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Abstract

SRAM Leakage-Power Optimization Framework: a System Level Approach

by

Animesh Kumar

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kannan Ramchandran, Chair

SRAM leakage-power is a significant fraction of the total power consumption on a

chip. Various system level techniques have been proposed to reduce this leakage-power by

reducing (scaling) the supply voltage. SRAM supply voltage scaling reduces the leakage-

power, but it increases stored-data failure rate due to commonly known failure mechanisms,

for example, soft-errors.

This work studies SRAM leakage-power reduction using system level design tech-

niques, with a data-reliability constraint. A statistical or probabilistic setup is used to model

failure mechanisms like soft-errors or process-variations, and error-probability is used as a

metric for reliability. Error models which combine various SRAM cell failure mechanisms

are developed. In a probabilistic setup, the bit-error probability increases due to supply

voltage reduction, but it can be compensated by suitable choices of error-correction code

and data-refresh (scrubbing) rate. The trade-offs between leakage-power, supply voltage re-
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duction, data-refresh rate, error-correction code, and decoding error probability are studied.

The leakage-power – including redundancy overhead, coding power, and data-refresh power

– is set as the cost-function and an error-probability target is set as the constraint. The

cost-function is minimized subject to the constraint, over the choices of data-refresh rate,

error-correction code, and supply voltage. Using this optimization procedure, simulation

results and circuit-level leakage-power reduction estimates are presented.

Experimental results are presented for the special case of low duty-cycle applica-

tions like sensor nodes. Retention of stored data at lowest possible leakage-power is the only

target in this case. Each SRAM cell has a threshold parameter called the data-retention

voltage (DRV ), above which the stored bit can be retained reliably. The DRV exhibits sys-

tematic and random variation due to process technology. Using the proposed optimization

method, the retention supply voltage is selected to minimize the leakage-power per useful

bit. The fundamental lower bound on the leakage-power per bit, while taking the DRV dis-

tribution into account, is established. For experimentally observed DRV -distributions from

custom built SRAM chips, a [31, 26, 3] Hamming code based retention scheme achieves a sig-

nificant portion of the leakage-power reduction compared to the fundamental limit. These

results are verified by twenty-four experimental chips manufactured in an industrial 90nm

CMOS process.

Professor Kannan Ramchandran
Dissertation Committee Chair
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Chapter 1

Introduction

Static random access memory or SRAM has been the main data storage block for

many generations of microprocessors. As the name suggests, the SRAM cell stores a bit

without dissipating any active power, unlike its counterpart dynamic random access memory

or DRAM [1]. Even though a DRAM cell is smaller than an SRAM cell, the latter has two

important advantages: (i) once a bit has been written in an SRAM cell, active power is

not spent during retention of the stored bit, and (ii) it is faster to read and write from an

SRAM cell. However, SRAM cells are volatile, i.e., they require a positive supply-voltage

to retain data. A positive supply-voltage results in leakage-power dissipation to retain

SRAM cell data. In earlier technologies, data bits could be stored in SRAM at negligible

leakage-power consumption. However, with technology scaling, it has been observed that

a significant fraction of total power is wasted as leakage-power in cache or SRAM [2]. In

the future, this trend is expected to worsen, unless the threshold voltage of transistors is

increased. The trends of SRAM size and leakage-power as a function of year (technology)
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are illustrated in Figure 1.1 (source: Intel) [2].

Observe that, with Moore’s law SRAM size on the microprocessor has increased

with time. With Moore’s law and technology scaling, the SRAM leakage gets higher, as

illustrated in Figure 1.1(c). The SRAM leakage-power is even more significant for low duty-

cycle applications, like sensors [3]. This is because low duty-cycle applications store the

state in SRAM and turn off the other hardware blocks in the chip to save power. If the

storage time is large, then the time-averaged active power is negligible compared to the

SRAM leakage-power.

Figure 1.1: (a) The increase in cache size with technology node or year is illustrated. This
increase is almost exponential. (b) SRAM area in percent of the total chip area as a function
of year is illustrated. Observe that cache size has the largest percentage of the total chip
area. (c) Increasing leakage power contribution to the total power consumption is shown as
a function of time (source: Intel).

At a broad level, two techniques can control or reduce the leakage-power problem

in SRAM: (i) circuit-level design techniques, and (ii) system level design techniques such

as supply voltage reduction. Of these, the circuit level techniques usually change one or

more parameters of the SRAM circuit. For example, these techniques include modification

of SRAM cell’s transistor-parameters like threshold voltage or sizing [4], addition of a sleep
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transistor or control gate to reduce standby leakage [5–7], usage of asymmetry in the SRAM

cell design [8], proposed usage of a different transistor than traditional MOSFET [9], and

a change in the SRAM cell structure to enable ultra-low voltage operation [10]. Note that

this list is not complete, and other ideas can be found in the literature. In contrast, at the

system level, the SRAM cell is not altered but architecture-level changes are introduced. The

most common architecture level technique is supply voltage reduction (scaling) of inactive

SRAM, without affecting the stored bits [11–15]. This technique works since leakage-power

has strong dependence on the supply voltage.

This work focuses on system level techniques to reduce SRAM leakage-power,

therefore, these techniques are examined in detail. The trendy supply voltage scaling tech-

nique reduces the leakage-power. However, supply voltage scaling increases failure-rate of

the stored data. Stored SRAM-cell data is subjected to the following failure mechanisms:

1. Soft-errors due to cosmic particles or alpha particles from die-packaging [16].

2. Parametric failures which include read-upset, write-failure, write-time failure, access-

failure, and hold-failure due to process-variations [17].

3. Supply voltage noise induced failures [18,19].

4. Gate-leakage fluctuations due to trapped charge in gate oxide [20].

These failure mechanisms increase with supply voltage reduction. Soft error increase with

voltage reduction has been extensively reported in the literature [16, 21–24]. Read, write,

or hold (store) operation failures increase with supply voltage reduction. This has been

reported in many references [10,17,25–27]. Supply noise induced failures are usually tackled
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by a 100mV voltage margin [18, 19]. Finally, gate-leakage fluctuations, similar to random

telegraph signal, change the minimum voltage at which an SRAM cell can work. This

phenomenon, termed as erratic fluctuations, was reported by Agostinelli et al. [20]. Thus,

any straightforward supply voltage scaling based leakage-power reduction is achieved at the

cost of lower data-reliability. An alternate interpretation is that the lower leakage-power is

achieved by an increase in data-failure rate.

On the other hand, if the supply voltage is kept at a high-level to mitigate the

above failure mechanisms, then leakage-power will be high. Leakage-power increase is ag-

gravated by two more reasons: (i) Cache-size typically increases with technology generation

to provide faster computing, (ii) to compensate for process variations, the SRAM area is

not (geometrically) scaled fully with technology [17, 25, 27]. A high supply voltage, with

large cache-size and large SRAM cell area, leads to significant leakage-power.

At the system level, coding and error-correction have been used for communication

since decades [28–31]. In fact, it was noted that this error-correction can be used for

storage since a bit-level memory can be thought of as a binary input binary output channel.

Not surprisingly, these codes have also been used in SRAM as an indicator of soft-error

events [32–34]. However, till date the usage of error-correction in SRAMs is only to correct

(or detect) a single-bit in error [33]. In error-correction coding (or channel coding), usually

redundancy (parity check) is introduced to combat against bit-errors. In a probabilistic

setup, the amount of redundancy determines the decoding error probability and the storage

efficiency (in bits/cell) – thereby introducing a trade-off between the two quantities.

A technique called “scrubbing” has also been studied in the literature [34–38].
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Among the error mechanisms mentioned before, soft-errors, supply noise induced errors,

and fluctuating gate-leakage induced errors randomly happen as a temporal phenomena.

Thus, the number of induced bit-errors increases on average with the storage time. If an

error-correction code is used, any errors in the stored data can be periodically checked

and corrected to combat bit-error accumulation. This procedure is commonly called as

scrubbing. In this work, it will be called as data-refresh. This refresh is triggered by any

errors present in the stored bits and it reduces the probability of decoding error at the

expense of extra power consumption.

In a probabilistic setup, while supply voltage reduction causes the bit-error prob-

ability to increase, it can be compensated by suitable choices of error-correction code and

data-refresh rate. To the best of our knowledge, the trade-offs between leakage-power, sup-

ply voltage reduction, data-refresh rate, decoding error probability, and error-correction

code has not been studied in the literature. Accordingly, these trade-offs will be studied

in this work. The trade-off study procedure is as follows. The leakage-power – including

redundancy overhead, coding power, and data-refresh power – is the cost-function to be

minimized. The failures will be modeled in a probabilistic setup and the constraint is set by

an error-probability target. In particular, the error-probability target is set by soft-errors

at the supply voltage Vdd = 1.0V and a single-error correction code. 1 The supply voltage,

the data-refresh rate, and the error-correction code will be treated as variables chosen to

optimize the leakage-power cost function. Using this optimization principle, the important

contributions of this work are described in the next section.
1A single-error correction code is chosen for target error probability since this is a common error-correction

mechanism used in contemporary SRAM [33].
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To understand the limits of leakage-power reduction, “standby-mode” of an SRAM

is described next. This concept was introduced by papers using supply voltage scaling

to reduce the leakage-power. An SRAM module which is in “no-operation” ON mode is

classified as a standby SRAM. In this mode, the SRAM retains the data, but it is not

accessed for read or write operations. The only task in this mode is to retain the stored

data. The system level leakage reduction techniques, like drowsy-cache [11], exploit the

fact that read and write activity are absent in the standby-mode, and thus a lower (than

active-mode) supply voltage level can be used to reduce the leakage-power till storage (hold)

failures begin [11,12,15]. Because two supply voltages are assumed in such solutions – one

for standby-mode and one for normal operation – these solutions are labeled as dynamic

voltage scaling (DVS) techniques. If a dynamic supply voltage is not available, then this

solution cannot be used.

Within the topic of SRAM leakage-power reduction, the contributions of this work

are classified into two cases: (i) When a dynamic supply voltage is not available or not de-

sired, and (ii) when a dynamic supply voltage can be used. Previously, while accounting

for various error mechanisms, parametric failures were mentioned. Various parametric fail-

ures correspond to the read, write, and hold operations. In case (i) of voltage scaling, all

parametric failures should be counted for various supply voltages. In contrast, in case (ii)

of voltage scaling, only the hold-failure among parametric failures should be counted for

various supply voltages. This is because read and write operations are assumed to happen

at a high supply voltage. The main results are presented next.
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1.1 Contributions

The contributions of this work are listed below. The supply voltage assumptions

are specified when necessary.

• Error models which combine various failure mechanisms are developed, while account-

ing for data-lifetime, and spatially fixed or random nature of these errors. Spatially

fixed errors, where the erratic location can be known, are easier to correct than spa-

tially random errors. An error-probability constrained optimization framework is

developed, which accepts SRAM cell parameters (like leakage-power and error proba-

bilities) for various supply voltages as input and optimizes leakage-power over supply

voltage, error-correction code, and refresh-time (see Chapter 2).

• For exemplifying results, the supply voltage dependencies of failure mechanisms, a key

ingredient in optimization, are estimated by circuit-level Monte Carlo simulations and

low-complexity macro-models. These macro-models use simple statistical techniques

to extrapolate error probabilities (see Chapter 3).

• Using error probabilities estimated by circuit level simulations, it is shown that data-

refresh and stronger error-correction codes can reduce the supply voltage significantly,

without any increase in the decoding error probability. For an approximate idea, in

90nm CMOS technology simulations, the supply voltage can be reduced to 0.3V.

The leakage-power per cell at 0.3V is approximately 94% lower than that at 1.0V.

Simulation results from the 90nm CMOS technology and 65nm CMOS technology are

presented (see Chapter 4).
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For case (ii) of voltage scaling, when a different supply voltage can be used for

standby operation, the error mechanisms are dominated by hold-failures (among parametric

failures) and soft-errors. In this special case, the following results are shown and verified

using experiments and simulations with twenty-four fabricated chips in Chapter 5:

• Fundamental lower bound on the leakage-power reduction in terms of the hold-failure

distribution using techniques from information and coding theory are established. The

distribution of hold-failure is learned from custom-built fabricated chips. This leakage-

power lower bound as a function of the experimental-chip’s index will be presented.

• Due to latency-constraints on decoding, power reduction as a function of the block-

length is studied. A low complexity Hamming code was chosen for implementation. Its

leakage-power reduction performance in comparison with the fundamental bounds will

be presented. The [31, 26, 3] Hamming code based implementation’s power reduction

closely tracks the optimum power reduction, and this desirable property justifies our

low-complexity implementation.

Other interesting measurement results are also presented. They include bounds on the em-

pirical correlation of neighborhood SRAM cells, and scatter plots to examine dependencies

between parameters of interest.

1.2 Related work

Voltage scaling: Voltage scaling for data-storage in standby-SRAM was first proposed by

Kim et al. [11]. Later, it was shown by Qin et al. [12, 13] that there is a minimum supply
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voltage for an SRAM cell above which it can retain (store) a bit reliably (in the absence

of other failures). This minimum retention voltage is termed as data retention voltage or

DRV in the literature. Due to process variations, the DRV exhibits a distribution [13]. The

largest DRV on a chip is the supply voltage needed for ensuring reliable retention across

all SRAM cells. The temperature variation of this largest DRV parameter was studied by

Wang et al. [39]. Multiple standby voltages have also been proposed in the literature [15],

but our results in Chapter 5 show that a single standby supply voltage is optimum in a

statistical setup.

Soft-errors: Soft-errors were first observed in DRAMs [40]. Later companies like IBM and

Intel did a series of experiments to characterize soft-errors for SRAM arrays. A summary

of experiments at IBM is presented by Ziegler et al. [16] and it is a recommended reading

for understanding various soft-error issues faced while designing circuits. Freeman pro-

posed a canonical circuit for soft-error rate estimation using the critical charge model [41].

The critical charge model uses a current source, which was later validated by Hazucha and

Svennsson [23, 24]. The shape of this current source has been modeled as a double expo-

nential in some other works (for example [42]). A different approach to estimate soft-errors

using node capacitance was introduced by Merelle et al. [43] which uses complicated three-

dimensional CAD analysis. Comparisons of various soft-error models has been studied by

Naseer et al. [44]. In this work, the Freeman model will be used because it successfully

models SRAM failure rates as demonstrated by Hazucha and Svennsson [23,24].

Parametric failures: Parametric failures affect the read, write, or hold (store) ability of

SRAM cell. There are five types of parametric failures that need to be accounted. They
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are: (i) read-upset failure in which the stored bit flips on read operation, (ii) write-failure

in which a bit cannot be written into the cell, (iii) hold-failure in which stored bit is not

retained in the cell, (iv) access-time failure in which stored bit cannot be read within a

specified duration, and (v) write-time failure in which a bit cannot be written within a

specified duration [25,26,45]. Typically these failures start to happen as voltage is reduced

or as process-variations increase [10,17,26,45,46]. Because of process-variations, some cells

fail earlier than the others, and thus failures can be modeled in a probabilistic or statistical

setup [25,45].

Some comments about failure probability estimation are in order. Within para-

metric failures, the access-time and write-time failures can be made negligible by choosing

read-time and write-time to be large enough. The distribution of critical write-time and

read-time across cells has been modeled by Roy et al. [25], and Agarwal and Nassif [45]. The

other three failures are estimated using noise-margin techniques (see Chapter 3 for detailed

discussions). These noise-margin techniques have been proposed and discussed in detail in

the literature (for example, see [17,26,45]).

Erratic fluctuations: Trapping and de-trapping of charges in Si-SiO2 interface causes

significant Vcc|min fluctuation in SRAMs. By definition, Vcc|min is the minimum voltage

at which read, write, and hold operations are successful in an SRAM cell. If the Vcc|min

becomes larger than the supply voltage, and if the bit is accessed, then the bit will be in

error. This phenomenon, called erratic fluctuation, varies temporally and spatially. Further,

this erratic fluctuation is “soft” in the sense that cell becomes normal (not erratic) after

some random time. An essential reference for understanding erratic fluctuations is by
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Agostinelli et al. [20]. From a modeling perspective, little is known about erratic fluctuation

time constants and magnitudes. It is modeled by introducing a gate-leakage current varying

as a random telegraph noise signal.

Supply noise: Presence of noise in supply voltage implies temporally (and spatially) vary-

ing voltage levels. For using noise statistics in a probability-aware optimization framework,

suitable (statistical) characterization of the supply v(t) and dynamic stability metrics are

needed. The statistical (correlation properties) of supply voltage noise have been success-

fully explored by Alon and Horowitz [19]. Dynamic stability of SRAM has been studied

in a limited setting of soft-particle strikes by Zhang et al. [47]. However, their treatment

is far from complete. The classical approach to ensure supply noise margin is by adding

an overhead of 100mV to the supply voltage. This framework assumes the same 100mV

margin to prevent supply noise induced errors.

Cell hardening: A common approach to tackle soft-errors is by making SRAM cells more

tolerant to particle strikes. The common approach involves making larger or more compli-

cated SRAM cells or adding a capacitor to ensure tolerance against energetic particles. A

detailed summary of these techniques can be found in the paper by Roche and Gasiot [48].

To this end, it must be noted that even the hardened SRAM cell will have an increase in

soft-error rate as the supply voltage is lowered for reducing leakage. Thus, techniques like

data-refresh or error-correction will be needed to enable supply voltage reduction.

Scrubbing or data-refresh: Data-refresh, popularly called by the ruffian name scrubbing,

was proposed by Saleh et al. [35] for memories. Its necessity in cache/SRAM was examined

by [36]. Some error-probability expressions on error-probability within a refresh-period with



12

the use of single or double error-correcting codes were explored by Bajura et al. [38].

Coding theory: Channel or memory coding for arbitrary reliability was introduced by

Shannon in his classic paper on communication theory [28]. Some practical algebraic meth-

ods to encode for decreasing decoding error probability were first proposed by Hamming [29].

Reliable storage capacity and coding for storage have been studied by Heegard and El Gamal

in the presence of erasures and errors [49]. A succinct reference for channel coding in In-

formation Theory is the book by Cover and Thomas [50]. An exhaustive reference for

algebraic error-correction codes is the book by Lin and Costello [51]. In this work, coding

theory will be used as a technique to reduce power in storing data in SRAM cells has not

been studied by any of these work. Further, coding complexity needs accounting, since

the whole error-protected SRAM consists of coding and storage. In channel coding results,

usually the complexity (or power) of encoder and decoder is not an issue while deriving

capacity. The fresh idea of Green Codes by Grover and Sahai [52] can be included in the

optimization setup presented in Chapter 2. This is left as a future work for latency-tolerant

large memories where LDPC codes can possibly be a reality.

Standby SRAM: Chapter 5 naturally extends the standby SRAM work proposed by

Qin et al. [12, 13]. This solution is motivated from the perspective of standby storage

in SRAM, where leakage-power minimization leads to total power minimization. Using the

voltage scaling approach, it has been shown that any SRAM cell has a critical voltage (called

the data retention voltage or DRV ) at which a stored bit (0 or 1) is retained reliably [12].

The intra-chip DRV exhibits a distribution due to process-variations. In order to minimize

leakage-power without observing hold-failures, a standby supply voltage equal to the highest
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DRV among all cells in an SRAM can be used. This is a “worst-case” selection of the

standby supply voltage. The leakage-power reduction from Vdd = 1000mV to the largest

DRV voltage in many test-chips has been studied in detail by Qin et al. [13, 53]. This

work naturally extends these results by power reduction below the worst-case strategy. A

supply voltage lower than the largest DRV voltage is chosen, with appropriate error-control

coding to overcome ensuing errors. Under this approach, the supply voltage is flexible and

the leakage-power per useful bit can be (fundamentally) reduced over the choice of supply

voltage. For a detailed understanding of DRV -distribution based leakage-power reduction,

previous work is recommended for reading [12,13,53].

1.3 Assumptions and Notation

1.3.1 Simplifying assumptions

Multiple-bit failures have been reported in sub-90nm SRAMs (e.g., [21, 54, 55]).

Correlation in failures can usually be exploited by coding. However, the dependencies

between these failures are not well known. Address permutation schemes can interleave

SRAM cells with negligible energy overhead and make the failures (approximately) statisti-

cally independent [34, 56]. For simplicity, address interleaving is assumed. The energy and

delay cost of address interleaving can be made negligible by permuting the address lines of

SRAM. This is highlighted in Example 1.3.1. Please note that even though interleaving can

be simply performed by permuting the address lines, it will have power (energy) impact

while accessing SRAM cells, especially when word-level access is used.

Example 1.3.1. Let xl
1 := (x1, x2, . . . , xl) and yn

1 := (y1, y2, . . . , yl) be the row and column
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address bits for any SRAM block, respectively. This array will be (2l × 2l) in size. Con-

sider the address permutation where these addresses are mapped to (yl, xl−1, yl−2, xl−3, . . .)

and (xl, yl−1, xl−2, yl−3, . . .). Simply speaking, the least significant bits are made into most

significant bits and the resultant address bits are “mixed.” For example, (x1, x2, x3, x4) and

(y1, y2, y3, y4) are mapped into (y4, x3, y2, x1) and (x4, y3, x2, y1). These mappings are bi-

jective, or one to one and onto. As a result, each mapped address corresponds to a unique

unmapped address.

On a physical layout level, SRAM cells which are close will have addresses that

differ in least significant bits. By flipping, these bits are mapped into most significant bits,

causing the mapped addresses to be far apart. Mixing is done to ensure two dimensional

interleaving.

For implementation purposes, only bounded-distance decoding based block codes

are considered. Thus, LDPC, Turbo, or Convolutional codes are not considered. This is

motivated by block-length and latency considerations. SRAM blocks are typically organized

into blocks of size ranging from 32× 32 to 512× 512 [57]. This arrangement naturally puts

a restriction on the block-length of any error correction code. For binary channels, graph

based LDPC codes typically outperform the conventional bounded distance decoding codes

for large block lengths, where bit-error probability is large. 2 As will be seen in Chapter 4,

the error mechanisms in SRAM have low bit-error probabilities. Owing to this reason, only

bounded-distance decoding based codes are considered. Asymptotic trade-offs between a
2For example, for a binary symmetric channel with crossover probability p, the asymptotic storage ca-

pacity achieved by bounded distance decoding is 1 −H2(2p), where H2(.) is the binary entropy function in
bits. The storage capacity (irrespective of coding strategy) is 1 −H2(p). If p is close to zero, their relative

difference H2(p)−H2(2p)
1−H2(p)

is negligible.
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graphical code’s rate and asymptotic coding-energy scaling models have been studied by

Grover and Sahai [52]. Using these models, supply voltage reduction and LDPC coding

trade-offs can be studied in an asymptotic setting to establish upper bounds on power

reduction. This has been left as a future work.

Supply noise issue is usually addressed by a 100mV extra margin on the supply-

voltage, to ensure proper functionality of SRAM [18, 19]. In this work, the same approach

will be adopted. Thus, if v∗ is found to be the leakage-power optimal supply voltage for

SRAM, then (v∗ + 100mV) will be the actual supply voltage. To simplify the exposition,

leakage-power comparisons will be made without adding the noise margin. The extra 100mV

margin will not change the nature of leakage-power optimization results. It must be noted

that this is not the power optimal strategy. For example, in the case of standby SRAM,

the supply noise will be much smaller due to zero circuit activity. Usually supply noise is

observed at the clock edge, when the active logic blocks draw a large (but indefinite) amount

of current [19]. Difficulties in moving away from this worst-case strategy and exploiting the

statistics of supply noise will be discussed in Chapter 3.

Unlike traditional circuit optimization works, the focus here is on system level

optimization without changing the SRAM cell parameters like transistor threshold voltage

VT , transistor channel length L, or transistor width W etc. This simplification leaves the

cell-design and cell-area unaffected for the SRAM cell. The redundancy overhead of error-

correction code will be accommodated in the optimization cost function in the next chapter.

The exploration of joint circuit and system optimization has been left as a future work.
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1.3.2 Notation

The supply voltage will be denoted by v and any current will be denoted by i(t). In

the special case of standby SRAM in Chapter 5, the standby supply voltage will be denoted

by vS . Average leakage-power (over random realizations of SRAM cells) at supply voltage

v is denoted by Pl(v). Data-lifetime and refresh time are denoted by t0 and tr, respectively.

The letter E is reserved for energy (of various types). The acronym ECC will stand for a

generic error-correction code. Leakage-power per useful bit including the coding overheads

will be referred to as power per bit and denoted by Pb(v, tr, ECC). High supply voltage

stands for Vdd = 1.0V. Error probabilities (of various types) will be denoted by the letter p

and the letter r will be used for bit-error rate. The binary entropy function is denoted by

H2(p). The letter E will be used to denote error events. The symbols E and P will be used

for statistical expectation and probability, respectively. Any vector (x1, x2, . . . , xj) will be

denoted by xj
1.

The standard threshold voltage 90nm CMOS technology will be called as 90nm

CMOS technology or just 90nm technology. Similarly, the standard threshold voltage 65nm

CMOS technology will be called as 65nm CMOS technology or just 65nm technology. The

SRAM cell sizing cannot be disclosed due to non-disclosure agreement. Most of the pre-

sented simulation results are normalized due to the same reason.

A bounded distance decoding based error-correction code will be represented by

the [n, k, d] parameters [30,51]. Block length (total number of bits) is denoted by n, number

of information bits is denoted by k, and d denotes the minimum Hamming distance of the

code. A bounded distance decoding based code will detect up to (d−1) errors and correct up
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to u :=
⌊

d−1
2

⌋
random bit-flips. The general probabilistic model of SRAM cell is illustrated

in Figure 1.2. The SRAM cell has a binary bit X ∈ {0, 1} as input. The output is another

Figure 1.2: The channel model or probabilistic model of an SRAM cell is illustrated. X is
a binary input and Y is a binary output. The conditional probabilities (P[Y = y|X = x])
depend on the supply voltage v and time tr.

bit Y ∈ {0, 1}. The error probability Y 6= X is controlled by the supply voltage v and the

data-refresh time. Even though Y ∈ {0, 1}, it will be shown later that a fraction of errors

in SRAM cells can be converted into erasures. Thus,

Y = ×, with probability px(v),

= X̄, with probability pe(v),

= X, otherwise. (1.1)

The × symbol stands for ‘don’t care’ or an erasure. The error probability pe(v) depends on

tr as will be shown later.

The error-correction code and data-refresh based SRAM block diagram is illus-

trated in Figure 1.3. The bit-vector Bk
1 for storage is encoded into Xn

1 = f(Bk
1 ). The

vector Xn
1 is stored in n independent and identically distributed (i.i.d.) SRAM cells with

probabilistic model as described in (1.1). At each refresh cycle, the output bits Y n
1 are

decoded into an estimate B̂k
1 of the vector Bk

1 . This estimate is re-encoded and stored back

in the SRAM cells. With the notation in place, the overview of optimization framework is
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Figure 1.3: The low leakage-power SRAM architecture studied in this work is illustrated.
Information bits Bk

1 are encoded into Xn
1 = f(Bk

1 ). Then Xn
1 is stored in n i.i.d. SRAM

cells. At each refresh cycle, the output bits Y n
1 are read and decoded into B̂k

1 . This estimate
of Bk

1 is re-encoded and stored back in the SRAM cells.

discussed in the next chapter.
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Chapter 2

Optimization framework

2.1 Overview

As envisioned, the optimization problem has a leakage-power per stored bit (power

per bit) cost-function which will be optimized over the choices of refresh time tr, error-

correction code, and supply voltage v. The constraint is set by a decoding error probability

target. The cost function includes the refresh power overhead. The basic principle used

to save leakage-power is supply voltage reduction. As supply voltage v is reduced, average

leakage-power of SRAM cells decreases. The disadvantage of supply voltage reduction is an

increase in the SRAM cell failure probability. 1 Recall that the prominent error mechanisms

consist of parametric failures, supply noise induced failures, soft-errors, and oxide trap-

charge induced SRAM Vcc|min fluctuations. Among these errors, parametric failures do not

accumulate with time, while other “noise” phenomenon based errors accrue with time. For

these errors, system level techniques like error-correction codes and periodic data-refresh
1As discussed before in Chapter 1, the error mechanisms will be modeled in a statistical setup.
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will decrease the decoding error probability of stored SRAM data. Both these techniques

add power and storage (redundancy) overhead to the overall system. The tradeoff between

these overheads and leakage-power reduction has to be explored.

The optimization constraint is that the decoding error probability of an SRAM

block should be equal to the decoding error probability associated with [31, 26, 3] Hamming

code based SRAM block at a supply voltage of v = 1.0V after the data-lifetime t0. All

Hamming codes fall into the category of single-error correcting double-error detecting (SEC-

DED) codes. A SEC-DED code is chosen for target error probability since this is a common

error-correction mechanism used in contemporary SRAM [33]. In this work, a data-lifetime

of t0 ≥ 1sec is considered for the 90nm technology simulations, and a data-lifetime of

t0 ≥ 10sec is considered for the 65nm technology simulations. The necessity of data-lifetime

is explained next. Phenomena like soft-errors accumulate temporally and their timestamps

are well modeled by discrete independent increment process. Thus, the decoding error

probability will increase as the data-lifetime increases, since the probability of a bit in error

increases with storage time. This bit-error probability coupled with error-correction code,

will determine the decoding error probability. Therefore, the decoding error probability

depends on the data-lifetime of interest. In this work, the data-lifetime is treated as a input

parameter to the optimizer. Observe that the target error probability will increase as a

function of this input parameter.

The optimization framework has the following ingredients: (i) a range of supply

voltage v, (ii) average SRAM cell leakage (Pl(v)), (iii) average SRAM cell soft-error rate

(rs(v)), (iv) the spatial parametric failure probability (ppf (v)), (v) the supply noise induced
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error rate (rn(v)), (vi) the oxide trap-charge assisted error rate (ref (v)), (vii) the data-

lifetime parameter t0, (viii) SRAM cell parameters such as read and write energy (Er

and Ew, respectively), and (ix) ECC parameters such as block length, information bits,

minimum distance, and encoding and decoding energy. These parameters, except (ix), are

expected as an input by the optimization program. Hamming and BCH error correction

code families will be used as a variable in optimization [30]. A schematic diagram of the

framework is shown in Figure 2.1. The encoding and decoding energy for error-correction

codes were estimated using parity check complexity by standard cell library implementation

in the 90nm CMOS technology. The coding energy parameter is not critical, since the coding

power is amortized by the data-lifetime parameter.

Figure 2.1: A schematic diagram of the optimization is illustrated. Failure probabilities
and rates of dominant error-mechanisms, corresponding supply voltages, data lifetime, and
SRAM parameters are expected as an input. The optimizer predicts the best leakage-power
achievable within some families of error-correction codes.

To evaluate the performance of this optimization framework, the optimization

inputs will be estimated or simulated for the 90nm and 65nm CMOS technologies (courtesy:

ST Microelectronics). For the 90nm technology, the supply voltage is discretized to the set

{0.3V, 0.4V, . . . 1.0V} and the optimizer computes power per bit on this set of input supply

voltage. For the SRAM cell in 90nm technology, at 0.2V, the SRAM cell was not writeable.
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The supply voltage set is {0.2V, 0.3V, . . . , 1.0V} for the 65nm technology. The SRAM cell

in 65nm was not writeable at 0.1V. This supply-voltage quantization step is flexible in

the optimization program. Only for results presented in Chapter 4, this particular discrete

set is chosen. Failure rates for various error-mechanisms at these discrete supply voltages

will be estimated later (see Chapter 3). The read-write energy for SRAM cell, and the

ECC encoding and decoding energy will be estimated by their values at a supply voltage

of 1.0V for simplicity. These estimates will be pessimistic since these energies are expected

to reduce with supply voltage. However, this approach saves simulation effort, and it does

not changes the nature of power per bit optimization results.

For the 90nm technology, a short data-lifetime t0 : t0 < 1s is uninteresting from

a leakage-power perspective. Leakage-power per cell for this technology is of the order of

1nA. Active energy needed to read or write a bit from SRAM is of the order of 10pJ.

Therefore, for t0 below 10ms range, the leakage-power will be negligible compared to the

active power. While this active power problem can also be addressed within a similar

optimization framework, the optimization cost-function will change and hence it is beyond

the scope of this work. In problems with large t0, where leakage-power contribution to the

total power is significant, the coding energy overhead becomes negligible after amortization

by t0. This observation is particularly useful for low duty-cycle and low power applications

(like sensors using energy scavenging [58]). Similar arguments can be made for t0 < 10s in

the 65nm technology.

An intuitive explanation of leakage-power reduction is given next. Qualitatively

speaking, depending on the supply voltage, the dominant failure mechanism is of a certain
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type. For the SRAM cell design under simulation, soft-errors dominate the bit-error proba-

bility and set the target decoding error probability at high supply voltage. At voltages less

than 0.6V, the parametric failures dominate the bit-error probability. The soft-error rate

increase with voltage reduction is not catastrophic, and it can be tackled by data-refresh,

at a negligible power overhead for large t0, till parametric failures begin to dominate. This

is the prime reason why leakage-power reduction can be expected at an intuitive level. Fur-

ther, as supply voltage reduces and parametric failures become dominant, extra a larger

error-correction capability is needed to maintain a constant decoding error probability. This

extra error-correction capability requires more parity checks or redundant bits, but para-

metric failure probability in the voltage-range of interest is close to zero. Therefore, only

a small fraction of bits are used as parity checks2 and it leads to efficient leakage-power

reduction at a constant decoding error probability.

In summary, this approach differs from the traditional in the following way: Read,

write, access, or hold may not be fulfilled for all voltages by all the SRAM cells. But as long

as a large fraction of cells are functional, this negligible loss in functional SRAM cells can be

made up by suitable error-correction codes. This work’s main contribution is establishing

trade-offs between error-correction, supply voltage, and leakage-power reduction – at a

constant decoding error-probability.
2Informally, if px ≈ 0, then the binary entropy H2(px) is close to zero, meaning that the Shannon capacity

of the SRAM cell is equal to 1−H2(px) ≈ 1.
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2.2 Probability models for SRAM cells

The probabilistic aspects of the optimization framework are discussed next. The

classification of SRAM error mechanisms as errors and erasures is discussed first.

Errors and erasures

In coding theory, two types of errors are distinguished – errors and erasures. An

error is a flipped bit where the SRAM cell affected by bit-flip is unknown. Strictly speaking,

an erasure is a missing bit (or symbol). An SRAM cell that is known to be faulty can be

reduced into an erasure by ‘ignoring’ the content of the known and faulty SRAM cell. In

other words, a faulty SRAM cell will always output some value upon reading. If the value is

known to be coming from a faulty SRAM cell, it can be ignored and labeled as an erasure.

An erasure is similar to a don’t care (×). The differentiation is important since an erasure

is easier to decode compared to an error. In simple terms, no information from a bit in

error (erasure) is better than incorrect information from a bit in error (flipped bit). This

can illustrated using the following example:

Example 2.2.1. Consider the simplest repetition code (triple modular redundancy or TMR)

for a single information bit with a block length of n = 3. The information bit to be stored

is repeated 3 times in this coding scheme. Thus, codewords corresponding to bits 0 and

1 are (000) and (111), respectively. This code can correct one error or one erasure by

using majority voting on the read-out bit. In general, this coding technique can correct two

erasures or one error.

Let 0 be the information bit, and consider the two separate cases with two erasures
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and two errors. The stored block will be (000). Since the code is symmetric, without loss

of generality, assume that the first two bits are affected. Therefore, (×× 0) and (110) will

be the error-affected codewords for the two cases. By ignoring the erasures or ×, the bit 0

can be successfully decoded. However, (110) decodes to the incorrect bit 1 when using the

(optimal) majority decision rule.

Decoding errors and erasures together was studied by Forney under the concept

of generalized decoding [59]. Some binary error-correction code families (e.g., BCH codes)

jointly decode errors and erasures (generalized decoding). In generalized decoding, if an

error-correction code has minimum Hamming distance d, then me-errors and mx-erasures

can be corrected if,

2me + mx < d. (2.1)

Loosely speaking, two erasures are equal to one error.

In contrast, let specialized decoding be the setup where defective SRAM cell bits

are treated as errors. With me-errors and mx-erasures, the total number of bit-flips in

specialized decoding will be (me + mx). And, the condition for correct decoding is,

2(me + mx) < d. (2.2)

Observe that only the total number of bit-flips are important in specialized decoding. Com-

paring (2.1) with (2.2), a larger set of (me,mx) positive integer pairs satisfy the condition

for correct decoding in generalized decoding. Thus, it is expected that generalized decoding

will have a smaller decoding error probability. Quantitative comparisons on this difference

will be presented later in Chapter 4.
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2.2.1 SRAM cell failure mechanism classification

Using the less decoding overhead of erasures as a motivation, SRAM cell error-

mechanisms will be sieved as errors and erasures. Since parametric failures happen in

fixed SRAM cells (on the scale of decoding time) therefore, parametric failures can be

treated as erasures by using suitable read and write patterns during decoding. On the

other hand, noise-induced errors happen randomly in space (over SRAM cells) and time.

This class includes soft-errors, oxide trap-charge induced errors, and supply noise induced

errors. Thus, parametric failures will contribute to erasures, while other failure mechanisms

will contribute to errors. While decoding, the SRAM cells affected by parametric failures

can be learned by writing and reading test patterns in SRAM cells. Note that this advantage

in error-resilience comes at the cost of small decoding overhead. One scheme or test pattern

which reveals these parametric failures is presented next.

Example 2.2.2. Consider any SRAM cell which has stored encoded data xn
1 (see Fig-

ure 1.3). Based on SRAM channel model, the bits yn
1 will be read out. Erasures have to be

identified only if there is a parity check error while decoding. The following test patterns

reveal any parametric failures.

If the bit vector was yn
1 was read and a parity check error is detected, then an error

has been detected and yn
1 6= xn

1 . Then the complement ȳn
1 should be written (without coding)

in the n SRAM cells. Then two read operations on ȳn
1 must be performed. The first read

reveals any write-failure corresponding to ȳn
1 . The second read reveals any read-upset failure

corresponding to ȳn
1 .

In the next step, the original bit vector yn
1 is written in SRAM cells, and read



27

operation is performed twice. As before, the read operations reveal write-failure and read-

upset failure corresponding to yn
1 . Since each cell’s failure is independent of other cells,

these two test patterns are sufficient.

If there are no parametric failures, then the parity check error must be due to noise

mechanisms. A hold-failure is negligible in probability compared to these failure mechanisms

and hence it is ignored.

Note that for each cell, four read and two write operations are required to learn

the locations of parametric failures. This information will be incorporated suitably in the

refresh energy overhead later. Further, this overhead is only required when a parity check

error is observed.

Remark 1): This presented test-method is a simple first order method to detect parametric

failures. It ignores any neighborhood coupling that SRAM cells may have (for example,

due to leakage currents). If the neighboring cells couple, then cell by cell bit-level tests

may not be good enough for detecting a parametric failure. A rich set of test-methods

exist for detection of stuck-at, functional, or permanent faults in random access memories

(e.g., see [60,61]).

Remark 2): If erasures occur with very low probability, then erasure locations or addresses

can be stored in a separate small memory to aid the decoder. This will eliminate the

necessity of real-time check with test-patterns (and simplifying assumptions in the Remark

above), but it will introduce storage and latency overhead dependent on the number of

parametric failures present in any SRAM block. This approach and any subsequent trade-

offs are very interesting, but they have been left as a future work.
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2.2.2 Error and erasure probability upper bounds

Based on previous discussions, the erasure probability px is given by,

px(v) = ppf (v), (2.3)

where, ppf (v) is the parametric failure probability at supply voltage v. Parametric failures

are composed of hold-failure, write-failure, read-upset, access-time failure, and write-time

failure. Let ph(v), pw(v), pr(v), pat(v), and pwt(v) be the probabilities of hold-failure, write-

failure, read-upset, access-time failure, and write-time failure [17, 25, 45]. The parametric

failure probability ppf (v) will be bounded using these individual failure probabilities as

discussed next.

The probability of net parametric failure will be upper-bounded using the union

bound [62]. This powerful technique eliminates the need to know statistical dependence

between different error mechanisms. For any two sets A and B on which probability is

defined, the union bound states that,

P(A ∪B) ≤ P(A) + P(B). (2.4)

Equality holds in the union bound if the events A and B are mutually exclusive. If P(A) À

P(B), then the upper bound P(A) + P(B) approximates P(A ∪ B) well. The parametric

error probability ppf (v) can be upper-bounded by algebraic addition of individual failure

probabilities, even if the statistical dependence of different constituent failures is unknown.

Thus,

px(v) = ppf (v) ≤ ph(v) + pw(v) + pr(v) + pat(v) + pwt(v). (2.5)
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The advantage of this approach is that there is a rich set of techniques to estimate individual

parametric failures. These techniques will be discussed in Section 3. Note that px(v) does

not has any temporal dependence, and hence data-refresh will not ameliorate decoding error

contribution by parametric failures.

The other three major failure mechanisms are soft-errors, supply noise, and erratic

fluctuations as discussed in Chapter 1. Let rs(v), rn(v), and ref (v) be the error-probability

rates due to soft-error, supply noise induced errors, and erratic fluctuation induced errors,

respectively.

First, the error probability rate has to be converted into error probability for

analysis. For this purpose, consider r(v) as a generic error probability rate. Consider

any SRAM cell. For a small time δt, the bit-flip (error) probability for this cell will be

r(v)δt. This model assumes that two bit-flips do not strike in a small amount of time. Let

L be a positive integer. After a time of Lδt, the number of bit-flips in any SRAM cell is

distributed according to a random variable distributed according to a binomial distribution,

or Binomial(L, r(v)δt). An error happens when there are odd number of flips (each with

probability r(v)δt). Let,

Er(Lδt) = {Stored SRAM bit is in error after time Lδt due to noise rate r(v)}. (2.6)

Thus, the error probability for a bit stored in SRAM cell after a time of Lδt is given by,

P[Er(Lδt)] =
b(L−1)/2c∑

l=0

(
L

2l + 1

)
(r(v)δt)2l+1(1− r(v)δt)L−2l−1. (2.7)

The expression in (2.7) is complicated for analysis. However, for r(v)(Lδt) ¿ 1, this

expression is well approximated by,

P[Er(Lδt)] ≈ r(v)(Lδt). (2.8)
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Note that this expression is linear in the storage time Lδt. As an example, soft-error rate

is of the order of 10−16/s. For times up to a year, this approximation will be valid for

soft-errors.

To estimate error probability in SRAM cells, let t be any time period of interest.

Then, the error-probability due to soft-errors, erratic fluctuations, and supply noise is upper-

bounded (using the union bound) by,

pe(v) ≤ t[rn(v) + ref (v) + rs(v)], if pe(v) ¿ 1. (2.9)

Observe that for pe(v) ¿ 1, this error probability increases with time-period t. If pe(v) is not

much smaller than 1, then (2.7) will have to be used. Finally, error check and data-refresh

(scrubbing) at periodic rate mitigates this error mechanism.

2.2.3 Decoding error probabilities

In this section, decoding error probabilities for the generalized and the specialized

decoding methods will be computed. These expressions are valid for any error-correction

code with parameters [n, k, d]. First specialized decoding error probability psp(v) is analyzed

since it is straight forward. The probability that a bit is flipped is estimated by px(v)+pe(v).

And an error happens if the number of bit flips is more than u := b(d − 1)/2c. Note that

an [n, k, d] code can correct up to w errors. Thus,

psp(v) = P [(u + 1) or more flips happen] ,

=
n∑

j=u+1

(
n

j

)
(pe(v) + px(v))j(1− pe(v)− px(v))n−j . (2.10)
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If n(pe(v) + px(v)) ¿ 1, then this expression simplifies to,

psp(v) ≈
(

n

u + 1

)
(pe(v) + px(v))u+1(1− pe(v)− px(v))n−u−1,

≈
(

n

u + 1

)
(pe(v) + px(v))u+1. (2.11)

The expressions in (2.10) and (2.11) give upper bound on the specialized decoding error

probability. Recall from (2.9) that pe(v) depends on the time for which data has been

present in the SRAM cells. Thus, if data-refresh is used, psp(v) can be reduced by reducing

data-refresh time tr and hence pe(v).

In generalized decoding, errors and erasures are treated differently. If there are x

errors and y erasures, then a decoding error happens in the generalized case if 2x + y ≥ d.

The probability of error for the generalized decoding is given by,

pgen(v) = P [x errors and y erasures 3 2x + y ≥ d] ,

=
n∑

j=0

P [y erasures in (n− j) bits 3 2j + y ≥ d|j errors in n bits]

P[j errors in n bits],

=
n∑

j=0

n−j∑

i=d−2j

(
n− j

i

)
(px(v))i(1− px(v))n−j−i ·

(
n

j

)
(pe(v))j(1− pe(v))n−j .

If px(v) is negligible and npe(v) ¿ 1, then this expression simplifies to,

pgen(v) ≈
(

n

u + 1

)
(pe(v))u+1. (2.12)

And if pe(v) is negligible (compared to p2
x(v)) and npx(v) ¿ 1, then this expression simplifies

to,

pgen(v) ≈
(

n

d

)
(px(v))d. (2.13)
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When pe(v) is dominant, comparing (2.11) and (2.12), it is observed that generalized decod-

ing has negligible advantage over specialized decoding in terms of error probability. How-

ever, when erasures are dominant, then comparing (2.11) and (2.13) reveals that pgen(v) is

much smaller than psp(v) (since u = b(d− 1)/2c).

2.3 Optimization cost function and constraint modeling

As motivated in Chapter 1, SRAM leakage-power reduction is an important prob-

lem. Accordingly, a cost function including leakage-power and data-refresh overhead will

be developed. Data-refresh and error-correction coding are introduced to combat data-

reliability issue. The cost function will consist of leakage-power, and data-refresh power

overhead suitably normalized by data-refresh time. The data-refresh operation requires ex-

tra four read operations and two write operations per bit (see Example 2.2.2) in the case

of parity check failure due to an error or erasure. The corrected bits (at most d) have to

be written back as well. Recall that [n, k, d] are the error correction code parameters. The

number of redundant parity bits are (n−k). Let EECC be the average energy consumed by

the error-correction code. Then, the power per bit cost function, including the data-refresh

overhead, is given by,

Pb(v, tr, ECC) =
n

k
Pl(v) +

n(4Er + 2Ew)
ktr

+
EECC + nEr + Ewd

ktr
. (2.14)

The data-refresh overhead becomes negligible when data-refresh time tr and data-lifetime t0

are large. This assumption is reasonable since leakage-power is significant only when data-

lifetime is large. For the 90nm technology, t0 > 1s has negligible refresh power overhead

for low complexity codes like SEC-DED. For the 65nm technology, t0 > 10s has negligible
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refresh power overhead. These t0 = 1s and t0 = 10s numbers will be used in Chapter 4.

A decoding error probability target is used as the optimization constraint. At a

supply voltage of v = 1.0V, the target decoding error probability is set by a [31, 26, 3]-

Hamming coded SRAM cell block. As discussed in Chapter 1, only single-error correction

codes are used for error control in SRAM [33]. Therefore, a single-error correction code is

used to set the target error probability.

2.4 Optimization framework summary

The probability parameters rs(v), rn(v), ref (v), ppf (v), the supply voltage range,

the leakage-power Pl(v), and energy parameters like Er, Ew, EECC are the inputs to the

optimizer (see (2.5), (2.9) and (2.14)). For any error-correction code, since Er, Ew, EECC

get normalized by t0 and tr, they are not as important as the bit-error probability rates

and numbers. This is because the bit-error probability decides whether a supply voltage is

feasible or not for an error-correction code. Assume that all these parameters (as a function

of v) are available. For each error-control code, the optimizer computes the minimum

Pb(v, tr, ECC) as a function of (tr, v), at constant decoding error probability. Then the

cost function can be optimized over the choice of error-control code. This optimization

program can be reused for different set of input parameters.

Availability: The optimization framework is available for public use at the following web-

site: https://bwrcs.eecs.berkeley.edu/freshram/
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Chapter 3

Macro-modeling of failures

SRAM failure probability estimation is a challenging task due to low failure proba-

bility of the cells. 1 For example, the soft-error probability rate is of the order of 10−16/bit-sec

on Earth’s surface. A common metric, called FIT rate (Failure-In-Time rate), is measured

as the number of failures in the SRAM chip over a period of 109 hours. The FIT rate

increases with SRAM size. Using experiments, the FIT rate due to soft-error was predicted

to be 20, 000 for a 32Mb SRAM chip at sea-level in New York, USA in the 90nm technology

at v = 1.0V supply [23]. At a per-second level, the average probability of failure can be

calculated to be FIT/(109 × 3600 × 32Mb), which is approximately 1.73 × 10−16/bit-sec.

As motivated in Section 2, this work focuses on fixed error-probability power optimization

of SRAM chips. Then, for a moderate size of SRAM chip, many years will be needed to

estimate soft-errors experimentally. With voltage-scaling, the parametric failures become

more significant. Note that parametric failures happen across die and (spatially) across bits
1The failure probability is low from a measurement or estimation standpoint. Such high reliability is

expected out of modern SRAM chips.
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on the SRAM chip. Therefore, for getting statistics on parametric failures, comparable to

the failure level in soft-errors, large SRAM test arrays are needed.

Due to these difficulties, an efficient error-probability estimation method is needed

for quick power comparisons at different voltages. Motivated by these concerns, this section

will focus on estimation methods for all the failure methods discussed in Section 2.2 as a

function of supply voltage v. The SRAM cell design itself will be assumed to be fixed. 2

For the 90nm technology, at v = 1V, the parametric failures are negligible and the target

failure probability is set by the soft-error FIT rate. This target probability of error will be

kept constant by the optimizer.

At this point a note on modeling is required. The macro-models will be developed

using analytical methods, statistical distribution theory, asymptotic predictions, and Monte

Carlo simulations using the ST 90nm technology toolkit. While these models are not as

accurate as real silicon experiments, they provide a quick estimate of what performance

parameters can be achievable. The manufactured circuit is too complicated to be completely

modeled. The hope is that if used models are close enough to reality, then the calculated

performance will be close to the real performance. Besides, the models greatly increase

the performance calculation speed. Approximately a few thousand trials (at each voltage,

for each failure) will be used to predict the distribution using analytical methods, as will

be seen in the next sections. Since the optimizer and the error-probability numbers are

separable, so an experimenter can replace this work’s error-probabilities by his (or her)

favorite numbers.
2It is possible to extend the optimization framework over different SRAM cell designs, but that is beyond

the scope of this work, and has been saved as a future endeavor.



36

3.1 Soft-error rate estimation

Most CMOS circuits are charge-based, including SRAM. While storing data SRAM

cells retain charge at some nodes. Any “noise” mechanism that affects this stored charge

may cause errors. Energetic particles (like neutrons, alpha-particles, etc.) from radioactive

particle emission in the die-packaging or generated by incident neutrons from outer-space are

one such noise mechanism [16]. These energetic particles generate electron and hole pairs in

the semiconductor material, to causes temporary noise currents. If the noise-current is large

enough in magnitude, the stored state will change. The error is termed as “soft”, since the

device is not permanently damaged, but only the stored bit (or data) is in error [16]. If the

stored charge in CMOS circuit decreases, then this soft-error rate is expected to increase. In

particular, at lower supply voltages, the SRAM soft-error rate (FIT rate) increases [21,22].

For leakage-power reduction, if SRAM supply voltage is reduced during standby

or active operation, then the soft-error rate increases. The objective of this section is to

establish an efficient method for soft-error rate estimation as a function of supply voltage.

Recall that rs(v), the SRAM state flip rate, has to be estimated. The probability if failure is

simply given by ps(v) = t · rs(v), where trs(v) ¿ 1 and t is the time period of data-storage.

As noted earlier, the soft-error can be understood using “charge stored” and a noise-current.

Using this idea, a method to estimate the soft-error rate was proposed by Freeman. The

magnitude of the noise-current (as a function of time) is increased till the stored SRAM

state flips. The charge delivered by this noise-current is called as the critical-charge [41].

It must be noted that there are many methods to estimate the rate of soft-error [44]. This

work will use the critical-charge method from Freeman’s work because: (i) With appropriate
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noise current model, its accuracy has been demonstrated by Hazucha and Svennsson [23],

and (ii) It is easy to work with this model for Monte Carlo simulations.

The basic circuit to calculate the critical-charge is shown in Figure 3.1(a). Assume

that logical 1 and 0 are stored as shown in Figure 3.1(a). Then, the PMOS of L-inverter

will be switched off. Any positive current i(t) will increase the voltage at node storing

0. If the current is large enough, then the noise voltage buildup at node 0 will cause the

state 1 to flip. This mechanism is the primary cause of soft-errors. It would be obvious

that a negative noise current at node storing 1 will also flip the state. However, this error

mechanism contributes insignificantly to the total soft-error rate, because of lower collection

efficiency of PMOS and a higher critical-charge. Further, noise-currents at access transistors

can also cause state-flip, but their effect is much lower. Finally, this simplified circuit also

ignores the possibility of soft-error while the SRAM cell is being accessed. This assumption

is fair for long data-storage times, which is of interest in this work.

The noise-current generated by an energetic particle traveling through the tran-

sistor is represented as i(t). The net noise-current charge is given by,

q =
∫ ∞

0
i(t)dt. (3.1)

The noise-current waveform depends on the physical noise-charge generation process. Using

physical modeling and appropriate experiments, the noise-current waveform has been ap-

proximated to a simple two-parameter curve [23]. The shape of the two-parameter current

curve is illustrated Figure 3.1(b). The parametric description of i(t) is given by,

i(t) ≡ i(t, q, τ) =
2q

τ
√

π

√
t

τ
exp

(
− t

τ

)
, (3.2)
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where, q is the total charge
∫
t i(t)dt in the current, and τ is a time-constant parameter. The

parameter τ is technology and process dependent. For the 90nm and the 65nm technologies,

τ = 90ps will be used [21, 23, 44]. As noted previously, the critical-charge is the minimum

Figure 3.1: (a) The simplified circuit (without access-transistors) to evaluate soft-error rate
as a function of voltage is illustrated here. The current-source i(t) models the current
generated by charged particle. (b) Using experimental measurements and physical models,
a simple two-parameter model for i(t) has been proposed in the literature.

charge needed to flip the state of the SRAM cell. Thus,

qc(v) = min{q : state of SRAM flips due to i(t) at supply v}. (3.3)

The generated charge q is a natural phenomenon and it depends on the energy of the

incident energetic particle. Thus, only a fraction of incident particles cause a soft-error. The

dependence of SRAM error-rate rs(v) on qc is shown to be exponential in nature [22, 23],

i.e.,

rs(v) ∝ exp(−α qc(v)), (3.4)

⇒ rs(v) = Ks exp(−α qc(v)). (3.5)

The proportionality constant Ks depends on the FIT rate of the SRAM cell. For this

work, the FIT numbers from the literature will be used. It must be noted that Ks is

not a fundamental constant, but depends on the altitude above sea-level, solar-flares, and
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other natural parameters [16]. For example, it has been reported that compared to sea-

level, the soft-error rate at 44, 000ft height is about 100X higher. The measured cosmic-ray

flux at different altitudes, which is directly proportional to the soft-error rate, is shown in

Figure 3.2 [16]. Observe that the soft-error rate in Denver is about 4X higher than the

Figure 3.2: The increase in cosmic-ray flux with altitude is illustrated. The soft-error rate
is proportional to the cosmic-ray flux, and thus it increases with altitude (source: IBM ).

soft-error rate in New York City. The sea-level constant Ks will be used in this work.

So far, the modeling of critical-charge and its relationship to soft-error rate has

been described. In the deep-submicron era, the role of process-variations cannot be over-

looked. The inter-die or intra-die process-variations affect most figures of merit in circuits.

To calculate the effect of process-variations on the critical-charge, a Monte Carlo simulation

approach will be adopted as described next [63]. Many random instances of an SRAM circuit

will be simulated, with appropriate technology files and parameters in an advanced circuit-

simulator like Cadence Spectre, to obtain the critical-charge using the procedure described

above. This procedure will yield an empirical probability distribution of the critical-charge.
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Using this distribution, average expected probability of error can be computed. Since the

energy-particle cross-section will remain essentially the same, therefore, the constant Ks is

not expected to change.

Let the random critical-charge of any SRAM cell be Qc (instead of a nominal

critical charge qc). Then, using Monte Carlo simulation procedure described, an empirical

distribution of Qc will be obtained. The cumulative distribution function (CDF) is defined

as,

FQc(q) = P[Qc ≤ q].

The function FQc(q) simply tells the fraction of SRAM cells that will have a critical charge

less than q. An example of this empirical distribution, for supply voltage v = 1.0V and

1000 Monte Carlo trials, is illustrated in Figure 3.3. The x-axis is normalized by the mean

critical-charge E[Qc]. Observe that the distribution is centered around the mean, and the

total spread is 26% relative to the mean. Using this distribution, the average rate of soft-

Figure 3.3: This figure illustrates the CDF of Qc on a scale normalized by E[Qc]. Observe
that the distribution is centered around the mean, and the total spread is 26% relative to
the mean.
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error can be calculated as follows:

r̄s(v) = E [Ks exp(−αQc(v))] , (3.6)

where, r̄s(v) is the average soft-error rate at any supply voltage v. The expectation or

average is taken over SRAM cells or intra-cell variations. Since exp(−αx) is a convex

function in x for x > 0, therefore, by Jensen’s inequality [50,62],

r̄s(v) ≥ Ks exp (−αE[Qc(v)]) = Ks exp(−αqc(v)) = rs(v), (3.7)

where, the equality E[Qc(v)] = qc(v) is observed for all supply voltages in simulations

(e.g., in Figure 3.3, this feature is observed). Thus, the process-variation affected soft-

error rate r̄s(v) is always larger than nominal soft-error rate rs(v). The quantity r̄s(v) will

be calculated in the experiments section in Chapter 4. In summary, a first-order model

to estimate soft-error rate as a function of supply voltage v, in the presence of process-

variations was presented.

3.2 Parametric failures

Any SRAM cell is designed for storing a bit, non-destructive read of stored bit,

successful write by replacing stored bit, writing (replacing) a bit within a specified time, and

reading stored bit within a specified time. Violation of these basic tasks lead to the following

failures: (i) hold failure, (ii) read upset, (iii) write failure, (iv) write-time failure, and (v)

access-time failure, respectively. These failure modes will be explained briefly and a detailed

explanation of all these failures can be found in the literature [12,13,25,45,46,64]. The prime

cause of these failures is process-variations, which perturbs the SRAM cell parameters from
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nominal design leading to a failure. In particular, the random (or systematic) fluctuations

in the number of dopants, threshold voltages of transistors, gate lengths, and the oxide

thickness lead to the violation of one or more of these functionalities.

It must be emphasized that the goal of this section is not to design an SRAM

cell which keeps these failures at the level of soft-errors. Instead, using a Monte Carlo

method, this section’s goal is to estimate parametric-failure probabilities an efficient manner.

Existing literature has an in-depth treatment of parametric failures, and SRAM cell design

to reduce their probability [13,25,45,46].

Two techniques will be used to estimate these parametric-failure probabilities. The

first technique involves noise-margins obtained from suitable voltage transfer characteristics

(VTC). The VTCs of interest will be between VL and VR (the two storage nodes in SRAM as

in Figure 3.4) under appropriate DC biasing of the SRAM cell transistors. A noise-margin

vector, which is an appropriate measure of SRAM cell stability, will be extracted using the

VTCs. The beauty of this noise-margin vector lies in the fact that a single threshold test

(noise margin > 0 in all co-ordinates) tells about the presence of a parametric failure. After

obtaining relevant VTCs using Monte Carlo simulations, the probability of these tests are

(relatively) easier to estimate. The second technique involves extreme value theory [65,66].

For computing access-time and write-time when failure probability is negligible (usually

smaller than 10−6), a brute-force Monte Carlo simulation method is expensive. Using only

a few thousand trials, the access-time and the write-time will be estimated using extreme

value theory. This theory has been successfully used by Singhee and Rutenbar in the

estimation of SRAM write-time [67]. The approach is slightly different in this work, but
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the underlying principle remains the same.

3.2.1 Read upset probability – pr

If an SRAM bit gets flipped while it is being accessed, it is called as read-upset. To

understand this, consider the SRAM circuit during read operation as shown in Figure 3.4.

The nodes with voltage VL and VR store the information (or input) bit as complementary

logical states (here 1 and 0, respectively). During the read-operation, the bit-line capacitors

(BL cap) are kept at supply voltage v and the access-transistors are turned on [1].

Figure 3.4: The DC bias during read operation is illustrated in this figure. The access
transistors are turned on, and the bit-line capacitors are charged to the supply voltage v.
The nodes with voltages VL and VR store the SRAM bit as complementary logical states.

During read operation, the voltage VR will rise above the usual ground state of

≈ 0V. The voltage VR is decided by ON resistances of NMOS in inverter R and the AXR

transistor. If this voltage rises above the tripping point of inverter L, then the state of

SRAM will flip, causing a read-upset. This event, though rare for a carefully designed

SRAM cell, can happen due to process-variations.

To estimate this read-upset probability, a read-noise margin (rnm) metric will be

used. Before calculating rnm, appropriate VTCs are needed and they will be explained

now. The SRAM cell is put in DC bias conditions occurring during read-operation. This
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is illustrated in Figure 3.5(a) and (b). Even though the DC bias is identical to the read

operation, the inverter L and inverter R are decoupled for rnm calculation. Two VTCs

will be obtained as a result, corresponding to the two situations in Figure 3.5 [45,46]. The

Figure 3.5: The circuit used for obtaining VTCs for rnm calculations are illustrated. The
DC bias condition is identical to the read-operation of SRAM, but the inverter L and
inverter R circuits are decoupled. (a) The voltage VL is swept to find the VTC of inverter
L. (b) The voltage VR is swept to find the VTC of inverter R.

calculation of rnm from these VTCs is done by constructing a suitable “butterfly curve,”

which is explained next.

The VTCs of inverter L and inverter R are overlaid in a single graph as shown in

Figure 3.6. The solid curve corresponds to the VTC obtained in Figure 3.5(a). Similarly,

the dotted curve corresponds to the VTC in Figure 3.5(b). Because of the highly non-

linear VTC, this overlaid graph results in three stability points of (VL, VR) pair. Of these

three points, the central point is metastable. Due to the resultant graphical structure, this

overlaid graph is called as the butterfly-curve. In the two wings of this butterfly diagram,

maximal squares S1 and S2 can be inscribed [45,46].

Let s1 and s2 be the sides of S1 and S2, respectively. Then the read-noise margin

is defined as,

rnm = min(s1, s2). (3.8)
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Figure 3.6: The overlaid VTCs of inverters L and R in read-operation result in a butterfly-
curve structure. The largest inscribed squares in the wings of butterfly diagram are S1 and
S2 with sides s1 and s2, respectively. Then, rnm = min(s1, s2).

It should be noted that the value of rnm depends on the supply voltage v, since the sides

of S1 and S2 depend on v through the VTCs. If the VTCs do not form three stable points

in the butterfly diagram, then during the read operation the SRAM state will reach the

single stable point on the butterfly diagram. Then rnm is defined to be negative and it will

indicate a read-upset event. Thus, for a non-destructive read operation in an SRAM cell,

rnm ≡ rnm(v) > 0. This single threshold test reveals if a read-upset failure will be present

in an SRAM cell or not.

Because of process-variations, each manufactured SRAM cell will have a different

butterfly diagram leading to a unique rnm. Similar to soft-error rate, the rnm in the

presence of process-variations will be modeled in a statistical setup. Using a Monte Carlo

setup, different realizations of SRAM circuit will be simulated and rnm will be obtained

using the method described (see Figure 3.6). The rnm will be treated as a random variable.
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Let RNM(v) be the random variable corresponding to the rnm of various cells at supply

voltage v. Then the statistical event RNM(v) ≤ 0 corresponds to a read-upset event. And

read-upset probability will be,

pr(v) = P[RNM(v) ≤ 0]. (3.9)

To estimate the read-upset probability, the distribution of RNM(v) will suffice.

However, it remains a challenge to accurately estimate the distribution tail at failure prob-

abilities 10−6 or lower. As motivated earlier in this section, a macro-model based approach

will be followed to estimate these error-probabilities. Fortunately, it has been shown in

various papers that RNM(v) exhibits a Gaussian distribution [10,25,45]. This is observed

in circuit simulations. For example, Figure 3.7 illustrates the empirical probability density

function (PDF) of RNM at v = 1V with 1000 Monte Carlo trials.

Figure 3.7: The observed empirical probability density function of RNM at v = 1.0V is
illustrated in this figure. A Gaussian distribution is expected and observed.

The Gaussian distribution property of RNM(v) has been demonstrated by other

researchers for 100, 000 Monte Carlo trials [45]. To gain further insights into read-upset
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probability, this property can be explained if VT -variation is the dominant factor in rnm

variation. The rnm of an SRAM cell is approximately a linear function of the threshold

voltages [10,45]. Since VT variation is approximately Gaussian, therefore, its linear function

will also be Gaussian [68]. The advantage of this characterization is that only the mean and

the variance of RNM(v) are needed for modeling the read-upset probability. Thus,

RNM(v) ∼ N (µr(v), σ2
r (v)), (3.10)

where, µr(v) and σr(v) can be determined by Monte Carlo simulations. Once these functions

have been calculated, the read-upset probability for different voltages can be found out using

the Q-function for Gaussian distribution [68], i.e.,

pr(v) = P[RNM(v) ≤ 0],

= P
[(

RNM(v)− µr(v)
σr(v)

)
≤ −µr(v)

σr(v)

]
,

= Q

(
µr(v)
σr(v)

)
. (3.11)

The expression in (3.11) determines pr(v) is an efficient manner. The behavior of µr(v) and

σr(v) will be revisited in the experiments section.

3.2.2 Write failure – pw

In a bit (either 0 or 1) cannot be written in an SRAM cell, it is called as write-

failure. To understand this, consider the SRAM circuit during write operation as shown in

Figure 3.8. The nodes with voltages VL and VR are storing bits 1 and 0. To write a bit, the

BL capacitors are pre-charged to complementary voltage levels, and access transistors are

turned on [1].
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Figure 3.8: The DC bias during write operation is illustrated in this figure. The access
transistors are turned on, and the bit-line capacitors are pre-charged to complementary
levels for writing the bit. The nodes with voltages VL and VR store the SRAM bit, and they
should flip as a result of write operation.

During write-operation illustrated in Figure 3.8, the PMOS of inverter R and the

access transistor AXL will be conducting. The voltage VL will fall below v, and its value

will depend on the ON resistances of PMOS in inverter R and the access transistor AXL.

If AXL has a much smaller ON resistance, then the voltage at VL will not fall low enough

for the bit to be written. Process-variations may cause this mismatch in ON resistances to

cause a write-failure.

Similar to read-operation, write-failure can be understood using a write-noise mar-

gin (wnm) metric. To understand wnm, appropriate VTCs are needed which will be ex-

plained now. The SRAM cell is put in DC bias conditions as in write-operation. This is

illustrated in Figure 3.9(a) and (b). Note that similar to the read-operation, the inverters

L and R are decoupled for VTC measurement. A crucial difference between the read-

operation and the write-operation is the asymmetry of DC bias conditions. The BL caps

are pre-charged to the complementary values of initial conditions VL and VR. 3 Thus, in

the illustrated example in Figure 3.9 where the initial values of voltages VR and VL are 0

and v, respectively, the BL cap voltages are set to v and 0, respectively.
3If respective BL caps have the same voltage conditions as VL and VR, then there is nothing to write.
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In the presence of process-variations mismatch will be present, and symmetry

between inverters L and R will be not present. Because DC bias conditions in write-

operations are asymmetric, therefore two pairs of VTCs will be needed for wnm calculations.

First pair will be obtained from DC bias illustrated in Figure 3.9. Second pair will be

obtained by swapping the BL cap bias between Figure 3.9(a) and Figure 3.9(b). The

calculation of wnm from these VTC pairs is explained next.

Figure 3.9: These figures illustrate the circuits used for obtaining VTC characteristics for
wnm calculations. The bit-line capacitor bias is set as during write operation. (a) The
input voltage VL to the left-inverter is swept to find the VTC of L-inverter. (b) The input
voltage VR to the right-inverter is swept to find the VTC of R-inverter.

The two pairs of VTCs are overlaid as shown in Figure 3.10 [46]. The solid curves

represent the first VTC pair. Unlike read-operation, the two curves meet at a single stable

point for (VL, VR), and it corresponds to the bit being stored. For a successful write-

operation, there should be a single stable point as in Figure 3.10. The square S1 with

side s1 is a metric of write-operation stability. If s1 ≈ 0, and the solid curves meet at two

points, then write-operation will be unsuccessful. Similarly, the dotted VTC pair results in

a square S2 of side s2. The write-noise margin is defined as,

wnm = min(s1, s2). (3.12)

Similar to rnm, the wnm metric is a function of supply voltage v through the VTCs. If
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write-operation is not stable for either of the pair, then (by convention) wnm ≤ 0. Thus,

write-failure is equivalent to wnm ≡ wnm(v) ≤ 0. This single threshold test reveals if a

write-failure will be present in an SRAM cell or not.

Figure 3.10: The solid curves are obtained by biasing as in Figure 3.9. The dotted curves
will be obtained by swapping the BL cap bias in Figure 3.9(a) and (b). Let the largest
inscribed squares in the butterfly-curves be S1 and S2 with sides s1 and s2 respectively.
Then wnm = min(s1, s2).

Similar to read-upset, a macro-model based approach will be used to estimate the

write-failure probability. Figure 3.11 illustrates the distribution of WNM at two voltages.

Notice that at high-voltage (v = 1.0V) the distribution is symmetric and at low voltages

(v = 0.3V) the distribution exhibits a single-sided tail. This change in distribution-shape

with supply voltage v is peculiar to write-failures, among all the failure methods examined

in this work.

In the voltage range 0.7V ≤ v ≤ 1.0V, a Gaussian distribution models the WNM
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Figure 3.11: The observed empirical PDF of wnm is illustrated for two voltages. Notice
that at high-voltage (v = 1.0V) the distribution is symmetric and at low voltages (v = 0.3V)
the distribution exhibits a single-sided tail.

distribution satisfactorily. For 0.7V ≤ v ≤ 1.0V, the failure probability is given by,4

pw(v) = Q

(
µw(v)
σw(v)

)
. (3.13)

where, WNM(v) ∼ N (µw(v), σ2
w(v)) is the WNM -distribution for 0.7V ≤ v ≤ 1.0V. The

expression in (3.13) determines pw(v) is an efficient manner. The behavior of µw(v) and

σw(v) will be revisited in the experiments section.

For the voltage range of 0.6V ≤ v ≤ 0.3V, the full distribution is not estimated.

Instead, the probability of WNM(v) ≤ 0 event is estimated directly to quantify pw(v).

For 0.3V ≤ v ≤ 0.6V, the probability of WNM(v) ≤ 0 event will be computed using the

method described next. Consider the residual probability function,

Rw(t, x, v) := P [WNM(v) ≤ (x− t)|WNM(v) ≤ x] , t ≥ 0. (3.14)

This equation can be rearranged using Baye’s rule as follows:

P [WNM(v) ≤ (x− t)] = Rw(t, x, v) · P [WNM(v) ≤ x] . (3.15)
4The method to obtain these expressions is identical as in the read-upset probability estimation.
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Observe using Figure 3.11(b) that the event WNM(0.3) ≤ 0 is not observed directly using a

few thousand Monte Carlo simulations. Thus, WNM(v) ≤ 0 is a “rare” probabilistic event

and its direct observation in Monte Carlo simulations is expensive. A predicted estimate

of pw(v) will be obtained. If t is equal to x, then P[WNM(v) ≤ (x − t)] represents the

write-failure probability. If x > 0 is moderately large, then P[WNM ≤ x] can be calculated

efficiently using a few thousand Monte Carlo trials. Thus, if Rw(t, x, v) can be estimated

for t ≈ x, then pw(v) can be computed. Consider the limit,

Rw(t, v) := lim
x→−∞Rw(t, x, v).

In the special case when the weak limit Rw(t, v) exists, it has been shown to be exponential.

This result forms the basis of extreme-value theory and its further generalizations [65, 66].

Thus, if Rw(t, v) exists, then,

Rw(t, v) = exp(−αw(v)t). (3.16)

Using limited number of simulations, the exponential behavior of Rw(t, x, v) for small

enough x > 0 will be examined. And, if exponential behavior exists, then P[WNM(v) ≤ 0]

will be estimated using the formulas in (3.15) and (3.16).

In practice, the exponential behavior of Rw(t, x, v) was observed at voltages in

the range 0.3V ≤ v ≤ 0.6V. For example, Figure 3.12 illustrates the empirically observed

Rw(t, xv, v) for v = 0.6V and v = 0.3V. The point xv was chosen to be around the 10%

point or P[WNM(v) ≤ xv] ≈ 0.1, and the range of examination is [xv − tv, xv] where tv is

around the 1% point or P[WNM ≤ (xv − tv)] ≈ 0.01. The results will be discussed in the

experimental section.
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Figure 3.12: This figure illustrates the exponential behavior of Rw(t, x, v) at two differ-
ent supply voltages. This behavior will be extrapolated to (xv − t) = 0 for write failure
estimation.

3.2.3 Hold failure – ph

If an SRAM bit gets flipped while it is being stored (i.e., cut-off from peripheral

circuit), then it is called as a hold-failure. To understand this, consider the SRAM circuit

during hold operation as shown in Figure 3.13. The nodes with voltages VL and VR store the

input bit as complementary logical states. During the hold operation, the bit-line capacitors

are kept at ground voltage and the access transistors are turned off [1]. 5

Figure 3.13: The DC bias during hold mode is illustrated in this figure. The access transis-
tors are turned off, and the bit-line capacitors are kept at ground voltage. The nodes with
voltages VL and VR store the SRAM bit.

5Negligible variation was found in SRAM cell’s hold failure probability as a function of BL cap voltage.
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Unlike read or write operation, the hold operation is static (except for a steady-

state small leakage current, there is no dynamic activity). Therefore, the hold-failure will

be explained using suitable VTC curves obtained from the hold-mode SRAM circuit. In

particular, bi-stability property explains the hold operation. To explain and estimate the

hold-failure probability, a static noise margin (snm) metric will be used. Before calculating

snm, appropriate VTCs are needed and they will be explained next. The SRAM cell is put

in DC bias conditions as during the hold operation. This is illustrated in Figure 3.14(a)

and (b). Similar to read or write noise margin measurements, the inverter L and inverter R

are decoupled. Two VTCs will be obtained as a result, corresponding to the two situations

in Figure 3.14. The bi-stability of SRAM cell during hold operation and the calculation of

snm from these VTCs is done by constructing a suitable butterfly curve, which is explained

next [12].

Figure 3.14: These circuits used for obtaining VTCs for snm calculation are illustrated.
The access-transistors and BL cap are turned off. (a) The voltage VL is swept to find the
VTC of inverter L. (b) The voltage VR is swept to find the VTC of inverter R.

As before, the VTCs of inverter L and inverter R are overlaid in a single graph as

shown in Figure 3.15. The solid curve corresponds to the VTC obtained by Figure 3.14(a).

Similarly, the dotted curve corresponds to the VTC obtained by Figure 3.14(b). Because of

the sharp transition in VTC, these overlaid graphs result in three stability points of (VL, VR)
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pair. Of these three points, the central point is metastable. This overlaid graph is called

as the butterfly-curve. In the two wings of this butterfly diagram, maximal squares S1 and

S2 with sides s1 and s2, respectively, can be inscribed. As before, s1 and s2 depend on the

supply voltage v. The static noise margin is defined as the minimum of these sides,

snm = min(s1, s2). (3.17)

As supply voltage is reduced, the transition zone (from high to low) of solid VTC

becomes wider. When the voltage is low enough, the overlaid diagram has no butterfly-

curve structure. If snm ≥ 0, then the butterfly-curve structure is present. With supply

voltage reduction, at some critical value of v, say v∗h, the static noise margin will vanish, or

snm(v∗h) = 0. This voltage v∗h is the minimum possible voltage at which an SRAM cell can

be expected to retain the bit successfully. This voltage v∗h is called as the data-retention

voltage or DRV in the literature [12]. By convention, snm < 0 for supply voltages below

v∗h. And hold-failure happens if snm ≡ snm(v) ≤ 0. This single threshold test reveals if a

hold-failure will be present in an SRAM cell or not.

Because of process-variations, each manufactured SRAM cell will have a different

snm. As before, the process-variations affected snm will be modeled in a statistical setup

using Monte Carlo simulations. Using a Monte Carlo setup, different realizations of SRAM

circuit will be simulated and their snm will be obtained using the method described (see

Figure 3.15). The snm will be treated as a random variable. Let SNM(v) be the random

variable corresponding to the snm of various cells at supply voltage v. Then the statistical

event SNM(v) ≤ 0 corresponds to a hold-failure event. And hold-failure probability will
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Figure 3.15: The solid curves are obtained by biasing as in Figure 3.14. Let the largest
inscribed squares in the wings of butterfly diagram be S1 and S2 with sides s1 and s2

respectively. Then snm = min(s1, s2).

be,

ph(v) = P[SNM(v) ≤ 0]. (3.18)

It has been shown in literature that SNM(v) exhibits a Gaussian distribution,

similar to RNM(v) [10,45]. This is observed in circuit simulations. For example, Figure 3.16

illustrates the empirical PDF of SNM at v = 1.0V with 1000 Monte Carlo trials. The

advantage of this characterization is that only the mean and variance of SNM(v) are

needed for modeling the hold-failure probability. Thus,

SNM(v) ∼ N (µh(v), σ2
h(v)), (3.19)

where, µh(v) and σr(v) can be determined by Monte Carlo simulations. Once these functions

have been calculated, the hold-failure probability for different voltages can be found out
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Figure 3.16: The observed empirical probability density function of SNM at v = 1.0V is
illustrated in this figure. A Gaussian distribution is expected and observed.

using the follow Q-function formula,

ph(v) = Q

(
µh(v)
σh(v)

)
. (3.20)

Its derivation is identical as in the read-upset probability case. The expression in (3.20)

determines ph(v) in an efficient manner. The behavior of µh(v) and σh(v) will be revisited

in the experiments section.

Two remarks on SNM and hold-failure should be noted: (i) It has been reported

in the literature as well as observed during simulations that SNM is larger than RNM . As

a result, pr(v) is much larger than ph(v). This point will be revisited in experiments section,

and (ii) Hold-failures and soft-errors during hold-operation are dominant error mechanisms

for standby-SRAM, or an SRAM which is just storing the data without any activity. This

low activity scenario of SRAM is important in low-power design and it will be re-visited

with experimental test-chip results in Section BLAH.
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3.2.4 Write-time failure – pwt

So far static errors during read, write, and hold operation were analyzed for failure

probability. There are two timing-based error probabilities that must be analyzed as well.

Of them, first is write-time failure. To understand it, consider the circuit for writing a bit in

SRAM cell shown in Figure 3.17(a). This circuit is similar to write noise margin calculation

circuit, except that access transistor’s gate is biased by WL or word-line. The word-line is

selected or kept at voltage v for a finite duration of tw as shown in Figure 3.17(b). During

this time, the node voltage VR should rise from ≈ 0V to the trip point of inverter R for a

successful write [45]. 6

Figure 3.17: (a) This figure illustrates the write operation circuit. The BL and BL are
pre-charged to complementary levels, and then the access transistors’ gate are turned on.
(b) The WL pulse is enabled for a time tw to facilitate writing in any SRAM cell.

Due to process-variations, different SRAM cells will need a different WL pulse-

width for a successful write. This variation will be modeled in a statistical setup as before.

Let Tw be the (random) critical pulse-width needed for a successful write in any cell. If

Tw ≤ tw, then write operation will be successful. Even though not explicitly mention, it

must be noted that Tw ≡ Tw(v) is a function of supply voltage v. And tw (the fixed write-

time) can be chosen to be a function of supply voltage. For any given tw, the probability
6The node voltage VR will initially be at a voltage slightly larger than 0V due to SRAM leakage currents.
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of write-time failure is given by,

pwt(v) = P[Tw(v) > tw]. (3.21)

If the distribution of Tw(v) is known, then the write-time failure probability in

(3.21) can be computed. However, this distribution is not known in analytical form. Past

works have modeled the distribution of Tw(v) for a high supply voltage around v = 1.0V.

The efficacy of this approach at all voltages is unclear [25, 45]. In this work, a different

approach will be used. Since the complete distribution is not of interest, therefore, the

probability of failure pwt(v) will be directly estimated. The usual limitation of few thousand

trials for predicting tail probabilities is present in this setup as well. To overcome this

limitation, extreme value theory results will be used. For any given t, x > 0, the residual

probability function is defined as,

Rwt(t, x, v) := P [Tw > (x + t)|Tw > x] , (3.22)

where the expression is interpreted as probability that Tw is larger than (x + t), given that

Tw is larger than x. If x is fixed, and t is large, then the tail probability can be estimated

using,

P[Tw > (x + t)] = Rwt(t, x, v) · P[Tw > x]. (3.23)

Consider the limit function,

Rwt(t, v) = lim
x→∞Rwt(t, x, v). (3.24)

The extreme value theory tells that if Rwt(t, v) exists, then it must be an exponential

function, or

Rwt(t, v) = exp(−αwt(v)t). (3.25)
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Figure 3.18: The approximate exponential decay of Rwt(t, x, v) for large enough x is illus-
trated. The point x is chosen such that P[Tw > x] = 0.1. Only plots corresponding to
v = 0.3V and v = 1.0V are shown.

In this work, lnRwt(t, x, v) will be examined for large enough x. It is empirically

observed that ln Rwt(t, x, v) is exponential for more than an order of magnitude. Therefore,

as a thumb rule, it is conjectured that Rwt(t, x, v) will be exponential (using the above

convergence result). It can be argued that this is nothing but an exponential fit to the

residual probability function. This fact is true, but the extreme value theory suggests

which is right function to look for while doing the exponential fit. The exponential fit of

Rwt(t, v) for two values of v is illustrated in Figure 3.18. Observing exponential decay in

simulations, an exponential decay model for Rw(t, x, v) will be adopted.

Once the exponent of αwt(v) is estimated, the tail probability for asymptotic tw

can be predicted using,

P[Tw > tw] = exp[−αwt(v)(tw − x)] · P[Tw > x], tw > x, (3.26)

where P[Tw > x] will be estimated by Monte Carlo simulations. For this work, x ≡ xv was

chosen such that P[Tw > x] = 0.1 (see Figure 3.18). The value of tw can be chosen such
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that the write-time failure probability is negligible in comparison with the write or read

failures. Thus, this procedure gives an estimate of write speed supported by an SRAM cell.

Coupled with the peripheral circuit delay, it will indicate the speed (frequency) reduction

due to voltage scaling.

3.2.5 Access-time failure – pat

This last discussion on parametric failures belongs to access-time failures. As

mentioned before, access-time failure happens when a bit is not read successfully from

an SRAM cell within a specified time. Thus, access-time failure is the read operation

counterpart of write-time failure in write operation. To understand it, consider the circuit

shown in Figure 3.19(a) [25]. This circuit is similar to read noise margin calculation circuit,

Figure 3.19: (a) This figure illustrates the read operation circuit. The BL and BL are
pre-charged to supply voltage v, and then the access transistors’ gates are turned on. (b)
The WL pulse is enabled for a time ta to facilitate reading from any SRAM cell. If the
capacitor BL will discharge to from v to 0.9v in time ta, then SRAM read is successful.

except that access transistors’ gates are biased by WL or word-line voltage. The word-

line is kept at supply voltage v for a finite duration of ta as shown in Figure 3.19(b). In

Figure 3.19(a), when WL is high, the access transistor AXR discharges the BL cap voltage.

If BL cap voltage falls below 0.9v, the read operation is successful. Note that BL cap

voltage will be approximately constant if ta is not very large. In case if BL cap voltage
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falls below 0.9v, then ∆BL := |BL−BL| > 0.1v. The peripheral circuit (sense amplifiers)

amplify the voltage from this difference to read the bit successfully.

Due to process-variations, different SRAM cells will need a different WL pulse-

width for a successful read. This variation will be modeled in a statistical setup as before.

Let Ta be the (random) critical pulse-width needed for a successful write in any cell. If

Ta ≤ ta, then the read operation will be successful from timing considerations. As before,

it must be noted that Ta ≡ Ta(v) is a function of supply voltage v. And ta (the fixed

access-time) can be chosen to be a function of supply voltage also. For any given ta, the

probability of access-time failure in the random setup is given by,

pat(v) = P[Ta(v) > ta]. (3.27)

In the absence of access-time’s probability distribution, an extreme-value fit will be

verified and obtained as for the case of write-time failures (see Section 3.2.4). Let Rat(t, x, v)

be the residual probability function. Using simulations it is observed that Rat(t, x, v) is

decaying exponentially with t for a region. Using extreme-value theory, it is then conjectured

that Rat(t, v) := limx→∞Rat(t, x, v) is exponential. Thus, the access failure probability is

given by,

P[Ta > (x + t)] = exp(−αat(v)t) · P[Ta > x], (3.28)

where the point x is chosen such that P[Ta > x] = 0.1. The exponential decay of Rat(t, x, v)

is shown in Figure 3.20.

With this note, the access-time failure probability estimation is complete. It must

be noted that t can be made large enough to ensure that access-failures are negligible in

comparison to the sum of read, write, and hold failures.
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Figure 3.20: The approximate exponential decay of Rat(t, x, v) for large enough x is illus-
trated. The point x is chosen such that P[Ta > x] = 0.1. Only plots corresponding to
v = 0.3V and v = 1.0V are shown.

3.3 Supply noise

Supply-voltage noise remains an important issue to be addressed. Usually a 100mV

extra margin is added to the supply voltage to ensure proper functionality of SRAM. In this

work, the same approach will be adopted. Thus, if v∗ is found to be the operating power

optimal supply voltage for SRAM, then (v∗ + 100mV) will be the actual supply voltage.

For simplicity, power comparisons will be made without adding the noise margin. It must

be noted that this is not the power optimal strategy. For example, in the case of standby

SRAM, the supply noise will be much smaller due to zero circuit activity. Usually supply

noise is observed at the clock edge, when the active logic blocks draw a large (but indefinite)

amount of current [19].

It is tempting to model supply noise in a stochastic noise setup. However, this will

require considerable rethinking of existing figures of merit as well as noise modeling. For

example, rnm, snm, wnm, Tw, and Ta parameters are defined for a fixed supply voltage.
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While Tw and Ta are timing parameters which can still be studied under the presence of

supply noise, the noise-margins obtained from VTCs are DC concepts and extending them

will require non-trivial research effort. Recently, some papers have addressed the dynamic

stability of SRAM, but the progress is far from complete [47]. Apart from non-trivial

extensions of stability criteria, supply noise modeling will require a considerable effort.

Some experiments have studied the noise distribution or correlation in practical chips, and

they clearly illustrate the time-varying nature of the noise distribution [19]. The time-

varying nature of noise will complicate the problem further. Accordingly, this challenging

problem is left as a future work.

3.4 Review

This section focused on the modeling of important SRAM failures as a function of

supply voltage. An interesting feature of error probability macro-models is its simplicity.

Though considered in this work, these simple metrics can be used for designing SRAM

cells for better resilience against failures. Failure probability estimates derived from these

macro-models will be used to predict the leakage-power reduction in the presence of error-

correction and refresh. If these macro-models are not accurate enough for any task at hand,

then the optimizer can be fed with more accurate numbers.
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Chapter 4

Simulation results on modeling and

optimization

In this chapter, simulations results from the 90nm and 65nm technologies will

be presented. The simulation models developed in Chapter 3 applies well to both these

technologies. Most of the plots are normalized to comply with the non-disclosure agree-

ment signed for obtaining access to these technology files. Any inconvenience due to this

normalization is regretted.

4.1 Average SRAM leakage current

To tackle the increasing leakage-power problem, the 65nm technology has higher

threshold CMOS transistors. Higher threshold transistors have lower leakage but it also

reduces the saturation current (and hence speed) of the transistor. This should be expected

as a temporary glitch in the leakage-power increase with technology. The net result is
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a smaller average (per cell) leakage in the 65nm technology SRAM cells. The average

leakage current in SRAM cells are compared in Figure 4.1. The decay in leakage current is

approximately quadratic in the supply voltage v. Both the plots are shown on a normalized

y-axis. Observe that the leakage in 65nm technology is smaller by an order of magnitude

than the leakage in 90nm technology. Due to this reason, the data-lifetimes used will be

different for the two technologies. A data-lifetime of t0 = 1s for the 90nm technology and

t0 = 10s for the 65nm technology will be used.

Figure 4.1: (a) Average (over process-variations) SRAM cell leakage current is plotted in
this figure. Observe that due to high threshold voltage, 65nm CMOS technology has lower
leakage. (b) Leakage current comparison is illustrated in log scale. Observe that in 65nm
technology, the leakage is smaller by an order of magnitude.

For a better understanding of leakage power, these leakage currents are in the

range of 1nA. Thus in a time of 1s, they will approximately leak 1nJ of energy. Active

read and write energy in the SRAM cell is of the order of 10pJ. Thus energy spent due

to leakage/cell in a second is about 10× to 100× larger than one read, write, and refresh

operation. Thus, leakage-power contribution is significant only when the read-write activity

is occasional. A data-lifetime t0 ≥ 1sec (in 90nm) or t0 ≥ 10sec (in 65nm) is coherent with
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the assumption that the leakage-power is significant.

4.2 Soft-error rates

A critical charge based approach was used to model soft-error rate, as discussed

in Chapter 3. Recall that soft-error rate was given by the following expression,

r̄s(v) = E[Rs(v)] = KE[exp(−αsQc(v))].

The distributions of Qc(v) for different supply-voltages were obtained for the two technolo-

gies under study. The constants K and αs were estimated from the paper by Hazucha and

Svennsson [23]. The exponent αs was estimated as 0.0769/fC and 0.1031/fC for the 90nm

and the 65nm technologies. The constant K was estimated using the FIT rate at sea-level

reported in literature [23]. The sea level FIT rate was used to get the soft-error rate of a

single cell. The increase in soft-error rate with decrease in supply voltage is illustrated in

Figure 4.2.

Figure 4.2: The soft-error rate (per second) as a function of supply voltage is compared.
The 65nm technology is expected to have a larger increase in soft-error rate with supply
voltage reduction than the 90nm technology.
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Observe that the soft-error rate increases more for the 65nm technology with

voltage scaling. The prime reason is a larger αs for the 65nm technology. The v = 1.0V

soft-error rates are plotted as equal since the gate area of SRAM cell transistors used in

simulations are equal. It would be expected that 65nm technology transistors have a smaller

gate area due to technology scaling. However, in the available technology kit, the minimum

W/L-ratio that was allowed is two. Therefore, the gate area remains the same even after

scaling. This should keep the cross-section (or flux) of soft-errors equal in the two cases [23].

Even if r̄s(1.0) are not identical for the two technologies, the relative ratio r̄s(1.0)/r̄s(0.3)

is expected to be higher for the 65nm technology. This will necessitate a smaller refresh

times tr in the 65nm technology as will be seen shortly.

Table 4.1: Soft-error rate (per second) as a function of supply voltage

v 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
log10(rs(v)) n/a -15.60 -15.62 -15.64 -15.67 -15.71 -15.76 -15.81 -15.88

in 90nm
log10(rs(v)) -15.49 -15.51 -15.53 -15.57 -15.63 -15.69 -15.75 -15.81 -15.88

in 65nm

4.3 Parametric failures – read upset probability

The estimation results of read-upset probability will be presented in this section.

Recall that a read-upset event was characterized by the read noise margin being negative.

And the read noise margin was estimated as a Gaussian random variable (see Section 3.2
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of Chapter 3), i.e.,

RNM(v) ∼ N (µr(v), σ2
r (v)).

Thus, to obtain the read-upset probability, only µr(v) and σr(v) need to be estimated. Es-

timation of µr(v) is a fairly simple procedure, for example, see Bickel and Doksum [68]. The

(normalized) estimates are plotted in Figure 4.3 for the 90nm technology. Observe that the

mean µr(v) decreases approximately in a linear fashion with supply voltage reduction, and

the standard deviation σr(v) stays approximate constant. This behavior is also witnessed

in 65nm technology simulations as illustrated in Figure 4.4. Using the expression,

pr(v) = Q
(

µr(v)
σr(v)

)
,

the read-upset probability can be evaluated. The Q-function is the standard Gaussian tail

probability function.

Figure 4.3: (a) The normalized mean and standard deviation of RNM(v) are plotted for the
90nm technology. (b) The approximately constant behavior of σr(v) (especially for lower
voltages) is illustrated in this plot.

The resultant read-upset probability for the two technologies are given in Table 4.2.

The empty dotted values mean that those probabilities are insignificant.
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Figure 4.4: (a) The normalized mean and standard deviation of RNM(v) are plotted for
the 65nm technology. (b) The approximately constant behavior of σr(v) is illustrated in
this plot.

Table 4.2: Read-upset probability as a function of supply voltage

v 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
log10(pr(v)) in 90nm n/a -7.0 -12.3 -27.3 . . . . . . . . . . . . . . .

log10(pr(v)) in 65nm -7.4 -16.7 -28.0 . . . . . . . . . . . . . . . . . .

4.4 Parametric failures – write failure probability

Calculation of write-failure probability was highlighted in Section 3.2 of Chapter 3.

It was noted that at high voltages the distribution is approximately Gaussian and at low

voltages, a residue function based fitting approach can be used to obtain the write-failure

probability. This procedure was used to obtain the write-failure probability estimates for

the 90nm and the 65nm technologies.

The resultant write-failure probability for the two technologies are given in Ta-

ble 4.3. The empty dotted values mean that those probabilities are insignificant. Observe

that write-failure probability dominates the read-failure probability. This observation is in
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Table 4.3: Write-failure probability as a function of supply voltage

v 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
log10(pw(v)) in 90nm n/a -5.72 -6.20 -6.56 -11.09 -21.9 . . . . . . . . .

log10(pw(v)) in 65nm -4.94 -5.59 -6.54 -7.80 -9.99 . . . . . . . . . . . .

consonance with other results reported in the literature. For example, Calhoun and Chan-

drakasan noted that write-failures first occur at a supply v = 0.6V for a nominal SRAM

cell in the 90nm technology [10]. Similarly, Bhavnagarwala et al. noted that write-failures

are the most critical among parametric failures [17].

4.5 Parametric failures – hold failure probability

Recall that static noise margin or SNM is used to understand a hold failure. In

Section 3.2 of Chapter 3, it was noted that SNM(v) is approximately Gaussian, i.e.,

SNM(v) ∼ N (µh(v), σ2
h(v)).

The estimates for µh(v) and σ2
h are plotted in Figure 4.5 for the 90nm and the 65nm

technologies.

During hold or storage, SRAM cell is practically isolated from the rest of the

chip. Owing to this reason, hold failures are expected to be negligible, compared to other

parametric failures. For example, during read-operation, the cell is expected to store the

bit as well as interact with the peripheral read circuitry. This intuitive fact is also observed

during simulations. As expected, hold-failure calculation using ph(v) = P[SNM(v) ≤ 0] or

Q
(

µh(v)
σh(v)

)
gives negligible hold-failure probability compared to read-upset probability. The

table for hold-failure values is omitted for simplicity.
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Figure 4.5: (a) The normalized mean and standard deviation of SNM(v) are plotted for
the 90nm technology. (b) The normalized mean and standard deviation of SNM(v) are
plotted for the 65nm technology.

4.6 Leakage-power optimization results

Using the previous SRAM cell error probability modeling techniques, the obtained

probability values from Table 4.1, Table 4.2, and Table 4.3 are plotted in Figure 4.6. These

will be input to the optimization framework. Hold-failure probability is negligible compared

to the read-upset probability and is not shown.

For error-probability data as shown in Figure 4.6, power per bit optimization results

will be presented. To understand the advantage of data-refresh, power per bit cost function

Pb(v, tr, ECC) is plotted against v when the error-correction code is restricted to [31, 26, 3]

Hamming code. The target decoding error probability is set by the [31, 26, 3] Hamming

code and soft-errors at v = 1.0V). The target decoding error probability can be computed

to be,

ptarget =
(

n

2

)
(t0rs(1.0))2 = 1.40× 10−25(t0)2. (4.1)
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Figure 4.6: Obtained estimates for soft-errors and parametric failures, for the 90nm and the
65nm technologies, are compared in this semilog plot. At low voltages, parametric failures
are significant. At high-voltages, dominant error-probability mechanism is soft-error.

The refresh time tr has to be chosen to meet the target error probability ptarget. With

refresh, the bit-error probability in each refresh cycle is pe(v) = (trrs(v)). In the absence

of parametric failures, probability of error in each refresh cycle is
(
n
2

)
(trrs(v))2. There are

approximately t0/tr refresh cycles and this error can happen in any cycle. Thus, the error

probability is approximately given by,

perror(v, tr) ≈ t0
tr
·
(

n

2

)
(trrs(v))2 =

(
n

2

)
t0tr(rs(v))2. (4.2)

Comparing (4.1) and (4.2), tr/t0 should scale as (rs(v)/rs(1.0))2 to maintain a constant

decoding error probability. For v ≤ 0.6V, where parametric failures are dominant, these

approximations break down. And the probability constraint cannot be met by data-refresh.

In this scenario of dominant parametric failures, tr is set to zero, which makes Pb(v, tr, ECC)

infinite (see (2.14) and Figure 4.6). Since parametric failures are spatially fixed, therefore

data-refresh will not combat its effect on decoding error probability. Using data-refresh,

the power per bit cost function can be reduced by nearly 60% for the 90nm technology.
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The graphs of the refresh-time tr and Pb(v, tr, ECC) for this technology are plotted in

Figure 4.7.

Figure 4.7: (a) For [31, 26, 3] Hamming code as the error-correction code, The data-refresh
rate is plotted for the 90nm technology. (b) The power per bit cost function is plotted
against the supply voltage v. The voltage reduction is limited by parametric failures which
start at 0.6V. The power per bit reduction is nearly 60%.

Similar plots for the 65nm technology are illustrated in Figure 4.8.

Figure 4.8: (a) For [31, 26, 3] Hamming code as the error-correction code, The data-refresh
rate is plotted for the 90nm technology. (b) The power per bit cost function is plotted
against the supply voltage v. The voltage reduction is limited by parametric failures which
start at 0.6V. The power per bit reduction is nearly 60%.
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Table 4.4: Error-correction codes used for optimization

Minimum distance Code family (n, k) pairs

d = 3 Hamming (31, 26), (63, 57), (127, 120), (255, 247), (511, 502)

d = 5 BCH (63, 51), (127, 113), (255, 239), (511, 493)

d = 7 BCH (63, 45), (127, 106), (255, 231), (511, 484)

d = 9 BCH (63, 39), (127, 99), (255, 223), (511, 475), (1023, 983)

d = 11 BCH (63, 36), (127, 92), (255, 215), (511, 466), (1023, 973)

d = 13 BCH (63, 30), (127, 85), (255, 207), (511, 457)

d = 15 BCH (255, 199), (511, 448), (1023, 953)

d = 17 BCH (255, 191), (511, 439), (1023, 943)

With voltage-scaling, the estimated soft-error rate increase is higher in the 65nm

technology. Therefore, the refresh time tr will be smaller for the 65nm technology. This

is observed in the simulation results. Coincidentally, the refresh-based voltage scaling for

both the technologies stops at v = 0.6V, and they both have nearly equal power per bit

reduction (in percentage).

When error-correction code choice includes more families (e.g. BCH codes and

Hamming codes as in Table 4.4 obtained from [51]), the following optimization procedure is

used. As before, ptarget is as in (4.1). Recall that if errors and erasures (parametric failures)

are distinguished, the procedure is classified as generalized decoding. If errors and erasures

are combined, it is called as specialized decoding. The decoding failure events using the

minimum Hamming distance of error-correction code for the two cases were given by (2.1)

and (2.2), respectively. For each error-correction code with parameters [n, k, d], and for
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each v, a refresh time tr is calculated such that the decoding error-probability constraint is

achieved. If the probability constraint cannot be met by tr = 0 due to parametric failures,

then tr is set to zero, which makes Pb(v, tr, ECC) infinite (or suboptimal). Once data-

refresh times have been computed, Pb(v, tr, ECC) function is optimized over the choice

of v. This will result in optimized power per bit for every error-correction code. Finally,

Pb(v, tr, ECC) can be optimized over ECC with same minimum distance d. This minimum

distance can be thought of as the complexity of decoding. 1 As a result, an optimum power

per bit will be obtained for each d.

Power reduction will be measured against the per-cell leakage at v = 1.0V for the

[31, 26, 3] code. For the 90nm technology, the average leakage per cell at v = 0.3V sets an

upper bound of 94% on power per bit reduction. Similarly for the 65nm technology, the

average leakage per cell at v = 0.2V sets an upper bound of 97% on power per bit reduction.

The result of previously discussed optimization procedure for generalized and specialized

decoding is plotted in Figure 4.9 as a function of
⌊

d−1
2

⌋
, the number of errors that can

corrected. With increasing d, the power per bit reduction gets closer to the upper bound.

And, generalized decoding approaches the lower bound at a faster rate.

Some insights into the minimum d needed to achieve near optimal leakage-power

reduction will be provided next. Consider any code with parameters [n, k, d]. At low

voltages, where parametric failures are dominant, the decoding error probability under

generalized decoding will be approximately,

pgen−decoding ≈
(

n

d

)
(pe(v))d. (4.3)

1For example, in BCH codes, the error location search unit’s complexity is proportional to the number
of errors that can be corrected [51, Chapter 6].
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Figure 4.9: The upper bound is obtained by comparing leakage-power per cell at minimum
supply voltage and leakage-power per cell at v = 1.0V. Power per bit reduction gets close to
this upper bound with increase in minimum distance d of error-correction code. Generalized
decoding based power reduction approaches the upper bound at a faster rate.

Consider the 90nm technology. Then, by using Table 4.3, px(0.3) = 10−5.72. Recall that

the target error probability is 1.40 × 10−25 for a data-lifetime t0 = 1sec. The term
(
n
d

)
is

always larger than 1. Thus, for d ≥ 5, one can expect the (pe(0.3))d to be smaller than

the target error probability. Further, for any reasonable value of n,
(
n
5

)
will be much larger

than 1. This makes minimum d slightly larger than 5 – in particular 7 – such that target

error probability can be achieved with small value of (n/k) ratio. Similarly, for specialized

decoding the decoding error probability is approximately given by,

psp−decoding ≈
(

n

u + 1

)
(pe(v))u+1, (4.4)

where u = b(d − 1)/2c. Going by previous calculations, the minimum value of u required

will be u = 6. This is precisely what is observed in Figure 4.9(a). Similar approximate

calculations can be used to understand the 65nm leakage-power optimization results.

Coding latency: Coding introduces delay and parity overhead. Since pe(v) and px(v) are
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close to zero, therefore parity overhead can be made negligible. For decoding delays, note

that codes with n ≤ 1024 were used in the optimization. If n ≤ 1024, and px(v) ≤ 10−5,

then probability of no cell in error is approximately (1− npx(v)) ≥ 0.99. Thus, more than

99% decoding cases require only parity check (small delay). Note that this will result in a

variable delay.

4.7 Effect of voltage-scaling on SRAM cell speed

Figure 4.10: These estimates were obtained using Monte Carlo simulations in the 90nm
technology. (a) The estimated exponent αwt(v) of the write-time model in (4.5) is plotted.
(b) The estimate of the reference xv : P[Tw > xv] = 0.1 is plotted.

As discussed in Chapter 3, there are two timing based parametric failures: (i)

write-time failure, and (ii) access-time failure. To tackle these failures, the write-time and

the access-time has to be made “large enough” such that their probability is negligible. In

this section, quantities like “large enough” and ”negligible” will be estimated. The results

estimate the effect of voltage-scaling on SRAM cell speed, i.e., how fast the data can be

written in or read from an SRAM cell. For write-time Tw, a model for the distribution of
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tail-probability was estimated in Chapter 3 (see (3.26)),

P[Tw(v) > tw] = exp(−αwt(v)(tw − xv)) · P[Tw(v) > xv], tw > xv. (4.5)

The parameters αwt(v) and the reference time xv are indicators of SRAM cell’s write-

speed. These indicators are plotted in Figure 4.10 for the 90nm technology. Observe that

according to these estimates, the exponent and hence the write-time will increase by two

order of magnitudes due to supply-voltage reduction from v = 1.0V to v = 0.3V.

Using a similar procedure, the write-time exponent αwt(v) and the reference xv

can be obtained for the 65nm technology as shown in Figure 4.11. The overall loss in

Figure 4.11: These estimates were obtained using Monte Carlo simulations in the 65nm
technology. (a) The estimated exponent αwt(v) of the write-time model in (4.5) is plotted.
(b) The estimate of the reference xv : P[Tw > xv] = 0.1 is plotted.

speed is larger for the 65nm technology. The surmised reason is a larger transistor threshold

voltage used in 65nm technology to reduce leakage current. As a result, the transistors enter

subthreshold region earlier and the speed deteriorates till a supply voltage of v = 0.2V.

For the access-time Ta, a similar model for the distribution of tail-probability was
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estimated in Chapter 3 (see (3.28)),

P[Ta(v) > ta] = exp(−αat(v)(ta − xv)) · P[Ta(v) > xv], ta > xv. (4.6)

The parameters αat(v) and the reference time xv are indicators of SRAM cell’s access or

read-speed. These indicators are plotted in Figure 4.12 for the 90nm technology. Observe

that according to these estimates, the exponent and hence the access-time will increase by

two order of magnitudes due to supply-voltage reduction from v = 1.0V to v = 0.3V.

Figure 4.12: These estimates were obtained using Monte Carlo simulations in the 90nm
technology. (a) The estimated exponent αat(v) of the access-time model in (4.6) is plotted.
(b) The estimate of the reference xv : P[Tw > xv] = 0.1 is plotted.

Using a similar procedure, the access-time exponent αat(v) and the reference xv

can be obtained for the 65nm technology as shown in Figure 4.13. Similar to the write-time

case, the overall loss in speed is larger for the 65nm technology. The expected reason is a

larger transistor threshold voltage used in 65nm technology to reduce leakage current.
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Figure 4.13: These estimates were obtained using Monte Carlo simulations in the 65nm
technology. (a) The estimated exponent αat(v) of the access-time model in (4.6) is plotted.
(b) The estimate of the reference xv : P[Tw > xv] = 0.1 is plotted.

4.8 Review

The average leakage current for the 65nm technology is smaller, compared to the

90nm technology. At high supply voltages, decoding error probability is dominated by soft-

errors. At low supply voltages, parametric failures dominate the decoding error probability.

For long enough data-lifetime t0, periodic data-refresh can be used to reduce the leakage

power by approximately 60%, without affecting the decoding error probability. Codes which

correct more than single-bit errors achieve better leakage power reduction (at the cost of

complexity). Treating fixed faults (parametric failures) as erasures achieves possible leakage-

power reduction with lower complexity error-correction codes. Finally, effect of supply

voltage reduction on SRAM cell’s access and write speed was estimated using extreme-

value theory. Speed reduction by two to four orders of magnitude is expected using circuit

simulations.
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Chapter 5

Standby SRAM

An SRAM which is primarily in “no-operation” ON mode is classified as a standby

SRAM. In many chips with SRAM module, it is assumed that there are two modes: (i)

the active-mode with high supply voltage in which the SRAM is active for reading and

writing, and (ii) the standby-mode with a lower supply voltage in which the task of SRAM

is only to retains the data. In the standby-mode, the target is reliable data retention at

minimum possible leakage-power. As previously discussed, an effective method to reduce

leakage-power is to minimize the supply voltage while ensuring data-retention.

As noted in the Chapter 1, this leakage-power reduction comes at a cost of in-

creased failure rate. In the standby-mode, the parametric failures corresponding to read

and write operation don’t contribute. The hold-failures contribute and they are character-

ized using the DRV . Supply noise is either absent due to no activity in circuits (except

standby leakage), or it can be tackled using the 100mV noise margin technique. The hold

failures happen at extremely low voltages, and it is noted that in the proximity of DRV
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voltages, the erratic fluctuations are not expected (see Section 5.1). The increase in soft-

error rate rs(v)/rs(Vdd) is finite and it can be tackled using scrubbing at a rate dependent

on t0, rs(v)/rs(Vdd), and the error-correction scheme employed. Using these simplifications

in error-mechanisms, the focus in this chapter will only be on hold-failures (retention fail-

ures) and results will be derived for fundamental minimum leakage-power per stored bit in

SRAM cells. This minimum is fundamental from a system design perspective where coding

is used.

Using the voltage scaling approach, it has been shown that any SRAM cell has a

critical voltage (called the data retention voltage or DRV ) at which a stored bit (0 or 1) is

retained reliably [12]. The intra-chip DRV exhibits a distribution due to process-variations.

Figure 5.1: The experimental intra-chip DRV varies from 70 to 190mV in the 90nm CMOS
technology. The worst-case solution for data-retention is a supply voltage of 200mV.

In Figure 5.1, a test-chip DRV distribution is illustrated which was obtained using

experiments [13]. This test chip was fabricated in the 90nm technology based on an industry

IP module (courtesy: ST Microelectronics). The depicted DRV histogram was measured
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across different SRAM cells on the same chip. Any such DRV histogram will be called as

intra-chip DRV distribution from now on. For this test-chip, the DRV varies from 70mV

to 190mV for 3840 SRAM cells. In order to minimize leakage-power without observing

hold-failures, a standby supply voltage equal to the highest DRV among all cells in an

SRAM can be used. This is a “worst-case” selection of the standby supply voltage. For the

intra-chip DRV distribution in Figure 5.1, the worst-case supply voltage is 200mV . The

leakage-power reduction from Vdd = 1000mV to the largest DRV voltage in many test-chips

has been studied in detail by Qin et al. [13, 53]. In this Chapter, leakage-power reduction

beyond this worst-case approach will be presented and validated using experiments with

fabricated chips.

5.1 Modeling assumptions

Let vδ be the quantization step at which the DRV of various cells are measured

in the laboratory. The DRV histogram will be obtained for V := {0, vδ, 2vδ, 3vδ, . . .}.

The variation of DRV will be modeled by the observed (discrete) probability distribution

µh(x), x ∈ V. For example, for Figure 5.1, vδ = 10mV and the support set for probability

distribution is µh(x), x ∈ {
70, 80, . . . , 190

}
. The DRV empirical distribution function,

or simply distribution function, is Fh(x) =
∑

z≤x µh(z). Since the experimental DRV

distribution is measured at quantization step of vδ, the supply voltage will be swept in

multiples of vδ. A cell will retain the stored data successfully if the supply voltage is strictly

greater than the cell’s DRV voltage. The DRV is assumed to be random but fixed after

manufacture.
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Note that no attempt is made to model the DRV distribution by known smooth

probability distribution(s). Using the empirical distribution is similar to bootstrap esti-

mation methods [69]. Using this procedure is advantageous because the knowledge about

DRV distribution’s analytical (parametric) form is not required. Besides, this distribution

varies from chip to chip as observed in our experiments. It may also vary on the same chip

with time due to TDDB, HCI, or NBTI (on a scale of days) which will require some form

of adaptive DRV distribution learning. Parametric modeling of DRV distribution and its

slow temporal variation are beyond the scope of this work, and it is left as a future work.

Trap charge assisted erratic fluctuations (see [20]) are not expected to affect storage

in 90nm CMOS process at subthreshold voltage levels for the following reason: the DRV

is obtained by solving current equations in the subthreshold regime [12]. The gate-leakage

current can vary significantly with time due to trapping and de-trapping or charges at

high supply voltages [20]. However, the gate-leakage current and its variations are much

smaller at low voltages (around 200mV ) compared to the subthreshold leakage currents.

This is because gate-leakage decreases exponentially with the supply voltage [70], whereas

subthreshold leakage decreases linearly with the supply voltage (see Fig. 5.4). Therefore,

DRV in the 90nm CMOS process does not depend significantly on gate-leakage, and is

approximately constant with time.

5.1.1 Notation

In the rest of the paper, the standby power will be called as power for brevity. Let

vδ be the quantization step at which the DRV of various cells are measured. The DRV

histogram will be obtained for V := {0, vδ, 2vδ, 3vδ, . . .}. The DRV distribution function,
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for example as in Figure 5.1, will be denoted by Fh(x). The standby supply voltage will

be represented by vS (the suffix S is used to standby). The symbol P will be used for the

probability of a set with respect to the distribution Fh(x). Any vectors like (x1, x2, . . . , xn)

will be represented as xn
1 . Finally, recall that H2(p) = −p log2 p− (1− p) log2(1− p), 0 ≤

p ≤ 1 stands for the binary entropy function [50].

5.2 Standby SRAM: theoretical results

In this section, the SRAM cell retention model and the proposed standby SRAM

architecture will be presented next. The description of the retention model is important for

understanding the architecture and therefore it will be presented first. Using these models,

fundamental bounds on (standby) power reduction will be analyzed. Finally, practical

circuits, which approach these fundamental bounds, will be explored for implementation.

5.2.1 SRAM cell Retention model

For each SRAM cell, there is a data-retention-voltage (DRV ), above which the

stored data bit (0 or 1) is stored reliably [12]. However, if the supply voltage is lowered below

the DRV , then the stored bit degenerates to a preferred digital (binary) state S ∈ {0, 1}

[12]. These features of an SRAM cell are captured in the following mathematical model

(see Fig. 5.2). The cell has two statistically independent parameters: (i) a time-invariant,

positive and continuous-valued threshold-voltage DRV , and (ii) an equally likely binary

stuck-at state S ∈ {0, 1}. The inputs to the cell are the supply voltage vS and a bit
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X ∈ {0, 1} to be stored. The retention model for the SRAM cell is as follows:

Y = X if DRV < vS ,

= S if DRV ≥ vS , (5.1)

where Y ∈ {0, 1} is the output bit. If vS ≤ DRV , then there is a hold-failure. This digital

abstraction is sufficient for establishing upper bounds of power reduction and it is illustrated

in Figure 5.2.

Figure 5.2: The SRAM cell has two statistically independent parameters: (i) a time-
invariant positive continuous-valued threshold-voltage called DRV , and (ii) a binary stuck-
at state S ∈ {0, 1}. The inputs are the supply voltage vS and a bit X ∈ {0, 1} to be stored.
The output is Y = X if vS > DRV and S otherwise.

5.2.2 Standby SRAM low-power architecture

The general architecture which trade-offs supply voltage, hold-failures, and error-

correction schemes is shown in Figure 5.3. Let the standby supply voltage be vS ∈ V at vδ

quantization step. The worst-case solution is the largest DRV on the chip at which every

cell retains data reliably (see Figure 5.1). In contrast, a general error-protected SRAM

operation is described next.

Let Bk
1 = (B1, B2, . . . , Bk) be the data vector to be stored. Using an error-control

code, Bk
1 is encoded into Xn

1 and stored in n SRAM cells (n ≥ k). Cells have i.i.d. pairs
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Figure 5.3: Let Bk
1 be the data vector to be stored. Then Bk

1 is encoded into Xn
1 and stored

in n SRAM cells. The jth stored bit is stuck-at Sj if DRVj ≥ vS , otherwise Xj is read-out.
The decoder reads Y n

1 and outputs B̂k
1 . The voltage vS is selected such that P(outage) is

negligible (see (5.3)).

of independent DRV and S realizations. 1 The jth stored bit is stuck-at Sj if DRVj ≥ vS ,

otherwise Xj is successfully retained. At the end of standby, Y n
1 is decoded to B̂k

1 . Let

1 ≤ i ≤ 2k be the integer representation of Bk
1 .

Next, a suitable hold-failure probability criterion will be introduced, which will

act as a constraint to supply voltage reduction. Observe that if the supply voltage is at

the largest DRV , then there will be no hold-failures. Motivated by this observation, an

“outage” probability criterion will be described. Note that if vS is smaller than the largest

DRV , there is a non-zero probability that none of the cells will retain the bit. However,

this situation is unrealistic. An SRAM block realization is in outage if there is at least one

stored vector Bk
1 for which B̂k

1 6= Bk
1 . The outage probability will be larger than the average

(or maximum) probability of error, which is typically used in channel coding theorems in
1The assumption that DRV across cells are independent is a worst-case assumption as discussed at the

end of Sec. 5.2.4.
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information theory [50, Chapter 8]. Let f : Bk → Bn and g : Bn → Bk be the encoder and

decoder operations (functions). Mathematically, the outage set E is given by,

E =
2k⋃

i=0

Ei, where, (5.2)

Ei = {g (Y n
1 ) 6= i|Xn

1 = f(i)} . (5.3)

Recall that integers from 1 to 2k are used to index all the words in Bk. The outage

probability is defined as,

poutage = P(E), (5.4)

where the probability is taken over DRV and S distributions. In the proposed scheme,

for any error-control code, the voltage vS is chosen such that the outage probability is

negligible. This condition ensures that an n-bit row of SRAM stores all input words from

Bk with high reliability. Even with this strict definition of outage, there is a (small but non-

zero) probability that a block of SRAM will not work. The technique of row-redundancy

will be used to avoid any blocks in outage. Since hold-failures are at fixed locations (on the

scale of decoding time), they can be corrected by testing and row-redundancy [71].

Since vS is a free variable, power per useful-bit (or any other cost function) can

be optimized over its range. For an outage of ε, we define the power per bit as,

Pε (vS) :=
1
k
· (Total standby power) . (5.5)

If ε can be made arbitrarily small by choosing n →∞, then the power per bit function will

be called as P (vS). The total standby power dependence on vS will be established next.
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5.2.3 Power dependence on the supply voltage

Let Ts be the standby duration. Let EC be the average encoder-decoder compu-

tational energy (over codewords Bk
1 ) any generic error-control code C. The total standby

power is,

PT (vS) = PL(vS) +
EC
Ts

, (5.6)

where PL(vS) is the total leakage-power. 2 Note that the computation energy EC is finite

and it gets normalized by the standby time Ts. Since low-duty cycle applications have large

Ts, therefore the (EC/Ts) term becomes negligible. The dependence of the leakage-power

on the supply voltage is examined next.

Figure 5.4: The normalized measured leakage-current for 256 SRAM cells is shown as a func-
tion of the supply voltage. In the range 100− 200mV, the leakage-current is approximately
linear.

The leakage-current in the 100−200mV range is approximately linear in the supply

voltage, i.e., IL = GvS , where G is a constant. This is confirmed by experimental leakage-
2The computation energy EC will vary due to process variations. The variation of the average computation

energy is out of the scope of this work.
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current measurements done in the lab (see Fig. 5.4). Thus, the power per bit of the SRAM

cell is,

Pε (vS) =
n

k
·Gv2

S +
EC
kTs

, (5.7)

where the code C has an outage given by (5.3).

5.2.4 Fundamental bounds on the power reduction

In this section, the fundamental bounds on the power per bit P (vS) will be derived.

These bounds will be dependent on the DRV -distribution. For deriving these bounds, the

following important points must be noted:

• For Ts → ∞, i.e., when the standby time is much larger than the encoding-decoding

time, the coding energy overhead becomes negligible. Under this condition, the

standby power is minimum and will be considered first.

• The coding and latency aspects will be examined after the fundamental asymptotic

benchmarks for power are established (see Section 5.2.5 and Remark 5.2.1).

• The outage ε > 0 can be made arbitrarily small in an asymptotic setting when n →∞.

Recall that the hold-failure probability for an SRAM cell is given by,

ph (vS) =
∑

z≥vS , z∈V
µh(z), (5.8)

where µh(x), x ∈ V is the (discrete) probability distribution of DRV . Using this notation,

the following theorem can be stated:
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Theorem 5.2.1. Let vS be the standby supply voltage and ph(vS) be as in (5.8). For each

voltage vS such that ph(vS) < 0.25, the minimum power per bit, over all coding strategies,

satisfies,

Gv2
S

1−H2 (ph (vS) /2)
< P (vS) <

Gv2
S

1−H2 (2ph (vS))
, (5.9)

where G is a constant. Since vS is a free variable, the upper and lower bounds can be

optimized over the choice of vS to obtain bounds on minvS P(vS).

Proof. See Appendix 7. For the DRV distribution in Figure 5.1, the reduction in minvS P (vS)

with respect to the worst-case is between 40% and 49%.

The bounds on P (vS) are derived using ideas from Information theory [50, Chap-

ter 8] and error-control code theory [31], respectively. The details are presented in the

Appendix for brevity. Observe that the denominator 1−H2(ph(vS)/2) and the numerator

v2
S increase as vS increases. When vS is small (around 70mV), the increase in denominator

term is rapid compared to the numerator. The trend reverses for large vS (around 200mV).

Thus, the optimum power per bit is achieved for an intermediate values of vS . Similar

argument holds for the upper bound.

The power per bit bounds as a function of ph (vS) are illustrated in Figure 5.5.

The minimum value of the upper bound and the lower bound are 40% and 49% less than

the worst-case, respectively.

Remark 5.2.1. Spatial correlation in the DRV can be exploited with better coding strate-

gies. However, from the test-chip measurements, a small spatial correlation factor (< 0.1)

in the DRV data was observed. Since the measured correlation is small, the improvement
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Figure 5.5: Power per bit bounds are plotted as functions of the DRV -failure rate ph (vS) .
The minima of upper and lower bounds are 40% and 49% lower than the worst-case.

in power per bit reduction will be insignificant. Therefore, statistical i.i.d. assumption is as-

sumed. This assumption will be verified again in the experimental section (see Section 5.3).

5.2.5 Practical low-latency codes and power per bit

When coming out of the standby mode, decoding step in Figure 5.3 introduces

extra latency. As n → ∞, the power per bit for a code approaches these fundamental

bounds. However, as the block length n increases, the latency and complexity of the code

increases as well. Practical SRAM design typically requires the data-output within a latency

of a few clock cycles. Motivated by this concern, power per bit reduction as a function of the

block length n will be studied for two bounded distance decoding based error-correction code

families: (i) the Hamming codes and (ii) the Reed Muller codes. The outage probability

will be fixed at ε = 0.01. As noted earlier, rows in outage will be corrected by row-

redundancy [71].

The outage condition as stated in (5.3) is complex since it is the union of an
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exponential number of sets. Fortunately, the condition simplifies considerably with bounded

distance decoding codes. This development is presented next. For a bounded distance

decoding based code with parameters [n, k, d], a decoding error happens when the number

of error exceeds u :=
⌊

d−1
2

⌋
. It can be verified that an outage will be present if and only if

the number of hold-failures is at least (u + 1). Thus outage condition simplifies to,

ε = P
[
DRV(n−u) ≥ vS

]
, (5.10)

where DRV(j) is the jth largest random DRV . For example, if d = 3 and u = 1, then

DRV(n) ≥ vS results in two DRV failures (and hence decoding error will be present). The

power per bit function for bounded distance decoding codes is given by,

P0.01 (vS) = G · n

k
· (vS)2 , (5.11)

where vS is the smallest possible voltage at which the outage ε is less than 0.01. The expres-

sion in (5.11) is plotted in Figure 5.6 for the Hamming and Reed Muller error-correction

code families using the empirical DRV distribution of Figure 5.1. The [31, 26, 3] Hamming

code has the minimum P0.01 (vS) at 33% less than the worst-case. On the other hand,

[256, 211, 8] Reed Muller code has the minimum P0.01 (vS) at 35% less than the worst-case.

A significant fraction, 33% out of the optimum 40% (see Theorem 5.2.1), power per bit

reduction is achieved with a single clock-cycle latency Hamming code. The gap can be

reduced with higher-complexity coding. The returns are marginal, e.g., 2% extra power per

bit can be saved by a Reed Muller code with an 8-times larger block length.

Motivated by diminishing returns with longer block length codes, the [31, 26, 3]

Hamming code was selected for implementation. The encoder and decoder for this code
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Figure 5.6: For an outage ε = 0.01, the optimum power per bit for Hamming and Reed
Muller codes are plotted. Maximum power reduction is achieved at n = 31 for Hamming
codes and at n = 256 for Reed Muller codes.

were synthesized using CAD tools for the (90nm CMOS technology). The estimated average

encoding and decoding energy for a 26-bit word were of the order of 1pJ. The measured

average leakage-current at 200mV for an SRAM cells is in the range of 100pA. 3 Based

on this data, it is estimated that for Ts ≥ 100ms, a power per bit reduction of 33% will be

achieved. The latency of this encoder and decoder is 1-clock cycle (2ns) at Vdd = 1V.

5.2.6 Chip-implementation overview

Based on an industry IP module, a 90nm 26kbit storage SRAM, integrated with

a [31, 26, 3] Hamming code, was fabricated. The chip layout is shown in Figure 5.7. The

Original SRAM design was from an industry IP module. The Ultra Low-Leakage SRAM

is based on the original design but uses circuit optimization to improve the leakage path

balance and reduces device mismatch. The result is a narrower DRV distribution and

reduced worst-case DRV voltage. This work is detailed in [53]. Due to slightly larger
3The exact leakage current numbers cannot be shared due to IP issues.
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Figure 5.7: Fabricated SRAM layout in an industrial 90nm CMOS technology is shown.

transistor sizes, the modified SRAM takes a larger area but has smaller leakage. The 26kbit

data is encoded using ECC encoding block before storage. After readout, the bits are

decoded using ECC decoding block.

5.3 Optimization results from SRAM chips

The features of implemented SRAM chips are highlighted in Section 5.2.6. Twenty

four test chips were fabricated with these features for testing. Results will be presented

from these twenty four chips. Before presenting the measurements, the expected nature of

results is discussed. Intra-die variation in DRV , and hence power reduction with coding is

expected (as discussed in Section 5.2.4). The DRV distribution is expected to have intra-die

as well as inter-die variations, therefore power per bit reduction should vary from chip to

chip. It will be shown that inter-die variations in power per bit reduction is significant. Small

correlations in the spatial pattern of DRV from the chip used to produce the distribution

in Figure 5.1 were observed. Similar negligible spatial correlation in the DRV parameter is
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expected. Finally, larger worst-case DRV should result in higher power reduction. These

features are expected from experimental chips. The actual results from the experimental

chips are now discussed. The analysis is performed on experimentally measured DRV values

from fabricated-chips.

5.3.1 Spatial correlation of DRV

Correlation in the spatial DRV pattern on a chip can be exploited with better

coding strategies. In the analysis part, a small spatial correlation factor (< 0.1) in the

DRV data was observed (see Remark 5.2.1). The empirical spatial correlation of the DRV

Figure 5.8: The maximum absolute empirical horizontal and vertical correlation coefficients
are plotted as a function of experimental chip index. The maximum observed correlation
coefficient is less than 3.5%.

among SRAM cells was measured in the following way. For spatially laid out SRAM cells,

let DRV (i, j, m) be the DRV of cell in the location (i, j), 1 ≤ i ≤ 31, 1 ≤ j ≤ 1000

of experimental-chip m. For notational simplicity, the index m will be omitted from the
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equations. Let

DRV =
1

31000

31∑

i=1

1000∑

j=1

DRV (i, j), (5.12)

be the empirical mean. Let σ2 =
(
DRV 2 −DRV

2
)

be the empirical variance. The empir-

ical horizontal correlation for is defined as,

hor(i′) :=

∑31−k
i=1

∑1000
j=1

(
DRV (i, j)DRV (i + i′, j)− ¯DRV

2
)

1000(31− i′)σ2
. (5.13)

Similarly, the vertical correlation is defined as,

ver(j′) =

∑31
i=1

∑1000−k
j=1

(
DRV (i, j)DRV (i, j + j′)− ¯DRV

2
)

(1000− j′)31σ2
. (5.14)

The maximum absolute values of hor(k) and vert(k) as a function of the die-number m are

plotted in Figure 5.8. A maximum empirical correlation of 3.5% is observed across all chips.

This observation re-affirms that independence of DRV across cells is a good assumption for

analysis.

5.3.2 Power per bit and its reduction in experimental-chips

Let DRVmax(m) be the largest DRV (i, j) observed in chip m. Recall that the

leakage-power for a cell is approximately quadratic in the supply voltage, i.e., PL = G(vS)2.

The percentage reduction calculations are independent of the constant G and hence it will be

ignored in the further calculations. Therefore, PL = (vS)2 in some arbitrary unit (a.u.). The

worst-case power per bit (DRVmax(m))2, the optimum achievable power per bit for bounded

distance decoding schemes (optimized upper bound of (5.9)), and Hamming code’s power

per bit will be compared. The upper bound on optimum power per bit reduction in (5.9) is

used for comparison with the [31, 26, 3] Hamming code based implementation’s power per
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bit reduction. This is reasonable since the upper bound is the minimum achievable power

per bit when coding schemes are restricted to the class of bounded-distance decoding codes.

The Hamming code belongs to this class.

The comparison is plotted in Figure 5.9(a). Observe that a significant variation

in the worst-case power per bit “flattens” in the presence of coding. This is a desirable

property. Also observe that the gap between the implementation and theoretical optimum

is approximately constant. This shows that the [31, 26, 3] Hamming code adapts well for

different observed DRV -distributions and it is a good design choice.

The percentage power reduction with respect to the worst-case strategy is com-

puted next. Recall that the worst-case power per bit is (DRVmax(m))2, where DRVmax(m)

is the largest DRV (i, j) on chip m. The optimum power per bit is computed using the

upper bound in (5.9). Significant intra-die variation in the percentage power per bit reduc-

tion is observed. The intra-die distribution dependent theoretical bound on power per bit

reduction varies from 23-52%, while the implementation reduces power per bit by 12-46%.

As expected, there is a performance gap between the implementation and the optimum, but

this gap is small. Prior analysis suggested a gap of 7% and the observed numbers are close

to the prediction.

5.3.3 Row redundancy design

Let DRV (1, j), DRV (2, j), . . . , DRV (31, j) be independent and identically dis-

tributed DRV -values coming from the test-chip distribution Fh(v). Physically, this vector

represents the jth row on the test chip. The test chip index m is omitted for simplicity. The

[31, 26, 3] Hamming code can correct single-bit error. The chance of decoding failure is the
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Figure 5.9: (a) The leakage-power (in a.u.) for the worst-case method, the [31.26, 3] Ham-
ming code based implementation, and the theoretical optimum (see (5.9)) are compared.
(b) Power reduction for the [31, 26, 3] Hamming code based implementation and the the-
oretical optimum are compared. The implementation tracks the optimum within a close
margin of 6-11%.

probability that two or more cells in these 31 cells have a DRV (i, j) ≥ vS . The decoding

failure determines the amount of extra rows needed for row-redundancy. Its probability is

given by,

ε(vS) := ε = P
[
DRV(30)(j) ≥ vS

]
, (5.15)

where DRV(i)(j) is the ith-largest DRV in the vector DRV (1, j), DRV (2, j), . . . , DRV (31, j).

The Hamming code implementation was designed with a probability of ε = 1%, i.e., a

retention voltage vS was selected such that for the experimental-chip DRV distribution

ε(vS) ≤ 0.01. The rows with decoding failure at the specified retention voltage vS can be

replaced by row-redundancy techniques [71]. For the experimental-chips, the supply voltage

vS was fixed using each chip’s intra-die DRV -distribution to meet the decoding failure prob-

ability condition, i.e., ε ≤ 0.01. This voltage vS is obtained by a simple calculation based
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Figure 5.10: The number of rows in decoding-failure are plotted as a function of
experimental-chip number. The average number of failures, 7 in 1000, satisfies the 1%
decoding-failure target (see (5.15)).

on the intra-die DRV distribution (and hence it can be adapted on-chip). Next, at supply

voltage vS the number of rows with DRV(30)(j) > vS were counted over the choice of j. Let

this count for each chip be c(m),m = 1, 2, . . . , 24, over 1000 rows in the experimental-chips.

This count c(m) is plotted in Figure 5.10. The average number of row-failures is around 7

in 1000. Thus, the design target of 10 in 1000 is satisfied.

5.3.4 Parameter dependencies

Scatters plots were used to examine any dependence between power per bit reduc-

tion (see Figure 5.9(b)) with leakage-power (see Figure 5.9(a)) or worst-case DRV voltage

(DRVmax). The scatter plot in Figure 5.11(a) shows power per bit for the optimum bound

and the [31, 26, 3] Hamming implementation. No relationship between the leakage-power

and the optimum power per bit reduction was observed. A dependence between the worst-

case DRV intra-chip DRV voltage (DRVmax) and power per bit reduction is observed. On
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Figure 5.11: (a) No relationship between power per bit and optimum power per bit reduction
was observed. (b) On average, power reduction increases linearly with the intra-chip worst-
case DRV voltage of an SRAM.

average, a linear increase in power per bit reduction as a function of DRVmax is observed.

Remark: To measure the effect of erratic fluctuations in the gate-leakage, repeated DRV

measurements were taken at temporal intervals for a few seconds [20]. This was done to

observe any temporal variation present in the DRV . As expected, temporal variations were

not observed in the DRV -values since the gate-leakage currents are negligible compared to

the subthreshold leakage at voltages around 200mV for the 90nm CMOS technology.
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Chapter 6

Conclusions

SRAM leakage-power is a significant fraction of the total power consumption on a

chip. This work studied SRAM leakage-power reduction using system level design techniques

like data-refresh and error-correction code, with a decoding error probability constraint.

The bit-error probability in SRAM cell increases due to supply voltage reduction.

Low-complexity macro-models were studied to estimate the bit-error probability of SRAM

cells, due to supply voltage reduction and process-variations. Critical charge method, cou-

pled with Monte Carlo simulations, was used to estimate the soft-error rate. Noise-margin

based approach was used to obtain the static parametric failures. Write-failures were es-

timated to be the dominant parametric failure mechanism at low supply voltages. An

extreme-value theory based estimation procedure was developed to estimate access-time

and write-time failures. The effect of supply voltage reduction on SRAM cell’s speed was

computed. Bit-error probability comparisons between a custom 65nm technology SRAM

cell and a custom 90nm technology SRAM cell were presented.
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The bit-error probability increase in SRAM cells can be compensated by suitable

choices of error-correction code and data-refresh rate. A power per bit cost function was

optimized over the choice of supply voltage, while meeting the decoding error probability

constraint. It was estimated that 60% leakage power reduction can be achieved by data-

refresh and supply voltage reduction for the 90nm and the 65nm technologies. At lower

voltages, parametric failures dominate the decoding error probability, and they cannot be

compensated by data-refresh. Thus, parametric failures limit the efficacy of data-refresh.

For supply voltage reduction in the subthreshold region, multiple-bit error-correction ca-

pability is needed. Circuit-level leakage-power reduction estimates, as a function of the

minimum distance of the code, were presented. Power per bit reduction by more than 90%

was estimated for the 90nm and the 65nm technologies.

For the special case of standby SRAM where only hold-failures are important, the-

oretical limits and experimental results were presented. Retention of stored data at lowest

possible leakage-power was the only target in this case. Using the proposed supply voltage

reduction, coding, and data-refresh method, the leakage-power per useful bit was mini-

mized. Using techniques from information and coding theory, fundamental bounds on the

minimum leakage-power per bit needed for storage, while taking the hold-failure probability

distribution into account, were established. For experimentally observed DRV -distributions

from custom built SRAM chips, a [31, 26, 3] Hamming code based retention scheme achieved

79% (on average) of the leakage-power reduction compared to the fundamental limit. These

results were verified by twenty-four experimental chips manufactured in an industrial 90nm

CMOS process. Nearly uncorrelated DRV values were observed. Significant inter-die vari-
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ations in the optimized leakage-power and optimum power per bit reduction were observed.

This inter-die variation in optimization results indicate the necessity of intra-chip DRV -

distribution for an optimal design. Given the knowledge of this distribution, the analytical

design assumptions and results were in consonance with the observed experimental data.

6.1 Future work

This work opens possible avenues for challenging problems in the future. Experi-

mental verification of analytical results presented here will be very interesting. Due to low

bit-error rate, large SRAM test arrays will be needed or some form of accelerated testing

will be required. Since there are many failure mechanisms, any accelerated testing-methods

have to be designed carefully. For example, taking SRAM chip at high altitudes will increase

the soft-error rate, but it will leave parametric failures unaffected.

While modeling bit-error probability, erratic fluctuations were not considered since

they are not very well known within the literature. Of late, the fluctuating gate-leakage

current has been modeled as a random telegraph noise [20]. Using this information, coupled

with the magnitude and time constant of this random telegraph noise, estimation of bit-

error probability due to erratic fluctuations, and its effect on leakage-power reduction will

be an interesting endeavor.

Exploiting the statistics of supply voltage noise to reduce supply noise margin from

100mV is a challenging problem in itself. The challenges consist of supply noise distribution

modeling, the characterization of magnitude variation of supply noise in the standby state,

and the effects of supply noise on SRAM cell stability. It will also require new methods to
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estimate parametric failures, in the presence of a fluctuating supply voltage.

Unlike traditional circuit optimization works, the focus here was on system level

optimization without changing the SRAM cell parameters like transistor threshold voltage

VT , transistor channel length L, or transistor width W etc. Coupled with the macro-models

based bit-error probability estimation methods, a joint circuit and system leakage-power

optimization framework for SRAM cells can be explored. Such exploration will result in

various trade-offs between SRAM cell parameters and its probabilistic properties.

In this work, it was proposed that erasures should be learned when a parity check

error is observed in the code. It was also observed that erasure probability is very small,

except for v ≤ 0.2V. These erasure locations or addresses can be stored in a separate

memory (small overhead) to aid the decoder. This will eliminate the necessity of real-time

check with test-patterns, but it will introduce storage and latency overhead dependent on

the number of parametric failures present in any SRAM block. This approach and any

subsequent trade-offs are very interesting, and they can be analyzed in the future.

Finally, a probabilistic channel model based SRAM architecture was used to reduce

a metric of choice (like leakage-power). This technique can be ‘ported’ to other memory

systems. In the presence of process-variations, error-correction codes provide a convenient

method to move away from worst-case design conformity of SRAM cells. Perhaps this

technique’s potential will be discovered in the future, when designers will aggressively pursue

power reduction in memories.
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Chapter 7

Appendix

The proof is divided into two parts. Under the stated outage criterion, the largest

asymptotically feasible (k/n) ratio is not known. Thus, an upper bound and a lower bound

on the smallest feasible P(vS) will be derived. The lower bound on asymptotically optimal

P(vS) is derived using information theoretic capacity, and the lower bound is derived using

an asymptotic achievable strategy with bounded distance decoding based codes.

7.1 Lower bound derivation using channel coding theorem

First, the (channel) capacity of the SRAM cell will be computed. In standby mode,

Y = S, with probability ph(vS), (7.1)

= X, otherwise, (7.2)

where S ∈ {0, 1} is an equally likely binary stuck-at state, and vS is the standby voltage.

The capacity for this cell will be a function of vS through ph(vS). The probability ph(vS)
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was found by measurements as highlighted in Chapter 5. The mutual information between

input X and output Y is given by,

I(X; Y ) = H(Y )−H(Y |X). (7.3)

The information theoretic capacity is found by maximizing the mutual information I(X;Y )

over the choice of input distribution (or in this case over P[X = 0]). The conditional entropy

H(Y |X) will be computed using the conditional probability P[Y = y|X].

P[Y = 1|X = 1]
(a)
= P[Y = 1, S = 1|X = 1]P[S = 1] + P[Y = 1, S = 0|X = 1]P[S = 0],

(b)
=

1
2

(P[Y = 1, S = 1|X = 1] + P[Y = 1, S = 0|X = 1]) ,

(c)
=

1
2
(1 + (1− ph(vS))),

= 1− ph(vS)
2

, (7.4)

where (a) follows by the total probability rule, (b) follows since P[S = 0] = P[S = 1] = (1/2),

and (c) follows by (7.1) and (7.2). Similarly,

P[Y = 0|X = 0] = 1− ph(vS)
2

. (7.5)

Due to symmetry, H(Y |X = 0) will be equal to H(Y |X = 1), and therefore,

H(Y |X) = H2 (ph(vS)/2) , (7.6)

where H2(p) denotes the binary entropy function. The mutual information is given by,

I(X; Y ) = H(Y )−H2(ph(vS)/2). (7.7)

The information theoretic capacity is obtained by maximizing H(Y ). Hence,

C(vS) := max
P[X=0]

I(X; Y ) = 1−H2 (ph(vS)/2) . (7.8)
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The last equality follows since P[X = 0] = 1/2 results in the maximization of H(Y ) in (7.3).

Thus, the information theoretic capacity for the standby SRAM cell model is given by,

C(v) = 1−H2(ph(vS)/2). (7.9)

Recall that while reducing standby (leakage) power, the outage probability has to

be kept negligible so that a negligible fraction of decoded bits are in error. The outage set

E was given by,

E =
2k⋃

i=0

Ei, where, (7.10)

Ei = {g (Y n
1 ) 6= i|Xn

1 = f(i)} , (7.11)

where integers from 1 to 2k are used to index all the input words in Bk that can be stored

in n SRAM cells. The outage probability was defined as,

poutage = P(E), (7.12)

where the probability was taken over DRV (or ph(vS)) and S distributions. For comparison,

consider the following (well studied) decoding error probabilities,

pavg =
1
2k

2k∑

i=1

P[Ei], (7.13)

and,

pmax = max
1≤i≤2k

P[Ei], (7.14)

According to the channel capacity theorem, for any vS and an arbitrary δ1 > 0, a

coding scheme exists which achieves a rate of (k/n) = C(vS)− δ1 such that pmax (or pavg)

tends to 0 as n →∞ [50, Chapter 8]. In the context of SRAM, since the cells are randomly
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realized, on average a fraction of poutage encoded blocks will have some input Bk
1 such that

the decoding operation is unsuccessful. Note that this outage criterion is more stringent

than the other decoding error probabilities, since it is easy to show that (because E ⊇ Ei),

poutage ≥ pmax ≥ pavg (7.15)

Thus, no matter what coding scheme is picked, for an asymptotically negligible outage

probability, the best possible storage efficiency cannot be more than C(vS)− δ1 (δ1 > 0 is

arbitrary). Note that poutage may be strictly larger than pmax, therefore, it is not easy to

show that a storage efficiency of C(vS)− δ1 can indeed be achieved for arbitrary δ1 > 0. 1

Thus, the information theoretic capacity serves as an upper bound on the storage efficiency

(k/n). Then the lower bound on power per bit is given by,

Pε(vS) ≥ Gv2
S

1−H2(ph(vS)/2)
, (7.16)

where poutage < ε. Since ε can be made arbitrarily small as n →∞, therefore,

P(vS) ≥ Gv2
S

1−H2(ph(vS)/2)
. (7.17)

7.2 Upper bound derivation using the Gilbert bound

In this section, an upper bound on the power per bit will be derived. Only bounded

distance decoding based codes are considered. Codes that decode within a minimum Ham-

ming distance are classified under this category, e.g., Reed-Muller codes [30,51].

Let [n, k, d] be a general bounded-distance decoding code. As n, d → ∞ with

(d/n) converging to a non-zero fraction, approximately (d/2) errors can be corrected for
1Channel coding theorem states that (k/n) = C(vS)− δ1 can be achieved while pmax goes to zero [50].
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any choice of input codeword. Thus, the outage event for this class of code gets simplified

to a Hamming distance criterion which can be analyzed. Let DRV1, DRV2, . . . , DRVn be

the n realized DRV values. Let DRV(1), DRV(2), . . . , DRV(n) be the sorted DRV values

with DRV(n) being the largest. Further, note that u =
⌊

d−1
2

⌋
errors can be corrected by

this code. The outage probability simplifies to,

ε = P[DRV(n−u) ≥ vS ]. (7.18)

For this class of code, for a given (n, d) pair and an arbitrary δ2 > 0, the best asymptotic

rate is given by the Gilbert bound [72],

k

n
= 1−H2

(
d

n

)
− δ2 (7.19)

By (strong) law of large numbers, a fraction ph(vS) of SRAM cells will exhibit hold-failure

at supply voltage vS . Thus, for large n and arbitrary δ3 > 0, almost surely no more than

n(ph(vS)+δ3) errors will be present. The constant δ3 decreases to 0 as n increases to infinity.

Thus a code with d = 2n(ph(vS) + δ3) + 1 will have a negligible outage as n increases. For

this minimum distance d, by the Gilbert bound, the following (k/n) ratio is achievable for

negligible outage,

k

n
= 1−H2 (2ph(vS) + (2δ3 + 1/n))− δ2. (7.20)

As n is made large, δ2, 1/n, δ3, and the outage probability converge to zero. Thus for any

vS the following power per bit is achievable using bounded distance decoding codes,

P(vS) ≤ Gv2
S

1−H2(2ph(vS))
. (7.21)

Thus the proof is complete. 2


