�erence between sched and a traditional scheduler is that in generating
the trace, sched must make assumptions about the direction of branches. These assumptions
are documented by adding assume statements into the trace. Figure 7.2 shows how these
traces look like for our running example. Notice how the set of traces contains the informa-
tion about the traces for each of the individual candidates, but the assumes document the
direction of branches, which in this case are determined exclusively by the value of the hole.
Thanks to these assumes, it is possible to determine from this set of traces that {φ0} will
satisfy the sketch equation.

The sched function is de�ned recursively in terms of non-deterministic rewrite rules.
For the sake of simplicity, the rules below assume that each expression and each assignment
statement is atomic, so they contain at most one read or write to a global variable. It is
possible to rewrite the rules to eliminate this requirement, but that would just obscure the
presentation.

129

void main(){

fork(int i; 2){

if(??){

x = 10;

}else{

x = 5;

}

t = x;

x = t + 3;

}

assert x < 15;

}

assume ??=1 |〉 x=5 |〉 t0=x |〉 x=t0+3 |〉 assume ??=1 |〉 x=5 |〉 t1=x |〉 x=t1+3 |〉 assert x < 15;
assume ??=1 |〉 x=5 |〉 t0=x |〉 assume ??=1 |〉 x=5 |〉 x=t0+3 |〉 t1=x |〉 x=t1+3 |〉 assert x < 15;
assume ??=1 |〉 x=5 |〉 t0=x |〉 assume ??=1 |〉 x=5 |〉 t1=x |〉 x=t0+3 |〉 x=t1+3 |〉 assert x < 15;
assume ??=1 |〉 x=5 |〉 t0=x |〉 assume ??=1 |〉 x=5 |〉 t1=x |〉 x=t1+3 |〉 x=t0+3 |〉 assert x < 15;
assume ??=1 |〉 x=5 |〉 assume ??=1 |〉 x=5 |〉 t0=x |〉 x=t0+3 |〉 t1=x |〉 x=t1+3 |〉 assert x < 15;
assume ??=1 |〉 x=5 |〉 assume ??=1 |〉 x=5 |〉 t0=x |〉 t1=x |〉 x=t0+3 |〉 x=t1+3 |〉 assert x < 15;
assume ??=1 |〉 x=5 |〉 assume ??=1 |〉 x=5 |〉 t0=x |〉 t1=x |〉 x=t1+3 |〉 x=t0+3 |〉 assert x < 15;
assume ??=1 |〉 x=5 |〉 assume ??=1 |〉 x=5 |〉 t1=x |〉 t0=x |〉 x=t0+3 |〉 x=t1+3 |〉 assert x < 15;
assume ??=1 |〉 x=5 |〉 assume ??=1 |〉 x=5 |〉 t1=x |〉 t0=x |〉 x=t1+3 |〉 x=t0+3 |〉 assert x < 15;
assume ??=1 |〉 x=5 |〉 assume ??=1 |〉 x=5 |〉 t1=x |〉 x=t1+3 |〉 t0=x |〉 x=t0+3 |〉 assert x < 15;
assume ??=1 |〉 x=5 |〉 assume ??=1 |〉 x=5 |〉 t0=x |〉 x=t0+3 |〉 t1=x |〉 x=t1+3 |〉 assert x < 15;
assume ??=1 |〉 x=5 |〉 assume ??=1 |〉 x=5 |〉 t0=x |〉 t1=x |〉 x=t0+3 |〉 x=t1+3 |〉 assert x < 15;
assume ??=1 |〉 x=5 |〉 assume ??=1 |〉 x=5 |〉 t0=x |〉 t1=x |〉 x=t1+3 |〉 x=t0+3 |〉 assert x < 15;
assume ??=1 |〉 x=5 |〉 assume ??=1 |〉 x=5 |〉 t1=x |〉 t0=x |〉 x=t0+3 |〉 x=t1+3 |〉 assert x < 15;
assume ??=1 |〉 x=5 |〉 assume ??=1 |〉 x=5 |〉 t1=x |〉 t0=x |〉 x=t1+3 |〉 x=t0+3 |〉 assert x < 15;
assume ??=1 |〉 x=5 |〉 assume ??=1 |〉 x=5 |〉 t1=x |〉 x=t1+3 |〉 t0=x |〉 x=t0+3 |〉 assert x < 15;
assume ??=1 |〉 x=5 |〉 t1=x |〉 assume ??=1 |〉 x=5 |〉 t0=x |〉 x=t0+3 |〉 x=t1+3 |〉 assert x < 15;
assume ??=1 |〉 x=5 |〉 t1=x |〉 assume ??=1 |〉 x=5 |〉 t0=x |〉 x=t1+3 |〉 x=t0+3 |〉 assert x < 15;
assume ??=1 |〉 x=5 |〉 t1=x |〉 assume ??=1 |〉 x=5 |〉 x=t1+3 |〉 t0=x |〉 x=t0+3 |〉 assert x < 15;
assume ??=1 |〉 x=5 |〉 t1=x |〉 x=t1+3 |〉 assume ??=1 |〉 x=5 |〉 t0=x |〉 x=t0+3 |〉 assert x < 15;
assume ??=0 |〉 x=10 |〉 t0=x |〉 x=t0+3 |〉 assume ??=0 |〉 x=10 |〉 t1=x |〉 x=t1+3 |〉 assert x < 15;
assume ??=0 |〉 x=10 |〉 t0=x |〉 assume ??=0 |〉 x=10 |〉 x=t0+3 |〉 t1=x |〉 x=t1+3 |〉 assert x < 15;
assume ??=0 |〉 x=10 |〉 t0=x |〉 assume ??=0 |〉 x=10 |〉 t1=x |〉 x=t0+3 |〉 x=t1+3 |〉 assert x < 15;
assume ??=0 |〉 x=10 |〉 t0=x |〉 assume ??=0 |〉 x=10 |〉 t1=x |〉 x=t1+3 |〉 x=t0+3 |〉 assert x < 15;
assume ??=0 |〉 x=10 |〉 assume ??=0 |〉 x=10 |〉 t0=x |〉 x=t0+3 |〉 t1=x |〉 x=t1+3 |〉 assert x < 15;
assume ??=0 |〉 x=10 |〉 assume ??=0 |〉 x=10 |〉 t0=x |〉 t1=x |〉 x=t0+3 |〉 x=t1+3 |〉 assert x < 15;
assume ??=0 |〉 x=10 |〉 assume ??=0 |〉 x=10 |〉 t0=x |〉 t1=x |〉 x=t1+3 |〉 x=t0+3 |〉 assert x < 15;
assume ??=0 |〉 x=10 |〉 assume ??=0 |〉 x=10 |〉 t1=x |〉 t0=x |〉 x=t0+3 |〉 x=t1+3 |〉 assert x < 15;
assume ??=0 |〉 x=10 |〉 assume ??=0 |〉 x=10 |〉 t1=x |〉 t0=x |〉 x=t1+3 |〉 x=t0+3 |〉 assert x < 15;
assume ??=0 |〉 x=10 |〉 assume ??=0 |〉 x=10 |〉 t1=x |〉 x=t1+3 |〉 t0=x |〉 x=t0+3 |〉 assert x < 15;
assume ??=0 |〉 x=10 |〉 assume ??=0 |〉 x=10 |〉 t0=x |〉 x=t0+3 |〉 t1=x |〉 x=t1+3 |〉 assert x < 15;
assume ??=0 |〉 x=10 |〉 assume ??=0 |〉 x=10 |〉 t0=x |〉 t1=x |〉 x=t0+3 |〉 x=t1+3 |〉 assert x < 15;
assume ??=0 |〉 x=10 |〉 assume ??=0 |〉 x=10 |〉 t0=x |〉 t1=x |〉 x=t1+3 |〉 x=t0+3 |〉 assert x < 15;
assume ??=0 |〉 x=10 |〉 assume ??=0 |〉 x=10 |〉 t1=x |〉 t0=x |〉 x=t0+3 |〉 x=t1+3 |〉 assert x < 15;
assume ??=0 |〉 x=10 |〉 assume ??=0 |〉 x=10 |〉 t1=x |〉 t0=x |〉 x=t1+3 |〉 x=t0+3 |〉 assert x < 15;
assume ??=0 |〉 x=10 |〉 assume ??=0 |〉 x=10 |〉 t1=x |〉 x=t1+3 |〉 t0=x |〉 x=t0+3 |〉 assert x < 15;
assume ??=0 |〉 x=10 |〉 t1=x |〉 assume ??=0 |〉 x=10 |〉 t0=x |〉 x=t0+3 |〉 x=t1+3 |〉 assert x < 15;
assume ??=0 |〉 x=10 |〉 t1=x |〉 assume ??=0 |〉 x=10 |〉 t0=x |〉 x=t1+3 |〉 x=t0+3 |〉 assert x < 15;
assume ??=0 |〉 x=10 |〉 t1=x |〉 assume ??=0 |〉 x=10 |〉 x=t1+3 |〉 t0=x |〉 x=t0+3 |〉 assert x < 15;
assume ??=0 |〉 x=10 |〉 t1=x |〉 x=t1+3 |〉 assume ??=0 |〉 x=10 |〉 t0=x |〉 x=t0+3 |〉 assert x < 15;

Figure 7.2: A sample of the traces for the sketch generated by the sched function.

130

For sequential statements, the de�nition simply separates the statements that make
up a compound statement.

sched(c1; c2) → (sched(c1)|〉sched(c2))

sched(x = e) → (x = e)

sched(assert e) → (assert e)

For conditional statements, the sched function must make a non-deterministic de-
cision regarding which branch to traverse.

sched(if e then c1 else c2) →

assume e|〉sched(c1)

assume ¬e|〉sched(c2)

Similarly for loops, the sched function must decide for each iteration whether to stop or to
continue iterating.

sched(while e do c1) →

assume ¬e

assume e|〉sched(c1)|〉sched(while e do c1)

For atomic statements, the sched function does not have to do much; the body of
the atomic is simply scheduled as a single atomic step in the trace.

sched(atomic c1) → (c1)

Finally, the rule for fork must take the traces from each thread and interleave them
together into the single trace.

sched(fork(t, N) c) → mixN (sched(ren(c, 0)), sched(ren(c, 1)), . . . , sched(ren(c, N − 1)))

The function ren(c, i) renames all local variables x in c to xi, and replaces variable t with
the integer i. The function mixN takes N traces and nondeterministically interleaves their
atomic statements to produce a single trace. The traces resulting trace will be able to
eliminate any candidate control that would cause an assertion failure while satisfying all the
assumptions.

131

void main(){

int cnt =0, t = 0;

fork(int i; 2){

atomic(cnt == i){

cnt++;

t = i*(cnt+1);

}

}

assert t == ??;

}

(cnt = 0; t=0) |〉 (assume cnt = 0; cnt++; t = 0*(cnt+1)) |〉 (assume cnt = 1; cnt++; t = 1*(cnt+1)) |〉 assert t =??
(cnt = 0; t=0) |〉 (assume cnt = 1; cnt++; t = 1*(cnt+1)) |〉 (assume cnt = 0; cnt++; t = 0*(cnt+1)) |〉 assert t = ??

Figure 7.3: Handling conditional atomics with assumptions

7.2.2 Conditional atomics and deadlock

Conditional atomics involve more subtlety than some of the other constructs. This
is because the sched function must enforce the conditional execution requirement; i.e. the
conditional atomic must not execute until its condition is satis�ed. Additionally, conditional
atomics can cause deadlock because of their blocking semantics, so we would like to have
traces that eliminate any deadlock-prone candidates.

To cope with the conditional execution requirement, we want to consider only
those traces that execute the conditional atomic when its condition is satis�ed. This can be
achieved by assuming the execution condition before executing the body of the conditional
atomic. Once a trace fails an assumption, it gets ignored because it ceases to have an e�ect
on the set of valid con�gurations. Figure 7.3 illustrates this approach. For this sketch there
are two di�erent traces, but the second one fails the assumption, so the value of the hole is
de�ned by the �rst trace.

The problem with this seemingly simple solution is that a conditional with an
unsatis�able condition would cause all traces to fail their assumptions, and consequently
would not be able to eliminate any candidates even when they are clearly erroneous. For
example, consider the sketch in Figure 7.4. For this sketch, any φ satisfying φ(??) ≥ 2 will
be a valid con�guration for both traces, but only because setting the value of the hole to
a constant greater than one would make the condition unsatis�able under any schedule; in
other words, it would cause a deadlock.

132

void main(){

int cnt =0, t = 0;

fork(int i; 2){

atomic(cnt == i+??){

cnt++;

t = i*(cnt+1);

}

}

assert t == 2;

}

(cnt = 0; t=0) |〉 (assume cnt = ??; cnt++; t = 0*(cnt+1)) |〉 (assume cnt = 1+??; cnt++; t = 1*(cnt+1)) |〉 assert t =2
(cnt = 0; t=0) |〉 (assume cnt = 1+??; cnt++; t = 1*(cnt+1)) |〉 (assume cnt = ??; cnt++; t = 0*(cnt+1)) |〉 assert t = 2

Figure 7.4: Handling conditional atomics with assumptions

The way around this problem is to combine the conditional execution requirement
with deadlock detection. This can be done through the following de�nition of the sched

function.

sched(atomic e ⇒ c1) →

if e

then (c1; t = 1)

else (dl = dl + 1; assert dl 6= N ; t = 0)

 |〉(assume t)

The entire right hand side of this formula translates into two atomic steps. It �rst checks
for the condition to hold; if the condition doesn't hold, then it checks for the presence of
deadlock; if there is no deadlock, then the assumption in the next atomic step will fail. In
order for the scheme to work correctly, there must be a prologue at the beginning of the
fork that initializes N to the number of threads and dl to zero. There is also a need for an
epilogue at the end of each thread incrementing dl by one, so that the scheme can detect
deadlocks involving only some of the threads. With these modi�cations, the formula for
fork is rede�ned as shown below.

sched(fork(t, M) c) → (dl = 0;N = M)|〉
mixN (sched(ren(c, 0))|〉(dl = dl + 1), . . . , sched(ren(c,N − 1))|〉(dl = dl + 1))

The above strategy begs the question of why separate the assumption check into a
separate atomic step. The reason for this is that in order to detect a deadlock, the deadlock
detection for each of the threads must be scheduled before all the assumes. This is because

133

the deadlock will only trigger an assertion failure when the last thread to arrive at the
deadlock executes its deadlock detection code, so it is important that none of the previous
threads has issued an assume. This is best illustrated with a couple of traces from the
example in Figure 7.4. The traces are shown in Figure 7.5; the trace on the left has the
conditional atomics in the right order; notice how this trace will reject any φ with φ(??) 6= 0

thanks to the deadlock detection. The trace on the right shows how the assumes prevent
any valid candidate from being eliminated when the conditional atomics are scheduled in an
invalid order.

With this de�nition of the set of traces for a sketch, the sketch resolution equation
will properly de�ne the set of valid candidates for a sketch. Candidates that cause assertion
failures or deadlocks for some thread interleaving will be eliminated, resulting in a set of
correct candidates. As in the sequential case, however, solving the sketch equation directly
will be impossible for all but the most trivial sketches because the set of possible traces
is enormous. Fortunately, a generalization of the CEGIS algorithm will allow us to solve
sketches like the one in the introduction in a couple of minutes.

7.3 E�ect of program transformations

In this section, I focus on program transformations that a�ect the set of traces the
program may produce, but without a�ecting the set of solutions to the sketch equation. An
especially useful class of such transformations involves transformations a�ecting conditionals.
For example, consider the transformations illustrated by the rewrite rules below. In the
transformation rules, ti is used to indicate a fresh local variable, el

i is an expression involving
only local variables, and satom

i is a statement involving a single atomic operation, either an
assignment, an assertion, an assumption or an atomic statement.

if e then (s1; s2) → ti = e; (if ti then s1); (if ti then s2) (7.3.1)

if e then s1 else s2 → ti = e; (if ti then s1); (if ¬ti then s2) (7.3.2)

if el
1 then if el

2 then s1 → if(el
1 ∧ el

2) then s1 (7.3.3)

if el
1 then satom

1 → atomic{ if el
1 then satom

1 } (7.3.4)

These transformations a�ect the set of traces generated for a program, but do not
a�ect the set of solutions to the sketch equation. For example, consider the transformation

134

Valid Order Invalid Order

thread step
s: (cnt = 0; t=0; dl=0) |〉

0:

if(cnt = ??){

cnt++;

t = 0*(cnt+1);

t0=1;

}else{

dl = dl + 1;

assert dl != 2;

t0=0;

}

|〉

1:

if(cnt = 1+??){

cnt++;

t = 0*(cnt+1);

t1=1;

}else{

dl = dl + 1;

assert dl != 2;

t1=0;

}

|〉

0: assume t0 |〉
1: assume t1 |〉
0: dl = dl + 1 |〉
1: dl = dl + 1 |〉
s: assert t==2;

thread step
s: (cnt = 0; t=0; dl=0) |〉

1:

if(cnt = 1+??){

cnt++;

t = 0*(cnt+1);

t1=1;

}else{

dl = dl + 1;

assert dl != 2;

t1=0;

}

|〉

0:

if(cnt = ??){

cnt++;

t = 0*(cnt+1);

t0=1;

}else{

dl = dl + 1;

assert dl != 2;

t0=0;

}

|〉

0: assume t0 |〉
1: assume t1 |〉
0: dl = dl + 1 |〉
1: dl = dl + 1 |〉
s: assert t==2;

Figure 7.5: Correct traces for the example in Figure 7.4.

135

expressed in Equation (7.3.2). For the left hand side, the sched function can produce two
di�erent traces.

sched(if e then s1 else s2) →

assume e|〉sched(s1)

assume ¬e|〉sched(s2)

For the right hand side, there are four possible traces produced by the trace function.

sched(ti = e; (if ti then s1); (if ¬ti then s2)) →

ti = e |〉assume ti|〉sched(s1)|〉assume ¬ti|〉sched(s2)

ti = e |〉assume ti|〉sched(s1)|〉assume ¬¬ti

ti = e |〉assume ¬ti|〉assume ¬ti|〉sched(s2)

ti = e |〉assume ¬ti|〉sched(s1)|〉assume ¬¬ti|〉sched(s2)

These traces will be interleaved with the traces from the other threads, so the transformation
greatly increases the number traces in the set tr(P). However, the set of solutions to the
sketch equation will remain una�ected by the transformation. To see why this is the case,
note that the second and third traces for the transformed statement are fully equivalent to
the two traces for the original statement. This can be proved by resorting to partial order
reduction [32], since all the assumes in the new version involve only local variables. As for the
other two traces, note that they contain contradictory assumptions, so at most, only their
pre�xes can a�ect the set of solutions to the sketch; however, these pre�xes are equivalent to
the pre�xes of the second and third traces, so overall, the set of solutions will be una�ected
by the transformation.

By themselves, the �rst two transformations are not very useful, but they can
be used to enable the second two transformations, which have the e�ect of removing as-
sumptions from traces, allowing more information to be extracted from a single trace. For
example, the transformation in Equation (7.3.4) completely eliminates from the trace any
assumptions associated with the if statement. These transformations will be extremely
valuable in generalizing the CEGIS algorithm to deal with concurrency.

136

Chapter 8

Concurrent CEGIS

The previous section de�ned the concurrent semantics of sketches in terms of the
sequential semantics of their traces, where each trace captures the semantics of a particular
interleaving of the threads in the sketch. Using this formalism, the sketch resolution equation
can be generalized to the concurrent case by requiring a valid control φ to satisfy all assertions
under all possible inputs σ and for all possible traces t:

∀ σ ∈ Σ ∀ t ∈ tr(P) πΦ(C[[t]]τ∅(σ, {φ})) = {φ}. (8.0.1)

The need to reason about all possible traces makes the synthesis problem harder
than it was for the sequential case. Just as in the sequential case, however, the synthesizer
can exploit a bounded observation hypothesis to make the synthesis problem tractable.

Hypothesis 2 For a given sketch P, it is possible to �nd a small set of inputs E and and
a small set of traces T that fully represent the entire universe of possible inputs and traces
Σ× tr(P), in the sense that any control φ satisfying

∀t ∈ T ∀ σ ∈ E C[[t]]τ∅〈σ, {φ}〉 = 〈σ′ , {φ}〉 (8.0.2)

will also satisfy Equation (8.0.1).

8.1 The Algorithm

The bounded observation hypothesis allows us to solve the concurrent synthesis
problem using counterexample guided inductive synthesis, just like in the sequential case

137

(see Section 4.1). The algorithm uses an inductive synthesis procedure to generate candidates
that are valid for a small set of inputs and traces. The candidates are then checked by a
validation procedure; if the validation �nds no errors, the candidate is determined to be a
solution to the synthesis problem. If the validation procedure �nds an error, it produces a
trace and an input to expose the error, and these are fed to the inductive synthesizer, which
is then responsible for producing a new candidate solution. The complete algorithm is shown
below; the notation is the same as before; PE(P, φ) is the concrete program that results
from partially evaluating program P with control φ; Φi is the ith approximation to the set of
valid controls, and control φi ∈ Φi is the ith candidate solution for the sketch; σi and ti are
the counterexample input and trace respectively. The expression πΦ(C[[ti−1]]τ∅(σi−1,Φi−1))

evaluates the trace ti−1 under the synthesis semantics on input state σi−1 and control set
Φi−1, and uses the projection function πΦ to select the new control set from the result.

Algorithm 2 (Concurrency Aware CEGIS Algorithm) .
Input: P
φ0 := φrandom

Φ0 = Φ
i := 0;
do

def (ti, σi) = validate(PE(P, φi))
if (ti= null) then break

}
Validation Phase

def Φi = πΦ(C[[ti−1]]τ∅(σi−1, Φi−1))
if Φi = ∅ then return ERROR

def φi ∈ Φi

 Inductive Synthesis Phase

i = i + 1
while true
return φi

The algorithm operates by the same principles as the sequential CEGIS, so the
arguments we made in Section 4.1 regarding convergence of the control sets Φi apply in this
context as well; however, there are some important di�erences. The �rst important di�erence
with the sequential algorithm is that the inductive synthesizer now operates on traces, as
opposed to programs. However, a trace is just a sequential interleaving of the statements in
the original program, so it can be treated just like a sequential program: it can be partially
evaluated with respect to a control, and it can be analyzed using the synthesis semantics.

138

This is very important because it means the inductive synthesizer does not have to reason
about concurrency; as a consequence, it is not a�ected by astronomical number of possible
interleavings in the original program. The tasks of reasoning about all possible interleavings
is delegated to the validation procedure, and this is the second important di�erence with
sequential CEGIS.

The validation procedure is now in charge of all the concurrency related reasoning.
It must be able to either validate the current candidate, or produce a counterexample input
and trace to expose a bug. Because the validator must reason about concurrency, it can
no longer be described in terms of the synthesis semantics. Fortunately, most o�-the-shelf
validation procedures for concurrent programs are able to produce counterexample traces
for buggy inputs. This allows the current synthesizer to delegate all the concurrency related
reasoning to an o�-the-shelf component; we use the SPIN model checker, but many other
validation procedures could easily �t the bill.

There are other more super�cial di�erences between the algorithm above and the
sequential CEGIS from Section 4.1. For example, the synthesis and veri�cation phases are
swapped in the loop only because it's easier to generate a random control than it is to
generate a random trace. Another di�erence is that the new algorithm must perform partial
evaluation on each iteration of the CEGIS loop; this is because the validation procedure can
no longer be expressed in terms of the synthesis semantics, so on each iteration, the algorithm
must produce a concrete program to pass to the external validation procedure. Similarly,
recall that the sequential CEGIS was able to avoid evaluating the synthesis semantics on
each iteration of the CEGIS loop thanks to the manipulations from Section 5.1.1. In the
concurrent CEGIS algorithm, however, each iteration must evaluate the semantics on a
di�erent trace, so the overhead of evaluating the semantics on each iteration can not be
avoided. These di�erences are super�cial, but they have an impact on the performance of
the implementation.

There is one important aspect of the algorithm which the discussion so far has
ignored. The validation procedure validates the candidate Pφi = PE(P, φi). If the candidate
has an error, the validation procedure will produce a trace tPφi

for program Pφi exposing
the error; however, the inductive synthesis procedure needs a trace tP ∈ tr(P) of the sketch;
therefore, we need a procedure for converting a trace acquired from one program into a trace
for a sketch; we call this process projection, and it is crucial to the e�ectiveness of the above
algorithm.

139

8.2 Trace Projection

In sequential CEGIS, the validator produced an counterexample input σi, which
could be directly used by the inductive synthesizer to eliminate an entire class of candidates;
ideally, σi would eliminate all the candidates exhibiting the same bug that σi exhibited in
candidate Pφi . In the concurrent case, on the other hand, the validation procedure generates
a trace that is intimately tied to the speci�c candidate Pφi . The trace describes the exact
execution order of statements in Pφi , and encodes all the control decisions in a particular
execution of this program. The challenge, is to generate from this trace a new trace for
the sketch P that allows the inductive synthesizer to eliminate not just Pφi , but also other
candidates sharing the same bug, even if these other candidates di�er considerably from Pφi .
This is the goal of trace projection.

A trace projection, denoted tPφ
.P , is an operation that takes a sketch P and a trace

tPφ
generated from a candidate Pφ, and produces a new trace tP for the sketch P . In order

for the CEGIS algorithm to converge, the projected trace must at least allow the inductive
synthesizer to eliminate the candidate Pφ that produced the original trace. Additionally, the
e�ectiveness of the CEGIS algorithm will be greatly enhanced if the projected trace exhibits
preservation of errors. Preservation implies that if the program Pφj exhibits the same bug
which the trace tPφi

exposed in Pφi, then tP = tPφi
. P should eliminate φj in addition to

φi. This implies that PE(tP , φj) exhibits an assertion failure on input σi, just like tPφi
.

This informal notion of preservation is inherently vague due to the varied nature
of bugs and the di�culty of establishing the root cause of a failure by analyzing a trace. A
bug in a candidate may be caused by lack of enough synchronization leading to a race, or
too much of it leading to a deadlock, among many other pathologies. Moreover, the root
cause of the error may lie far from the point of failure in the program. So instead of full
preservation of errors, we settle for a simpler property that can serve as a proxy; one that
can be enforced cheaply, and that at the very least guarantees that the projected trace will
eliminate the original buggy candidate.

To help us de�ne a suitable proxy for preservation of errors, I introduce the notion
of step-ordering preservation. Section 7.2 de�ned a trace of a sketch as an interleaving of
atomic steps from all the threads in the program. We say that a trace t′ preserves a trace t

(t′ ∼=p t) if all steps common to t′ and t are executed in the same order in both traces. Thus,
in order for t′ to preserve t, we require that if step s1 precedes step s2 in t, and both s1 and

140

s2 are present in t′, then s1 precedes s2 in t′. The preservation relation ∼=p is re�exive and
commutative.

This notion of step-ordering preservation is practically relevant because preserving
step ordering is likely to preserve the conditions that lead to an error. To see why this is the
case, consider two traces t1 and t2, which share a set of statements {s1, . . . , sn} that lead
trace t1 to fail an assertion. If t2 preserves the order of these statements, then it will likely
preserve the data�ow relationship among these statements that lead to the error in t1. I use
the word likely, because it is possible for t2 to preserve the ordering of the shared statements
without preserving the data�ow; this would happen if t2 contains some additional statement
not present in t1 which sits between the shared statements and alters the data�ow. However,
step-ordering preservation is simple to enforce and we have observed that it usually succeeds
in preserving errors.

Therefore, we can achieve some level of preservation of errors by preserving step
ordering. Unlike preservation of errors, however, step-ordering preservation is a well de�ned
property that can be used to state a set of formal requirements for the projection algorithm.

De�nition 1 (Requirements of trace projection) A projection tP = tPφ
. P from a

trace tPφ
generated from a candidate Pφ to a sketch P must satisfy the following two prop-

erties.

• For all controls φo, the trace tφo = PE(tP , φo), obtained by partially evaluating the
projected trace tP with control φo, must preserve the step ordering of the original trace;
i.e. tφo

∼=p tPφ
.

• For all controls φo, the trace tφo = PE(tP , φo) must be semantically equivalent to a
valid trace for Pφo ; i.e. tφo ∈ tr(Pφo).

The desired relationship between the traces tPφ
, tφo and tP is illustrated by the diagram in

Figure 8.1.

The �rst apparent obstacle to satisfying this de�nition stems from the blocking behavior
of synchronization primitives. To illustrate the problem, consider the sketch shown below;
it contains two statements s1 and s2, and uses a boolean hole to leave unspeci�ed the
synchronization around them.

bool c = ??;

141

�� ��

��

�� �
�

Figure 8.1: Relationship between partial evaluation, projection and the preservation relation

thrd1: { sa; if (c) wait; s1; if (!c) signal }

thrd2: { sb; if (!c) wait; s2; if (c) signal }

This sketch corresponds to two candidate programs, selected based on the value of c:

Pt: thrd1: { sa; wait; s1; } thrd2: { sb; s2; signal; }

Pf: thrd1: { sa; s1; signal; } thrd2: { sb; wait; s2; }

Because of synchronization, the program Pt must execute s2 before s1, while Pf must
execute s1 before s2. How then is it possible for the projected trace to be specialized into a
valid trace for both Pt and Pf? The answer lies in the way the sched procedure described
in Section 7.2 models blocking behavior. All blocking primitives are described in terms of
conditional atomic sections. The sched procedure models the conditional atomic by using
an assume to check whether its execution condition is satis�ed when the conditional atomic
is scheduled to run. If it is not, the assume fails and the rest of the trace is ignored. In
the above example, a trace from Pf will be projected into a trace for the original program
having s1 before s2, so if the trace is specialized with c = true, then we will get a trace
for Pt that tries to execute s1 before s2. The trace will be a valid trace in tr(Pt), although
it will be guaranteed to fail an assumption after it tries to execute the wait before having
executed the signal. The net result is that the only part of the trace that matters is the
part of the trace corresponding to the longest pre�x of the execution for which it is possible
to preserve step ordering.

More problematic are control decisions made by the sched procedure which prevent
the trace PE(tP , φ) from being equivalent to a valid trace for program Pφ = PE(P, φ). For
example, if program P contains an if statement of the form:

142

if(??i){

x = a;

}else{

x = b;

}

then a trace produced by sched(P) will either include the statements assume ??i and x=a

or the statements assume¬??i and x=b. In the �rst case, specializing the resulting trace
with φf (??i) = 0 will lead to a trace that is invalid for the program Pφf

because program
Pφf

executes x=b unconditionally, but the specialized trace does not include x=b. Similarly,
specializing the trace containing assume¬??i and x=b with a control φt(??i) = 1 will lead to
a trace that is invalid for Pφt , i.e. PE(tP , φt) /∈ tr(Pφt).

The way around this problem can be found in the program transformations from
Section 7.3. That section showed that it was possible to eliminate all the control decisions
from traces without a�ecting the semantics of the program by performing if-conversion on
the sketch. For the code fragment above, if-conversion results in a code fragment where all
the control �ow has been moved inside atomic sections.

t = ??i;

atomic{ if(t) x = a; }

atomic{ if(!t) x = b; }

A trace for this new code fragment no longer has to make an arbitrary decision about
control �ow, and therefore, specializing any trace with a control φ will lead to a valid trace
for program Pφ.

By eliminating the need for traces to make arbitrary decisions about control �ow,
if-conversion makes it possible to de�ne a projection mechanism that satis�es the two re-
quirements in the de�nition.

8.2.1 Mechanics of Trace Projection

The trace projection algorithm presented in this section is able to satisfy the prop-
erties established by the diagram in Figure 8.1 by transforming the original sketch P into
a semantically equivalent sketch P ′ through if-conversion. After unrolling any loops in
the program and applying the transformation rules from Section 7.3, the sketch is now a

143

straight-line sequence of atomic statements. This implies that when de�ning a trace for this
sketch, the only non-deterministic decisions left for the sched procedure are those involved
in interleaving the threads; all the non-determinism surrounding control �ow decisions has
been eliminated. Therefore, the trace projection algorithm only has to concern itself with
�nding a suitable ordering for the atomic steps from each of the threads.

The �rst input to the algorithm is a trace t consisting of a list of steps, where each
step is an atomic statement tin identi�ed by an id i and the thread n which executed it. The
second input is an if-converted sketch P ′ containing a single fork statement.

void main(){

pre;

fork(int i; N){

S;

}

post;

}

Now, because P ′ has been if-converted, the expression sched(S) is now fully de-
terministic; it simply breaks S into a sequence of atomic steps s0|〉s1|〉 . . . |〉sk. Now, from
Section 7.2.1, we know that a valid trace for P ′ is de�ned by interleaving the steps from
sched(S) according to the equation below.

sched(fork(t, N) S) → mixN (sched(ren(S, 0)), sched(ren(S, 1)), . . . , sched(ren(S, N − 1)))

Any interleaving will lead to a valid trace, but if we want a trace that is a projection
of the input trace t, the interleaving of the atomic steps must satisfy the partial order imposed
by t. This can be expressed as a set of constraints on the interleaving. I use the notation
si
n to refer to refer to the ith atomic step in sched(ren(S, n)), and tin to refer to the ith step
executed by the thread n in trace t. Additionally, I de�ne a function map(tim) = sj

m that
maps steps tim in t to steps sj

m in sched(ren(S, m)). For the most part, each statement in
t has exactly one corresponding step in sched(ren(S, m)); however, recall that conditional
atomics are modeled with two atomic steps: one to check the condition and possibly execute
the action, and another one to check the assumption. Thus, if tim is a conditional atomic
statement, then sj

m = map(tim) is the step that contains the action, and sj+1
m is the step

that checks the assumption. I also use the notation si
n < sj

m to indicate that step si
n is

144

scheduled before step sj
n in the trace. With this notation, I de�ne three constraints on the

interleaving.

1. If step tin precedes step tjm in the input trace t, then map(tin) < map(tjm) in sched(P ′).

2. If n = m ∧ i < j then si
n < sj

m in sched(P ′).

3. If the trace tφi exposes a deadlock involving a set of conditional atomic steps D =

{tjm, . . .}, then if tjm ∈ D and tjn ∈ D corresponds to two steps in the deadlock set,
then

si′
n = map(tin) ∧ sj′

m = map(tjm) ⇒ si′
m < sj′+1

m

The �rst constraint ensures that the trace will preserve the partial order required
by the input trace t. The second constraint is a constraint of the mixN function to ensure
that the trace will preserve the program order for each of the threads.

The third constraint is more complicated; it is there to ensure that deadlock detec-
tion works properly, and is essential to guarantee that the projected trace will be able to elim-
inate the candidate that produced the original trace t. To see why this is the case, consider
a sketch P with a conditional atomic atomic e ⇒ s, and suppose that the validation proce-
dure returns a trace that runs two threads and deadlocks on this conditional atomic. Now,
let ti0 and tj1 correspond to the two steps involved in the deadlock, so ti0 = (atomic e ⇒ s)

for thread 0, and tj1 = (atomic e ⇒ s) for thread 1.
The sched function for the conditional atomic produces two atomic steps as shown

below; the �rst one corresponds to si′
n = map(tin) and involves the body of the conditional

atomic, while the second one corresponds to si′+1
n and uses an assumption to stop the

evaluation of the trace if the conditional atomic is scheduled when it wasn't ready to run.

sched(atomic e ⇒ c1) →

if e

then (c1; t = 1)

else (dl = dl + 1; assert dl 6= N ; t = 0)

 |〉(assume t)

The reason for the third constraint on the ordering of the steps is that the deadlock
detection in the steps si′

n will cause an assertion failure only after step si′
n has been executed

by all threads n involved in the deadlock. Therefore, if any of the assumes in steps si′+1
n

executes before all the threads in the deadlock have executed their deadlock detection code,

145

the deadlock will not be detected, and the projected trace will fail to eliminate the buggy
candidate.

The trace that results from this process will have all the desired properties; partially
evaluating the trace for the sketch with a control φ will lead to a valid trace for candidate Pφ

that preserves the step ordering of the original candidate. This allows the projected trace to
eliminate not just the buggy candidate that produced it, but a whole family of candidates.
This in turn allows the CEGIS algorithm to converge in a small number of iterations, even
for sketches with billions of unique candidates.

8.3 Related Work

The model checking community has had an interest in concurrent synthesis from
the very beginning. In fact, Clarke and Emerson's seminal paper on model checking looked
at the problem of synthesizing the synchronization logic in a program from temporal speci-
�cations [20]. Pnueli and Rosner [51] also studied the problem of concurrent synthesis from
the point of view of synthesizing distributed reactive synthesis from a temporal speci�cation.
Compared with the resounding success of model checking, however, the work on synthesis
from temporal speci�cations has had limited practical impact due to the computational
complexity of the algorithms involved.

While computer-aided veri�cation of concurrent programs has gained signi�cant
momentum in recent years, the automated synthesis of concurrent algorithms has had a
slower start; most recent work in the �eld is designed for synthesis within in a speci�c do-
main of algorithms (e.g. [8]). Notable in this context is the work on synthesis of concurrent
garbage collectors by Vechev et al. [66, 67] In their earlier work [66], the authors apply an
automated transformation-based space exploration to derive provably correct variants from
a basic (correct) concurrent GC implementation. In a more recent work [67] an exhaustive
exploration procedure is applied to a space of implementations on variants with varying
degrees of atomicity and instruction reordering, and combined with e�ective pruning of
vacuously incorrect implementation sub-spaces. In this approach the authors deploy a sep-
arate veri�cation procedure based on the SPIN model checker [40] to check the absence of
concurrency bugs in each of the generated candidate implementations.

More recently, they have generalized their approach to the synthesis of concurrent
datastructures [65]. Their framework, unlike ours, is capable of verifying concurrent im-

146

plementations that manipulate arbitrary unbounded data structures, thanks to the use of
abstraction in the veri�cation procedure. This, however, is not an inherent limitation of our
approach. Also, the generation method used in their approach heavily depends on tailored
semantic rules to prune the search space e�ectively, and is restricted to a prede�ned set of
concurrency-related transformations and synchronization primitives. In contrast, our pro-
jection procedure is able to achieve pruning without the need for domain speci�c knowledge,
reducing the problem instead to a constraint solving problem and delegating the e�ort of
conducting an e�ective search to an e�cient, general purpose SAT-based solver.

147

Chapter 9

Empirical Evaluation of the Sketch
System

This section presents an empirical evaluation of the concurrent Sketch language
and the concurrent CEGIS algorithm from Chapter 8. Speci�cally, it evaluates the perfor-
mance of the concurrency support in the Sketch compiler and the expressiveness of the
Sketch language on a suite of benchmarks. For the benchmarks, we selected problems
that are regarded as di�cult to implement by practitioners in the �eld of concurrent pro-
gramming. This section mirrors the evaluation section from our PLDI08 paper [62], but all
the performance data has been updated to re�ect the current state of the synthesizer. The
results of our evaluation are encouraging.

• Sketch successfully searched spaces of about 109 syntactically unique candidates in
about 10 minutes, consuming less than 800 MB of memory.

• Our CEGIS algorithm required only a few observations (meaning only a few calls to
the veri�er) to resolve a sketch, or determine that it could not be resolved. In our
benchmarks, Sketch required 10 iterations to �nd a correct implementation from a
space of about 108 possibilities. Sketch was also able to show after only 7 observations
that one of our benchmark sketches could not be resolved.

• The trace projection through if-conversion is shown to be crucial in generalizing CEGIS
to concurrent programs. Without it, counterexample traces preserve too little infor-
mation to make the approach e�ective.

148

The expressiveness of the Sketch language is harder to evaluate, but we show
example sketches of our benchmarks below and argue that they capture the insight behind
a solution, with a minimum of unnecessary detail. These results suggest that programmers
facing concurrency challenges might �nd Sketch useful.

9.1 Overview of Experiments

For the evaluation, we ran several variations of �ve representative benchmarks on
an IBM T60 laptop (the same one described in Chapter 6). The goal of the experiments was
to validate the overall e�ectiveness of the sketching approach to concurrent data structures,
as well as some of the individual design decisions in the concurrency extensions to Sketch.
Speci�cally, the experiments attempt to validate the following hypothesis.

Synthesis scales to realistic synthesis problems. This hypothesis is validated by
using the synthesizer to solve sketches for di�cult programming problems. The sketches
leave unspeci�ed most of the challenging details in these benchmarks, leaving only what
is necessary to express the clever insights behind the desired implementations. For a few
sketches, we show di�erent versions of the sketch to explore how the number of holes in the
sketch a�ects the solution time.

The bounded observation hypothesis holds. The bounded observation hypothesis
is central to the CEGIS algorithm. This section shows that the number of observations
required to resolve a sketch (or show that it cannot be resolved) is not dramatically larger
than in the sequential case.

Our trace projection algorithm is e�ective at preserving error information. Sec-
tion 8.2 established a set of requirements on the projection algorithm that were meant to
ensure preservation of errors by the projected trace. We evaluate the e�ectiveness of the
resulting projected algorithm by comparing it with a simpler alternative, one that does not
perform if-conversion on the sketch and therefore produces traces with many assume state-
ments. We show that the resulting traces preserve too little information, causing the CEGIS
algorithm to exhaust the available resources before converging.

The Sketch language is expressive for this domain. We do not attempt to measure
this quantitatively; instead, we show how we expressed the insights behind our benchmarks
using Sketch.

149

Sketch Description |C|
queueE1 Lock-free queue: restricted Enqueue() 4
queueE2 Lock-free queue, full Enqueue() 106

queueDE1 queueE1, plus sketched Dequeue() 103

queueDE2 queueE2, plus sketched Dequeue() 108

barrier1 Sense-reversing barrier, restricted 104

barrier2 Sense-reversing barrier, full 107

fineset1 Fine-locked list: find(), add() and remove() 109

lazyset Lazy list, singly-locked remove() 103

dinphilo Approximation of dining philosophers problem 106

Table 9.1: Summary of benchmark sketches. C is the set of syntactically distinct candidate
programs encoded by each sketch.

9.1.1 Benchmarks

The benchmarks are intended to represent various sketching scenarios across dif-
ferent problems. Table 9.1 summarizes the more detailed descriptions of the benchmarks
that follow.

Lock-free queue

This benchmark came from an undergraduate exam in an Operating Systems class
held at Berkeley in 2005. The problem looks simple, but less than 30% of the students solved
it correctly, even with additional hints from the ones described here. The exam described
the problem as follows:

An object such as a queue is considered �lock-free� if multiple processes can
operate on this object simultaneously without requiring the use of locks, busy-
waiting, or sleeping. We will construct a lock-free FIFO queue using an atomic
�swap� operation. This queue needs both an Enqueue and a Dequeue method.
Instead of the traditional Head and Tail pointers, we will have PrevHead and
Tail pointers. PrevHead will point at the last object returned from the queue,
so PrevHead.next will point to the head of the queue. Here are the basic class
de�nitions, under the assumption that only one thread accesses the queue at a
time.

// Holding cell for an entry

class QueueEntry {

QueueEntry next = null;

Object stored;

int taken = 0;

150

QueueEntry(Object newobject) { stored = newobject; }

}

// The actual Queue (not yet lock-free!)

class Queue {

QueueEntry prevHead = new QueueEntry(null);

QueueEntry tail = prevHead;

void Enqueue(Object newobject) {

QueueEntry newEntry = new QueueEntry(newobject);

tail.next = newEntry;

tail = newEntry;

}

Object Dequeue() {

QueueEntry nextEntry = prevHead.next;

while (nextEntry != null && nextEntry.taken == 1)

nextEntry = nextEntry.next;

if (nextEntry == null)

return null;

else {

nextEntry.taken = 1;

prevHead = nextEntry;

return nextEntry.stored;

} } }

Suppose that we have an atomic swap instruction that takes a local variable
(register) and a memory location and swaps their contents. In a relaxed dialect
of Java that allows pointers, it can be described as follows.

Object AtomicSwap(variable addr, Object newValue) {

Object result = *addr; // Get old value (object)

*addr = newValue; // Store new object

return result; // Return old contents

}

Problem (a). Using the AtomicSwap() operation, rewrite code for Enqueue()

such that it will work for any number of simultaneous Enqueue and Dequeue

operations. You should never need to busy wait. Do not use locking (e.g.,
test-and-set lock). Although tricky, it can be done in a few lines.
Problem (b). Rewrite code for Dequeue() such that it will work for any number
of simultaneous threads working at once. Again, do not use locking. You should
never need to busy-wait. ¤

For the enqueue method in this queue, we wrote a sketch, shown below, that
embodies the limited information about the implementation provided in the problem. Lines
1 and 2 in the sketch express our knowledge that the solution must �rst allocate a new object.

151

Lines 5 and 7 express our knowledge that the solution will involve one or possibly two pointer
assignments to a handful of locations including tail, tail.next and possibly newEntry.next.
Line 6 expresses the requirement that the solution must use the AtomicSwap construct. The
reorder and the regular expression generators are used to express our ignorance about the
precise use of the AtomicSwap, and the exact way in which the assignments must take place.

#define aLocation {| tail(.next)? | (tmp|newEntry).next |}

#define aValue {| (tail|tmp|newEntry)(.next)? | null |}

#define anExpr(x,y) {| x==y | x!=y | false |}

void Enqueue(Object newobject) {

1 QueueEntry tmp = null;

2 QueueEntry newEntry = new QueueEntry(newobject);

4 reorder {

5 aLocation = aValue;

6 tmp = AtomicSwap(aLocation, aValue);

7 if (anExpr(tmp, aValue)) aLocation = aValue;

8 }

}

We also wrote an alternative sketch for enqueue containing only 4 choices to analyze how
the algorithm scales with the number of unknowns in the sketch.

For Dequeue, the sketch attempts to implement the method with a single while

loop. The sketch was written in a few minutes, and it is very simple. The sketch places
in a reorder block all the statements that one could reasonably expect to be necessary for
the solution and leaves the rest to the synthesizer. For example, we know we will need
the atomic swap to read the taken bit and possibly set it (line 9); we know prevHead must
be updated (line 8), we know we will probably need a temporary pointer which must be
updated in each iteration (line 6), and we know that in some cases there will be nothing to
dequeue and we will have to just return null (line 7). The reorder block is essential to allow
the synthesizer to discover the right order for these actions.

152

1 Object Dequeue() {

2 QueueEntry tmp = null;

3 boolean taken = 1;

4 while (taken) {

5 reorder {

6 tmp = {| prevHead(.next)?(.next)? |};

7 if (tmp == null) return null;

8 prevHead = {| (tmp|prevHead)(.next)? |};

9 if (!tmp.taken) taken = AtomicSwap(tmp.taken, 1);

10 }

11 }

12 return tmp.stored;

13 }

The queueE1 and queueE2 versions of this benchmark use the simple and hard
Enqueue sketches respectively, and they both use a full implementation of Dequeue. The
queueDE1 and queueDE2 combine the Dequeue sketch shown above with the simple and hard
enqueue sketches respectively.

The queue benchmarks were resolved with respect to the conjunction of the fol-
lowing correctness conditions:

• Sequential consistency of each individual operation [44]. If a thread A enqueues a1

and a2, then a1 must be come before a2 in the queue. Note that the queue is not
sequentially consistent with respect to both enqueue and dequeue; i.e. it is possible
for a thread to perform an enqueue followed by a dequeue and have the queue behave
as if the dequeue was executed �rst. Sequential consistency does not compose, so an
object may be sequentially consistent with respect to enqueue and with respect to
dequeue, but that does not mean it is sequentially consistent with respect to enqueue
and dequeue together. This is one of the reasons why sequential consistency is a weaker
condition than linearizability [39].

• Structural integrity. The queue is not corrupted by concurrent operations. Speci�cally:
(1) the head and tail are not null; (2) prevHead.taken == 1; (3) the tail is reachable
from the head; (3) tail.next == null; (4) there are no cycles in the queue; (5) no
�untaken� nodes precede �taken� ones.

153

Sketch also enforces memory safety by default: no null pointers may be dereferenced, and
array accesses must be within bounds. It is worth noting that for queueE2 and queueDE2, we
found that we had to use more than one operation per thread or more than two threads for
veri�cation in order to get solutions that generalized to more threads and more operations
per thread.

Sense-reversing barrier

Barriers allow multiple threads to synchronize at the same program point before
continuing. A correct implementation must allow the last thread to reach the barrier to
realize that it is the last thread and to release the other threads waiting at the barrier.
However, once awaken, the other threads should only be allowed to pass through the barrier
once; they should be stopped upon reaching the barrier again.

This is more di�cult than it may appear at �rst sight. It is tempting to use a
counter to count how many threads have reached the barrier, forcing the threads to wait
until the count equals the number of threads, and then releasing the threads and resetting
the counter. However, this scheme does not work because once released, the threads could
run past the barrier an arbitrary number of times before the counter is reset.

The insight to solving this problem is to separate consecutive barrier points into
two phases: even and odd. The phase is called the barrier's �sense,� and reverses after each
barrier point [36]. The barrier object keeps the global boolean sense, and each thread has a
local sense. Having even and odd barriers for consecutive points allows us to give a thread
permission to pass through the even sense while preventing it form going past the odd sense.

However, this insight is far from an implementation. The barrier code requires
subtle reasoning about interleaved threads and intermediate barrier states. We claim that
the Sketch language is well suited to capturing the insight behind a sense-reversing barrier.
Below, we sketch the barrier's next() method. The sketch encodes next() as a �soup�
of operations, to be executed (or not) under some conditions on the barrier state. The
synthesizer is left to �nd an implementation that avoids harmful races, deadlocks, and other
intricate details.

The �rst step is to write the Barrier datastructure; it must cointain (1) a sense

to indicate the current phase; (2) senses, an array with the local sense of each thread;
and (3) count, the number of threads yet to reach the barrier. The soup of operations

154

comprising the insight behind next() included the following actions:

1. Update the thread's own sense of the barrier.

2. Atomically decrement the count of threads yet to arrive.

3. Under some condition, wait until the barrier sense changes to some predicate of the
thread's own sense.

4. Under some condition, set the barrier's sense and yet-to-arrive count so as to wake up
the other threads, and prepare the barrier for the next phase.

Before �nishing the sketch, we de�ne �under some condition� as a Sketch generator function
that returns a boolean expression of its arguments:

boolean predicate (a, b, c, d) {

return {| (!)? (a==b | (a|b)==?? | c | d) |};

}

Now, translating the operations above into a sketch is straightforward. We make them into
a �soup� by placing them in a reorder block:

void next (Barrier b, Thread th) {

boolean s = b.senses[th];

s = predicate (0, 0, s, s);

int cv = 0;

boolean tmp = 0;

reorder {

// (1) Update t’s local sense

b.senses[th] = s;

// (2) Decr. count of yet-to-arrive threads

cv = AtomicReadAndDecr (b.count);

// (3) Wake up other threads, reset barrier

tmp = predicate (b.count, cv, s, tmp);

if (tmp) {

reorder { // The order of these operations is important

b.count = N;

155

b.sense = predicate (b.count, cv, s, s);

}

}

// (4) Wait at barrier

tmp = predicate (b.count, cv, s, tmp);

if (tmp) {

boolean t = predicate (0, 0, s, s);

atomic (b.sense == t);

}

}

}

The benchmark barrier2 is the sketch shown above. The companion barrier1 is
a reduced version with a smaller candidate program space. The barrier's correctness was
established by a client program that ensured that threads always joined properly at each
barrier point, together with the implicit deadlock check performed by Sketch. This client
program launched N threads that reached a barrier B times. Before waiting at the bth

invocation of next(), each thread t set a bit reached[t][b]. After passing through the bth

call to next(), each thread ensured that its two neighbors t − l and t + 1 also reached the
bth barrier by asserting reached[t-l][b] && reached[t+l][b].

Finely locked, list-based set

This is the benchmark presented in Section 1.2.2 in the introduction. It is our
largest concurrent benchmark in terms of the number of unknowns. The benchmark im-
plements a set as a sorted linked list. The implementation uses a hand-over-hand locking
strategy, where the program maintains a sliding window of locked nodes as it traverses the
list, allowing concurrent modi�cations to disjoint areas of the list.

It is important to note that the version of this benchmark evaluated in the thesis
di�ers signi�cantly from the version evaluated in the PLDI 08 paper [62]. Thanks to the
improvements in the quality of the implementation, I was able to write a sketch that is much
less constrained compared to the one in [62].

156

Singly-locked remove() method of lazy list

This is a problem proposed by [38]. Its basis is a lazily-updated, list-based set data
structure due to [35]. The add() and remove() methods of this set are optimistic, in that
they traverse the data structure without locking. Only when the list is to be modi�ed do
they check that the their view of the list is still valid. Both add() and remove() acquire two
locks before modifying the list.

This problem asks whether the list's remove() method can be modi�ed to take only
one lock, instead of two (the answer is �no�). We translated this problem into a sketch for
Sketch to solve by �rst removing the lock statements from the original remove() method.
Next, we gave Sketch the freedom to lock any one of a set of nodes at any point in the
body of the stripped-down remove(), and likewise for unlock. The correctness criteria for
this sketch were the same as for the fineset* benchmarks.

When we ran this benchmark with two threads performing both add and remove,
the synthesizer returned �NO�, as expected. Surprisingly, Sketch was actually able to �nd
a solution that worked for the case where one thread performs only adds and another thread
performs only removes.

Dining philosophers

This problem has P philosophers at a circular table, with a plate of spaghetti in
the center. A philosopher needs two chopsticks to eat. Each philosopher has chopsticks
at his left and right, but because the table is circular, there are only P total chopsticks.
The problem is to �nd a chopstick-acquisition policy which avoids deadlock, in which no
philosopher can eat; and starvation, in which particular philosophers cannot eat. Thus, we
want a resource policy that satis�es the properties (1) some philosopher can always eat;
and (2) every philosopher will always eventually eat.

We modeled the problem in Sketch as follows: there are P philosophers encoded
as a fork(int p; P) block, each contending for its left and right of P locks. The philosophers
attempt to eat T times, blocking if they cannot acquire their left and right chopsticks. The
resource acquisition policy was sketched as an expression of t, p, P , which indicated whether
the right or left chopstick should be acquired �rst. The order in which the chopsticks were
released was also left unspeci�ed. As to correctness, Sketch implicitly enforces property
(1) above by ensuring that the execution is deadlock free. As we described earlier, we can

157

only enforce livenes properties by approximating them as a safety property in a bounded
execution. Our sketch approximates property (2) by ensuring that all philosophers are able
to eat T times in the P ∗ T steps of the execution. With this sketch and this correctness
conditions, the synthesizer was able to produce a correct implementation of the protocol; a
minor variant over the standard solution presented in textbooks [58].

9.2 Overall Performance of the Sketch Synthesizer

We ran the synthesizer on each benchmark using test harnesses with various num-
bers of threads and operations, and with di�erent patterns of operations when possible.
The particular tests of the queue*, fineset*, and lazyset benchmarks are labeled with the
following scheme: a test named ed(ed|ed) means that �rst a sequential enqueue e was per-
formed , next a sequential dequeue d, and �nally two threads were forked to each perform
an enqueue then dequeue (ed|ed). The set tests use the same scheme, with a and r standing
for �add� and �remove�, respectively. For each test, we gathered the following data:

• Itns � the number of observations required for CEGIS to terminate.

• Stotal, Vtotal � total amount of time spent in synthesis and validation, respectively.

• %Ssolve, %Vsolve � for synthesis, the percentage of time spent in the SAT solver as
opposed to the preprocessing phases. For validation it is the percentage of time spent
in SPIN.

• Time:Total � total elapsed time between invoking Sketch and it returning an answer.
This time does not equal Stotal+Vtotal because part of the time is spent in our compiler
frontend.

• Smem, Vmem � the amount of memory used by the inductive synthesizer and the
validator respectively.

• Memory:Total � the maximum memory used by the synthesizer, veri�er, and Sketch.
The maximum total memory includes memory used by our Java frontend.

The performance results are tabulated in Table 9.2. The results are an improvement
compared to the results we reported in [62], even though the current results were run on a

158

Test Itns Time (s) Maximum Memory (MB)
Total Stotal %Ssolve Vtotal %Vsolve Total Smem Vmem

barrier1 N = 3, B = 2 8 33.0 10.13 23.3% 11.38 1.8% 39.02 22.51 3.09
N = 3, B = 3 10 47.6 17.08 21.3% 14.56 4.1% 51.67 28.44 5.43
N = 4, B = 3 13 112.2 43.09 18.4% 37.09 49.5% 114.23 48.53 77.10

barrier2 N = 3, B = 3 35.2 1948.8 1558.21 66.7% 52.43 1.3% 347.23 248.84 4.30
N = 4, B = 3 23 496.8 313.42 32.6% 42.33 29.0% 186.27 131.61 56.21

dinphilo N = 3, T = 5 4.1 33.9 17.55 41.4% 5.81 8.8% 70.71 43.62 4.26
dinphilo N = 4, T = 3 3.8 29.7 12.50 31.3% 8.96 46.8% 58.98 38.88 14.22
dinphilo N = 5, T = 3 6 231.5 46.88 27.6% 158.87 95.2% 314.73 65.35 268.57

fineset1 ar(aaaa|rrrr) 4 535.30 371.64 10.6% 68.29 2.3% 991.75 638.86 7.58
ar(ar|ar) 2 130.5 88.46 26.6% 13.20 1.3% 582.18 502.14 3.09
ar(arar|arar) 5 420.4 306.33 10.5% 37.46 5.4% 776.33 637.84 8.56
ar(ar|ar|ar) 4 308.5 214.54 14.4% 36.59 29.4% 706.44 567.34 25.94
ar(a|r|a|r) 2 138.0 88.11 22.9% 20.45 37.9% 629.56 515.46 15.59

fineset2 araa(r|r) 6 486.0 392.72 11.7% 22.98 0.5% 787.80 727.77 2.70
ar(a|r) 1 46.9 18.51 31.3% 9.83 0.4% 185.16 150.28 2.89

lazyset ar(aa|rr) 16.2 169.6 36.91 13.8% 53.66 3.2% 261.44 37.66 4.06

buggy ar(ar|ar) 9 95.04 19.93 22.3% 28.97 2.4% 200.71 33.31 3.28
lazyset

queueDE1 ed(ed|ed) 2 14.3 3.18 37.6% 7.01 10.2% 43.56 28.04 4.84
ed(ee|dd) 2 10.0 1.03 31.7% 5.70 1.0% 21.05 11.59 2.89

queueDE2 ed(ed|ed) 13 3602.7 3448.89 94.0% 39.26 5.0% 438.30 288.51 6.60
ed(ee|dd) 4 39.5 20.81 65.8% 10.14 0.7% 72.83 43.25 2.89

queueE1 ed(ed|ed) 1 8.1 0.10 25.1% 5.94 10.4% 11.63 6.70 4.26
ed(ee|dd) 1 5.7 0.10 25.0% 3.83 0.8% 11.63 6.70 2.89
ed(e|e|e)ddd 1 8.2 0.25 22.7% 6.09 46.6% 20.13 7.87 15.20

queueE2 ed(ed|ed) 3 16.7 2.61 19.1% 9.85 12.4% 23.00 15.03 6.60
ed(ee|dd) 2 10.8 1.62 25.3% 5.81 0.8% 24.17 14.87 2.89
ed(e|e|e)ddd 10.5 192.0 130.08 57.0% 28.30 25.8% 111.23 79.16 27.74

Table 9.2: Performance results.

159

much more limited machine. While the PLDI08 results were run on a 2GHz Core 2 Duo
with 2 GB of RAM, the results in this thesis were all run on a 1.66 GHz laptop with only 1
GB of RAM.

A few important features can be noticed in the data. First, for most benchmarks,
the synthesis time is clearly dominant, in many cases by a large factor. This contrasts
with the PLDI08 results where the validation time clearly dominated. The reason for this
di�erence is that in the PLDI08 implementation, the validation phase would replace all the
holes in the sketch with integer values, and then pass the resulting code to SPIN without
any further preprocessing. In the new implementation, the synthesizer partially evaluates
the sketch with respect to the candidate control φ, and performs elimination of transitive
assignments and dead code elimination on the candidate implementation before passing it
to SPIN. This signi�cantly reduced the time required to build the SPIN model, as well as
the actual solution time in the validation phase.

A second important feature in the data is the impact that the test client has
on the performance of the solver. It makes sense that a more elaborate client that tests
more operations with more threads will cause the validation time to increase signi�cantly.
However, more elaborate clients cause an important increase not just in the validation time,
but also in the synthesis time. We saw a similar e�ect in Section 6.2.2, where increasing
the bounds in the test harness caused the synthesis time to go up. We hypothesize that
the reasons for this are very similar. More elaborate test harnesses lead to more elaborate
counterexamples which make the synthesis problem harder.

A �nal observation has to do with the quality of the current implementation. One
can see that most benchmarks spend only a small fraction of their time in the solvers.
Instead, a large fraction of the time is spent in the frontend, and in the loading and pre-
processing of circuit representations by the synthesizer. The problem stems from the way
the concurrent solver was built from the sequential Sketch solver. In the sequential solver,
the evaluation of the denotation function C[[P]]τ∅ could a�ord to be ine�cient because it
ran only once. But the way the concurrent Sketch solver was constructed, the denotation
function is evaluated on each iteration. Moreover, the implementation currently can not
maintain the symbolic set of candidates from one CEGIS iteration to the next because the
inductive synthesizer is launched as a new process on each iteration of the CEGIS loop,
so the denotation function is actually evaluated on a concatenation of all the traces seen
so far, not just the last one. This makes the process very ine�cient and leads to a lot of

160

Iterations Vs. Solution Space

y = 0.1798x + 3.1002
R2 = 0.08

0

5

10

15

20

25

0 10 20 30 40
log2(| space of completions |)

It
er

at
io

n
s

Iterations Vs. Solution Space

y = 0.1592x + 0.6864
R2 = 0.6559

0

1

2

3

4

5

6

7

0 10 20 30 40
log2(| space of completions |)

It
er

at
io

n
s

(a) For all benchmarks (b) Excluding barrier1 and 2

Figure 9.1: Candidates Vs. Observations

wasted time and memory. We have actually found this to be one of the biggest obstacles to
solving bigger sketches: all the overhead exhausts the available memory. Surprisingly, even
with all these ine�ciencies, the synthesizer was still powerful enough to synthesize correct
implementations from the sketches shown earlier.

9.3 Trace projection through if-conversion

One of the central questions to evaluate is the e�ectiveness of the CEGIS approach
in �nding a small number of representative traces that will allow the inductive synthesizer to
generate a correct implementation. Speci�cally, we want to answer two concrete questions.
First, we want to evaluate how the number of iterations scales with the size of the candidate
space and compare it with the scaling in the sequential setting. Second, we want to determine
to what extent this scaling was enhanced by the way we de�ned trace projection.

For the sequential CEGIS, we found that the number of iterations was approxi-
mately proportional to the log of the solution space. For concurrent CEGIS, this continues
to be the case, but the correlation is now much weaker. This is clear already in Table 9.2
from the fact that using a di�erent test harness on the same sketch leads to very di�erent
iteration counts. Graph (a) in Figure 9.1 compares the number of iterations to the log of the
solution space for the sketch. The graph shows that the correlation is very weak compared
to what it was in the sequential case. Part of the problem is in the barrier sketches, which
take many iterations given the size of their candidate spaces. Graph (b) shows the correla-

161

tion excluding the barrier sketches; the correlation has improved, but the scaling factor is
much worse than for the sequential case. Whereas in the sequential case each iteration cut
the solution space by an average factor of 214, in the concurrent case each iteration cuts the
solution space only by an average factor of about 26.3. This is still a big factor, but it shows
that each counterexample is not providing nearly as much information as they provided in
the sequential case.

The projected traces may not have the elimination power of counterexample inputs
in the sequential setting, but they are a signi�cant improvement over more naïve projection
strategies. I tried to compare the projection scheme from Section 8.2 with a more naïve
projection scheme that does not involve if-conversion. Instead, the counterexample trace is
projected into a trace for the sketch that uses assumes to track the direction of each branch
taken by the trace. This makes traces very brittle: any change to the control vector that
causes a change in the control �ow makes the trace invalid from the point of the change
onward.

I implemented this naïve projection scheme and the resulting algorithm proved
to be extremely ine�cient, just as I expected. With the naïve projection, only the dining
philosophers benchmark could be resolved, and it took on average twice as many iterations
and twice as much time. All the other benchmarks would either run out of memory, or in
the case of the barrier1 benchmark, exceed their time limit after 30 iterations.

9.4 Conclusions

The current results on the concurrent Sketch synthesis system are very encour-
aging. We have been able to use the synthesizer to write di�cult implementations for
well-known programming problems. We have also shown that a handful of carefully selected
traces can provide enough information about a program to allow you to synthesize many
of the low-level details. This is an interesting result, and could have potential applications
for other forms of analysis; for example, it is easier to reason about a concurrent object in
the context of a larger program if we know that only a small number of interleavings are
likely to produce distinct behaviors. That said, the current implementation is still far from
achieving its full potential.

The relatively poor performance of the concurrent Sketch synthesizer compared
to its sequential counterpart suggests that there is a lot of room for improvement. As we

162

have seen, a big problem is the implementation itself. For the problems we ran, only a small
fraction of the time was spent on the SAT solver or the model checker; instead, a lot of
time was spent performing repeated work. For example, on every iteration of the loop, the
denotation function is applied to a concatenation of all the traces produced so far in order
to compute the control set Φi from scratch, instead of computing it incrementally from Φi−1

as the formal description of the algorithm suggests.
In addition to the implementation issues, there is a lot of room for improvement in

the projection algorithm to allow it to preserve even more information from one candidate
to another. The ordering constraints from Section 8.2 that de�ne the projection algorithm
are very lose; many di�erent total orders will satisfy these ordering constraints, and some
of these orders have more elimination power than others. I believe part of the variability
in the number of iterations comes from the arbitrary decisions that the synthesizer has to
make about the total order of statements in the projected trace.

That said, our early results appear to validate the Sketching approach to synthesis.
Moreover, the theory we have develop provides a solid foundation to move this research
forward.

163

Part IV

Domain Speci�c Sketching for
Stencils

164

Chapter 10

Motivation for Domain Speci�c
Sketching

Sketches provide a novel mechanism for communicating user insight while leaving
implementation mechanics unspeci�ed. One of they key features of sketching is its generality.
The solution algorithm doesn't rely on any form of domain knowledge, and is thus able
to handle arbitrary sketches with remarkable e�ciency. Nevertheless, there are classes of
problems for which a lot of domain knowledge is available. For these problems, we would like
to have synthesizers that can exploit this domain knowledge to synthesize solutions faster,
but without compromising the advantages of the sketching approach.

I decided to test this idea on the domain of stencil computations. Stencils consti-
tute a class of scienti�c computations with broad application in areas as diverse as signal
processing, �uid dynamics and economics. They are very easy to specify but can be dev-
ilishly di�cult to implement, as e�cient implementations often require the orchestration
of many low level details. This alone makes them a very good candidate for the sketching
approach.

Moreover, they are a great candidate for domain speci�c sketching. On the one
hand, good sketches for many benchmarks in this domain are too complex for the Sketch
synthesizer to handle, even under very small bounds on the input sizes. On the other hand,
even the complex implementations exhibit a very regular structure which can be exploited
by domain speci�c synthesis procedures.

This section gives a precise characterization of the stencil domain, and shows some

165

common implementation techniques which are di�cult to program because of the many
details they involve. The section shows how sketching can be used to easily implement many
of these strategies by leaving many details unspeci�ed. Finally, the section also provides
some high level arguments for why these sketches are hard to solve by the standard Sketch
synthesizer.

10.1 Characterization of the Stencil Domain

In the scienti�c computing literature, a stencil is a nearest-neighbor computation on
a grid, where the new value of a grid entry is computed as a function of the old values of some
of its neighbors. Stencils are generally classi�ed by the number of neighbors they consider
and the dimensions of the grid. For example, a typical four-point stencil in two-dimensions
computes a value anewi,j as a linear combination of the values aoldi+1,j , aoldi,j+1, aoldi−1,j and aoldi,j−1.
This paper uses a broader de�nition of stencils: we de�ne a stencil to be a function that
computes each element of an output grid by performing constant time operations on a
bounded number of input grid elements. Therefore, our de�nition includes operations like
transposition, which are not normally considered stencils.

Stencils form the core of many scienti�c applications; in particular, most PDE
solvers work through repeated applications of di�erent stencils. Stencils are also important
in signal processing, image analysis and even compression; for example, the wavelet trans-
form that forms the basis of the JPEG2000 image compression standard is implemented
as a sequence of stencil computations. Our broader de�nition of stencils also covers data
permutations, such as matrix transpositions, and even data-dependent permutations such
as scatter and gather operations.

As be�ts such an important class of problems, great e�orts have been expended
in automatically identifying and optimizing stencils, particularly in languages for high-
performance computing, such as HPF [53] and ZPL [60]. Fully automatic optimization
approaches, however, are constrained by the set of transformations built into the compiler,
as well as the analysis and heuristics used to decide if it is possible and convenient to apply a
given one. These constraints are relevant for production codes because stencil optimization
is still an area of active research [30,42,43,56]. For this reason, many production-level stencil
codes are still hand-tuned in Fortran and C++.

Hand-optimized stencil implementations can be �endishly complicated despite their

166

relatively small size. As one of the authors can attest from personal experience, one can
easily spend several days hunting for a bug in two hundred lines of this low-level code. The
complexity in these implementations arises from a large number of low-level expressions
controlling nested looping and multidimensional indexing. These expressions have little
intuitive meaning for the programmer because they do not resemble the speci�cation. To
make matters worse, programming errors may have subtle e�ects which are hard to spot.
For example, it is possible for iterative algorithms that work by repeated applications of a
stencil to produce the correct answer even when coded with a buggy stencil; they algorithm
may just take much longer to converge.

For these reasons, the domain of stencils is well suited for sketching: stencil spec-
i�cations can usually be stated cleanly and concisely, in a few dozen lines of code, and the
low-level expressions which complicate the implementations can be e�ciently synthesized
by the compiler. As the following section will argue, many of the complexities involved in
implementing e�cient stencil implementations are nicely localized in the code, and thus easy
to leave unspeci�ed for the synthesizer to discover.

10.2 The Complexity of Stencil Implementations

The easiest way to implement a stencil is with a set of nested loops that compute
an output grid from an input grid point by point. As a simple example, consider a 2-point
1-dimenstional stencil computed according to the equation Xt

i = Xt−1
i−1 + Xt−1

i+1 . A trivial
implementation is shown below.

void sten1d(float[N] in, float[M,N] X) {

for (int i = 0; i < N; ++i)

X[0, i] = in[i];

for (int t = 1; t < M; ++t)

for (int i = 1; i < N-1; ++i)

X[t, i] = X[t-1, i-1] + X[t-1, i+1] ;

}

The �rst step in a more e�cient implementation is to divide the computation into blocks,
so rows are computed T at a time instead of one by one.

167

1

2

3

4

5

6

7

8

1

5

2

6

3

7

4

8

(a)

(b)

(c)

(d)

Figure 10.1: (a) Grid with some of the data dependencies. The regions in the two ends
correspond to the corner cases which the time-skewed implementation will have to handle
di�erently. (b) Iteration direction for the spec. (c) Iteration direction for the time-skewed
implementation. (d) Iteration direction for the base case of the cache-oblivious scheme.

int T = 3;

void sten1d(float[N] in, float[M,N] X) {

for (int i = 0; i < N; ++i)

X[0, i] = in[i];

for (int t = 1; t < M; t=t+T)

innerSten(X[t::T, 0::N]);

}

void innerSten(float[T,N] X){

for (int t = 0; t < T; ++t)

for (int i = 1; i < N-1; ++i)

X[t, i] = X[t-1, i-1] + X[t-1, i+1] ;

}

This alone doesn't improve performance, and is also not that hard to implement,
especially if we are free to make the block size a multiple of the input size. However,
this enables an optimization known as time-skewing [70], which greatly improve the cache
e�ciency of innerSten.

The time-skewing transformation requires a change int the iteration pattern from
the one in Figure 10.1(b) to the one in Figure 10.1(c). Note that in order to preserve the
dependencies, the traversal now takes place along diagonals, which forces the cells close to
the boundary to be treated as special cases, as shown in Figure 10.1(a). It is easy to see that
one must write three separate loop nests, two for the corner cases and one for the steady
state. However, determining the exact expressions to use for the loop iteration bounds is
a challenging task, especially for the corner cases, where the iteration bound for the inner

168

loop depends on the outer loop. We can express the implementation idea in a sketch that
leaves all these details unspeci�ed.

To understand the sketch shown below, recall that in Sketch, generators are
inlined into their call site before the holes are replaced with constants. In e�ect, we can
think of generators as macros (see Section 2.2). In the sketch below, linexpG is a generator
that produces expressions involving sums and di�erences of its arguments, and the generator
loopNest produces loop-nests with arbitrary loop conditions, but which follow the diagonal
pattern we desire.

generator int linexpG(int a, b, c = 0) {

rv = ??;

if (??) rv = {| rv (+ | -) a |};

if (??) rv = {| rv (+ | -) b |};

if (??) rv = {| rv (+ | -) c |};

return rv;

}

generator void loopNest(float[T,N] X) {

for (int i = linexpG(N, T); i < linexpG(N, T); ++i)

for (int t = linexpG(N, T, i); t < linexpG(N, T, i); ++t)

X[t, i-t] = X[t-1, i-t-1] + X[t-1, i-t+1];

}

void innerStenSK(float[T,N] X) implements innerSten{

if (N >= 3) {

loopNest(X); // generate left corner case

loopNest(X); // generate steady-state loop

loopNest(X); // generate right corner case

} else

sten1d(in, X); // optimization inapplicable

}

The key idea of the implementation is expressed in the sketch by stating that
Xt

i−t = Xt−1
i−t−1 + Xt−1

i−t+1, but the low-level details of the loop iteration bounds are left for
the compiler to discover. As an added bene�t, the sketch spares the programmer from the
error-prone task of having to code the three cases separately. Instead, all three loops are
synthesized from the generator loopNest.

This sketch resolves to the correct implementation in less than 4 minutes, and
produces the code shown below. The synthesized expressions are underlined.

169

void innerStenSK(float[T,N] X) implements innerSten{

if (N >= 3) {

for (int i = 0; i < T; ++i)

for (int t = 1; t < i; ++t)

X[t, i-t] = X[t-1, i-t-1] + X[t-1, i-t+1];

for (int i = T; i < N; ++i)

for (int t = 1; t < T; ++t)

X[t, i-t] = X[t-1, i-t-1] + X[t-1, i-t+1];

for (int i = N; i < N+T; ++i)

for (int t = i-N+2; t < T; ++t)

X[t, i-t] = X[t-1, i-t-1] + X[t-1, i-t+1];

} else

sten1d(in, X);

}

Another strategy that has been proposed for optimizing stencils is the use of recur-
sive partitioning to achieve cache-oblivious behavior [30]. The idea is to recursively subdivide
the iteration space to ensure locality at every level of granularity. We can easily implement
a 1-dimensional recursive partitioning on top of the innerStenSK function by using sketching
to derive the details.

First, we need a speci�cation. For that we will slightly modify our innerSten

function to take as parameters the iteration bounds for one of the loops.

void mainLoop(float[T,N] X, int n1, int n2) {

for (int i = n1; i < n2; ++i)

for (int t = 1; t < T; ++t)

X[t, i-t] = X[t-1, i-t-1] + X[t-1, i-t+1];

}

Now, the implementation is recursive, so it has a base case and a recursive case.
For the base case we are going to reverse the loops, since the block is small enough that
we believe we can get better cache behavior this way: it will result in consecutive reads
instead of interleaved ones. Since we are not sure how the reversal is going to a�ect the
index expressions, we just replace them with the linexpG generator. On the other hand,
we wish to retain control of the recursive partitioning and the size of the base case, so that
portion of the sketch is fully speci�ed. The sketch is shown below.

170

void mainLoopSK(float[T,N] X, int n1, int n2)

implements mainLoop {

if (n2-n1 < 4)

for (int t = 1; t < T; ++t)

for (int i = n1; i < n2; ++i)

X[t, i-t] = X[t-1, linexpG(i,t)]

+ X[t-1, linexpG(i,t)];

else {

int m = (n1 + n2) / 2;

X = mainLoopSK(X, n1, m);

X = mainLoopSK(X, m, n2);

}

return X;

}

Cache-oblivious implementations are known to be di�cult to implement by hand,
especially for higher dimensions. But using the algorithms presented in this paper, the
sketch compiler easily synthesizes the low-level details for this complex implementation.
(Note that for a 3-D stencil, we would have to deal with 16 di�erent corner cases, making
an optimization by hand extremely di�cult [42].) Furthermore, no compiler we know of will
generate a recursive cache-oblivious implementation automatically.

This example has illustrated the potential of sketching to simplify the development
of e�cient implementations for the domain of stencil kernels. The basic Sketch synthesizer,
however, is not powerful enough to handle sketches of stencils of even moderate complexity.
Fortunately, stencils have a lot of structure that the synthesizer can exploit to make the
synthesis problem easier; this is exactly what the following chapter will describe.

171

Chapter 11

Specializing the Synthesizer

In the previous section, we saw the challenge that stencils pose to the programmer,
and the potential of sketching to make stencil programs much easier to write. Unfortunately,
the standard Sketch compiler is unable to provide satisfactory solutions to even relatively
simple stencil sketches. The root of the problem lies in the unbounded nature of stencils.
Programmers want their stencil kernels to work for grids of arbitrary sizes, but the syn-
thesizer is only able to cope with bounded arrays. Moreover, even under a bounded model
assumption, the minimum grid size required to exercise all the corner cases is usually larger
than what the synthesizer is able to handle.

At the same time, we have de�ned our domain with a very strong assumption:
each element in the output is a function of a bounded number of elements in the input, and
is produced through only a bounded amount of computation. This is a huge assumption,
and if we can exploit it, it will allow us to resolve sketches not just for very small bounded
grids, but for arbitrary grid sizes.

11.1 Algorithm Overview

The key insight to exploit the bounded computation assumption is that proving
the equivalence of two stencils is equivalent to proving that they compute the same value
for any arbitrary grid element. The solver exploits this insight by deriving, for the spec and
the sketch, a function that describes how to compute an arbitrary element in the output
grid from a small number of elements in the input. For example, given a 2-point 1-D stencil
s, the synthesizer will derive the function reduced_s:

172

float[N] s(float[N] in);

float reduced_s(float[4] v, int N, int idx);

The reduced stencil reduced_s computes s(in)[idx], i.e., the value of the idx-th element of
the grid computed by the original stencil s. The �nite array v represents the elements from
the input grid in that are needed to compute s(in)[idx]. (This section will explain why
four elements are needed for a 2-point stencil.)

Unlike the original stencil, the reduced function takes only a bounded number of
inputs, and performs a bounded amount of computation. In particular, the value of N no
longer determines the amount of computation; it is only passed because it may be needed
to compute the output value, e.g. to identify if the desired output element is close to the
grid boundary.

Therefore, the synthesizer can now guarantee the equivalence between the sketched
implementation of a stencil and a simpler reference implementation by enforcing the equiv-
alence of their reduced functions. This helps the synthesizer is because it turns corner cases
in the iteration space into corner cases in the input space. As we saw before, the CEGIS
algorithm is very good at identifying corner case inputs needed to fully constraint the sketch,
so this transformation spares the synthesizer from wasting time analyzing highly repetitive
computations.

The reduction from a function like s to a function like reduced_s works in three
steps; the same steps are applied to both the spec and the sketch. First, the reduction
bounds the size of the program output by focusing on a single element of the output grid.
Second, it uses symbolic manipulation to bound the number of computations performed by
the stencil. Finally, it uses abstraction to bound the size of the input. To illustrate the
process, we use the 2-point 1-D stencil, together with a somewhat contrived sketch which
nonetheless hints at how more complex sketches are reduced. For the sake of simplicity, the
sketch di�ers from the speci�cation only slightly: it uses holes to adjust its index expressions
to compensate for its loop bounds, which di�er from those in the spec. The functions f, g,
and h stand for arbitrary index expressions (these functions do not have side e�ects):

float[N] spec(float[N] in) {

foreach i ∈ [1, N-2]

out[f(i)] = in[g(i)] + in[h(i)];

}

173

float[N] sketch(float[N] in) implements spec {

foreach k ∈ [0, N-??]

out[f(k+??)] = in[g(k+??)] + in[h(k+??)];

}

Bounding the output. We replace the unbounded output grid with a single scalar by
making the program return the value of a single element of that output grid. Speci�cally, a
stencil function s is transformed to a scalar function scalar_s such that
s(in)[idx]=scalar_s(in, idx). The transformation does not lose any information, and
the behavior of the original program can be obtained by invoking the scalar function of s
as shown below for both the spec and the sketch.

float[N] spec(int[N] in) {

foreach j ∈ [0, N-1] out[j] = scalar_spec(in, j);

}

float[N] sketch(int[N] in) implements spec {

foreach j ∈ [0, N-1] out[j] = scalar_sketch(in, j);

}

Note that aside from calling a di�erent scalar function, the spec and the sketch are identical
(both compute all elements of the output grid out). Hence, we reduced the stencil synthesis
problem to the problem of making the scalar functions scalar_sketch and scalar_spec

behave identically.
The two scalar functions are shown below. Their goal is to express out[idx]

in terms of the input grid. Both functions achieve this with a two-step symbolic back-
substitution process. First, they compute the iteration in which the output element out[idx]
was most recently assigned. (In our example, each output element was assigned at most once,
but as we shall see in the next section this is not required by the algorithm.) The number
of this iteration is stored in variable last. Next, the value of out[idx] is computed by eval-
uating the right-hand-side expression of the most recent assignment. If the right-hand-side
expression refers to values other than the input, the two-step process is repeated (not needed
in our example).

174

float scalar_spec1(float[N] in, int idx) {

int last = UNDEFINED;

foreach i ∈ [1, N-2]

if (idx == f(i)) last = i;

if (last == UNDEFINED) return 0;

return in[g(last)] + in[h(last)];

}

float scalar_sketch1(float[N] in, int idx) {

int last = UNDEFINED;

foreach k ∈ [0, N-??]

if (idx == f(k+??)) last = k;

if (last == UNDEFINED) return 0;

return in[g(last+??)] + in[h(last+??)];

}

Bounding the number of computations. The scalar functions execute an unbounded
number of computations because they contain loops controlled by the free variable N. How-
ever, the only purpose of the loops is to identify the latest iteration that wrote to out[idx].
This operation can be expressed declaratively as last = max({[1,N−2]∩f−1(idx)}), where
f−1 is the inverse of the index expression f.

The advantage of this formulation is that it allows us to use a symbolic solver to
reduce the evaluation of the latest iteration expression into a �nite sequence of operations.
Our current solver is quite rudimentary, but it has already been able to handle all the
problems we have tried so far, including several from real-world benchmarks.

For our running example, the declarative formulation allows us to write the scalar
functions as follows.

float scalar_spec2(float[N] in, int idx) {

int last = max({[1,N−2]∩ f−1(idx)});
if (last == UNDEFINED) return 0;

return in[g(last)] + in[h(last)];

}

175

float scalar_sketch2(float[N] in, int idx) {

int last = max({k | k ∈ [0,N−??]
∧ k+??∈ f−1(idx)});

if (last == UNDEFINED) return 0;

return in[g(last+??)] + in[h(last+??)];

}

If f is the identity function, for example, the symbolic solver will replace the last-
iteration computation with a few conditional assignments; the one in the spec is shown
below.

if (idx >= 1 && idx <= N-2) last = idx;

else last = UNDEFINED;

After the replacement, the functions are already bounded in terms of computation, but the
input is still an unbounded array.

Bounding the input. For programs that do not modify their inputs, the input array
can be treated as an uninterpreted function. In other words, the input array is an entity
whose only discernible property is that accesses with the same index produce the same value.
Programs like the example in Section 10.2 that do modify their input array are modeled by
the compiler as receiving an immutable array as input, copying it into a mutable array, and
then returning the modi�ed array as an output at the end of the computation.

The next problem is to represent the uninterpreted function �nitely. We observe
that the scalar functions scalar_spec2 and scalar_sketch2 read only a �nite number of
input grid elements, which lets us borrow a technique originally proposed by Ackerman [1]
and used extensively in hardware veri�cation [14]. The function in_fn below implements the
semantics of an uninterpreted function under the restriction that the function is called with
at most four di�erent values of the argument. (For this example, we can restrict ourselves to
four symbolic values because the scalar functions reduced_spec and reduced_sketch, shown
below, will together make no more than four dynamic calls to in_fn for a given value of their
input parameter idx.) The function in_fn implements the desired semantics by returning
the same symbolic value whenever called with the same value of the argument in_idx.

176

float in_fn(int in_idx) {

if (in_idx == i0) return v0;

if (in_idx == i1) return v1;

if (in_idx == i2) return v2;

if (in_idx == i3) return v3;

}

This use of uninterpreted functions is considered a form of abstraction, because
we are representing an unbounded grid using only four scalars by throwing away all the
information about those cells that were not accessed on a particular invocation of the scalar
functions.

The �nal step is to represent the symbolic values ik and vk with constructs from
the Sketch language. (Recall that Sketch relies on a Boolean satis�ability solver which
does not support symbolic manipulations.) The non-symbolic version of in_fn shown be-
low, expressed entirely in Sketch, implements the symbolic values ik by remembering the
concrete values of arguments in a global array. The symbolic values vk are implemented as
function arguments. This treatment will make the synthesizer carry out its reasoning under
all possible values of vk, which is equivalent to viewing vk as symbolic values.

float in_fn(int in_idx, float[4] v) {

static int[4] g; static int gi=0; // globals

g[gi++] = in_idx;

if (in_idx == g[0]) return v[0];

if (in_idx == g[1]) return v[1];

if (in_idx == g[2]) return v[2];

if (in_idx == g[3]) return v[3];

}

As an optional optimization, our system allows the user to assert that the sketch
computes out[idx] using only the input elements used by the spec, as opposed to arbitrary
input elements. That is, the array g is set only in the spec; the sketch only reads its values and
asserts that one of them matches. This is the case for almost all implementations, because
if a sketch used any other entry, its value would have to get canceled out in order for the
spec and the sketch to be equivalent. Using this assumption, we can reduce the number
of comparisons on each call to the uninterpreted function, since we only need to compare
the index to those indices used by the spec, but not with those used by the sketch. With
this optimization, the compiler will ignore any implementation that violates the assumption,
while never producing an incorrect implementation.

177

Putting it all together. Let us assume for the sake of simplicity that f, g, and h are
identity functions. Then, the symbolic solver reduces the evaluation of the latest iteration
expression to guarded assignments as shown below.

float reduced_spec(float[4] v, int N, int idx) {

if (idx < 1 || idx > N-2) return 0;

return in_fn(idx, v) + in_fn(idx, v);

}

float reduced_sketch(float v[4], int N, int idx) {

int last = idx - ??1;

if (last < 0 || last > N-??2) return 0;

return in_fn(last+??3, v) + in_fn(last+??4, v);

}

These functions de�ne a �nite sketch problem which can be solved by the �nite
Sketch solver. In this case, the Sketch solver can easily prove that the abstracted sketch
and spec are equivalent for the following value assignments to holes: ??2 = 3, ??1 = ??3 =

??4 = 1.
The control values can then be applied to the original sketch, and the construction

will guarantee that the resulting implementation is equivalent to the original spec.

Abstracting integers and �oating point values. Here, we focus on complications
arising from modeling integer and �oating-point values.

The reduced functions produced by the above algorithm lead to intractable SAT
problems if translated directly to Boolean circuits, mainly due to the presence of �oating
point variables in the reduced programs. Additionally, modeling �oating point values in
their full IEEE glory would make the equivalence criterion overly strict, ruling out many
optimizations employed by programmers who often choose to assume associativity of �oating
point numbers.

There are numerous approaches in the literature to handle �oating point arithmetic
in the context of model-checking and veri�cation, most of them relying on uninterpreted
functions [24, 52]. While it is relatively easy to replace �oating point operations with unin-
terpreted functions, there is a simpler approach that works remarkably well in our domain.
The key observation is that the stencils we are generating are often linear functions in their
�oating point arguments: both the reduced spec and sketch have the property that if you
set their integer inputs to any �xed value, the remaining function will be a linear function

178

(it may be a di�erent linear function for di�erent values of the integer inputs). The stencil
appears linear to the solver because it performs veri�cation separately for each combination
of integer input values. It is trivial to verify this property statically from a DAG represen-
tation of the reduced spec and reduced sketch. When this property holds�as is the case
with all the benchmarks presented in this paper�the compiler can safely replace all �oating
point inputs with 1-bit integers without losing soundness, provided that it grows the integer
representation whenever necessary to avoid arithmetic over�ow. The soundness argument
should be obvious from the fact that in order to test the equivalence of two k-dimensional
linear functions over the reals, one only needs to test them with k independent vectors.

Floating point constants are treated as free variables, and are also represented with
a single bit. This treatment is sound but not complete because it loses algebraic relationships
among constants. For example, after we replace 0.5 with a free variable v0.5, we can no longer
prove that a*0.5 + a*0.5 == a. This limitation did not prove to be an issue for any of the
benchmarks we studied; optimizations of stencil codes do not rely on such equivalences very
often.

After performing abstraction on the �oating point values, the remaining problems
involve only integers and Booleans. Our current approach is to translate these problems
directly into circuits, which limits our scalability to representing integers with about 6 bits
(3 bits for the hardest benchmarks). However, there are known scalable techniques that we
can use to remove this limitation [15].

11.2 Algorithm Details

Here, we presents in detail the stencil reduction algorithm outlined in Section 11.1,
focusing mainly on the �rst two steps (bounding the output and bounding the computations).

11.2.1 Preliminaries

We use standard compiler transformations to bring the input programs (i.e., the
speci�cation and the sketch) into an intermediate normal form bearing the following prop-
erties:

Loops. All loops are normalized to the form for (int i = e1; i < e2; ++i), where i is
the uniquely named main induction variable of the loop. Remaining loop induction

179

variables are expressed as a function of i.

Function calls. All calls are inlined. Recursive calls to sketched functions are replaced with
calls to their speci�cations (which must be non-recursive). Proving equivalence of the
spec and a recursive sketch after this transformation constitutes a proof by induction,
under the assumption that the recursion is well founded (i.e., that all recursive calls
eventually terminate).

Normalized programs obey the following syntax:

Expressions e ::= n | true | false | x | x[e] | e1 op e2

| f(e1, . . . ,ek)

| switch e case n1: e1; . . . case nk: ek

Statements c ::= x:= e | x[e1]:= e2 | skip
| if e then c1 else c2 | c1; c2

| for (i = e1; i < e2; ++i) c

Functions f ::= def f(x1, . . . ,xk) c return e

An additional semantic restriction is that loop bounds must be invariant with respect to
the induction variable of their loop. The bounds can, of course, relate to outer induction
variables. This restriction could be relaxed, but the complications involved are not justi�ed
in the domain of stencils. The domain is also restricted by the power of the algebraic solver
used to eliminate the latest assignment expression (called RD in this section).

If the program satis�es the aforementioned constraints, the reduction about to be
described will be sound, but only under the assumption that there is no integer over�ow in
either the spec or the sketch. This is because the symbolic solver used to eliminate the latest
assignment expression may assume algebraic properties that do not hold in the presence of
over�ow (e.g., a-1<N ⇐⇒ a<N+1).

11.2.2 Synthesizing Scalar Functions

We describe the algorithm that generates scalar functions and bounds their com-
putation. These two steps are performed in an intertwined fashion and we describe them
together.

One way to de�ne a scalar function is to view it as a slice of the original stencil.
More precisely, given a stencil computation s(in) returning a grid out, and an index idx,

180

the scalar function computes a slice of s with respect to out[idx]. While the original
computation may read the entire (unbounded) input grid, the slice only reads a bounded
number of input elements.

The slice is expressed recursively, using a functional language that resembles the
one de�ned by the above syntax, but does not include statements. Each recursive call
corresponds to a def-use edge in the slice of out[idx]. Since the slice incurs a bounded
computation, the recursion is bounded. The result is thus �nite and can be accepted by the
�nite Sketch synthesizer.1

The slicing algorithm boils down to expressing out[idx] symbolically in terms of
program inputs. To this end, we recursively substitute non-input variables in the expression
out[idx] with the right-hand side values of their most recent assignments.

We refer to most recent assignments as reaching de�nitions. In contrast with
traditional reaching de�nitions, which o�er a static approximation of the dynamic behavior
of the program, our reaching de�nitions are concrete: they are de�ned on the execution trace
where each program point is reached by at most one de�nition for any program location.
Since there is no ambiguity as to which de�nition most recently assigned the location, we
obtain precise back-substitution in the sense that the fully substituted symbolic expression
is executable and computes the value of out[idx].

The procedure RD, which lies at the heart of the algorithm, computes the concrete
reaching de�nition of a memory location.

RD : M × P × I → P

The procedure maps a memory location m ∈ M , an execution point p ∈ P , and a program
input i ∈ I to the most recent execution point that de�ned the value of m prior to p,
under the input i. The set of memory locations M consists of scalar variables and array
elements. The set of execution points P is the cross product of static program points with
the loop iteration space. The input space I includes the input grid together with any scalar
arguments.

1If the input program violates the boundedness assumption, the algorithm described in this section will
still produce a correct recursive representation of the slice, but the recursion will be unbounded and will
depend on the inputs. When this program is fed to the Sketch synthesizer, the synthesizer will attempt
to inline the recursive calls an increasing number of times, to no avail; after a few tries, it will reach a
prede�ned threshold for function inlining, and will inform the user that the sketch can not be resolved.
Crucially, though, a violation of the assumption can not lead to a buggy implementation.

181

We are now ready to describe the abstraction algorithm. For each scalar variable
v we create a function

v_fn : P × I → T

that computes the value n of v at execution point p ∈ P under the input i ∈ I. The type T is
a primitive type (boolean, int, or double). The function will be expressed in the functional
language shown above. Similarly, for an array a (for simplicity, we assume that arrays are
one-dimensional) we create a function

a_fn : Int× P × I → T

that computes the value of a[idx] for an index idx ∈ Int at point p ∈ P under the input
i ∈ I. These two functions are called v-functions. The reduced function for a stencil s
returning a grid out now becomes

double reduced_s(int idx, double[N] in) {

return out_fn(idx, Pe, in);

}

where Pe is the end point of the program execution trace.
v-functions are constructed via syntactic translation of the original program. A

v-function �rst obtains the reaching de�nition and then (recursively) replaces all array and
variable references on the right-hand side of the reaching de�nition with calls to appropriate
v-functions. A v-function for variable v (or array access a[idx]) at execution point p under
input i, looks as follows.

1. Obtain the most recent execution point p′ where v (respectively, a[idx]) was de�ned
prior to p under input i.

2. Extract the static program statement s executed at p′, and the right-hand side expres-
sion e in s.

3. Return a valuation of a transformed expression F (e) where

(a) each variable sub-expression v’ is replaced with v’_fn(p′,i);

(b) each array access sub-expression a’[e′] is replaced with a’_fn(F (e′),p′,i).

To illustrate the process, consider the following example. The example is acyclic
so that the reader need not be concerned with execution point representation for now.

182

int[N] f(int[N] in, int a) {

s1: int[N] out = 0;

s2: int[N] A = in;

s3: if (in[3] > in[4]) {

s4: out[3] = A[3];

s5: A[a] = in[5];

}

s6: if (A[5] > 0)

s7: out[a] = A[out[a]];

return out;

}

The v-function of out for this example needs to handle three assignments to out:

out_fn(idx, p, i)) {

p’ = RD((out,idx), p, i);

switch (P_s(p’)) { // extract the statement at p’

case s1: return 0;

case s4: return A_fn(3, p’, i);

case s7: return A_fn(out_fn(a, p’, i), p’, i);

}

}

It remains to show how the function RD computes the concrete reaching de�nitions.
First, we need to de�ne the execution point p ∈ P . As mentioned in passing above, an
execution point p is a pair (s, t), where s is a (static instance of a) program statement and
t is a point from the iteration space T of the program. The iteration point t is de�ned as a
valuation of loop induction variables that are in scope at the statement s (these are exactly
the induction variables of loops that enclose s). When p = (s′, t′), we de�ne P_s(p) = s′

and P_t(p) = t′. In the following, we use T_map(t,’j’,n) to denote binding of an induction
variable j to some value n in iteration point t, and T_get(t,’j’) to extract the currently
bound value for j. Similarly, I_get(i,’x’) extracts the value associated with (non-induction)
variablex at input state i.

The trace of a program execution is a sequence of execution points. We de�ne a to-
tal order <P on P such that p1 <P p2 i� p1 executed before p2. The execution order p1 <P p2

183

is determined by the lexicographic order of the iteration points P_t(p1) and P_t(p2); if there
is a tie, then p1 and p2 must be in the same loop iteration and their execution order is de-
termined by their position in the program. Internally, we represent the execution point such
that the <P -test can be performed as a single lexicographic test. We de�ne two execution
point constants: Pb is the beginning of the execution and Pe is the end of the execution.

As statement guarded by conditionals may not execute in every iteration, the
execution order <P alone is insu�cient for determining the most recent de�nition. To
re�ect control conditions under which the statement executes, we de�ne the predicate q(p, i),
which holds i� the statement P_s(p) executes at iteration point P_t(p) under the input i.
Formally speaking, q(p, i) is the disjunction of the path constraints for all paths that reach
the execution point q(p, i). Programs in our domain have structured control �ow and loop
bounds that are invariant with respect to their loop's induction variable. Therefore, the
predicate q(p, i) can be constructed syntactically as a conjunction of all the conditionals
(including loop conditions) enclosing the statement P_s(p).

For example, consider statement s4 in the code below. Let p = (s4, t) be an
execution point associated with s4 for some iteration point t. We form the predicate q(p, i)

for this execution point under some input state i: the constraint corresponding to the if

statement in s3 is A_fn(T_get(t, ’j’), p, i) > 0; the constraint corresponding to the loop
statement in s0 and s1 is T_get(t, ’j’) ≥ 0 ∧ T_get(t, ’j’) < I_get(i, ’N’).

double[N] f(double[N] in) {

int [N] A, out;

s0: for (int j=0;

s1: j<N; ++j) {

s2: A[j] = in[j];

s3: if (A[j] > 0)

s4: out[j] = in[j];

else

s5: out[j] = -in[j];

s6: out[j] = sqrt(out[j]);

}

}

184

We are now ready to describe RD, the procedure for computing reaching de�nitions,
for this case of an array access. Given a program location v[idx], an execution point p, and
input i, the procedure considers all execution points p′ that precede p, execute under the
input i, and assign into location v[e] for some index expression e such that the value of e
at execution point p′ equals idx. Among all such execution points, it selects the most recent
one; if none meets all criteria, there is no reaching de�nition, and RD returns Pb.

RD((v,idx), p, i) {

return max({Pb} ∪ {p′ | p′ <P p ∧ q(p′,i)

∧ P_s(p′)≡v[e]=e’

∧ e_fn(p′,i)=idx});
}

Our compiler uses algebraic reasoning to simplify procedure RD. The symbolic
simpli�er reasons with equalities, inequalities, and logical connectives. The simpli�cation
procedure relies on the fact that when we have an assignment of the form x[g(j)] = e, the
constraint g(j) = idx often su�ces to fully de�ne the iteration space point in terms of idx,
by inverting g. It then remains only to test whether the values thus derived satisfy the
remaining constraints for qualifying execution points. Also, �nding the most recent point of
assignment is done in a staged manner, by �rst �nding the most recent point corresponding
to each assigning statement and then picking the most recent among them.

In the above example, we can �nd the last program point prior to point p where
out[idx] has been updated by the particular statement s4 (if such a point exists), as follows:

p’ = max({(s4, t) | (s4, t) <P p

∧ (T_get(t,’j’)≥ 0

∧ T_get(t,’j’)<I_get(i,’N’)

∧ A_fn(T_get(t,’j’), (s3, t), i)> 0)

∧ T_get(t,’j’)=idx});

185

Note that the constraint T_get(t,’j’) = idx fully de�nes the value of j to be equal
to idx, so the statement above can be replaced with a couple of simple assignments.

t = T_map(new T,’j’,idx);

p’ = (s7,t);

if (! (p’ < p && idx >= 0 && idx < I_get(i,’N’)

&& A_fn(idx, (s3,t), i) > 0))

p’ = Pb;

To complete our example, we �nd statement-speci�c most recent points for each assigning
statement in a similar manner, and pick the most recent among these points. The �nal
v-function for out is shown in Figure 11.1.

186

int out_fn(int idx, P p, I i) {

T t = T_map(new T, ’j’, idx);

P p4 = new P(s4,t);

if (! (p4 < p && idx >= 0 && idx < I_get(i,’N’)

&& A_fn(idx, new P(s3,t), i) > 0))

p4 = Pb;

P p5 = new P(s5,t);

if (! (p5 < p && idx >= 0 && idx < I_get(i,’N’)

&& ! A_fn(idx, new P(s3,t), i) > 0))

p5 = Pb;

P p6 = new P(s6,t);

if (! (p6 < p && idx >= 0 && idx < I_get(i,’N’)))

p6 = Pb;

P p’ = (p4 < p5 ? (p5 < p6 ? p6 : p5) :

(p4 < p6 ? p6 : p4));

switch (P_s(p’)) {

case s4: return I_get(i, ’in’, T_get(P_t(p’),’j’));

case s5: return -I_get(i, ’in’, T_get(P_t(p’),’j’));

case s6:

return sqrt(out_fn(T_get(P_t(p’),’j’), p’, i));

}

}

Figure 11.1: v-function for array out

187

Chapter 12

Empirical Evaluation

This section presents an empirical evaluation of our system using several kernels
from the MultiGrid method as case studies. From the case studies, we were able to validate
three basic claims.

Scalability. We prove that the system scales to complex real-world implementations of
important kernels. For example, we were able to synthesize in a matter of minutes an
implementation for a kernel that involved 14 di�erent loops from a sketch that had 44
di�erent holes.

Usability. The case studies also allow us to describe a typical use scenario for a sketching
system. In particular, we describe how we were able to explore di�erent implementa-
tion strategies, discarding those that don't work and re�ning those that do, without
the risk of introducing bugs.

Performance of generated code. We show that creating these complex implementations
is worth the e�ort. In particular, one of the implementations we sketched was over 8
times faster than the original reference implementation on a 1.3 GHz Itanium-2, even
though they were compiled and optimized using the Intel Fortran compiler version 9.1,
arguably one of the best compilers commercially available on the Itanium architecture.
In other words, the sketch expressed optimization ideas which the compiler was unable
to discover on its own from a naïve implementation.

This section is derived from the evaluation we presented [61], but the solver perfor-
mance numbers have been updated to re�ect the current state of the implementation. The

188

Loop Holes i-bits Size Iters SAT Total
timeSkew 6 12 expr 5 10469 23 238 263
cacheObv rec 2 expr 5 5313 2 141 165
interp1 3 111 4 2404 60 62 62
interp2 7 74 4 2446 45 45 46
rb3d1 6 36 5 7178 22 101 106
rb3d1Odd 14 43 4 32569 51 295 337
rb3d2 7 30 4 20783 35 66 84
rb2d1 4 16 6 1809 19 20 20
rb2d2 4 22 6 3868 22 66 68

Table 12.1: Solution time for the stencil benchmarks. Table columns specify: the number of
loops present in the �nal implementation (�rec� stands for recursive); the number of holes the
synthesizer �lled in; the number of bits used to represent integers; the number of Boolean
and arithmetic operations in the reduced problem after some simpli�cation; the time (in
seconds) spent in SAT solver queries; and the total time (in seconds) required to resolve the
benchmark.

new performance numbers for the synthesizer are summarized in Table 12.1. The table lists
all the stencil benchmarks described so far, together with the ones introduced in this section.
The table also shows a few statistics to give a sense of the complexity of each benchmark;
these include the number of loops in the �nal implementation, the number of holes �lled by
the synthesizer, and the size of the dag representation of the constraint system. This last
quantity is simply to give a measure of how complex the reduced problems are. The table
also shows the solution time for each benchmark on the ThinkPad laptop with a single core
Intel T1300 at 1.66GHz with 2MB of L2 cache and 1GB of memory that has been used so
far for all the performance evaluations in the thesis. The table also shows the number of
CEGIS iterations and what fraction of the time is spent solving SAT problems. For all these
benchmarks the synthesizer used ABC [49] as the solution engine because we have found it
to work better on stencil problems.

It is worth noting that most benchmarks appear to have grown in their size measure
from their version in [61]. The reason for this has to do with array out of bounds checks.
The synthesizer in [61] did not support array bounds checks, or any other kind of assertion
in the body of loops. Therefore, it could produce a solution that wrote all the correct values
inside the array, but also wrote a few values out of bounds. The timeSkew sketch was the
only benchmark that every once in a while produced this kind of pathological solution. This

189

latest version of the implementation now supports assertion checking, and enforces memory
safety. This is why many of the benchmarks are now a bit larger than before, and why
some experienced small performance degradations even though the underlying solver got
signi�cantly faster.

Another interesting feature in the table is the number of CEGIS iterations, which
for most benchmarks is fairly large compared with the iteration counts for the sequential
benchmarks. Part of the explanation has to do with the huge candidate spaces for many
of these benchmarks, but there is more to it than that. Recall that the domain speci�c
transformation converted all the corner cases in the iteration space into corner cases in the
input space. This eliminated a lot of redundancy in the representation, but it also means
that now many inputs are needed to convey the information that a single input to the
original program may have conveyed. Overall, though, the bene�ts of the transformation
are signi�cant; the original sketch synthesizer is unable to resolve most of the sketches in
Table 12.1. Only rb2d1 and rb2d2 can be resolved by the standard Sketch compiler, and
even for those simple benchmarks, it can handle only �xed size grids up to size 4. Even for
size 4, rb2d1 takes 30 seconds, even though it only performs 6 CEGIS iterations compared
with 19 using the domain speci�c synthesizer.

12.0.3 Sketching for MultiGrid

The MultiGrid algorithm is used for solving partial di�erential equations for a wide
range of domains, including �uid dynamics and solid mechanics. It is composed of three
main kernels: relax, interpolate, and restrict [13]. Each application of the relaxation routine
produces a closer approximation to the solution, but with a very �ne grid the low frequency
components of the error in the approximation take too long to die out. To address this prob-
lem, MultiGrid computes corrections to the solution by creating a coarser problem (restrict),
solving it recursively, and then mapping the correction back to a �ner grid (interpolate). We
have sketched implementations of relaxation and interpolation kernels in 3-D; the restrict
kernel is quite similar to interpolate.

We sketched several implementation tricks from the literature and from hand opti-
mized implementations of these kernels. In a couple of cases, it took less than half an hour
to write and synthesize implementations that we estimate would have taken half a day if
written by hand. Additionally, some of our sketched implementations were several times

190

faster than the clean reference implementations, even after the latter had been optimized
by the Intel Fortran compiler.

Relaxation. The relaxation phase of MultiGrid starts with an approximation to the solu-
tion of the problem and uses it to compute a closer approximation to the solution. For our
case study, we implemented a Red-Black Gauss-Seidel relaxation scheme for both a 2-D grid
and a 3-D grid following more or less the same implementation strategies. The speci�cation
for the 3-D benchmark is shown below. The algorithm assigns a color to each cell on the
grid in a checkered pattern, and then applies a six point stencil on the red cells, followed
by another (same) stencil on the black cells. This widely used relaxation scheme has well
known implementation strategies to optimize it for di�erent architectures [25].

// red

for (int i = 1; i < N-1; ++i)

for (int j = 1; j < N-1; ++j)

for (int k = 1; k < N-1; ++k)

if (i%2 == 0 ^ j%2 == 0 ^ k%2 == 0)

out[i,j,k] = F(i,j,k, in);

// black

for (int i = 1; i < N-1; ++i)

for (int j = 1; j < N-1; ++j)

for (int k = 1; k < N-1; ++k)

if (! (i%2 == 0 ^ j%2 == 0 ^ k%2 == 0))

out[i,j] = F(i,j,k, out);

Here, F(i,j,k, prev) expands to

f[i,j,k] + v0*in[i,j,k] + v1*prev[i-1,j,k]

+ v2*prev[i+1,j,k] + v3*prev[i,j-1,k]

+ v4*prev[i,j+1,k] + v5*prev[i,j,k+1]

+ v6*prev[i,j,k-1];

The above speci�cation is written in the simplest possible way, using the xor ex-
pression i%2 == 0 ^ j%2 == 0 ^ k%2 == 0 to decide the color of each cell. These types of
conditions tend to confuse traditional dependence analysis, so even a state-of-the-art com-
piler like the Intel compiler is unable to optimize the kernel fully.

In order to produce a better implementation, we used two implementation strate-
gies from [25]. In this paper, Douglas et al. provide only high-level descriptions of their

191

optimization strategies (no pseudo-code), but those low-level details omitted in the paper
are exactly what Sketch can synthesize.

The �rst implementation we created is quite simple; it just eliminates the condi-
tionals by computing the output in blocks of eight elements at a time: four red and four
black. The sketch for the case where N is even is very simple; it has two loop-nests with
unspeci�ed bounds, each with four assignments of the form

out[2*i-??,2*j-??,2*k-??] = F(2*i-??,2*j-??,2*k-??, in);

The sketch describes the high-level idea that we compute �rst all the red cells four
at a time, and then all the black cells, also four at a time. The sketches rb2d1 and rb3d1

from Table 12.1 correspond to the 2-D and 3-D instances of this sketch respectively. One can
see that both sketches resolved quite fast despite having a large number of holes. Moreover,
the resulting implementation is about 45% faster for the 3-D case and 70% faster for the
2-D case.

The implementation for the case where N is odd is considerably more complicated
because one must cover a lot of corner cases, particularly in 3-D, where the �nal implemen-
tation is composed of 14 di�erent loops. However, with the support of sketching, it is easy
to construct the odd case from the even case. To do this, we took the 3-D implementation
for the even case produced by the previous sketch, and simply sketched the corner cases
on top of it. Using the implementation generated from the even case as a starting point
allowed the sketch to scale; a sketch for the odd case that left everything unspeci�ed proved
to be intractable for the compiler. Fortunately, we did not have to start from scratch. We
were able to exploit the fact that we already had a solution for the even case to make the
odd case more tractable. The sketch for the red cells for the 2-D odd case is shown below.
Statements 1 and 2 came from the implementation of the even case, and on top of it, we
added a corner case for the last cell in each row (3), and the last row (4), Since we are not
sure if the last cell in the last row (5) needs to be treated separately, we ask the solver to
decide.

for (int i = ??; i < N/2-??; ++i){

for (int j = ??; j < N/2-??; ++j){

out[2*i-1,2*j-1] = F(2*i-1,2*j-1, in); //1

out[2*i,2*j] = F(2*i,2*j, in); //2

}

192

out[2*i-??,N-??] = F(2*i-??,N-??, in); //3

}

for (int j = ??; j < N/2-??; ++j){

out[N-??,2*j-??] = F(N-??,2*j-??, in); //4

}

if (??) out[N-??,N-??] = F(N-??,N-??, in); //5

Our second implementation for this benchmark uses another strategy mentioned
in [25], namely computing the red and black cells together in a single pass through the array.
In this case, careful attention is required in order to preserve the dependencies. We �rst
implemented the trick in 2-D by creating a loop that updates both red and black cells as
shown below, and then two more loops to handle the corner cases.

for (int i = ??; i < N/2-??; ++i) {

for (int j = ??; j < N/2-??; ++j) {

// red

out[2*i-??,2*j-??] = F(2*i-??,2*j-??, in);

out[2*i-??,2*j-??] = F(2*i-??,2*j-??, in);

//black

out[2*i-??,2*j-??] = F(2*i-??,2*j-??, out);

out[2*i-??,2*j-??] = F(2*i-??,2*j-??, out);

}

}

From the sketch, the synthesizer was able to discover that it had to compute the
black cells with an o�set with respect to the red cells in order to preserve dependencies.
Note that neither the loop bounds nor the array access o�sets are trivial; getting them right
would have been quite challenging for the programmer.

for (int i = 2; i < N/2; ++i){

for (int j = 1; j < N/2; ++j) {

// red

out[2*i-1,2*j-1] = F(2*i-1,2*j-1, in);

out[2*i,2*j] = F(2*i,2*j, in);

//black

out[2*i-3,2*j-0] = F(2*i-3,2*j, out);

out[2*i-2,2*j-1] = F(2*i-2,2*j-1, out);

}

}

193

1 2

3
4

k

i

j 0
4

2
6

1 3

0
4

2
6

1 3

A

B

a

b
c

a

b
c

5

5 7

7

(a) (b)

Figure 12.1: (a) Stencil for interpolation distinguishes four di�erent cases. Either the new
point matches a point in the coarse grid (1), is in an edge in the old grid (2), in a face (3), or
in the center of a cube formed by consecutive points in the old grid (4). (b) The optimized
version will precompute the sums a, b and c.

As shown in Table 12.2, this optimization delivered a 60% performance improvement com-
pared to the previous optimization, which was already 70% faster than the spec. The point
of these numbers is not how good the optimized implementation is, but how bad the naïve
one was. This shows that even if you use the best compiler available, you can not a�ord to
write a naïve implementation; you need to do some hand optimization, and sketching is a
very e�ective way to do that.

We tried to implement the same trick in 3-D. In this case, our sketch produced an
implementation that computed the black cells for the plane 2i after computing the red cells
in the plane 2i+2. Unlike the 2-D case, however, this produced a performance degradation,
probably due to the fact that the planes are too big to �t in the cache, so accessing too
many of them at a time simply confuses the prefetcher with no bene�t to performance.

Interpolation. The interpolation routine maps the values in a coarse grid to a �ner grid
of size 2N × 2N × 2N, as illustrated in Figure 12.1. Points in the �ne grid that correspond
to points in the coarse one are copied, while the other points in the �ne grid are computed
by averaging the values of their neighbors in the coarse grid. As illustrated in Figure 12.1,
this leads to four di�erent cases, depending on whether we average 1, 2, 4 or 8 points. The
following code shows a fragment of the speci�cation, describing a few of the cases.

for (int i = 0; i < 2*N-2; ++i)

for (int j = 0; j < 2*N-2; ++j)

for (int k = 0; k < 2*N-2; ++k) {

194

if (i%2 == 0 && j%2 == 0 && k%2 == 0) // Case 1

out[i,j,k] = in[i/2,j/2,k/2];

if (i%2 == 1 && j%2 == 0 && k%2 == 0) // Case 2

out[i,j,k] =

0.5 * (in[i/2,j/2,k/2] + in[i/2+1,j/2,k/2]);

...

if (i%2 == 1 && j%2 == 1 && k%2 == 0) // Case 3

out[i,j,k] =

0.25 * (in[i/2,j/2,k/2] + in[i/2+1,j/2+1,k/2]

+ in[i/2,j/2+1,k/2] + in[i/2+1,j/2,k/2]);

...

}

As in the previous sketch, we started by blocking the computation to eliminate all
the conditionals in the speci�cation. For each point in the coarse grid, there is a 2× 2× 2

block in the �ne grid which constitutes the smallest repeating pattern. Because the output
grid is of size (2N)3, odd grid sizes are not a problem.

The sketch was very easy to write because we left every single array o�set unspec-
i�ed, as well as the bounds of all loops. We only speci�ed that on each iteration of the
innermost loop, there were 8 assignments to entries of out, 1 for case 1, 3 for case 2, 3 for
case 3, and 1 for case 4. The individual cases are shown below.

out[2*i+??,2*j+??,2*k+??] = in[i+??,j+??,k+??];

out[2*i+??,2*j+??,2*k+??] =

0.5 * (in[i+??,j+??,k+??] + in[i+??,j+??,k+??]);

out[2*i+??,2*j+??,2*k+??] =

0.25 * (in[i+??,j+??,k+??] + in[i+??,j+??,k+??] +

in[i+??,j+??,k+??] + in[i+??,j+??,k+??]);

out[2*i+??,2*j+??,2*k+??] =

0.125 * (in[i+??,j+??,k+??] + in[i+??,j+??,k+??] +

in[i+??,j+??,k+??] + in[i+??,j+??,k+??] +

in[i+??,j+??,k+??] + in[i+??,j+??,k+??] +

in[i+??,j+??,k+??] + in[i+??,j+??,k+??]);

As shown in Table 12.2, this simple transformation allowed the implementation to run 8
times faster than the spec.

195

Relax (Red-Black) 2-D Relax 3-D Interpolate
N spec rb2d1 rb2d2 N spec rb3d1 rb3d2 N spec interp1 interp2

1000 17 10 6 100 15 10 9 75 141 18 18
2000 66 38 24 200 115 77 109 100 338 44 43
3000 153 84 54 300 385 236 634 150 1146 149 147
4000 264 148 97 400 923 585 1650 175 1935 238 232

500 1787 1174 2428 200 2822 339 335

Table 12.2: Running times of benchmarks implementations. The size of the grid for the
Red-Black code is N2 and N3 for 2-D and 3-D respectively. The size of the �ne grid for
Interpolate is (2N)3. Time is in milliseconds.

The second sketch we did for this benchmark describes an optimization which is
used by the HPF implementation of this kernel in the NAS benchmark suite [6]. The key
insight behind this optimization is that a lot of the sums are computed more than once,
so we can reuse some of them when computing di�erent blocks. Figure 12.1(b) shows two
consecutive blocks (A and B). The pairs a, b and c represent a partial sum of two points
from the original grid. We can see that the partial sum a can be used to compute 6 di�erent
points: A5, A7, B4, B5, B6, B7. Similarly, the partial sums b and c can be reused in computing
most of the other points. The implementation uses this insight by pre-computing the partial
sums a, a+b and c; these are stored in temporary arrays for each value of (i, j), to make the
rest of the computation easier to vectorize.

We wrote the sketch for this implementation trick in less than one hour. As before,
the sketch leaves unspeci�ed every single array o�set and every single loop iteration bound.
Below, one can see the loop that pre-computes the sub-expressions:

for (int i = ??; i < N-??; ++i) {

float ta = in[i+??,j+??,k+??] + in[i+??,j+??,k+??];

float tb = in[i+??,j+??,k+??] + in[i+??,j+??,k+??];

float tc = in[i+??,j+??,k+??] + in[i+??,j+??,k+??];

aplusb[i] = ta + tb;

a[i] = ta;

c[i] = tc;

}

196

The code for each of the expressions was sketched following Figure 12.1(b). In particular,
the picture shows that the three points corresponding to case 2 are computed one from a,
one from c, and one by adding the two vertices labeled 0. Similarly, for points corresponding
to case 3, one is computed from two entries from c, one from two entries from a, and one is
just a+b. And �nally, case 4 is the sum of two consecutive a+b. So the basic idea is clear from
the picture, and can be sketched directly with the statements shown below. Nonetheless,
the details of which o�sets to use are not clear from the picture, so those are left unspeci�ed
for the solver to complete. The sketch resolves in less than three minutes.

output[k*2+??,j*2+??,i*2+??] = in[k+??,j+??,i+??];

output[k*2+??,j*2+??,i*2+??] =

0.5 * (in[k+??,j+??,i+??] + in[k+??,j+??,i+??]);

output[k*2+??,j*2+??,i*2+??] = 0.5 * a[k+??];

output[k*2+??,j*2+??,i*2+??] = 0.5 * c[k+??];

output[k*2+??,j*2+??,i*2+??] =

0.25 * (c[k+??] + c[k+??]);

output[k*2+??,j*2+??,i*2+??] =

0.25 * (a[k+??] + a[k+??]);

output[k*2+??,j*2+??,i*2+??] = 0.25 * aplusb[k+??];

output[k*2+??,j*2+??,i*2+??] =

0.125 * (aplusb[k+??] + aplusb[k+??]);

On the Itanium-2, this optimization had a very minimal impact on the performance
compared with simple blocking. However, what is important is the fact that we were able to
sketch the implementation trick, and get a complete implementation for it, all without the
risk of introducing bugs. In fact, in the process of sketching these optimizations, we tried
many other variations on the basic tricks. Some ideas were rejected by the compiler while
others caused performance degradations. Nevertheless, we were able to try them easily and
without introducing bugs.

197

Overall, the domain speci�c transformation allowed sketching to be applied suc-
cessfully to the important domain of stencil computations. Without the domain speci�c
transformations, the synthesizer would only be able to resolve the simplest stencils on very
small grid sizes. More generally, we have shown that it is possible to dramatically im-
prove the power of the synthesizer by preprocessing the sketch problem with domain speci�c
program transformations. I believe that moving forward, this idea will allow for major
breakthroughs in synthesis performance for the most challenging problem domains such as
high-performance parallel programming.

198

Chapter 13

Conclusion

In the world of big software, where programs are constructed from complex frame-
works by large development teams, the problems of scale and emergent complexity tend
to capture most of the attention. But the problem of crafting e�cient implementations
of challenging algorithms has never gone away. Programming in the small is not a solved
problem. In fact, the plateau in single-core performance is making this problem harder, as
e�ciency becomes more important, and parallelism adds a new dimension of implementa-
tion complexity. Modern languages and methodologies allow these implementations to be
encapsulated and reused, but they do not address the fundamental di�culties behind these
programming problems.

Software synthesis can help programmers coping with these implementation chal-
lenges by relieving them from the low-level reasoning, and allowing them to focus on the
high-level algorithmic insights. We have argued, however, that making synthesis practical
requires a new approach to the synthesis problem. The traditional approach to synthesis
treats the human expert as an aid to the synthesizer. This approach forces the user to
master the formalisms of the synthesizer in order to help it produce the desired code. In
the hands of experts, these systems are very powerful, but new ideas are needed for their
success to spread to the broader programming community.

Sketching o�ers a di�erent approach to software synthesis. The key novelty in
sketching is the use of partial programs to describe the insight behind an implementation
while leaving the details unspeci�ed. Sketching allows the programmer to communicate with
the synthesizer using the familiar formalisms of imperative programming; the synthesizer is
now an aid to the programmer.

199

The central question of this thesis was whether a synthesis approach based on
combinatorial search over the possible completions for a partial program could be made to
scale to real programming problems with astronomically large spaces of candidate solutions.
The answer to this question is a clear yes. The thesis has shown how the Sketch synthesizer
is able to solve complex sketches from a variety of domains in a matter of minutes. Arguably,
none of the sketches are very big, but a few such as AES or the MultiGrid stencil kernels
constitute complete components from real systems.

The thesis has also introduced a number of important technical contributions.
These include:

• The development of language extensions to allow programmers to write partial pro-
grams with clearly de�ned semantics.

• A formalization of the semantics of these partial programs and of the problem of
sketch-based synthesis.

• The development of a novel approach to solving sketch problems based on the idea of
counterexample guided inductive synthesis (CEGIS).

• The development of a SAT based inductive synthesis procedure from the formal de�-
nition of the synthesis semantics.

• The implementation and evaluation of a number of optimizations for systems of integer
and boolean constraints based on data�ow analysis.

• The generalization of the CEGIS approach to the context of concurrent programs.

• The application of domain speci�c program transformations to simplify the sketching
problem for the domain of stencil kernels.

That said, a number of research questions remain open. The most important to
the success of sketching is whether this is indeed an intuitive programming model for most
programmers. The personal experience of me and many of the users who have tried the
system appears to suggest that it is, although some early users have complained about the
di�culty of debugging sketches that turn out to have no valid solutions. It is hard to gauge
to what extent this problem is an artifact of the poor quality of error messages reported
by the current implementation, but the debugging problem is clearly an important area for

200

future research. When it comes to usability questions, however, anecdotal evidence is no
substitute for systematic empirical evaluation in the form of user studies.

In short, this thesis has not solved all the problems of practical synthesis, but it
has shown that given the current state of the art in constraint solving and bounded model
checking, practical software synthesis is �nally within reach.

201

Appendix A

202

List of sequential benchmarks

compress_easy This benchmark came from [69]. Given a bit-vector and a bit-
mask, the task is select from the bit-vector all the bits selected by the bit-mask
and pack them in the beginning of the word.
Bit-vector Cint =18 Cbit =0 inbits =16 53 lines

compress_hard A harder version of the benchmark above.
Bit-vector Cint =41 Cbit =0 inbits =16 56 lines

doublyLinkedList Sketches a remove method from a doubly linked list.
Datastructure Cint =0 Cbit =78 inbits =9 245 lines

enqueue Sketches an enqueue method for a Queue represented as a linked list.
Datastructure Cint =481 Cbit =48 inbits =15 108 lines

karatsuba This is the karatsuba multiplication described in Section 6.1.
Integer Cint =1 Cbit =56 inbits =16 214 lines

listReverseEasy An easy version of the list reversal example in the introduc-
tion. In this example, all the right-hand sides of the assignments are fully
speci�ed.
Datastructure Cint =0 Cbit =121 inbits =6 161 lines

listReverseHarder The list reversal benchmark from the introduction
Integer Cint =0 Cbit =25 inbits =5 40 lines

log2 The integer log base 2 benchmark described in Section 2.4.
Bit-vector Cint =5 Cbit =320 inbits =32 46 lines

log2VarLoop Same as above, but leaves unspeci�ed the number of iterations.
Bit-vector Cint =9 Cbit =512 inbits =32 46 lines

logcount16 Counts the number of ones in a bit-vector in log(N) steps using
an idea similar to log-shifting from Section 6.1.
Bit-vector Cint =9 Cbit =256 inbits =16 26 lines

203

logcount16_easy Same as before but the user speci�es that two masks should
be symmetric.
Bit-vector Cint =9 Cbit =128 inbits =16 27 lines

logcount8 Same as logcount16 but for an 8-bit word.
Bit-vector Cint =9 Cbit =128 inbits =8 26 lines

logcount8_easy Same as logcount16_easy but for an 8-bit word.
Bit-vector Cint =9 Cbit =64 inbits =8 27 lines

lss This benchmark takes as input an array [in0, . . . , inW] of signed integers,
and returns the value maxi,j{

∑
i≤k≤j ink}. The problem is to compute this in

linear time. This benchmark was contributed to us by a graduate student.
Integer Cint =2 Cbit =0 inbits =8 26 lines

lss_easy Simpli�ed version of the above benchmark.
Integer Cint =6 Cbit =1 inbits =8 32 lines

lss_harder More di�cult version of the above benchmark; in this instance the
synthesizer has a lot more freedom than in the earlier cases.
Integer Cint =9 Cbit =0 inbits =8 32 lines

lss_hardest Most di�cult version of lss benchmark.
Integer Cint =44 Cbit =0 inbits =8 32 lines

merge_sort Sketch of the well known merge sort procedure. An input array
is partitioned and recursively sorted, and then an output array is populated
with the values from the two halves. The synthesizer is asked to discover the
function that decides what half should entry i in the output array should come
from, taking into account the corner case when one array has run out of values.
Integer Cint =363 Cbit =0 inbits =8 106 lines

morton Morton numbers sketch described in Section 6.1.
Bit-vector Cint =18 Cbit =512 inbits =32 23 lines

morton_easier Simpli�ed version of morton number sketch described in Sec-
tion 6.2.1
Bit-vector Cint =9 Cbit =256 inbits =16 21 lines

morton_easiest Simpli�ed version of morton number sketch described in Sec-
tion 6.2.1
Bit-vector Cint =2 Cbit =474 inbits =32 24 lines

204

parity Computes the xor of all the bits in a bit-vector using a strategy similar
to log-shifting.
Bit-vector Cint =10 Cbit =0 inbits =32 19 lines

Pollard IBM Problem of the month Jan 2004, contributed by a graduate stu-
dent. A read-only array with N elements contains the values {1, . . . , N-1}, so
it must contain a duplicate entry. Find the duplicate entry using only constant
extra space.
Integer Cint =10 Cbit =0 inbits =34 52 lines

polynomial A toy benchmark to synthesize a polynomial of degree 4.
Datastructure Cint =5 Cbit =271 inbits =6 158 lines

reverse Reverse all the bits in a word in log-time using log-shifting.
Bit-vector Cint =2 Cbit =256 inbits =32 24 lines

SetTest Implement a treeSet from a HashSet speci�cation, as described inSec-
tion 6.1.
Datastructure Cint =0 Cbit =19 inbits =20 37 lines

tableBasedAddition A toy benchmark, implements an addition of two 4-bit
numbers through a table lookup. Models more complex table lookup bench-
marks.
Bit-vector Cint =0 Cbit =1024 inbits =8 17 lines

tutorial2 Toy benchmark explores the use of generators.
Integer Cint =4 Cbit =0 inbits =4 11 lines

tutorial3 Toy benchmarks to show complex recursive generators.
Integer Cint =259 Cbit =0 inbits =6 34 lines

xpose Contributed by a graduate student from a problem he ran into during an
internship. Models an SSE shufps function with a procedure and implements
a transpose on a 4× 4 matrix using this instruction.
Integer Cint =38 Cbit =96 inbits =32 26 lines

xposeBit Same as xpose, but takes bits instead of integers as inputs. Interest-
ingly, it actually takes longer to solve because it needs more counterexamples
to converge than the integer version.
Integer Cint =38 Cbit =96 inbits =16 36 lines

205

Bibliography

[1] W. Ackermann. Solvable cases of the decision problem. Studies in Logic and the Foun-
dations. of Mathematics. North-Holland� 1954.

[2] D. Amit, N. Rinetzky, M. Sagiv, and E. Yahav. Comparison under abstraction for
verifying linearizability. In In 19th International Conference on Computer Aided Veri-
�cation (CAV), 2007.

[3] S. E. Anderson. Bit twiddling hacks, 1997-2005. http://www-graphics.stanford.edu/ se-
ander/bithacks.html.

[4] D. Andre and S. Russell. Programmable reinforcement learning agents. Advances in
Neural Information Processing Systems, 13, 2001. MIT Press.

[5] D. Angluin and C. H. Smith. Inductive inference: Theory and methods. ACM Comput.
Surv., 15(3):237�269, 1983.

[6] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum, R. A.
Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakr-
ishnan, and S. K. Weeratunga. The nas parallel benchmarks. The International Journal
of Supercomputer Applications, 5(3):63�73, Fall 1991.

[7] T. Ball and S. K. Rajamani. The slam project: debugging system software via static
analysis. In POPL '02: Proceedings of the 29th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 1�3, New York, NY, USA, 2002. ACM.

[8] Y. Bar-David and G. Taubenfeld. Automatic discovery of mutual exclusion algorithms.
In PODC '03: Proceedings of the twenty-second annual symposium on Principles of
distributed computing, pages 305�305, New York, NY, USA, 2003. ACM.

206

[9] L. Beckman, A. Haraldson, O. Oskarsson, and E. Sandewall. A partial evaluator, and
its use as a programming tool. Arti�cial Intelligence, 7:319�357, 1976.

[10] M. Bickford, C. Kreitz, R. V. Renesse, and R. Constable. An experiment in formal de-
sign using meta-properties. In In Proc. DISCEX-II �01: The 2nd DARPA Information
Survivability Conference and Exposition. IEEE, 2001.

[11] A. Biere. Resolve and expand. In Proceedings of the 7th Intl. Conf. on Theory and
Applications of Satis�ability Testing (SAT'04), 2005.

[12] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Optimizing matrix multiply using
phipac: A portable, high-performance, ansi c coding methodology. In International
Conference on Supercomputing, pages 340�347, 1997.

[13] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial. SIAM, 2000.

[14] R. E. Bryant, S. German, and M. N. Velev. Processor veri�cation using e�cient reduc-
tions of the logic of uninterpreted functions to propositional logic. ACM Transactions
on Computational Logic, 2(1):1�41, January 2001.

[15] R. E. Bryant, D. Kroening, J. Ouaknine, S. A. Seshia, O. Strichman, and B. Brady.
Deciding bit-vector arithmetic with abstraction. In Proc. TACAS 2007, March 2007.

[16] M. A. Bulyonkov. Polyvariant mixed computation for analyzer programs. Acta Infor-
matica, 21(5), December 1984.

[17] M. Burstein, D. Mcdermott, D. R. Smith, and S. J. Westfold. Derivation of glue code
for agent interoperation. In In Proc. 4th Int�l. Conf. on Autonomous Agents, pages
277�284. ACM Press, 2000.

[18] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstrac-
tion re�nement for symbolic model checking. J. ACM, 50(5):752�794, 2003.

[19] E. Clarke, D. Kroening, and K. Yorav. Behavioral consistency of C and Verilog pro-
grams using bounded model checking. In DAC, pages 368�371, May 2003.

[20] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Logic of Programs, Workshop, pages 52�71,
London, UK, 1982. Springer-Verlag.

207

[21] E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In
Proc. 10th Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), 2004.

[22] C. Consel and O. Danvy. Tutorial notes on partial evaluation. In Proceedings of the
Twentieth Annual ACM Symposium on Principles of Programming Languages, pages
493�501. ACM Press, 1993.

[23] R. L. Constable. Implementing Mathematics with the NuPRL Proof Development Sys-
tem. Prentice Hall, 1986.

[24] D. Currie, X. Feng, M. Fujita, A. J. Hu, M. Kwan, and S. Rajan. Embedded soft-
ware veri�cation using symbolic execution and uninterpreted functions. Int. J. Parallel
Program., 34(1):61�91, 2006.

[25] C. C. Douglas, J. Hu, M. Kowarschik, U. Rüde, and C. Weiss. Cache optimization
for structured and unstructured grid multigrid. Elect. Trans. Numer. Anal., 10:21�40,
2000.

[26] T. Emerson. Development of a constraint-based airlift scheduler by program synthe-
sis from formal speci�cations. In Proceedings of the 1999 Conference on Automated
Software Engineering. IEEE Computer Society Press, 1999.

[27] Advanced encryption standard (AES). U.S. DEPARTMENT OF COM-
MERCE/National Institute of Standards and Technology, November 2001.
http://csrc.nist.gov/publications/�ps/�ps197/�ps-197.pdf.

[28] B. Fischer and J. Schumann. Autobayes: a system for generating data analysis programs
from statistical models. Journal of Functional Programming, 13(3):483�508, May 2003.

[29] M. Frigo and S. Johnson. Fftw: An adaptive software architecture for the �t. In
ICASSP conference proceedings, volume 3, pages 1381�1384, 1998.

[30] M. Frigo and V. Strumpen. The memory behavior of cache oblivious stencil computa-
tions. The Journal of Supercomputing, 39(2):93�112, 2007.

[31] V. Ganesh. Decision procedures for bit-vectors, arrays and integers. PhD thesis, Stan-
ford, CA, USA, 2007. Adviser-David L. Dill.

208

[32] P. Godefroid. Partial-Order Methods for the Veri�cation of Concurrent Systems � An
Approach to the State-Explosion Problem. PhD thesis, 1994.

[33] E. M. Gold. Language identi�cation in the limit. Information and Control, 10(5):447�
474, 1967.

[34] C. K. Gomard. A self-applicable partial evaluator for the lambda calculus: correctness
and pragmatics. ACM Trans. Program. Lang. Syst., 14(2):147�172, 1992.

[35] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. S. III, and N. Shavit. A lazy
concurrent list-based set algorithm. In OPODIS '05: 9th International Conference on
Principles of Distributed Systems, volume 3974, pages 3�16. Springer, 2005.

[36] D. Hensgen, R. Finkel, and U. Manber. Two algorithms for barrier synchronization.
International Journal of Parallel Programming, 17(1):1�17, 1988.

[37] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software veri�cation with
blast. pages 235�239. Springer, 2003.

[38] M. Herlihy and N. Shavit. The art of multiprocessor programming. Morgan Kaufmann,
2008.

[39] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3):463�492, 1990.

[40] G. J. Holzmann. The model checker SPIN. Software Engineering, 23(5):279�295, 1997.

[41] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Prentice Hall International, International Series in Computer Science, June
1993. ISBN number 0-13-020249-5 (pbk).

[42] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and K. Yelick. Implicit and explicit
optimizations for stencil computations. InMSPC '06: Proceedings of the 2006 workshop
on Memory system performance and correctness, pages 51�60, New York, NY, USA,
2006. ACM Press.

[43] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. A. Yelick. Impact of modern memory
subsystems on cache optimizations for stencil computations. In B. Calder and B. G.
Zorn, editors, Memory System Performance, pages 36�43. ACM, 2005.

209

[44] L. Lamport. How to make a multiprocessor computer that correctly executes multi-
process programs. IEEE Transactions on Computers, 28(9):690�691, 1979.

[45] Z. Manna and R. Waldinger. Synthesis: Dreams => programs. IEEE Transactions on
Software Engineering, 5(4):294�328, 1979.

[46] Z. Manna and R. Waldinger. A deductive approach to program synthesis. ACM Trans.
Program. Lang. Syst., 2(1):90�121, 1980.

[47] A. W. Mazurkiewicz. Basic notions of trace theory. In Linear Time, Branching Time
and Partial Order in Logics and Models for Concurrency, School/Workshop, pages 285�
363, London, UK, 1989. Springer-Verlag.

[48] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[49] A. Mishchenko, S. Chatterjee, and R. Brayton. Dag-aware AIG rewriting: A fresh look
at combinational logic synthesis. In DAC '06: Proceedings of the 43rd annual conference
on Design automation, pages 532�535, New York, NY, USA, 2006. ACM Press.

[50] A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive module. In
ICALP '89: Proceedings of the 16th International Colloquium on Automata, Languages
and Programming, pages 652�671, London, UK, 1989. Springer-Verlag.

[51] A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize. In
Foundations of Computer Science 1990. IEEE, 1990.

[52] A. Pnueli, O. Shtrichman, and M. Siegel. The code validation tool (cvt). International
Journal on Software Tools for Technology Transfer (STTT), 2, December 1998.

[53] G. Roth, J. Mellor-Crummey, K. Kennedy, and R. G. Brickner. Compiling stencils in
high performance fortran. In Supercomputing '97: Proceedings of the 1997 ACM/IEEE
conference on Supercomputing (CDROM), pages 1�20, New York, NY, USA, 1997. ACM
Press.

[54] H. Samulowitz and F. Bacchus. F.: Binary clause reasoning in qbf. In In: Proc. of
SAT. LNCS 4121, pages 353�367. Springer, 2006.

210

[55] D. Scott and C. Strachey. Toward a mathematical semantics for computer languages.
Programming Research Group Technical Monograph PRG-6, Oxford Univ. Computing
Lab., 1971.

[56] S. Sellappa and S. Chatterjee. Cache-e�cient multigrid algorithms. Int. J. High Per-
form. Comput. Appl., 18(1):115�133, 2004.

[57] E. Y. Shapiro. Algorithmic Program DeBugging. MIT Press, Cambridge, MA, USA,
1983.

[58] A. Silberschatz and P. B. Galvin. Operating System Concepts. John Wiley & Sons,
Inc., New York, NY, USA, 2000.

[59] D. R. Smith. KIDS: A semiautomatic program development system. IEEE Transactions
on Software Engineering, 16(9):1024�1043, 1990.

[60] L. Snyder. Programming Guide to ZPL. MIT Press, Cambridge, MA, 1999.

[61] A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodik, V. Saraswat, and S. Seshia. Sketch-
ing stencils. In PLDI '07: Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation, volume 42, pages 167�178, New
York, NY, USA, 2007. ACM.

[62] A. Solar-Lezama, C. Jones, G. Arnold, and R. Bodík. Sketching concurrent datastruc-
tures. In PLDI 08, 2008.

[63] A. Solar-Lezama, R. Rabbah, R. Bodik, and K. Ebcioglu. Programming by sketching
for bit-streaming programs. In PLDI '05: Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation, pages 281�294, New
York, NY, USA, 2005. ACM Press.

[64] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamit: A language for streaming
applications. In International Conference on Compiler Construction, Grenoble, France,
Apr. 2002.

[65] M. Vechev and E. Yahav. Deriving linearizable �ne-grained concurrent objects. In PLDI
'08: Proceedings of the 2008 ACM SIGPLAN conference on Programming language
design and implementation, pages 125�135, New York, NY, USA, 2008. ACM.

211

[66] M. T. Vechev, E. Yahav, and D. F. Bacon. Correctness-preserving derivation of concur-
rent garbage collection algorithms. In PLDI '06: Proceedings of the 2006 ACM SIG-
PLAN conference on Programming language design and implementation, pages 341�353,
New York, NY, USA, 2006. ACM.

[67] M. T. Vechev, E. Yahav, D. F. Bacon, and N. Rinetzky. Cgcexplorer: a semi-automated
search procedure for provably correct concurrent collectors. In PLDI '07: Proceedings
of the 2007 ACM SIGPLAN conference on Programming language design and imple-
mentation, pages 456�467, New York, NY, USA, 2007. ACM.

[68] W. Visser and K. Havelund. Model checking programs. In Automated Software Engi-
neering Journal, pages 3�12. Press, 2000.

[69] H. S. Warren. Hacker's Delight. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2002.

[70] D. Wonnacott. Achieving scalable locality with time skewing. International Journal of
Parallel Programming, 30(3):1�221, 2002.

[71] Y. Xie and A. Aiken. Scalable error detection using boolean satis�ability. In Proceed-
ings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 351�363, 2005.

