
Contextual Bootstrapping for Grammar Learning

Eva H. Mok

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2008-179

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-179.html

December 19, 2008



Copyright  2008, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



 

Contextual Bootstrapping for Grammar Learning 

by 

Eva H. Mok 

 

B.S. (University of Michigan, Ann Arbor) 2000 

 

A dissertation submitted in partial satisfaction of the 

requirements for the degree of 

Doctor of Philosophy 

in 

Computer Science 

in the 

GRADUATE DIVISION 

of the 

UNIVERSITY OF CALIFORNIA, BERKELEY 

 

Committee in charge: 

Professor Jerome A. Feldman, Chair 
Professor Carla Hudson Kam 

Professor Dan Klein 
 

Fall 2008 

  



 

 

 

 

 

The dissertation of Eva H. Mok is approved: 

 

  

 Chair Date 

 Date 

 Date 

 

University of California, Berkeley 

Fall 2008 

  



 

 

Contextual Bootstrapping for Grammar Learning 

 

 

 

© Copyright 2008 

by Eva H. Mok 



1 
 

 
Abstract 

 

Contextual Bootstrapping for Grammar Learning 

by 

Eva H. Mok 

Doctor of Philosophy in Computer Science 

University of California, Berkeley 

Professor Jerome A. Feldman, Chair 
 
 
 

 The problem of grammar learning is a challenging one for both children and machines 

due to impoverished input: hidden grammatical structures, lack of explicit correction, and in 

pro-drop languages, argument omission. This dissertation describes a computational model of 

child grammar learning using a probabilistic version of Embodied Construction Grammar (ECG) 

that demonstrates how the problem of impoverished input is alleviated through bootstrapping 

from the situational context. This model represents the convergence of: (1) a unified 

representation that integrates semantic knowledge, linguistic knowledge, and contextual 

knowledge, (2) a context-aware language understanding process, and (3) a structured grammar 

learning and generalization process. 

Using situated child-directed utterances as learning input, the model performs two 

concurrent learning tasks: structural learning of the grammatical units and statistical learning of 

the associated parameters. The structural learning task is a guided search over the space of 

possible constructions. The search is informed by embodied semantic knowledge that it has 
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gathered through experience with the world even before learning grammar and situational 

knowledge that the model obtains from context. The statistical learning task requires 

continuous updating of the parameters associated with the probabilistic grammar based on 

usage and these parameters reflect shifting preferences on learned grammatical structures.  

The computational model of grammar learning has been validated in two ways. It has 

been applied to a subset of the CHILDES Beijing corpus, which is a corpus of naturalistic 

parent-child interaction in Mandarin Chinese. Its learning behavior has also been more closely 

examined using an artificial miniature language. This learning model provides a precise, 

computational framework for fleshing out theories of construction formation and generalization. 
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Chapter 1.   

Modeling the Learning of Contextual Constructions 

The level of competence that children achieve in their native language in a bare four to 

five years is a remarkable feat given the intricacy and nuances of language. The key problem in 

language acquisition is that the linguistic input alone vastly underdetermines the hidden 

structures that are generally attributed as grammatical knowledge, and this problem is pervasive 

in every aspect of language from phonology to pragmatics. At the phonological level, word 

segments are not denoted in fluent speech by pauses (Jusczyk, 1997) and a child must learn to 

pick out the words. The task of word learning is plagued with the problem of indeterminacy (such 

Quine’s famous “gavagai” example (1960)), which is arguably worse for verbs than for nouns. In 

grammar learning, syntactic structures are not at all present in the input, and yet the ability to 

productively manipulate these structures is considered to be the defining characteristic of 

grammatical knowledge. It seems miraculous that normally developing children become such 

competent language users in such a short period of time. 

Indeed, the very complexity in the task of language learning has been used to argue for 

the innateness of language, and the acquisition of syntax is at the heart of this debate. There are 

good theoretical and psychological reasons, however, to believe that innate knowledge of 

linguistic principles and parameters need not be the case. In contrast to Gold’s theorem (1967), 

which shows that categorical regular languages and context-free languages are not identifiable in 

the limit on the basis of positive examples alone, Horning (1969) demonstrates that stochastic 
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context-free grammars are learnable given some assumptions about the priors of the grammars. 

Many counterarguments to innateness have also been offered on the psychological end of the 

debate, from work directly addressing the poverty of stimulus claim by looking at the input 

children receive (Pullum & Scholz, 2002) to work addressing the logical problem of language 

acquisition by offering alternative mechanistic accounts (Macwhinney, 2004; Perfors, 2008; 

Perfors, Tenenbaum & Regier, 2006). In addition, there are calls for an alternate 

conceptualization of the innateness debate that studies the interaction between genetics and 

environment (1997). Instead of rehashing old arguments, this dissertation takes as a starting point 

the assumption that language is too complex a system to be learned through blind associations 

between linguistic and non-linguistic input. Some form of learning bias must be introduced into 

the learning process; it is the goal of this dissertation to lay out systematically, in a computational 

framework, some learning biases that facilitate the process without resorting to innate knowledge 

of syntax. 

Put in concrete terms, this dissertation is concerned with modeling how semantic 

knowledge about typical actions and events and contextual knowledge about the situation 

surrounding each piece of learning input come together to aid the acquisition of grammar, or 

more precisely, the language-specific ways in which relational meanings between words are 

denoted. For example, the semantic relation that John is the hitter and the ball is the hittee of a 

hitting event is denoted by word order in the English sentence John hit the ball. Grammar, in this 

formulation, consists not of syntactic rules that allow or disallow sentences in a language but of 

conventionalized mappings between linguistic forms and embodied meanings. Building on the 

construction grammar framework (Fillmore et al. 1988; Goldberg 1995; Fillmore et al. 1999; Kay 

et al. 1999), grammatical knowledge comprises form-meaning mappings as rigid as idioms (e.g. 
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cross your fingers) or early holophrases (e.g. gimme that) and as broad and productive as the 

ditransitive / double-object construction (e.g. John baked Mary a cake).  

 To begin, it is important to keep in mind that as a child receives language input 

throughout infancy, she also accumulates experience with the world through physical interaction 

with objects and communicative acts with her caregivers. By the time she starts attending to 

syntactic cues at around 17 months of age (Hirsh-Pasek, Golinkoff & Naigles, 1996a), she has 

access to a repertoire of embodied knowledge about various objects, people, and motor actions 

that form a rich substrate for language learning. Furthermore, a child learns language not in 

isolation but in context structured by rituals and routines which help guide the child’s 

interpretation of novel utterances.  

The support that context lends to language comprehension is especially pronounced in 

pronoun-dropping (pro-drop) languages, where it is not only permissible but common to omit 

the subject and/or object from sentences (also referred to as zero anaphora or null subject/object). 

In some languages subject omission is the most prevalent (e.g. Spanish, Italian); in others both 

subject and object omissions are permissible (e.g. Chinese, Korean). Furthermore, unlike some 

morphologically rich pro-drop languages, a language like Mandarin Chinese has little inflectional 

morphology that helps to constrain the interpretation of the omitted referent. In this case, 

understanding an utterance requires not just ongoing awareness of the situational and discourse 

context but also inference mechanisms to arrive at the most plausible reference interpretation. 

This is the notion of best-fit constructional analysis as described in (Bryant, 2008a). 

To give the reader a better idea of what this best-fit constructional analysis process entails, 

Figure 1.1 shows the interpretation of a sentence in Mandarin Chinese (which is a SVO language), 

xi1xi1 chi1 yao4 (XiXi eat medicine). A hearer who knows how Mandarin works realizes that this 
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to be the eater of not just any medicine, but the specific cough syrup that they are jointly 

attending to. These links to context are represented in the figure using bold dashed arrows from 

the Child to CHI and from the eatee to Cough Syrup, etc. This kind of link to context is 

particularly critical for the hearer to understanding other sentences in which arguments are 

omitted. 

A grammar learner’s job is to find a systematic way of turning sequences of words such as 

xi1xi1 chi1 yao4 into coherent interpretations such as the one just shown. Specifically, there are at 

least 4 pieces of linguistic knowledge necessary for this task: 

1. The word xi1xi1 is a label for a child with the name XiXi 

2. The word yao4 is a label for medicines 

3. The word chi1 is a label for the action of eating, which involves two participants, 

the eater (some human) and the eatee (some food), and the motor program of 

putting food in one’s mouth and swallowing it 

4. The sequence object-label – action-label – object-label means that the first object 

is performing the action to the second object.  

By design, the model in this dissertation assumes knowledge of object and action labels 

such as (1) – (3) at the start and learns the language-specific ways to express relational meanings, 

i.e. argument structure constructions, such as those in (4). As pointed out by Givón (2001),  

languages routinely use a combination of  intonation, word order, and morphology (in the form 

of verb agreement and nominal case marking) to mark grammatical relations (and by extension 

semantic relations). Without the computational support of a morphological analyzer1 or a speech 

                                                           
1  The support for inflectional morphology is not in place in ECG or the language understanding system at the time of 
this dissertation work, but ongoing efforts, in particular by Nathan Schneider, are being made in the group to extend 
ECG. 
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recognition system, this model is capable of handling only word order and free morphemes. 

Fortunately this does not affect the use of the model on Mandarin Chinese data, which only 

utilizes those two cues. 

Two possible immediate objections to this simplifying assumption are to the apparent 

sequential nature of the learning and the rich verb semantics that the learner has access to prior to 

syntax. It is a fact that there is no such point in time during language development when word 

learning stops and grammar learning begins. In no way is subsequent or concurrent word 

learning precluded by the current model; the model merely begins at a point at which children 

have learned enough words to begin positing syntactic and semantic relations between them. The 

vocabulary size is kept constant to keep the model simple, but it is a straightforward manipulation 

to gradually expand the vocabulary of the model as learning progresses.  

As for the second concern, for practical reasons2 verb-specific schemas are used, but the 

learning algorithm itself does not depend on the particular shape of the schema hierarchy. 

Furthermore, there is still a lot more about grammar learning that is of interest despite assuming 

relatively precisely-defined action labels. These initial verbs, which are tied to embodied 

experiences of actions and could have been learned through a Bayesian learning process of the 

sort modeled by (Bailey, Feldman, Narayanan & Lakoff, 1997), make no claims about how they 

are used in conjunction with their arguments. To give a few concrete examples in Mandarin 

Chinese, the word mo3 (‘to apply’) is associated with the motor program of APPLY, which involves 

three participants: the applier, the substance applied, and the surface that the substance is applied 

to. One can say mo3 you2 (‘apply lotion’) just as well as mo3 lian3 (‘apply face’), and to express 

                                                                                                                                                                             
 
2 A handwritten, adult-like grammar was created to evaluate how well the language understanding system performs 
under near optimal circumstances. The same semantic types are used in the learner so that the comparison of the 
learned grammar to this baseline would be meaningful. 
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both the substance and the surface, one may use the object-marking coverb ba3, as in ba3 you2 

wang3 lian3 shang4 mo3 (‘CVobj lotion CVdest face LOC apply’). These sorts of argument structure 

constructions are intricate and are not an automatic consequence of mo3 referring to the gestalt 

notion of transporting some substance from one place to the next — the word cheng2 (‘to ladle’, 

roughly) seems to only allow the substance as the direct object. Knowledge about verb argument 

structures such as these is exactly the kind of grammatical knowledge pursued in this dissertation. 

Closely related to the issue of verb meaning is of course concept development throughout the 

period of language learning, which will most certainly impact the kind of linguistic distinctions 

that a child is able to make. We will return to the implications of both vocabulary and concept 

development for the learning model in the final chapter. 

Acknowledging that comprehension and production both play important roles in 

language learning, this work focuses on the task of learning grammatical constructions through 

an iterative process of trying to better understand language in meaningful communicative 

contexts. The learner, as mentioned, starts out with an initial vocabulary of object labels and 

action labels. Since the construction grammar framework provides a parsimonious representation 

for knowledge of words and phrasal structures (i.e. they are all constructions), the initial 

vocabulary is given to the model in the form of a grammar that consists only of lexical 

constructions.  

To satisfy a technical requirement of the best-fit constructional analyzer, the learner 

model has to assume a few grammatical types that can be the basic units of analysis. Conceptually, 

these are units separated by some word, phrase, or sentence boundaries so that the analyzer has 

natural stopping points in estimating its expectation of the next word. In the starting grammar 

these units are MORPHEME, PHRASE, and CLAUSE. All the words that the learner knows in the 
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with the basic model. The reduction in resolution score is apparent on the seen validation data 

but the performance on the unseen data is largely unaffected. Here is a possible explanation: The 

learner creates lexically-specific constructions to accommodate each piece of training data that 

the learner encounters. These lexically-specific constructions are instrumental in obtaining a good 

resolution score on the seen validation data (which is a subset of the training data that the learner 

just learned about) but are less useful for unseen data. Due to the situation-specific nature of the 

parent-child conversation, a number of these lexically-specific constructions do not get used 

again for a long time after they are learned and are thus purged by the decay operation. This 

causes the resolution score on the seen validation data of the “with decay” model to drop. 

On the other hand, much of the unseen validation data requires generalizations that are 

made across the lexically-specific constructions. Since these generalizations are more recently 

created than the specific ones and are more widely applicable, they are less likley to be removed by 

the decay operation. As a result, the peformance on the unseen validation data is maintained.  

Variation 2: lowering the statistic update discount factor 

An attempt is made to understand how the probability mass given to newly learned 

constructions affect learning. In this second variation, the discount factor γ used in the statistics 

update is reduced while keeping the rest of the settings the same as variation 1. Recall from 

Chapter 6  that γ can be understood in terms of how confident the model is in its ability to learn 

the correct construction during each learning operation. The basic model and variation 1 both use 

γ = 1.0, which corresponds to an extremely confident learner. Here variation γ was reduced to 0.2 

and the decay operation was adjusted correspondingly so that constructions modified over 50 

learning episodes ago which have been used fewer than 0.6 times are purged. This was a necessary 

modification to prevent most compositions from quickly being purged.  
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used with the lower discount factor and were more likely to be purged. It took the learner much 

longer to reach a similar level of performance on either the seen or unseen validation set, although 

it is worth pointing out that this model variation was able to get a better resolution score on the 

unseen data with fewer constructions than the basic model. Using 18 learned categories and 515 

learned concrete constructions, the basic model obtained a resolution score of 0.208. With 17 

learned categories and 313 learned concrete constructions, this variation had a score of 0.237.  

The 17 constructional categories in the grammar learned by the “γ = 0.2” model, shown 

in the lefthand column of Figure 7.23 along with their semantic restrictions, are quite sensible. 

The semantic distinctions made by the categories resembled those made by the argument 

structure constructions in the handwritten adult grammar from Chapter 2. The “γ = 1.0” model 

also settled on 17 (different) constructional categories. They are shown in the righthand column 

of Figure 7.23 for comparison.  

Three observations can be made about the constructional categories in the two learned 

grammars: (1) The two grammars have only 14 categories in common. The categories that are 

unique to each grammar are shaded in gray in the figure. Of the differing categories, those in the 

“γ = 0.2” grammar is semantically more general : CAT9338 (INTRANSITIVE_ACTION) as 

compared to CAT1853 (SIT), and CAT9624 (@Concrete_Entity) as compared to CAT1713 

(@Solid). This may have to do with the fact that the “γ = 0.2” model was able to run for about 4 

times as many iterations and therefore had more chances to form generalizations. (2) The 

categories in the two models are formed in different progressions even though the learning input 

is presented in the same order. (3) Two categories in the “γ = 1.0” grammar, CAT442 and CAT876, 

remained subcases of another category, CAT2496. Recall that when one category A is created as a 

supertype of another category B during learning operations such as generalization or category 
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expansion, the two categories are automatically merged unless the merge results in the breaking of 

semantic guarantees made by category B. The latter scenario is exactly what happened: a number  

�@ = 0.2 �@ = 1.0 

CAT038 
INTRANSITIVE_STATE 

CAT044 
INTRANSITIVE_STATE 

CAT300 
TRANSLATIONAL_SELF_MOTION 

CAT120 
NEGATION 

CAT2007 
SOURCE_PATH_GOAL 

CAT326 
TRANSLATIONAL_SELF_MOTION 

CAT2051 
TRANSLATIONAL_FORCEFUL_MOTION 

CAT393 
TRANSLATIONAL_FORCEFUL_MOTION 

CAT2240 
FORCE_APPLICATION 

CAT442 SUBCASE OF CAT2496 
COMPLEX_TRANSITIVE_MOTOR_ACTION 

CAT2367 
TRANSITIVE_MOTOR_ACTION 

CAT796 
COMMUNICATION 

CAT2679 
INGESTION 

CAT851 
CAUSE_CHANGE 

CAT3017 
CAUSE_CHANGE 

CAT876 SUBCASE OF CAT2496 
FORCE_APPLICATION 

CAT7673 
NEGATION 

CAT1713 
@Solid 

CAT8980 
PERCEPTION 

CAT1814 
PERCEPTION 

CAT9338 
INTRANSITIVE_ACTION 

CAT1853 
SIT 

CAT2933 
SELF_MOTION 

CAT2343 
TWO_PARTICIPANT_STATE 

CAT9469 
TWO_PARTICIPANT_STATE 

CAT2496 
TRANSITIVE_MOTOR_ACTION 

CAT9662 
@Human 

CAT2694 
INGESTION 

CAT9624 
@Concrete_Entity 

CAT3022 
SELF_MOTION 

CAT13409 
UNCATEGORIZED_TRANSITIVE_ACTION 

CAT3136 
@Human 

CAT16302 
COMMUNICATION 

CAT4077 
UNCATEGORIZED_TRANSITIVE_ACTION 

 
Figure 7.23  The 17 constructional categories in the grammar learned by the γ = 0.2 model 
are shown on the left, and the 17 categories in the grammar learned by the γ = 1.0 model are 
shown on the right. The categories that have no equivalent in the other grammar are shaded 
in gray.  
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of constructions were built around CAT876 and set up bindings with the force_supplier and 

force_recipient roles in its FORCE_APPLICATION schema. These two roles are no longer visible if 

the category is to be merged along with CAT442 into CAT2496, which has a meaning of 

TRANSITIVE_MOTOR_ACTION. These kinds of situations were avoided by the “γ = 0.2”model, 

whose slower path to generalization seemed to have allowed the grammar more wiggle room 

before settling. 

Variation 3: perfect context-fitting 

The central hypothesis in this learning model is that the ability of the learner to utilize 

contextually-obtained information is an enabling component of grammar learning. Though this 

hypothesis cannot be tested directly in this model (given that no learning can take place in this 

model without some way of determining the semantic relations between words), questions can 

still be asked about how important the accuracy of contextual inference is to the learner. Do initial 

learning mistakes based on imperfect intention reading hurt the learner in the long run? 

The variation 1 model (i.e., basic + decay) was thus modified to take advantage of the gold 

standard annotation in the seen validation data. Specifically, the model used only the short 

dialogues as training data and the context-fitting process was tweaked to return only cotextual 

references that are consistent with the gold standard annotation. The learning outcome of the 

“perfect-knowledge” model was contrasted with that of model variation 1 re-run using only the 

short dialogues as training input.  

To ground this comparison, the event core argument contextual fit scores of both models 

on the training data using a lexicon-only grammar were obtained. Recall that this score is a 

measure of how well the context-fitter performs. An evaluation experiment is run so that the 

learning model retreived up to 5 best analyses from the analyzer and re-ranked them using either 



172 
 

the unmodified context-fitting process or the goldstandard-based context-fitting process. The top 

analysis (i.e. the one to be used for learning) is scored externally for their contextual fit and the 

respective scores for the two models were: 

 core argument contextual fit
 precision recall f-score 
unmodified context-fitter 0.584 0.557 0.570 
goldstandard context-fitter 0.991 0.905 0.946 

 
Figure 7.24  The accuracy of the basic context fitter in the variation 1 model versus the 
goldstandard context fitter in the “perfect-knowledge” model. It can be very well expected 
that a lot of noise is introduced into the basic learning model. The learning outcomes of the 
two models are compared. 

 

The f-score of the unmodified context fitter was just around 0.570, injecting noise into 

the learning process. A number of spurious constructions can be expected to be hypothesized by 

the learner based on the incorrect information. In contrast, the gold-standard context fitter had 

an f-score close to 0.95. (It was not at 1.0 because of lexical ambiguity: there is nothing that a 

perfect context fitter can do if the correct word sense is not in any of the analyses.)  

We performed 4 iterations over the reduced training corpus (385 utterances, identical to 

the seen validation set) using both models. As expected, the resulting grammar in the variation 1 

model is considerably larger than that in the “perfect-knowledge” model even as the number of 

abstract constructions (structured largely by the schema lattice) remained roughly equal. The 

“perfect-knowledge” model marginally outperformed the variation 1 model in the seen validation 

set but underperformed it in the unseen data. There could be two reasons why the variation 1 

model with the faulty basic context fitter managed to do just as well as the one with perfect 

knowledge. The first is that there were enough “good” compositions created in the learning 

process that over time the good constructions resulted in useful generalizations and erroneous 

ones were unsed and purged. The second is that some of the spurious constructions were still 
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This result speaks to the robustness of the learning model, but two important questions 

about the learning model remain. Firstly, what is the contribution of each learning operation. 

Secondly and more poignantly, the learning results obtained here are far from that expected of a 

competent language user. How does a learner get from here to there? We attempt to address the 

first question in the next chapter using controlled experiments with a miniature artificial 

grammar. The second question is the holy grail of language development research, and this 

dissertation can only offer a discussion of the requirements and roadblocks to answering that 

question in the last chapter. 
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Chapter 8.  

Artificial language learning experiments 

The previous chapter describes two learning experiments using a subset of the Mandarin 

CHILDES corpus. While these experiments provide a strong demonstration of how the learner 

behaves on naturalistic data, the corpus is too big and noisy to systematically study the 

contribution of each learning operation. This chapter describes another set of experiments where 

we examine more closely the behavior of the learner model using a miniature Mandarin-like 

grammar and noiseless data.  

In experiment 3, a simplistic SVO language with argument omission was used and both 

the combination of learning operations and the amount of training data were varied. The first 

manipulation, varying the combinations of learning operations used by the model, directly 

compares the contribution (or detraction, as the case may be) of different operations and 

examines their effect on the size and quality of the grammar eventually obtained. The second 

manipulation, varying the amount of training data, is performed with two objectives. The first 

goal is to understand how the availability of learning data relative to the complexity of the 

language affects learning outcome. The second goal is to better understand the contributions of 

the refinement operations; to push the envelope, so to speak, to see if these operations make more 

of a difference when learning input is scarce. 

In a follow-up experiment, experiment 4, the miniature grammar was made more 

complicated by allowing object fronting and the learning results are compared against those in 

experiment 3. This is to draw attention to the problem both of function particles and more 
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variable word order. This manipulation is a more direct test of the revision operation and is 

suggestive of other possible learning operations, which will be discussed in the final chapter.  

8.1 Experiment 3: Mandarin-like artificial language learning experiment 

Learning data 

The miniature Mandarin Chinese-like language consists of 12 verbs, 20 nouns and no 

other function words (see Figure 8.1). Verbs fall in three semantic classes: intransitive states and 

actions, transitive states and actions and transfer. The noun meanings corresponding roughly to 

four groups: people, food, objects, and pictures. English words are used as the orthography to 

make the examples easily understood by non-Mandarin speakers; the intended corresponding 

Chinese words are provided in the figure for reference. No efforts were put into eliminating 

phonological cues to word classes or accounting for differences in frequencies of the words or 

concepts in real life as these are irrelevant to the current computational model. These words and 

their corresponding meaning are represented in ECG as constructions and schemas. Referent 

descriptors (RDs) are not used in the noun meanings to keep the grammar simple. A few 

representative schemas and constructions are shown in Figure 8.2. 

The training and validation data in this language were obtained by first generating all the 

semantically plausible situational contexts using the available processes and entities, creating a 

total of 860 unique scenes. Example semantic restrictions include animacy requirements for 

processes such as SLEEP and FIND, disallowing reflexives in the transitive scenes, and an object 

type constraint (excluding pictures) on throwable items. Each scene is paired with an utterance in 

the appropriate intransitive / transitive / ditransitive frame as described by these three rules 

(which have the same semantics as English or Mandarin): 
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verbs  nouns 
orth meaning Chinese   orth meaning Chinese 
pretty Pretty mei3  I @Xixi wo3 
    You @Human ni3 
sleep Sleep shui4  Aunt @Aunt a1yi2 
come Come lai2  haoyu @Haoyu hao2yu3 
fall Fall dao3  dad @Father ba1 
       
       
like Like xi3huan1  rice @Rice fan4 
    apple @Apple ping2guo3 
eat Eat chi4  fish @Fish yu3 
disturb Disturb nong4  meat @Meat rou4 
throw Throw reng1  veggies @Vegetables cai4 
take Take na2     
find Find zhao3     
watch Watch kan4  ball @Ball qiu2 
    book @Book shu1 
    pen @Pen bi3 
give Give gei3  car @Car che1 
    stool @Stepstool ban3deng4 
    bear @Bear xiong2 
    horse @Horse ma3 
    giraffe @Giraffe lu4 
       
       
    stars @Stars xing1xing1 
    moon @Moon yue4liang4 

 
Figure 8.1  The miniature language consists of 12 verbs and 20 nouns. Their meanings are 
represented as schemas and ontology types, respectively. The verbs on the left fall in three 
semantic groups: intransitive states/actions, transitive states/actions, and transfer. The finer 
distinctions between types of processes are shown in the process lattice in the next figure. The 
nouns on the right fall in four semantic groups: human nouns, food names, object names, 
depicted objects. 

 

S -> N Vintran 

S -> N Vtran N 

S -> N Vditran N N 

Arguments in each utterance are omitted with the following probabilities: the pre-verbal 

noun at 0.7, the first post-verbal noun at 0.4, and the second post-verbal noun (in ditransitives) at 



178 
 

0.6. This produces 860 utterances with distinct situational meanings; utterances may have the 

same form due to omission. The miniature corpus is annotated with events, speech acts, and gold 

standard the same way as the CHILDES corpus used in the experiments in Chapter 7. A sample of 

the generated sentences is shown in Figure 8.3. 

 

Schema  PROCESS 
 roles 
  protagonist: @Entity 

  

Schema  STATE 
 subcase  of  Process 

 Schema  ACTION 
 subcase of PROCESS 

Schema  INTRANSITIVE_PROCESS 
 subcase  of  Process 

 Schema  TWO_PARTICIPANT_PROCESS 
 subcase  of  PROCESS 
 roles 
  protagonist2: @Entity 

Schema  INTRANSITIVE_STATE 
 subcase  of  STATE, 
 INTRANSITIVE_PROCESS 

 Schema  TRANSITIVE_ACTION 
 subcase  of  ACTION, 
 TWO_PARTICIPANT_PROCESS 

Schema  PRETTY 
 subcase  of  INTRANSITIVE_STATE 

 Schema  TAKE 
 subcase  of  TRANSITIVE_ACTION 

construction  PRETTY 
 subcase  of  MORPHEME 
 form 
  constraints 
   self.f.orth <-- "pretty" 
 meaning : Pretty 

 construction  TAKE 
 subcase  of  MORPHEME 
 form 
  constraints 
   self.f.orth <-- "take" 
 meaning : TAKE 

 
Figure 8.2  A partial view of the process hierarchy and two words, pretty and 
take, in the miniature language.  

 

A sample of the sentences in the miniature language 
 
ball pretty 
sleep 
like rice 
I like fish 

Haoyu disturb horse 
throw 
Aunt throw 
take car 

find fish 
give car 
I give 
give 

 
Figure 8.3  Example of sentences in the miniature language. Each of the sentence here has a 
unique associated situational context. An utterance such as take car may be observed twice in 
the data but the takers in the two scenes are different. 
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Training procedure 

To verify the integrity of the data , a randomly subset of the resulting sentences were 

tested on the analyzer using a handwritten grammar containing only the three subject verb phrase 

constructions. These sentences were correctly analyzed as long as (1) each construction poses 

semantic limitations on the verbs and (2) arguments were allowed to be omitted at the specified 

rate38, 39. This establishes the ceiling of the resolution score measure (see Section 7.2) at 1.0 and the 

floor of the average number of roots per analysis measure (see Section 7.2) at 1.0. 

It is important to keep in mind that even though this miniature grammar is created using 

3 basic syntactic frames, in principle even without constructions that allow omission, 14 clausal 

constructions are sufficient to analyze the data (2 for the two omission patterns in the intransitive 

frame, 4 for the transitive frame and 8 for the ditransitive frame). What argument omission does 

is to allow for compactness and parsimony in the grammar.  

A validation set was created by randomly selecting 20% of the 860 valid sentences. The 

remaining 688 sentences were available as training data in a set of experimental runs. The first 

manipulation was the size of the training corpus: percentages (5%, 25%, 50%, and 100%) of the 

688 sentences were randomly selected as the training set. The second manipulation was the 

combination of learning operations used:  

I. composition only 

II. composition + generalization 

III. composition + generalization + decay 
                                                           
38 Additional settings: the analyzer has to be forced to return single-rooted parses and individual morphemes must be 
disallowed from being the root of an analysis. Otherwise the analyzer in some occasions choose instead multi-rooted 
parses over omitting multiple arguments, or choose a single verb as the final analysis. These problems are consistent 
with those results achieved in [Bryant, 2008].  
 
39 Only one sentence, give book, generated an incorrect analysis. Without semantic constraints on the schema roles of 
give, the book was analyzed as the recipient rather than the theme.  
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IV. composition + generalization + category expansion + decay 

V. composition + generalization + revision + decay 

VI. composition + generalization + omission + decay 

VII. composition + generalization + category expansion + revision + omission + decay 

Variation I is the absolute minimum for the learner. Variation II has just the basic 

composition and generalization mechanisms. Variation III introduces the decay mechanism, 

which we found from Section 7.3 to be useful in keeping the grammar size under control. This is 

what we will be calling the “no refinement” model. Variations IV through VII are the “refinement” 

models with different combinations of refinement operations. Variation VII is the same as the 

basic model introduced in the last chapter with all operations enabled. Category merges triggered 

by generalization and category expansion are allowed in all variations.  

The total of 28 model variations were each run twice with two different randomly selected 

subset of the training corpus with a maximum of 6 iterations. The results across the two runs are 

averaged in the quantitative results reported here. The statistic update discount factor γ  was set to 

0.5, noncompositional meaning or maximally-connected compositions were disabled, and a 

uniform semantic model was used. The learning model obtained up to 5 best analyses from the 

best-fit analyzer using a multi-root penalty of -20 (in log probability scale). Since the primary 

interest here is to examine the contribution of each learning operation, the gold standard context 

fitter was used to eliminate noise just as in the “perfect knowledge” variation of the basic model 

(variation 3) from the previous chapter. 

Quantitative results 

We will begin with the results of using all available training data, that is, a training set size 

of 688 in contrast to a validation set size of 172. The resolution scores of the seven learning 
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operation combinations are reported in Figure 8.4. As expected, the variation I model with only 

the composition operation does not generalize very well to the validation set. The best core 

argument resolution results using this dataset is obtained by using composition, generalization, 

and decay in conjunction with constituent omission, although it does take the model a few 

iterations longer to reach that level of performance. In terms of both the resolution score and the 

average number of root per analysis measures, however, all the model variations that allow 

generalization perform roughly equally well. 

 I II III IV V VI VII 

iter 
Comp Comp+Gen CG+Dec CGD +Exp CGD+Rev CGD +Oms CGD+

Exp+Rev+Oms 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.385 0.836 0.836 0.826 0.849 0.766 0.762 
2 0.388 0.854 0.851 0.836 0.843 0.828 0.785 
3 0.398 0.855 0.847 0.829 0.848 0.890 0.791 
4 0.395 0.851 0.849 0.825 0.845 0.918 0.806 
5 0.392 0.845 0.851 0.836 0.855 0.914 0.807 
6 0.395 0.851 0.856 0.839 0.851* 0.907 0.807* 

 
Figure 8.4  The resolution score obtained over the course of 6 iterations using 100% of the 
training data. The best scores were achieved by variation VI and the worst by variation I, 
both highlighted in bold. The seven different combinations are as described on page 179, 
abbreviated here as: Comp = Composition, Comp Gen (CG) = Composition + Generalization, 
CG Dec (CGD) = Composition + Generalization + Decay, Exp = Category Expansion, Rev = 
Construction Revision, Oms = Constituent Omission. 

 
* run ended early40 and the score from the last learning episode is reported instead. The star 
denotes shortened runs in subsequent tables. 

  

                                                           
40 An analysis may be returned by the analyzer even when some of the RDs have no existing compatible referents — this 
is by design because language may introduce new referents. Consequently, it is sometimes possible that none of the top 
analyses returned by the analyzer are compatible with context. These incompatibilities are caught by the gold-standard 
fitter (but not the basic fitter) and the learning episode is skipped as a result.  
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 I II III IV V VI VII 

iter 
Comp Comp+Gen CG+Dec CGD +Exp CGD+Rev CGD +Oms CGD+

Exp+Rev+Oms 

0 2.01 2.01 2.01 2.01 2.01 2.01 2.01 
1 1.34 1.09 1.13 1.03 1.18 1.10 1.06 
2 1.32 1.09 1.11 1.03 1.10 1.10 1.06 
3 1.32 1.09 1.11 1.03 1.10 1.10 1.06 
4 1.32 1.09 1.11 1.03 1.09 1.10 1.06 
5 1.32 1.09 1.11 1.03 1.09 1.10 1.06 
6 1.32 1.09 1.11 1.03 1.09* 1.10 1.06* 

 
Figure 8.5  The average number of roots per analysis over the course of 6 iterations using 
100% of the training data. The most cohesive analyses were achieved by variation IV and the 
least by variation I, highlighted in bold. 

 
Looking at the number of concrete constructions learned across the 7 different 

combinations of learning operation using all the available training data, it is immediately 

apparent that variation I led to an order of magnitude more constructions than any other 

combinations that include generalization. However, as previously discussed, only 3 constructions 

are strictly necessary to analyze the data (14 if omission is not allowed). All model variations 

learned many more constructions than are strictly necessary to analyze the data, reflecting (1) 

idiosyncrasies in the data (including semantic restrictions on the core arguments of processes), (2) 

a conservative learning approach that generalizes only as much as the data warrants, and (3) 

competition between the specific and general constructions that led to the preservation of a large 

number of specific constructions. 

No constructional categories are created by the composition-only model, and as expected, 

category expansion led to bigger and therefore fewer categories. The seven categories learned by 

the composition + generalization model are (semantically): TRANSITIVE_ACTION, 

INTRANSITIVE_ACTION, @Object, @Object, @Object, @Inanimate, @Inanimate. These 

categories have overlapping members but their constructional contexts are distributed differently. 

On the other hand, with category expansion, the learned four constructional categories are 
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(semantically): TRANSITIVE_ACTION, INTRANSITIVE_ACTION, @Object, and @Inanimate. In an 

alternate run with the same setting but a differently chosen training set, the category of inanimate 

nouns merged with the category of object nouns. 

 I II III IV V VI VII 

iter 
Comp Comp+Gen CG+Dec CGD +Exp CGD+Rev CGD +Oms CGD+

Exp+Rev+Oms 

0 0 0 0 0 0 0 0 
1 558 164 61 76.5 64.5 68 71 
2 607 163 56.5 76.5 63.5 75 89.5 
3 607 163 56.5 76.5 63.5 77 85 
4 607 163 56.5 76.5 63.5 76.5 83 
5 607 163 56.5 76.5 63.5 77.5 84 
6 607 163 56.5 76.5 63.5 77.5* 85.5* 

 
Figure 8.6  The number of learned concrete constructions after 6 iterations using 100% of 
the training data. The largest grammar results from variation I and the smallest from 
variation III, highlighted in bold. 
 

 I II III IV V VI VII 

iter 
Comp Comp+Gen CG+Dec CGD +Exp CGD+Rev CGD +Oms CGD+

Exp+Rev+Oms 

0 0 0 0 0 0 0 0 
1 0 7 5.5 3.5 5 4.5 3.5 
2 0 7 5 3.5 5 4.5 3.5 
3 0 7 5 3.5 5 4.5 3.5 
4 0 7 5 3.5 5 4.5 3.5 
5 0 7 5 3.5 5 4.5 3.5 
6 0 7 5 3.5 5 4.5* 3.5* 

 
Figure 8.7  The number of learned constructional categories after 6 iterations using 100% of 
the training data. Variation I results in no constructional categories, and the most number of 
categories are learned by variation II, highlighted in bold. 

 

The per-iteration results obscure the more interesting changes in grammar size that 

happened within the first two learning iterations, which are plotted in Figure 8.8 and Figure 8.9. 

For the composition-only model, the number of learned concrete constructions increased linearly 

with the number of utterances encountered in the first iteration (slope = 1.05), and increased 

linearly but at a much slower pace during the second iteration (slope = 0.07). This reflects the fact 
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that constructions learned in the first iteration are used to analyze utterances in the second 

iteration such that additional compositions can be performed.  

 
Figure 8.8  The number of learned concrete constructions as a function of the learning 
episodes. 

 

 
Figure 8.9  The number of learned categories as a function of learning episodes. 
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As for the number of constructional categories, model variations II, III, V, and VI 

(Comp+Gen, CG+Dec, CGD+Rev and CGD +Oms) all overshot before settling at the their final 

set of categories41. From a modeling standpoint, it is worth noting that even though all of the 

variations except for composition-only perform similarly well, the variations with the refinement 

operations were able to do so at less than half the grammar size of the Comp+Gen variation. This 

is an important consideration in light of the long-term memory demands that the grammar 

storage may pose on the learner. 

The results reported so far are from using 100% of the 688 examples in the training data. 

The results from the second, training set size manipulation are presented here. The same seven 

variations of the model were trained on 50% (344), 25% (172) and 5% (34) of the available 

learning corpus and tested on a validation set of size 172. By both the core argument resolution 

measure (Figure 8.10) and the average number of roots per analysis measure (Figure 8.11), the 

best-performing variations in the 100% and the 50% conditions are largely comparable even as 

there are slight drop-offs in the other variations. However, the degradation in resolution score is 

much more noticeable between the 50% and the 25% conditions, and between the 25% and the 

5% conditions.  

 I II III IV V VI VII 

% data 
Comp Comp+Gen CG+Dec CGD +Exp CGD+Rev CGD +Oms CGD+

Exp+Rev+Oms 

100% 0.395 0.847 0.846 0.837 0.908 0.848 0.807 
50% 0.344 0.805 0.847 0.795 0.905 0.814 0.751 
25% 0.313 0.764 0.762 0.787 0.705 0.783 0.787 

5% 0.194 0.350 0.390 0.565 0.344 0.466 0.570
 
Figure 8.10  The resolution score obtained at the end of 6 iterations for varying amounts of 
training data. The best performing model in each training set size condition is highlighted in 
bold. 

 
                                                           
41 Even though decay is not enabled in the Comp+Gen variation, category merges triggered by constructional 
generalization are allowed to happen, and in the process ridding the grammar of excess categories. 
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 I II III IV V VI VII 

% data 
Comp Comp+Gen CG+Dec CGD +Exp CGD+Rev CGD +Oms CGD+

Exp+Rev+Oms 

100% 1.32 1.09 1.11 1.03 1.09 1.10 1.06 
50% 1.46 1.14 1.14 1.05 1.19 1.13 1.05
25% 1.56 1.20 1.19 1.07 1.16 1.19 1.04

5% 1.81 1.66 1.70 1.31 1.69 1.65 1.24
 
Figure 8.11  The average number of roots per analysis obtained at the end of 6 iterations for 
varying amounts of training data. The best performing model in each training set size 
condition is highlighted in bold. 

 

The basic finding here is not news. Having large corpora helps. The somewhat surprising 

result is that the 5% model did as well as it did (resolution score = 0.570) using a combination of 

composition, generalization, revision, omission and decay. Figure 8.12 breaks down the difference 

in resolution scores between all the “refinement” models IV-VII and the “no refinement” baseline 

of variation III. Whereas the refinement operations did not help or even hurt when there were 

large amounts of data (possibly due to overfitting), they were generally helpful when the data was 

very sparse. Furthermore, the learning in variation VII (all learning operations) using 5% of the 

training data resulted in 45 learned concrete constructions and 3 learned abstract constructions, 

as compared to 607 learned concrete constructions and 0 learned abstract constructions in 

variation I (composition only) using 100% of the data. This is impressive considering that the 5% 

variation VII model also did better than the 100% variation I model (0.570 compared to 0.395). 

The average improvement of the refinement models is also greatest when there is the least 

amount of training data. Before we can extrapolate from these results and make conclusions 

about the difficulties in learning from real Mandarin Chinese data, however, we would like to 

look at how these operations scale with linguistic complexity of the language. For this we turn to 

another set of experiments using a modified and more complex miniature grammar. 
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 IV V VI VII Avg 

% data 
CGD +Exp CGD+Rev CGD +Oms CGD+ 

Exp+Rev+Oms 

100% -0.009 0.002 0.063 -0.038 0.005 
50% -0.052 -0.034 0.058 -0.096 -0.031 
25% 0.025 0.021 -0.057 0.025 0.004 

5% 0.175 0.076 -0.045 0.181 0.097 
 
Figure 8.12  The difference in resolution score of the “refinement” models from the “no 
refinement” baseline. The average improvements of the refinment models are also shown. 
The most and least improvement from the refinement models, as well as the most average 
improvement, are highlighted in bold. 

 

8.2 Experiment 4: Mandarin-like artificial language with object fronting 

Learning data 

To start getting at what effect linguistic complexity has on the learning model, here we 

make a slight modification to the miniature grammar introduced in Section 8.1. In this version a 

new particle ba3 is introduced as an object marker (just as in the Mandarin Chinese). Using this 

coverb marker an object can be moved to a preverbal position. In the transitive sentences, the 

fronted object is semantically the patient. In the ditransitive sentences, the fronted object is 

semantically the theme. As a result, disregarding argument omission, there can be two ways to 

construct a transitive sentence and two ways to construct a ditransitive sentence in this modified 

miniature language (with the corresponding semantic arguments in parenthesis): 

S -> N Vintran (agent) 

S -> N Vtran N  (agent patient) 

S -> N Vditran N N (giver recipient theme) 

S -> N ba3 N Vtran  (agent patient) 

S -> N ba3 N Vditran N (giver theme recipient) 

With the exception of the additional lexical construction BA3 (with empty meaning), the 

same vocabulary and semantic schemas from the original miniature language are used here and 

the same 860 situational contexts are reused here. The arguments in this miniature language 
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corpus are generated using a slightly different procedure. A sentence with all arguments present is 

generated for each situational context. For the agent/giver constituent, P(expressed) = 0.3 and 

P(local | expressed) = 1.0. For the recipient constituent, P(expressed) = 0.4 and P(local | 

expressed) = 1.0. These are unchanged from the last miniature grammar. 

The patient in the transitive frame and the theme in the ditransitive frame are the ones 

which can be fronted, and the data generation is a bit tricky. For the patient in the transitive frame, 

P(expressed) = 0.4 and P(local | expressed) = 0.65. For the theme in the ditransitive frame, 

fronting of the theme is only allowed when the recipient is also expressed, consistent with 

conventions in Mandarin Chinese42. This dependency of one constituent’s locality on another 

constituent is not well captured by the mathematical model in the current analyzer. Nonetheless, 

the theme in the ditransitive scene is generated with P(expressedtheme) = 0.6, and if the fronting 

conditions are met (i.e. the recipient is also expressed), P(localtheme | expressedtheme) = 0.35. A 

few examples of the generated sentences that have object fronting are shown in Figure 8.13. The 

rest of the generated sentences look just like those shown in Figure 8.3. 

 

A sample of sentences with fronted objects in the modified miniature 
language 
 
ba3 Aunt like 
ba3 Dad disturb 
HaoYu ba3 I disturb 

ba3 car throw 
ba3 veggies find 
you ba3 stool find 

ba3 bear give you 
Haoyu ba3 rice give I 
Dad ba3 bear give Haoyu 

 
Figure 8.13  Example of sentences in the modified miniature language.  

  

                                                           
42 Certainly, in Mandarin Chinese there are other semantic restrictions and implications of fronting. One has to do with 
a notion of affectedness / disposal associated with the direct object (Li & Thompson, 1981). Another is the information 
structure of the sentence. Neither are taken into account in this miniature grammar to keep things simple.  
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Training procedure 

The training procedure for this experiment is exactly the same as in experiment 3. The 

same two learning operation combination and training set size manipulations were used.  

Qualitative results 

Since revision is enabled only in variation V and VII, those are the only two sets of results 

where learned constructions with a BA3 constituent are expected. This was indeed the case. We 

focus on these constructions since the fronted object sentences make up the primary difference 

between this experiment and experiment 3. Figure 8.14 shows a sample of the ba3-using 

constructions learned by the variation V model using the same shorthand as in Chapter 7. 

Resulting Construction Meaning Gloss + Contextual Restriction 

BA3-CAT1262-CAT154-c1066  
CAT1262: inanimate nouns  
   (excluding pictures) 
CAT154: transitive action verbs 

<Human> - TRANSITIVE_ACTION - 

Inanimate 

AUNT-BA3-CAT2149-LIKE-c2151 
CAT2149: object nouns 

Aunt - LIKE - Object 

BA3-CAT1607-GIVE-CAT2149-c2585 
CAT1607: inanimate nouns 
CAT2149: object nouns 

<Human> - GIVE - Human - Inanimate 

BA3-DAD-CAT154 
CAT154: transitive action verbs 

<Human> - DISTURB - Dad 

 
Figure 8.14  Example s of constructions with BA3  learned by model variation V. 

 

Once both revision and omission are thrown into the mix in the variation VII model, 

the constructions learned are unexpected at best and erroneous at worst. Figure 8.15 shows 

two of these constructions from each run of the model. Often the BA3 particle is learned to be 

optional while the direct object it marks is learned to be omissible. This happens an utterance 

with just the main verb is contrasted with a specific construction with a fronted object, and the 

learner marks the non-core BA3 optional and the core object omissible. 
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Resulting Construction Meaning Gloss + Contextual Restriction 

[BA3]-[CAT087]-LIKE-c766 
CAT087: object nouns 

<Human> - LIKE - Object 

[BA3]-[CAT087]-CAT015-c766 
CAT087: object nouns 
CAT015: transitive action verbs 

<Human> - TRANSITIVE_ACTION - Object 

 

Resulting Construction Meaning Gloss + Contextual Restriction 

[HAOYU]-[BA3]-[CAT020]-CAT063-c943 
CAT020: object nouns 
CAT063: transitive action verbs 

Haoyu - TRANSITIVE_ACTION - Object 

[CAT020]-[BA3]-[CAT020]-CAT063-c976 
CAT020: object nouns 
CAT063: transitive action verbs 

Object - TRANSITIVE_ACTION - Object 

 
Figure 8.15  Examples of constructions with BA3  learned by the two runs using model 
variation VII. 

 

Quantitative results 

The quantitative results confirm the idea that this grammar is more difficult for the 

model to learn than the grammar in Experiment 3. Figure 8.16 and Figure 8.17 show the 

performance of the models over the course of 6 training iterations on the modified grammar in 

contrast with the final results obtained by the same models in Experiment 3. The current results 

are worse across the board. The difference between scores obtained by the “no refinement” 

variation II and the scores obtained by the “refinement” variations IV through VII confirms the 

suspicion that a number of unwarranted generalizations are made with respect to omissible and 

optional arguments (as demonstrated in the qualitative results). This is also reflected in the 

reduced average improvements of the “refinement” models over the “no refinement” baselines 

compared to Experiment 3, as shown in Figure 8.18.  
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These results underscore how intuitive learning principles can sometimes produce 

unexpected or even incorrect results when used on a large scale. A separate set of data analyses 

was conducted to examine the likely causes. The 4 learned grammars from the two runs each of  

variations VI (CGD + Oms) and VII (CGD + Exp + Rev + Oms) were used to analyze all 860 

sentences in this miniature grammar corpus. To gauge the amount of ambiguity in the grammars, 

the analyzer was asked to return a maximum of 15 analyses for each sentence in the corpus. If 

there is little ambiguity in the grammar, the average number of returned analysis for each 

sentence is expected to be close to 3 or 4 (1 analysis for the unambiguous single-rooted analysis 

and several much worse multi-rooted analyses). The average number of returned analyses per 

utterance using the varation VI grammars was 12.75, whereas the average number of returned 

analyses per utterance using the varation VII grammars was 13.00. This suggests that the 

combination of additional learning operations may have created constructions that are 

individually reasonable, but as a set added so much ambiguity in the grammar that they 

undermine the analyzer’s ability to pick out the correct analysis. 

 I II III IV V VI VII 

iter 
Comp Comp+Gen CG+Dec CGD +Exp CGD+Rev CGD +Oms CGD+

Exp+Rev+Oms 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
1 0.335 0.809 0.786 0.770 0.794 0.694 0.738 
2 0.333 0.821 0.795 0.780 0.807 0.765 0.753 
3 0.330 0.823 0.787 0.787 0.813 0.833 0.758 
4 0.330 0.819 0.790 0.785 0.797 0.858 0.749 
5 0.327 0.818 0.787 0.787 0.802 0.810 0.753 
6 0.330 0.821 0.795 0.781 0.790 0.867* 0.747* 

        
Exp 3 0.395 0.847 0.846 0.837 0.908 0.848 0.807 
 
Figure 8.16  The resolution score obtained over the course of 6 iterations using 100% of the 
training data. The best scores were achieved by variation VI and the worst by variation I, 
both highlighted in bold. These are contrasted by the results obtained on the simpler 
grammar in Experiment 3.  
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 I II III IV V VI VII

iter 
Comp Comp+Gen CG+Dec CGD +Exp CGD+Rev CGD +Oms CGD+

Exp+Rev+Oms 

0 2.18 2.18 2.18 2.18 2.18 2.18 2.18
1 1.63 1.31 1.32 1.22 1.22 1.45 1.13
2 1.63 1.30 1.29 1.20 1.20 1.42 1.10
3 1.63 1.30 1.29 1.20 1.19 1.37 1.10
4 1.63 1.30 1.29 1.20 1.19 1.36 1.10
5 1.63 1.30 1.29 1.20 1.19 1.36 1.10
6 1.63 1.30 1.29 1.20 1.19 1.378* 1.14*

       
Exp 3 1.32 1.09 1.11 1.03 1.09 1.10 1.06 
 
Figure 8.17  The average number of roots per analysis over the course of 6 iterations using 
100% of the training data. The most cohesive analyses were achieved by variation VII and the 
least by variation I, highlighted in bold. These are contrasted by the results obtained on the 
simpler grammar in Experiment 3. 

 

 IV V VI VII Avg  Exp 3 
Avg 

% data 
CGD +Exp CGD+Rev CGD +Oms CGD+

Exp+Rev+Oms 
  

100% 0.000 0.018 0.079 -0.041 0.014  0.005 
50% -0.002 0.004 -0.082 0.050 -0.007  -0.031 
25% -0.042 0.008 0.029 -0.026 -0.008  0.004 

5% 0.161 0.035 -0.032 0.099 0.066  0.097 
 
Figure 8.18  The difference in resolution score of the “refinement” models from the “no 
refinement” baseline  in the more complex grammar. The average improvements of the 
refinment models are also shown. The most and least improvement from the refinement 
models, as well as the most average improvement, are highlighted in bold. These are 
contrasted with results obtained on the simpler grammar in Experiment 3. 

 

The rest of the behavioral patterns of the model discussed in Section 8.1 hold in this 

experiment and the discussion of those results are therefore omitted from this dissertation. These 

two experiments represent a first step in understanding the behavior of a complex learning system. 

The final chapter discusses more approaches of combining the power of using naturalistic data 

and miniature languages in this computational framework.  
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Chapter 9.  

Discussion and Future Directions 

At the beginning of this dissertation, the following question was posed: if natural 

languages are too complex to be learned by blind associations, what is the nature of the innate 

learning biases that human learners are endowed with such that they almost always learn their 

native languages successfully? 

This dissertation explored structural learning biases in the form of  

€ a child learner’s understanding that forms (words and phrases) have referential 

meaning and her desire to make sense of the utterances, 

€ situational information that informs the possible interpretations of utterances, and 

€ embodied semantic knowledge that establishes semantic coherence in learned 

constructions and guides the generalization of constructions 

All of these structural biases are extremely effective in reducing the hypothesis space for 

new constructions, which are created in the learning model through a combination of utterance-

dependent and utterance-independent learning operations. The utterance-dependent learning 

operations, which directly utilize the output of the best-fit constructional analyzer, include the 

basic operation composition and the refinement operations construction revision and constituent 

omission. The utterance-independent learning operations, which manipulate existing 

constructions in the grammar, include the basic generalization operation and the refinement 

operations category merge, category expansion, and decay. The result is a comprehension-driven 
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learning framework that simultaneously learns both grammatical structures and statistical 

parameters on these grammatical structures.  

To evaluate a cognitive modeling framework for grammar learning such as this, four 

criteria must be met. First, the model must display the same general learning tendencies as a child 

learner. Second, the model must be able to learn correctly under a variety of circumstances. Third, 

the model must have clear assumptions and systematic model parameters. Forth, the model 

should be well-motivated in implementation such that it is extendible beyond its initial modeling 

goals.  

The rest of this chapter will address each of these criteria in turn. Section 9.1 answers to 

the first two criteria by looking across the results from the four learning experiments with 

naturalistic data as well as artificial languages. Section 9.2 takes up the issue of modeling 

assumptions and model parameters by looking at constructional generalization as a case study. 

Section 9.3 looks at two additional kinds of constructions that have not been the primary focus of 

the model — constructions with non-compositional meaning and function morphemes — and 

discusses how the model can be reasonably extended to model the learning thereof.  

Finally, as any good thesis should, Section 9.4 offers some wild speculations about what 

this dissertation might have to do with a host of related issues, such as word learning, concept 

learning, morphosyntactic development, and the general problem of using situational context for 

language understanding and learning.  
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9.1 General discussion of the natural language and artificial language 

experiments  

Learning sequences performed by the model discussed in Section 7.3 give assurance that 

the model is making reasonable learning choices given a corpus of real parent-child interaction. 

Among the learned constructions are: 

€ a proto NP-VP construction with a meaning of an INTRANSITIVE_STATE, where 

the NP-like constituent is a category of words that refer to @Solids and has a 

probability of 0.46 of being expressed, and the VP-like constituent is a category of 

INTRANSITIVE_STATE words. 

€ a proto VP-NP construction with a meaning of FORCE_APPLICATION, where the 

VP-like constituent is a category of FORCE_APPLICATION words and the NP-like 

constituent is the same category of words that refer to @Solids as the above. 

€ another proto VP-NP construction denoting a TWO_PARTICIPANT_STATE, where 

the VP-like constituent is a category of stative relation verbs and the NP-like 

constituent is a category of human-referring words and has a probability of 0.37 

of being expressed. There are also other more lexically-specific constructions 

with a meaning of TWO_PARTICIPANT_STATE that have 3 constituents. 

€ a proto NEG-VP construction with a central scene of INGESTION, where the 

negation word is optionally expressed with a probability of 0.27 and the VP-like 

constituent is a category of INGESTION words.  

Additionally, the model also learned subcategorization preferences for each of these 

constructions. For example, in the intransitive NP-VP-like construction, the word huai4 (broken) 

was used 63.6% of the time (14 out of 22). The less frequently used verbs are hao3 (good), xiao3 



196 
 

(small), and hao3wanr2 (amusing). This is consistent with the work of Wonnacott et al.(2008) 

which suggests that adult learners learn probabilistic subcategorization constraints. 

These relatively general constructions along with more specific ones give the learner 

tremendous leverage in understanding new utterances, drawing out not only their phrasal 

structures but also their semantic bindings. In terms of the macro behavior, the comprehension-

driven grammar learning model does what it sets out to do: to understand each piece of learning 

input as best it can based on its current grammar and the situational context, and compose a new 

construction if there are form-meaning mappings not captured by any constructions in the 

current grammar. As such we expect the number of composition operations to decrease over time 

as the learner’s grammar gains coverage, and this is exactly what we see in the experiments. Figure 

9.1 shows the number of composition and generalization operations performed per 50 episode 

intervals over the course of 6 iterations over the miniature language data from Experiments 3 and 

4 with all learning operations enabled. As expected, there is a dramatic decline in the frequencies 

of these operations within the first iteration, and they slowly taper off in the remaining iterations 

as the learner settles on a grammar. 

Figure 9.2 shows the same statistics for the Mandarin Chinese corpus from the “no decay” 

model in Experiment 1 and the “with decay” model in Experiment 2. Since neither experiment 

was able to run to the completion of the first iteration43, the graphs show as many operations as 

the learner was able to perform. The number of composition operations shows a slight downward 

trend over time but the number of generalization operations is uncorrelated with the number of 

learning episodes, which is reasonable given that the Mandarin Chinese language is complex, the 

training data is sparse, the learner is conservative and is only on the first iteration of the data. 

                                                           
43  due to an out-of-memory error during parsing, the “without decay” model only got halfway through the first 
iteration and the “with decay” model got through to about 80%.  
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The quantitative results, on the other hand, are mixed: All variations of the model that 

had generalization capacity obtained satisfactory results on the unseen data in the miniature 

artificial languages in Experiments 3 and 4. In particular, Experiment 3 showed differentiation 

between combinations of learning operations on varying amounts of learning input. In 

Experiment 3, the refinement operations contributed more to the learner’s ability to cope with 

unseen data when the amount of training data is limited, but the size of their effects seem to 

diminish when the miniature language gets more complicated in Experiment 4. On the other 

hand, in Experiments 1 and 2 the learned grammars from the naturalistic Mandarin Chinese data 

generalized somewhat to the unseen data but not particularly well.  

The most  likely reason why the model’s success with miniature languages does not 

translate well to real languages is the scarcity of training data in comparison to the linguistic 

complexity of the corpus. By design, at 100% of the training data, one iteration of learning in 

Experiments 3 and 4 covered 80% of the 860 possible sentences allowed by the grammar. The 

ability of the learner to rapidly generalize based on experiencing many instances of the same 

construction is reflected in the steep drop-off in number of composition operations within the 

first iteration in Figure 9.1. (Do recall, however, that the performance of the learner degraded 

when the more complex miniature language in Experiment 4 was tested on the learner.) 

By contrast, this kind of steep drop-off within the first iteration was not observed in 

Experiments 3 and 4, suggesting that the learner encounters data from different corners of the 

grammar throughout the first iteration. The refinement operations also inject into the grammar 

noise which normally goes away when the learner encounters more data. To be clear, some of the 

constructions proposed by these operations are correct, as evidenced by the learner’s ability to 
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achieve comparable quantitative results with far fewer constructions. However, sorting out the 

good refinements from the bad refinements is no easy task, and in the case of Experiments 1 and 2, 

there was not enough data to prune a sizable portion of the bad constructions and they ended up 

stealing probability mass away from the good constructions, causing the analyzer to return 

incorrect analyses. 

9.2 Constructional generalization 

There is no doubt that the ability to abstract away from the learning input is key to the 

linguistic productivity of a child learner. This helps her to both understand and produce 

utterances that she has never encountered before. As reviewed in Chapter 1, there is still a lot that 

is unknown about when and how children generalize. This dissertation is an attempt to lay out in 

precise terms some of the sources of information and computational processes that go into the 

formation of general constructions. One particular topic worth discussing is the ongoing 

competition between specific constructions and their generalizations, and the path the model 

takes to settle on the generalizations it makes. 

Specific versus general constructions 

How early children gain access to general argument structure constructions is a highly 

debated topic and consensus has yet to be reached in the language development community 

(Abbot-Smith et al., 2004; Akhtar & Tomasello, 1996; 1997; Conwell & Demuth, 2007; Fernandes, 

Marcus, Di Nubila & Vouloumanos, 2006; Fisher, 2002; Hirsh-Pasek, Golinkoff & Naigles, 1996b; 

Tomasello, 2000). There is agreement, however, that qualitative differences exist between what 

children are able to do with novel verbs in comprehension and production tasks at a younger and 

an older age. The current work contributes to this ongoing discussion in emphasizing that 
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generalization is not an all-or-nothing process. The model presented here is constructed in such a 

way that lexically-specific constructions emerge before generalizations, but the pace and scope of 

generalization in the model is dependent on a number of factors. One such factor is demonstrated 

in variation II of the basic model (Section 7.2) where the statistic update discount factor �@ was set 

to 0.2 instead of 1.0. The pace of generalization slowed down dramatically since the learner, in a 

sense, did not trust the generalizations as much and was not eager to use them, which in turned 

caused many of the generalizations to be lost to decay.  

Additionally, the scope of generalization vis-à-vis the size of constructional categories 

also grows larger over the course of learning. Of interest here is the notion of the constructional 

context of a construction �=, loosely defined as the syntactic and semantic configuration of each 

construction that takes �= as a constituent. For example category �= may be a category of human 

nouns that has been created as a pre-verbal constituent which is connected semantically to the 

verb’s agent role. The category �= is a “proto-subject”, so to speak, and we will call this 

configuration of form and meaning relations its constructional context. Another category �> may 

be another category of human nouns and may even share a number of members with �=, but if �> is 

used as a post-verbal constituent connected to the main verb’s patient role (i.e. a “proto-object”), 

its constructional context is different from that of �=’s. The constructional context of each category 

has the property of being mostly preserved through generalization. This is because constructional 

categories (i.e. abstract constructions) are by definition of ECG never instantiated on their own 

and always used by some other concrete constructions. The merging of two categories must be the 

result of their users being generalized, and the constructional context must therefore 

automatically be preserved.  
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There are only two scenarios in which a category �= extends beyond its constructional 

context. The first is when more than one of its members is used in other constructions of a 

different constructional context and a generalization occurs over those constructions. That is, if, 

say, category �= from above has as members WO3-N (I), NI3-N (you) and YI2-N (aunt), and there 

happens to be a generalization between GEI3-WO3 (give me) and GEI3-NI3 (give you), category �= 

will be used as a constituent in the new GEI3-�= construction. The resulting category �= will have 

properties of both a proto-subject and a proto-object.  

The other operation that violates constructional context distinctions in the current 

implementation is the category expansion operation. It explicitly looks only for semantic 

similarity between existing categories and other non-members, including other constructional 

categories.  

The resulting generalization behavior is not incompatible with the idea of Radical 

Construction Grammar (Croft, 2001), where the notions of grammatical subjects and objects are 

not defined except with respect to the particular argument structure constructions that they are a 

part of. This kind of very conservative generalization is also compatible in spirit with children’s 

learning behavior as demonstrated by Gerken’s artificial language learning experiment where 9-

month-old infants were given stimuli that can be explained by both a conservative and an 

aggressive generalization (Gerken, 2006). Specifically, when the exposure stimuli all ended in a 

particular syllable di while also obeying a general AAB pattern, infants chose the more 

conservative, syllable-based generalization.   

Obviously, the number of possible generalizations in a real language is far greater than 

that in an artificial language and psychologists are only beginning to understand what facilitates a 

child’s extension of existing verb-argument patterns to new verbs. There is evidence both of verb-
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centric generalizations (e.g. want _object_, ) (Tomasello, 2000) and nominal /morphology-

anchored generalizations (e.g. I’m __verb__ing it) (Childers & Tomasello, 2001), putting the 

status of verb meaning as the driving force behind generalization in question (Ninio, 2005). The 

generalization mechanism in the model separates the issues of construction retrieval (i.e. which 

constructions are similar enough to the ones actively in use to perform generalization) from the 

actual act of generalization (i.e. how general should the new construction be — to put it in the 

context of Gerken’s experiment — should it be the “end in -di” hypothesis or the AAB 

hypothesis). As explained in Chapter 4, both item-based and semantics-based strategies have been 

tested as the construction retrieval mechanism and the item-based strategy seemed to lead to 

generalizations that are too broad too quickly. However, this is exactly the kind of question that 

this learning model is designed to ask and make predictions for. Figure 9.3 gives a taste of the 

factors in the model that can influence how general the grammar becomes, and how quickly.   

statistics € discount factor γ for the statistics updates for new constructions which 
reflects the level of confidence the learner has in its correctness 

generalization € retrieval of constructions from grammar 
€ additional criteria for initiating a generalization (e.g. relative 

frequencies of the two specific constructions) 
€ whether specific constructions are kept after generalizations  
€ how many “versions” of constructions to keep around if further 

generalizations are made 

category merge € criteria for category merges (e.g. number or percentage of overlapping 
members, semantic distance) 

€ whether users of the merged categories automatically have their 
contextual constraints relaxed at the same time 

category expansion € criteria for extending a category (e.g. how many of the same category 
does the learner have to see to be confident about the extent of the 
category) 

 
Figure 9.3  Examples of factors in the model that affect how quickly the learned grammar 
becomes general. 
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We have discussed how the discount factor γ and the construction retrieval strategy affect 

the shape of the grammar learning trajectory. Within the generalization operation, there are a few 

other operational details that affect learning. The first has to do with additional dimensions of 

comparison between a set of constructions for them to qualify as candidates for generalization. 

One such dimension that almost certainly matters is the relative frequencies of the constructions 

being generalized (Goldberg, Casenhiser & Sethuraman, 2004; Gomez, 2002; Hudson Kam & 

Newport, 2005; Thompson & Newport, 2007). Another operational detail that has big 

implications for the learning is closely related to the incremental nature of generalization in this 

model, and that has to do with what happens to the specific construction after it has been 

generalized over.  

Bybee has argued based on phonological contractions that some high-frequency, lexically 

specific forms are retained in the grammar despite the availability of more general constructions 

(Bybee & Scheibman., 1999). Currently, a construction and its generalizations (and their 

subsequent generalizations) are all kept in the grammar. The basic idea is that these constructions 

will compete in usage and the ones at an inappropriate level of generalization eventually be 

purged due to decay. This implementation is certainly too naïve, especially in consideration that 

the amount of training data is severely limited. Thus the analyzer was likely to have been 

hampered by the amount of ambiguity introduced into the learned grammars in this process. 

Bayesian learning approaches 

Amongst the first places to look for solutions to properly model the competition between  

specific and general constructions is Bayesian learning approaches, which are certainly 

compatible with the current learning framework. The goal here is to find the most probable 

grammar Ĝ given a set of utterances U situated in contexts Z, which can be expressed as the 
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product of the data likelihood and the grammar prior using Bayes rule and dropping the 

normalizing denominator, 

ˆ argmax ( | , )

argmax ( | , ) ( | )

G

G

G P G U Z

P U G Z P G Z

=

=
 

and since the grammar does not depend on context, the grammar prior term can be simplified: 

ˆ argmax P( | , ) P( )
G

G U G Z G= . 

By making an independence assumption between the utterances, the data likelihood can 

be estimated as the product of the probability of each utterance given the grammar and its context. 

By introducing a variable for the analysis of utterance and realizing that the utterance is 

deterministic given an analysis, the total data likelihood can be estimated as the product of the 

probabilities of all analyses. 

P( , ) P( , )

P( | , , )P( | , )

P( | , )

u

a

a

U G Z u G z

u a G z a G z

a G z

=

=

=

�

�

�

 

The probability of an analysis given a grammar G and a context z is exactly the 

probability that Bryant’s best-fit analyzer estimates in its factored model (Bryant, 2008b). Given 

that, the data likelihood term is straightforward to calculate but difficult to implement in a 

cognitively plausible way — an accurate data likelihood term requires re-analysis of all previously 

encountered situated utterance, which, by its memory requirements alone is implausible for a 

child learner.  

The even trickier bit, however, is to define a proper prior probability distribution for the 

grammar, P(G). This is not at all straightforward for the desired qualities we want for a grammar, 
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which is supposed to have some amount of redundancy between specific and general 

constructions. A grammar prior based on a simplicity measure has been attempted by Perfors, 

Tenenbaum, and Regier (personal communications) in their Bayesian selection of induced 

grammars , but the prior again does not capture the desire for specific constructions to co-exist 

with generalizations. A related information-theoretic approach, Minimum Description Length 

(MDL), has been used in Chang’s model of construction grammar learning (Chang, 2008). MDL 

minimizes the total description length of the data and the grammar and is therefore designed to 

achieve the optimal level of compactness of the grammar. However, it suffers from the same 

criteria misfit as the Bayesian approach: if learning of new constructions are incremental such 

that all pieces of encountered data have been covered by some specific construction, if those 

specific constructions are not discarded after a generalization operation, and if encountered data 

(so far) is all that the learner has to go by in evaluating the description length, then there is always 

a net increase in description length after any generalization operation. Chang’s model attempts to 

alleviate the problem by assuming that specific and general constructions share representational 

substrates and reducing the length of specific constructions that have been generalized.  

At the end of the day, the ad-hoc nature of choosing a Bayesian grammar prior or a 

grammar length heuristic reflects a lack of understanding of the representations of and the 

interactions between abstract and specific grammatical knowledge in the human brain in the 

broader cognitive science and psycholinguistic communities. Until these grander challenges are 

met, more localized, limited applications  of Bayesian learning principles can be explored in the 

learning model. There are some obvious parallels between the learning of grammatical categories 

(e.g. is the constituent after the word CHI1 (eat) fillable by any word that refer to medicines, or 

food item, or physical object?) and the learning of linguistically-defined object categories (e.g. is 
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dog a label for Dalmatians only, or for furry 4-legged animals, or for living things that run 

around?) (Tenenbaum & Griffiths, 2001; Xu & Tenenbaum, 2007) and it may be a fruitful 

direction to explore both in children and computational models.  

9.3 Other kinds of constructions 

Looking past the initial stage of combining content words (e.g. nouns, verbs, and the 

occasional directional particles that have image-schematic meanings), two particular kinds of 

constructions proved to be troublesome for the current learning model: constructions that have 

non-compositional meanings and function words. This section describes what the phenomena are, 

why they are difficult for the learner, and offers a sketch of new learning operations that helps 

cope with problems. 

Constructions with non-compositional meaning 

Non-compositional meaning refers to meaning components introduced into the new 

construction that cannot be attributed to any of its constituents. A typical example in English is 

the What’s X doing Y? construction (Kay & Fillmore, 1999) whereby surprise and/or disapproval 

is expressed along with the question, as in What’s a nice girl like you doing in a place like this?  

Of course the learner model is not expected to learn a construction with pragmatics as 

complex as the WXDY construction right off the bat. However, there is a wide range of non-

compositional meanings encoded by constructions. Some are in the physical motion domain, 

such as the caused motion construction in English, e.g. he sneezed the napkin off the table, or the 

serial verb construction in Chinese that encode sequences of motions, e.g. guo4 lai2 chi1 (cross 

DIRtowards eat / come over to eat). Some are in the temporal domain, such as a slightly different 

serial verb construction in Chinese that describe concurrent event, e.g. zuo4 zhe chi1 (sit DUR eat 
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/ sit while you eat). A good number more are in the causal domain, such as the resultative 

constructions in English and Chinese such as he drank himself silly and cha1 gan1+jing4 (wipe [it] 

clean) or ditransitive constructions such as he baked her a cake and gei3 a1+yi2 chi1 (give aunt eat 

/ give it to aunt for her to eat)). There are obviously also those like WXDY whose meaning is less 

concrete, such as the implied comparison in the let alone construction (Fillmore, Kay & O'Connor, 

1988) as in he can barely walk, let alone run a marathon. 

Learning any of these constructions requires the ability to construe the current scene as 

more than the sum of its parts by attributing physical, temporal, causal, or other relations to its 

components. The current learning framework does not facilitate the learner in any way by pre-

segmenting the scenes with these relations. Instead, as described briefly in Section 4.1, the learner 

has to postulate a coherent meaning when multiple meaning roots are present in the new 

composition.  

The mechanism in the current learner for selecting these relations is very crude and 

introduces quite some amount of ambiguity into the grammar. Compounded with the noise 

already present in the context-fitting process, the non-compositional meaning option in the 

composition operation hurt the learner’s ability to analyze sentences correctly in the pilot runs.  

This is in a way unsurprising. As the examples above illustrate, there is not a whole lot of 

syntactic distinction between the constructions that express motion sequence, concurrent motion, 

and resultative meanings. All of them basically manifest themselves as serial verb constructions 

with possibly an intervening aspect marker. Simulation is often required to properly differentiate 

the relations between the two events expressed by the serial verbs. For example, in cha1 

gan1+jing4 (wipe clean / wipe [it] clean), knowledge about wiping potentially causing a change of 

state will help to determine that the wipee may become clean as a result of the wiping process, 



208 
 

otherwise the learner may pattern this after guo4 lai2 chi1 (cross DIRtowards eat / come over to eat), 

where the crosser is also the eater and the two processes are ordered temporally. This is exactly 

the kind of embodied knowledge that a learner ought to have access to; it is just that the current 

implementation of the simulation mechanism is not detailed enough to support such inference. A 

more fully developed learning model will make use of the context model and simulation 

mechanism to determine if a proposed non-compositional meaning is appropriate in context. 

Function morphemes 

Function morphemes, as the name suggests, are defined with respect to the relational 

functions they play in a construction. They are a bit more difficult to acquire because they are 

often unstressed, but the regularity in appearance of the obligatory function morphemes (such as 

the articles in English) are noted by children as young as 2 (Gerken & McIntosh, 1993). The 

closed-class nature of these function morphemes, as well as other cues that are regularly present 

in the input such as prosody, has also been argued to assist a child in the formation of phrasal 

groupings (Morgan, Meier & Newport, 1987; Morgan & Newport, 1981).  

Function morphemes are learned in the current model only in an indirect way — the 

revision operation attempts to use collocating function morphemes (as well as content 

morphemes) to differentiate two conflicting constructions. The revision operation, unsurprisingly, 

turns out to be noise-prone. This subsection gives a sketch on how bigram probabilities can be 

exploited in this model to form “proto-construction” units that may reduce the need for 

subsequent revisions. 
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construction gloss sensible? 

GE-HUAI4-c029 CLS - broken

ZAI4-MO3-c047 again - apply yes 

RENG1-AO-SP-c065 throw - SFP ? 

YONG4-CV-PING2ZI-c131 CVinstrument - bottle yes 

GAN4MA2-WH-YA-SP-c219 how come - SFP yes 

KUAI4-CHI1-c377 quick - eat yes 

DA4GE4-DE-NOM-c379 big - NOM yes 

YI2-GE-c382 one - CLS yes 

MA1-GEI3-CV-c395 mother - CVbenefactive

XIA4-DI4-c396 LOCdownwards - ground

HUI4-CHI1-c616 able - eat yes 

LIANG3-GE-c625 two - CLS yes 

QI3-LAI2-c757 rise - DIRup yes 

WANR2-NE-SP-c787 play - SFP ? 

NEI3-GE-c824 that - CLS yes 

GUAI3-GUO4-c849 turn - DIRacross yes 

DIAO4-LE-c984 drop - PFV yes 

NING3-ZHER4-c1050 twist - there yes 

ZHAO4-ZHE-c1296 mimic - DUR yes 

TIAO4-BA-SP-c1368 dance - SFP yes 

FU2-ZHE-c1404 support - DUR yes 

 
Figure 9.4  Examples of proto-constructions learned in a pilot run by chunking any bigrams 
between content morphemes and function morphemes that exceed 0.35 into a new 
construction.  

 

The most simple-minded algorithm looks for bigrams between a content morpheme c 

and a function morpheme f  that exceed a threshold, i.e. P(c | f) > threshold or if P(f | c) > 

threshold). Given these correlated units, the learner can create a new construction that has the 

content morpheme and the function morpheme as constituents and use the meaning pole of the 

content morpheme as the meaning of the new construction. In a pilot run where the bigram 
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probability threshold was set to 0.35, the learner began to chunk content morphemes with 

collocated function morphemes, leading to the list of constructions learned in Figure 9.4. The 

figure shows on the leftmost column the proto-constructions, their glosses in the middle, and 

indicates whether each proto-construction forms a good unit (i.e. whether it is reasonable for the 

protoconstruction to be a constituent of some other construction). While two protoconstructions 

are questionable (in both cases the verb may be grouped prematurely with the sentence final 

particle), 16 of the 21 protoconstructions found are reasonable combinations.  

This pilot run is a small proof of concept that bigram statistics can help discover phrasal 

units that may be helpful in anchoring the analysis of an utterance in the naturalistic Mandarin 

Chinese data. The idea of using statistics in the input is certainly not new. Thompson and 

Newport (2007) have conducted experiments where adults successfully learned artificial 

languages where the difference in word class transitional probabilities provide the only cues to the 

phrasal structure. Mintz (2003; 2006) has also demonstrated with CHILDES corpus data that 

distributional cues in the form of frequent frames are powerful tools for creating word classes. 

These and more sophisticated kinds of statistics are also the bread and butter of statistical NLP, 

and one of the key insights in Klein’s constituent-context model (CCM) (2004) is the use of 

distributional cues along with a non-crossing bracketing constraint. As reviewed in Chapter 3, 

however, there is a disconnect between these kinds of statistically-derived phrase structures in 

induced grammars and the semantically-rich grammatical structures found in natural languages. 

This dissertation has focused on the formation of the latter using semantics as the primary source 

of information as well as the target for learning; it remains to be worked out how best to integrate 

statistically-derived structures such as these protoconstructions in the learning model. 
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9.4 Looking at language learning as a whole 

Taking a step back, this dissertation addresses but a very small piece of the puzzle called 

language development. Many open questions remain; this section tackles some of the more 

pressing ones related to word learning, concept learning, morphosyntactic development, and real 

situational contexts. 

Word learning 

As alluded to many times throughout this dissertation, word learning is a process that is 

very much tied up with grammar learning developmentally and this model has made the arbitrary 

choice of starting with a set of known words and no knowledge of syntax. Undoubtedly, words are 

not learned in isolation from the rest of language. Verbs, in particular, offer particular construals 

of events and experience but the meaning of verbs, by their relational nature, are necessarily 

conflated with the rest of the scene and the process of teasing out the verb meanings involves 

generalizing cross-situationally over scene types as well as other the arguments they appear with. 

Verbs are therefore difficult to learn, as Gleitman and colleagues have shown in the human 

simulation experiments (Gillette et al., 1999; Gleitman, Cassidy, Nappa, Papafragou & Trueswell, 

2005). The initial verbs in the models’ grammar can be thought of as codified associations 

between linguistic forms, motor programs, and scenes, and can certainly be wrong in the 

beginning. The pace and scope of generalization is expected to be affected by the schema 

hierarchy in the following sense: for verbs that make fine-grain distinctions such as causality (e.g. 

knock over versus fall) or agentivity e.g. (trip versus fall), the danger of attributing too much 

knowledge to the initial learner lies in precluding generalizations that may otherwise be possible 

given fuzzier semantic definitions.  
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Undoubtedly, new words are constantly being learned throughout language development 

as well. This is further supported by evidence that syntactic development aids vocabulary 

development by allowing learners to infer the meaning of new verbs through the syntactic frame 

in which they occur (Fisher, 2002; Gleitman, 1990; Naigles, 1996). Also referred to as syntactic 

bootstrapping (Landau & Gleitman, 1985), this process can be a powerful mechanism in later 

language development and is recently found to play a role in the acquisition of a “worst-case” 

scenario language like Mandarin where argument omission is the norm (Lee & Naigles, 2008).  

Ongoing word learning is theoretically compatible with the current framework. In 

addition to manual experiments with a gradually expanding vocabulary, new verbs are in theory 

learnable using the current model with a slight modification to the mechanism that learns non-

compositional meaning. Specifically, if a novel action involving two entities is demonstrated in a 

sentence using a novel verb, say blick, the learner is left with multiple meaning components in the 

analysis (i.e. the mentioned entities) that it needs to relate with each other. Instead of trying to 

find some contextually-appropriate temporal or causal relations to explain the relations between 

events like in the non-compositional meaning case, here the learner can look to the situational 

context for events that involve the mentioned entities. Recognizing that the novel action not only 

relates the mentioned entities but also has an associated (novel) motor program, the learner can 

posit the motor program as the meaning poles of new compositions, leading to concrete 

constructions such as YOU-BLICK-IT, I-BLICK-THIS. Overtime, the learner will have a number of 

these contextually bound, lexically specific constructions, at which point the learner may 

generalize over them. The resulting general construction will have as constituents the novel verb 

and placeholders for its verb arguments and the associated motor program as its meaning. In the 

example, the resulting general construction, CAT001-BLICK-CAT002, contains all the lexical 
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semantics of the novel verb blick plus semantic restrictions on its arguments, such as Human for 

the word preceding blick and Physical_Object for the word following blick. At this point the 

learner will have essentially learned the meaning of the new verb, though it will take another new 

operation to sub-analyze the CAT001-BLICK-CAT002 construction in order to attribute lexical 

meaning to the verb directly. 

Concept learning 

Concepts are another domain that rapidly changes throughout development. Conceptual 

development is an issue that at first glance seems orthogonal to grammar development, but is 

upon closer examination intricately linked. There is a wealth of foundational work in the area of 

linguistic relativity that examines how language structures concepts, in particular in the domains 

of spatial concepts  (Bowerman, 1996; Choi & Bowerman, 1991; Landau & Gleitman, 1985; 

Munnich, Landau & Dosher, 2001; Tversky & Lee, 1998) and color (Kay, Berlin, Maffi & 

Merrifield, 1997; Kay & Regier, 2006). This leads to another field of research on the Whorfian 

hypothesis (Whorf, 1956) which looks at how language influence thought. Specifically, 

linguistically structured concepts are found to influence thoughts even in non-linguistic tasks in 

various domains (Boroditsky, 2001; Drivonikou, Kay, Regier, Ivry, Gilbert, Franklin & Davies, 

2007; Gilbert, Regier, Kay & Ivry, 2006; Winawer, Witthoft, Frank, Wu, Wade & Boroditsky, 

2007).  

Whorfian effects notwithstanding, a language learner must still learn the conceptual 

category distinctions dictated by the language. Luc Steels and colleagues have a series of models 

based on Fluid Construction Grammar (FCG) that model how language and concepts develop 

from a communication system and language evolution point of view (Steels, 2003; Steels, 2006; 

Steels & Version, 2004), but there is little computational work that focuses directly on how 
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language and concepts co-develop in ontogeny. This is a challenging area of research, not least 

because the co-learning of the two domains is non-monotonic: changes in the conceptual system 

may inform the grammar that render existing constructions incorrect, and all the grammatical 

knowledge derived from those incorrect constructions now need to be revised.  

Morphosyntactic development 

This dissertation has focused primarily on the use word order and free function 

morphemes as indicators of semantic relations, ignoring inflectional morphology as a syntactic 

element. This was done partly out of convenience since Mandarin Chinese does not use 

inflectional morphology but also largely out of necessity since the available constructional 

analyzer system has no provision for morphology. However, current work is being done in the 

research group to interface the constructional analyzer with a morphological analyzer (see Section 

9.1.6 of (Bryant, 2008a)). This has the added benefit of turning the current lexicalized analyzer 

into an unlexicalized one, which will greatly reduce the memory requirements of the analyzer and 

may even lead to some amounts of speed up.  

Once the morphological capability of the analyzer is in place, the learner can be extended 

to use morphology as a form cue in the following way. The morphological analyzer decomposes 

the morphology into a constructional schema 44  containing features representing the 

morphological structure of each word, which in the beginning of learning may be as rudimentary 

as the form of the morpheme. With some amount of hand waving, we can imagine that these 

morphological features are stored as constructional features in concrete constructions created 

through the composition operation and are generalized just like meaning schemas through the 

                                                           
44 It has not been mentioned in earlier chapters since it was not necessary, but the constructional pole as well as the 
form pole of a construction can be typed just in the same way as the meaning pole. Form schemas and constructional 
schemas can be defined and they are treated with the same exact unification semantics as meaning schemas.  
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generalization operation. At this point, the same sort of sub-analyzing operation as mentioned in 

the word learning section will be able to split the general construction and attribute functions to 

individual morphemes. 

Real situational contexts 

This section is titled “real situational contexts” because the situational context that the 

current model relies on is not only symbolically represented but also drastically simplified. The 

problem of scaling a language learning model to the real kind of messy situational contexts that a 

child learns in is essentially AI-complete and requires computational sophistications with vision 

systems, speech recognition systems. Roy and colleagues are tackling some of these challenges 

with vision-enabled robots with some success on word learning and very elementary syntax 

(Gorniak & Roy, 2007; Roy, 2002; Roy, 2003).  

Vision and speech recognition systems not withstanding, there are still some grand 

challenges in modeling contexts in any real sense. Here are some observations about the difficulty 

of the task from working on this particular learning model and child language data:  

€ Metonymy and construal is everywhere in child language interaction. Consider 

scenarios where parent and child are engaged in story time. Picture books 

showing pictures of cars are present in the same scene as toy cars and real cars. 

The same words can refer to the pictures of the cars, the toy cars in the room, the 

real cars sitting in the driveway, or even in some cases, the physical sheet of paper 

on which the pictures are printed. It is no easy task for a computational system to 

see a word car and try to resolve its intended referent.  

€ Scenes are always perspectivized and so is the language describing the scenes. 

Verbs like give and receive impose perspectives on the scene, but so do locative 
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words with a reference object such as inside, outside, here, or there. Properly 

representing the meaning of these locative words requires even richer semantics 

and a context model that is capable of representing the physical properties of 

entities.  

€ As it turned out, figuring out whether an utterance describes a past, future or 

irrealis event without having any knowledge of tense aspect marking was very 

difficult for the learning model. The annotated speech-acts, which were inferred 

from intonation, were not an entirely reliable indicator of when (if at all) in the 

situational context a mentioned event takes place: A requesting-action utterance 

can be a pre-emptive request for a child to not do something, or for the child to 

stop doing something she’s doing. An explaining utterance can be a declaration of 

an intention to do something or a description of what the speaker has just done. 

Even in an admonishment, parents often threaten the child with some future 

action if the child continues to do something she has been doing. This difficulty 

with resolving events to context led to a sizable amount of noise in the current 

model and is a difficulty that a truly situated model of language learning and use 

must overcome. 

9.5 Summary 

The model of early grammar learning presented in this dissertation benefits from 

bootstrapping from situational context as well as the richness of semantic knowledge available to 

the learner. It represents a first step in setting up a precise computational experiment framework 

with explicit operational definitions of learning processes and clearly defined sources of 
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knowledge. Model parameters are easily adjustable for computational experiments, as 

demonstrated, and we believe that a combination of learning experiments with real and artificial 

language will prove fruitful for understanding the process of language learning. 
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Appendix B.  

An annotated CHILDES transcript sample in XML 

<?xml version="1.0" encoding="UTF-8"?> 
<CHAT xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns="http://www.talkbank.org/ns/talkbank" 
xsi:schemaLocation="http://www.talkbank.org/ns/talkbank talkbank.xsd" 
Version="1.1.3" Lang="zh" Corpus="beijing" Id="cx2" Date="1984-01-01"> 
  
 <Participants> 
  <participant id="MOT" role="Mother" language="zh" /> 
  <participant id="CHI" role="Target_Child" language="zh" /> 
  <participant id="FAT" role="Father" language="zh" /> 
  <participant id="INV" role="Investigator" language="zh" /> 
  <participant id="UNC" name="Unclear" role="Unidentified" language="zh" /> 
 </Participants> 
  
 <Setting> 
  <entity cat="Livingroom" id="livingroom"/> 
  <entity cat="Peach" id="peach"/> 
 </Setting> 
  
 <Setup> 
  <binding field="location" source_ref="MOT" ref="livingroom"/> 
  <binding field="location" source_ref="CHI" ref="livingroom"/> 
  <binding field="location" source_ref="INV" ref="livingroom"/> 
  <binding field="location" source_ref="peach" ref="coffeetable(livingroom)"/> 
 </Setup> 
  
 <event cat="Fetch" id="fetch01"> 
  <binding field="fetcher" ref="CHI"/> 
  <binding field="fetched" ref="peach"/> 
 </event> 
 
 <u who="MOT" id="149"> 
  <clause> 
   <w>ni3</w><w>rang4</w><wn><w>a1</w><wk type="cmp" /><w>yi2</w></wn>  
   <w>chi1</w><t type="p" /> 
   <a type="speech act"> 
    <sa cat="requesting-action" id="u149sa1"> 
     <binding field="speaker" ref="MOT"/> 
     <binding field="addressee" ref="CHI"/> 
     <binding field="forcefulness" value="Normal"/> 
    </sa> 
   </a> 
   <a type="vernacular"> 你讓阿姨吃</a> 
   <a type="gold standard"> 
    <semantic> 
     <temporal_element left="1" right="2" cat="Permit" id="u149te1"> 
      <binding field="permiter" left="0" right="1" ref="CHI"/> 
      <binding field="permitee" left="2" right="4" ref="INV"/> 
      <binding field="permitted" left="4" right="5" ref="u149ts2"/> 
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     </temporal_element> 
     <temporal_structure left="0" right="5" cat="Ditransitive_Action"  
     profiled="u149te1" id="u149ts1"> 
      <binding field="giver" left="0" right="1" ref="CHI"/> 
      <binding field="recipient" left="2" right="4" ref="INV"/> 
      <binding field="theme" left="4" right="5" ref="u149ts2"/> 
     </temporal_structure> 
      
     <temporal_element left="4" right="5" cat="Eat" id="u149te2"> 
      <binding field="eater" left="2" right="4" ref="INV"/> 
      <binding field="food" ref="peach"/> 
     </temporal_element> 
     <temporal_structure left="2" right="5" cat="Transitive_Action"  
     profiled="u149te2" id="u149ts2"> 
      <binding field="agent" left="2" right="4" ref="INV"/> 
      <binding field="patient" ref="peach"/> 
     </temporal_structure> 
    </semantic> 
   </a> 
  </clause> 
 </u> 
 
 <event cat="Offer" id="offer02"> 
  <binding field="offerer" ref="CHI"/> 
  <binding field="offeree" ref="INV"/> 
  <binding field="offered" ref="peach"/> 
 </event> 
 
 <u who="MOT" id="150"> 
  <clause> 
   <w>ni3</w><w>gei3</w><w>yi2</w><t type="p" /> 
   <a type="vernacular"> 你給姨</a> 
   <a type="speech act"> 
    <sa cat="requesting-action" id="u150sa1"> 
     <binding field="speaker" ref="MOT"/> 
     <binding field="addressee" ref="CHI"/> 
     <binding field="forcefulness" value="Normal"/> 
    </sa> 
   </a> 
   <a type="gold standard"> 
    <semantic> 
     <temporal_element left="1" right="2" cat="Give" id="u150te1"> 
      <binding field="giver" left="0" right="1" ref="CHI"/> 
      <binding field="recipient" left="2" right="3" ref="INV"/> 
      <binding field="theme" ref="peach"/> 
     </temporal_element> 
     <temporal_structure left="0" right="3"  cat="Ditransitive_Action"  
     profiled="u150te1"> 
      <binding field="giver" left="0" right="1" ref="CHI"/> 
      <binding field="recipient" left="2" right="3" ref="INV"/> 
      <binding field="theme" ref="peach"/> 
     </temporal_structure> 
    </semantic> 
   </a> 
  </clause> 
 </u> 
 
 <event cat="Give" id="give03"> 
  <binding field="giver" ref="CHI"/> 
  <binding field="recipient" ref="INV"/> 
  <binding field="theme" ref="peach"/> 
 </event> 
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 <u who="INV" id="153"> 
  <clause> 
   <wn><w>xie4</w><wk type="cmp" /><w>xie4</w></wn><t type="p" /> 
   <a type="speech act"> 
    <sa cat="answering" id="u153sa1"> 
     <binding field="speaker" ref="INV"/> 
     <binding field="addressee" ref="CHI"/> 
     <binding field="forcefulness" value="Normal"/> 
    </sa> 
   </a> 
   <a type="vernacular"> 謝謝</a> 
   <a type="gold standard"> 
    <semantic>     
     <temporal_structure cat="None"/> 
    </semantic> 
   </a> 
  </clause> 
 </u> 
 
 
</CHAT> 
 

 


