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ABSTRACT

The burgeoning field of genomics, and in particular microarray experiments, have revived
interest in both discriminant and cluster analysis, by raising new methodological and compu-
tational challenges. The present paper discusses applications of resampling methods to prob-
lems in cluster analysis. A resampling method, known as bagging in discriminant analysis,
is applied to increase clustering accuracy and to assess the confidence of cluster assignments
for individual observations. A novel prediction-based resampling method is also proposed
to estimate the number of clusters, if any, in a dataset. The performance of the proposed
and existing methods are compared using simulated data and gene expression data from four
recently published cancer microarray studies.

KEYWORDS: Cluster analysis; discriminant analysis; unsupervised learning; supervised
learning; number of clusters; resampling; bagging; microarray experiment; cancer; tumor
classification.



1 Introduction

The burgeoning field of genomics, and in particular microarray experiments, have revived
interest in both discriminant and cluster analysis, by raising new methodological and compu-
tational challenges. DNA microarrays are a new and promising biotechnology which allows
the monitoring of expression levels in cells for thousands of genes simultaneously. Microar-
rays are being applied increasingly in biological and medical research to address a wide range
of problems, such as the classification of tumors [1, 2, 16, 26, 27, 29]. A reliable and precise
classification of tumors is essential for successful diagnosis and treatment of cancer. By al-
lowing the monitoring of expression levels on a genomic scale, microarray experiments may
lead to a more complete understanding of the molecular variations among tumors and hence
to a finer and more reliable classification.

There are two main aspects to classification: discrimination and clustering. In discriminant
analysis, also known as supervised learning, observations (e.g. tumor mRNA samples) are
known to belong to prespecified classes, and the task is to build predictors for allocating
new observations to these classes. By contrast, in cluster analysis, or unsupervised learning,
the classes are unknown a priori and the task is to determine these classes from the data
themselves, i.e., to determine the number of classes and assign each observation to one of
these classes. A detailed overview of statistical issues in discriminant and cluster analysis is
presented in “Panel on discriminant analysis, classification and clustering” [25]. The present
paper focuses on cluster analysis; for a discussion of discriminant analysis in the context of
microarray experiments the reader is referred to Dudoit et al. [11].

Resampling methods such as bagging (Breiman [6]) and boosting (Breiman [7], Freund &
Schapire [15]) have been applied successfully in the context of discriminant analysis to im-
prove prediction accuracy. In the present paper, it is proposed to apply resampling techniques
in the context of cluster analysis, to (i) estimate the number of clusters, if any, in a dataset,
and (ii) improve and assess the accuracy of a given clustering procedure. Since the groups
obtained from cluster analysis are often used for prediction purposes later on, the approach
to (i) relies on ideas from discriminant analysis. For problem (ii), bagging is used to gen-
erate and aggregate multiple clusterings and to assess the confidence of cluster assignments
for individual observations. Although the proposed resampling methods are applicable to
general clustering problems, particular attention is given to the clustering of tumors using
gene expression data.

The paper is organized as follows. The remainder of Section 1 introduces basic notions in
cluster analysis and provides a motivation for the issues addressed in this paper. After a
discussion of existing approaches, Section 2 presents a novel prediction-based resampling
method, Clest, for estimating the number of clusters in a dataset. Section 3 proposes two
resampling methods for improving the accuracy of a clustering method and for assessing
the confidence of cluster assignments for individual observations. In Section 4, the proposed
methods of Sections 2 and 3 are compared to existing approaches using simulated data. The
same existing and new methods are applied in Section 5 to gene expression data from four



recently published cancer microarray studies. Finally, Section 6 summarizes our findings and
outlines open questions.

1.1 Motivation

The aim of cluster analysis is to group observational units on the basis of measurements
and according to prespecified criteria. Important issues, which will only be briefly addressed
in the present paper, include: the selection of observational units, the selection of variables
for defining the groupings, the transformation and standardization of variables, the choice
of a similarity or dissimilarity measure, the choice of a clustering method (Milligan [23]).
The two main concerns in this paper are: (i) estimating the number of clusters, if any, in a
dataset, and (ii) improving and assessing the accuracy of a given clustering procedure.

When a clustering algorithm is applied to a set of observations, a partition of the data is
returned whether or not the data exhibit a true or “natural” clustering structure. This fact
causes no problems if clustering is done to obtain a practical grouping of the given set of
objects, for instance, for organizational purposes (e.g. hierarchical clustering for displaying
large gene expression data matrices as in Eisen et al. [12]). However, if interest lies primarily
in the recognition of an unknown classification of the data, an artificial clustering is not sat-
isfactory, and clusters resulting from the algorithm must be investigated for their relevance
and reproducibility. This task can be performed by descriptive and graphical exploratory
methods, or by relying on probabilistic models and suitable statistical significance tests (e.g.
model based clustering of Fraley & Raftery [14]).

Once novel classes are identified and cluster labels are assigned to the observations, the
next step is often to build a classifier for predicting the class of future observations. The
reproducibility of cluster assignments becomes very important in this context, and therefore
provides a motivation for using ideas from discrimination to estimate the number of clusters.
After a brief summary of existing methods in Section 2.1, a novel resampling method com-
bining ideas from discriminant and cluster analysis is proposed in Section 2.2 for estimating
the number of clusters in a dataset.

The ability to accurately allocate observations to clusters and assess the confidence of each
cluster assignment is an essential aspect of the clustering problem. For example, in the
context of tumor classification, the definition of new tumor classes is based on the clustering
results and these classes are then used to build predictors for new tumor samples. Inaccurate
cluster assignments could lead to erroneous diagnoses and unsuitable treatment protocols.
Two bootstrap-based methods for improving the accuracy of a clustering procedure and
assessing the confidence of cluster assignments are proposed in Section 3.

1.2 Clustering algorithm: Partitioning around medoids

The data are assumed to be sampled from a mixture distribution with K components corre-
sponding to the K clusters to be recovered. Let (X7, ..., X,) denote a random 1 x p vector of



explanatory variables and let Y € {1,..., K'} denote the component or cluster label. Given
a sample of X'’s, the goal is to estimate the number of clusters K and to estimate, for each
observation, its cluster label Y.

Suppose we have data X = (x;;) on p explanatory variables (e.g. genes) for n observations
(e.g. tumor mRNA samples), where z,; denotes the realization of variable j for observation
i and x; = (1, ..., ;) denotes the data vector for observation ¢, =1,...,n, 5 =1,...,p.
We consider clustering algorithms that divide the learning set £ = {x;,...,x,} into K clus-
ters of observations that are “similar” to each other, where K is a user prespecified integer.
More specifically, the clustering P(-, L) assigns class labels P(x;, L) = g; to each observa-
tion, where g; € {1,..., K'}. Clustering algorithms generally operate on a matrix of pairwise
dissimilarities (similarities) between the observations to be clustered, such as the Euclidean
or Manhattan distance matrices (Mardia et al. [22]). A partitioning of the learning set can
be produced directly by partitioning clustering methods (e.g. k-means, partitioning around
medoid (PAM), self-organizing maps (SOM)) or by hierarchical clustering methods, by “cut-
ting” the dendogram to obtain K “branches” or clusters.

In this report, the proposed resampling methods are illustrated using the Partitioning Around
Medoids or PAM method of Kaufman & Rousseeuw [20]. As implemented in the R and S-Plus
libraries cluster, the PAM function takes as its arguments a dissimilarity matrix (e.g. the
FEuclidean distance matrix as used here) and a prespecified number of clusters K. The PAM
algorithm is based on the search for K representative objects, or medoids, among the ob-
servations to be clustered. After finding a set of K medoids, K clusters are constructed
by assigning each observation to the nearest medoid. The goal is to find K medoids which
minimize the sum of the dissimilarities of the observations to their closest medoid. The
algorithm first looks for a good initial set of medoids, then finds a local minimum for the
objective function, that is, a solution such that there is no single switch of an observation
with a medoid that will decrease the objective.

The PAM algorithm tends to be more robust and computationally efficient than k-means.
In addition, PAM provides a graphical display, the silhouette plot, which can be used to
select the number of clusters and to assess how well individual observations are clustered.
Let a; denote the average dissimilarity between ¢ and all other observations in the cluster
to which ¢ belongs. For any other cluster C, let d(i,C') denote the average dissimilarity of
i to all objects of C' and let b; denote the smallest of these d(i,C). The silhouette width
of observation ¢ is sil; = (b; — a;)/ max(a;,b;) and the overall average silhouette width is
simply the average of sil; over all observations i, sil = Y, sil;/n. Intuitively, objects with
large silhouette width sil; are well clustered, while those with small si/; tend to lie between
clusters. Kaufman & Rousseeuw suggest estimating the number of clusters K by that which
gives the largest average silhouette width, sil.



2 Estimating the number of clusters

2.1 Existing methods
2.1.1 Null hypothesis

Suppose that the maximum possible number of clusters in the data is set to M, 2 < M < n.
One approach to estimating the number of clusters K is to look for ]i’, 1< K < M, that
provides the strongest significant evidence against the null hypothesis Hy of K = 1, that
is, “no clusters” in the data. Two commonly used parametric null hypotheses are the uni-
modality hypothesis and the uniformity hypothesis.

Under the unimodality hypothesis the data are thought to be a random sample from a mul-
tivariate normal distribution. This model typically gives a high probability of rejection of
the null K = 1 if the data are sampled from a distribution with a lower kurtosis than the
normal distribution, such as the uniform distribution (Sarle [30]).

The uniformity hypothesis, also referred to as random position hypothesis, states that the
data are sampled from a uniform distribution in p-dimensional space (Bock [4], Hartigan
[17], Jain & Dubes [19]). Methods based on the uniformity hypothesis tend to be conserva-
tive, i.e., lead to few rejections of the null Hy, when the data are sampled from a strongly
unimodal distribution such as the normal distribution. In two or more dimensions, and de-
pending on the test statistic, the results can be very sensitive to the region of support of the
reference distribution (Sarle [30]).

For both types of hypotheses, evidence against the null Hy can be summarized formally under
probability models for the data or more informally by using internal indices as described next.

2.1.2 Internal indices

Numerous methods have been proposed for testing the null hypothesis K = 1 and estimat-
ing the number of clusters in a dataset, however, none of them are completely satisfactory.
Jain & Dubes [19] provide a general overview of such methods. The majority of existing
approaches do not attempt to formally test the null hypothesis that K = 1, but rather look
for the clustering structure under which a summary statistic of interest is optimal, being
large or small depending on the statistic (Calinski and Harabasz [9], Davies & Bouldin [10],
Krzanowski & Lai [21]). These statistics are typically functions of the within, and possi-
bly between, clusters sums of squares, and belong to the class of so-called internal indices,
in the sense that they are computed from the same observations that are used to create
the clustering. Consequently, the distribution of these indices is intractable. In particular,
since clustering methods attempt to maximize the separation between clusters, the ordinary
significance tests such as analysis of variance F-tests are not valid for testing differences
between the clusters. Milligan & Cooper [24] conducted an extensive Monte Carlo evalua-
tion of thirty internal indices. Other approaches include modeling the data using Gaussian
mixtures and applying a Bayesian criterion to determine the number of components in the



mixture (Fraley & Raftery [14]). A recent proposal of Tibshirani et al. [31], called the gap
statistic method, calibrates an internal index, such as the within clusters sum of squares,
against its expectation under a suitably defined null hypothesis (note that gap tests have
been used in another context in cluster analysis by Bock [4], p. 81, to test the null hypothesis
of a “homogeneous” population against the alternative of “heterogeneity”). Tibshirani et al.
conducted a comparative Monte Carlo study of the gap statistic and several of the internal
indices which showed a better performance in the study of Milligan & Cooper [24]. These
internal indices and the gap statistic are described in more detail next.

For a given partition of the learning set into 1 < & < M clusters, define By and W, to
be the p x p matrices of between and within k-clusters sums of squares and cross-products

(Mardia et al. [22]). Note that By is not defined.

1. sil - Kaufman & Rousseeuw [20] suggest selecting the number of clusters & > 2 which
gives the largest average silhouette width, sil;. Silhouette widths were defined in
Section 1.2 with the clustering algorithm PAM.

2. ch - Calinski and Harabasz [9]. For each number of clusters k& > 2, define the index

L tBy/(k—1)
T YW (n — k)’

where tr denotes the trace of a matrix, i.e., the sum of the diagonal entries. The
estimated number of clusters is argmax,,chg.

3. kl— Krzanowski & Lai [21]. For each number of clusters & > 2, define the indices
dif fo = (k = D¥PerWi_y — E¥P0eW,,  and  klp = |dif fe|/|dif frpr].
The estimated number of clusters is argmax;,kly.

4. hart — Hartigan [18]. For each number of clusters & > 1, define the index

ter
tI’Wk_|_1

hart, = ( —1)(n—k—1).

The estimated number of clusters is the smallest & > 1 such that hart, < 10.

5. gap or gapPC — Tibshirani et al. [31]. This method compares an observed internal
index, such as the within clusters sum of squares, to its expectation under a reference
null distribution as follows. For each number of clusters & > 1, compute the within
clusters sum of squares trWy. Generate B (here B = 10) reference datasets under
the null distribution and apply the clustering algorithm to each, calculating the within
clusters sums of squares trWi,..., ttW2. Compute the estimated gap statistic

1
gapx = 3 Z log trW? — log trW,
b
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and the standard deviation sdj, of log trW,bC, 1 <b< B. Let SNdk = sdp\/1+1/B. The

estimated number of clusters is the smallest & > 1 such that gapy > gapp — sdj,
where k* = argmax,,gapg.

Tibshirani et al. [31] chose the uniformity hypothesis to create a reference null distribution
and considered two approaches for constructing the region of support of the distribution.
In the first approach, the sampling window for the j** variable, 1 < j < p, is the range
of the observed values for that variable. In the second approach, following Sarle [30], the
variables are sampled from a uniform distribution over a box aligned with the principal com-
ponents of the centered design matrix (i.e., the columns of X are first set to have mean 0
and the singular value decomposition of X is computed). The new design matrix is then
back-transformed to obtain a reference dataset. While the first approach has the advantage
of simplicity, the second takes into account the shape of the data distribution. Note that in
both approaches the variables are sampled independently. The version of the gap method
which uses the original variables to construct the region of support is referred to as gap and
the second version as gapPC, where “P(C” stands for Principal Components.

Note that of the above methods, only hart, gap, and gapPC allow the estimation of only one
cluster in the data, i.e., K = 1.

2.1.3 External indices

The term “validation of a clustering procedure” usually refers to the ability of a given method
to recover the true clustering structure in a dataset. There have been several attempts to
assess validity on theoretical grounds (Bock [4], Hartigan [18]), however, such approaches
turn out to be of little applicability in the context of high-dimensional complex datasets.
In many validation studies, clustering methods are evaluated based on their performance
on empirical datasets with a priori known cluster labels (Hartigan [18]) or, more commonly,
based on simulation studies where true cluster labels are known. In order to assess the ability
of a clustering algorithm to recover true cluster labels it is necessary to define a measure
of agreement between two partitions; the first partition being the a priori known clustering
structure of the data, and the second partition resulting from the clustering procedure. In
the clustering literature, measures of agreement between partitions are referred to as external
indices; several such indices are reviewed next.

Consider two partitions of n objects x1,...,%,: the R-class partition & = {uq,---,ur} and
the C-class partition V = {vq,---,vc}. External indices of partitional agreement can be
expressed in terms of a contingency table (Table 1), with entry n;; denoting the number of
objects that are both in clusters w; and v;, e =1,..., R, 7 =1,...,C (Jain & Dubes [19]).
Let n; = Z]-Ozl n;; and n; = Zf; n;; denote the row and column sums of the contingency

table, respectively, and let Z = Y1, ch:1 nf]
1. Rand — Rand [28]

Rond =1+ (2 - /200 + 32

=1 7=1

8



Table 1: Contingency table for two partitions of n objects

0 U2 (e
Uy | 11 N1z - NMc ni.
Uz | N1 Nz -+ N2C UDN
UR | MR1 NR2 '+ NRC ng.
na n. o e nN.o=N

2. Jaccard - Jain & Dubes [19]
Jac = (Z —n)/(fzm2 —I—ZC:n.Zj -7 —n).
i=1 j=1
3. FM - Fowlkes & Mallows [13]
R . N1
M= (1/2) (2 = )/ (2) 3 (2)]

Note that Rand and F'M are linear functions of Z, and hence are linear functions of one
another, conditional on the row and column sums in Table 1. If the row and column sums in
Table 1 are fixed, but the partitions are selected at random, i.e., if there is independence in
the table, the hypergeometric distribution can be applied to determine the expected value
of quantities such as Z. In particular

i (n;)} = (1/2)B(Z —n) = é (2) ]Z: ("2])/(;‘)

1y

R
An external index S is often standardized in such a way that its expected value is 0 when
the partitions are selected at random and 1 when they match perfectly. This amounts to

computing a standardized external index

S — B(S)

S E(S)’

where Sy,q, 1s the maximum value of the statistic S and E(S) is the expected value of S
when partitions are selected at random. Accordingly, an often used correction for the Rand
statistic is

Rand' — SR S5 () - EIEE () =5 (%)
128, (3) + 55 () -1/ (128, (5) 54, ()

The significance of an observed external index is usually assessed under the assumption that
the two partitions to be compared are independent. This assumption does not hold for

9



the resampling methods described in the following section, since the same data are used to
produce the two partitions. Nevertheless, external indices are convenient tools for comparing
two clusterings, and are used in the new resampling method Clest. In this context, one should
think of these indices as internal rather than external measures.

2.2 A prediction-based resampling method, Clest

In this section, a new prediction-based resampling method, Clest, is proposed for estimating
the number of clusters, if any, in a dataset. The idea behind Clest is very intuitive if one is
concerned with reproducibility of cluster assignments.

It is proposed to estimate the number of clusters K by repeatedly randomly dividing the
original dataset into two non-overlapping sets, a learning set £ and a test set 7°. For each
iteration and for each number of clusters k, a clustering P(-, £%) of the learning set L’ is
obtained and a predictor C'(-, £") is built using the class labels from the clustering. The
predictor C(-, L") is then applied to the test set 7° and the predicted labels are compared
to those produced by applying the clustering algorithm to the test set, using one of the
external indices (or similarity statistics) described in Section 2.1.3. The number of clusters
is estimated by comparing the observed similarity statistic for each k& to its expected value
under a suitable null distribution with K" = 1. The estimated number of clusters is defined
to be the A corresponding to the largest significant evidence against Hy of K = 1.

An early version of this approach was introduced by Breckenridge [5] under the name of
replication analysis and was designed to evaluate the stability of a clustering. In the original
replication analysis, the number of clusters & is fixed, and the data are randomly divided
into two samples. A clustering algorithm partitions both samples into &k clusters, and the
centroids of the clusters of the first sample are computed. A second set of labels is assigned
to the observations in the second sample by assigning to each observation the cluster label
of the closest centroid from the first sample. Finally, an external index is used to assess the
agreement between the two partitions of the second sample. This measure reflects the sta-
bility of the clustering structure. The Clest algorithm proposed here generalizes and extends

the work of Breckenridge [5].
Clest algorithm for estimating the number of clusters in a dataset.

Denote the maximum possible number of clusters by M, 2 < M < n. For each number of
clusters k, 2 < k < M, perform steps 1-4.

1. Repeat the following B times:

(a) Randomly split the original learning set £ into two non-overlapping sets, a learn-
ing set £ and a test set 7.

(b) Apply a clustering algorithm P to the learning set £° to obtain a partition P(-, £?).
(c) Build a classifier C(-, £*) using the learning set £° and its cluster labels.

10



(d) Apply the resulting classifier to the test set 7°.
(e) Apply the clustering algorithm P to the test set 7° to obtain a partition P(-, 7).

(f) Compute an external index s;; comparing the two sets of labels for 7° obtained
by clustering and prediction, respectively.

2. Let t; = median(sy,,- -, sk ) denote the observed similarity statistic for the k—cluster
partition of the data.

3. Generate By datasets under a suitable null hypothesis. For each reference dataset,
repeat the procedure described in steps 1 and 2 above, to obtain By similarity statistics

th, e 7tk7B0.

4. Let 19 denote the average of these By statistics, 1 = BL ZbB:01 trp, and let py denote the
0 b

proportion of the {35, 1 < b < By, that are at least as large as the observed statistic

ly, i.e., the p-value for ¢;. Finally, let d, = t; — t9 denote the difference between the

observed similarity statistic and its estimated expected value under the null hypothesis

of K = 1.
Define the set K~ as
K™ = {2 S k S M : Pk S Pmaz, dk Z dmm}v

where pyq, and d,,;, are preset thresholds (see Section 2.2.1). If this set is empty, estimate
the number of clusters as K = 1. Otherwise, let K = argmax;cp—dy, i.e., take the number

of clusters K that corresponds to the largest significant difference statistic dy.

2.2.1 Discussion of parameters

In this paper, the following decisions were made regarding the different parameters for the
Clest algorithm.

Clest parameter Value

Maximum number of clusters M = 10 for microarray data
M =5 for simulated data
Number of learning/test set iterations B = 20

Number of reference datasets By =20

Size of learning sets L£° 2n/3

Clustering algorithm PAM

Classifier linear discriminant analysis with diagonal covari-
ance matrix — DLDA

Reference null distribution uniformity hypothesis

External index Fowlkes & Mallows [13] external index, FM

Maximum p-value Pmaz = 0.05

Minimum difference statistic dmin = 0.05

11



o Clustering algorithm — partitioning around medoids, PAM. The clustering algorithm PAM
is used in this paper (see Section 1.2), but one should keep in mind that different clustering
algorithms can generate different partitions of the same data, possibly leading to different
inferences about the number of clusters.

o Classifier — diagonal linear discriminant analysis, DLDA. For multivariate normal class
densities, i.e., for x|y = k ~ N(ug, X), the maximum likelihood (ML) discriminant rule is

C(x) = argmin, i {(x — ) S5 (x — pui)’ + log [}

When the class densities have the same diagonal covariance matrix ¥ = diag(o{,.. ., UZ),
the discriminant rule is linear and given by

)
C(x) = argmin, ¢ Z / p 7
7=1 J

For the corresponding sample ML discriminant rules, the population mean vectors and covari-
ance matrices are estimated from a learning set by the sample mean vectors and covariance
matrices, respectively: f[ip = X; and 3, = S;. For the constant covariance matrix case,
the pooled estimate of the common covariance matrix is used: 3= Yp(ng —1)Sg/(n — K),
where nj denotes the number of observations in class k and n is the total sample size. DLDA
is a very simple classifier but it has been shown to perform well in complex situations, in
particular, in an extensive study of discrimination methods for the classification of tumors
using gene expression data (Dudoit et al. [11]).

o Reference null distribution. The reference datasets are generated under the uniformity
hypothesis as in the gap statistic method (see Section 2.1.1).

o [xternal index. All of the external indices described in Section 2.1.3 were considered.
The Fowlkes & Mallows [13] F'M index was found to be superior to the other indices when

reference datasets are generated under the uniformity hypothesis (data not shown).

o Threshold parameters, ppa. and d,,;,. This rule is ad hoc and can likely be improved upon.
Nevertheless, it gives a satisfactory performance and is used in the absence of a better choice.

o Number of iterations and reference datasets. The Clest procedure is robust to the choice

of B and By (data not shown).

3 Improvement of clustering accuracy

For a given number of clusters K, the goal is to estimate for each observation its cluster
label and, if possible, get a measure of confidence for this cluster assignment.

In discriminant analysis, it is well known that gains in accuracy can be obtained by ag-
gregating predictors built from perturbed versions of the learning set [6, 7, 8, 15]. In the

12



bootstrap aggregating or bagging procedure (Breiman [6]), perturbed learning sets of the
same size as the original learning set are formed by drawing at random with replacement
from the learning set, i.e., by forming non-parametric bootstrap replicates of the learning
set. Predictors are built for each perturbed dataset and aggregated by plurality voting. A
useful by-product of the voting are the prediction votes, which may be used to assess the
confidence of predictions for individual observations (Dudoit et al. [11]). It is of interest
to see whether the application of aggregation procedures can also improve the partitions
created by an arbitrary clustering method.

Two applications of bagging, denoted by Bagl and Bag2, are considered here. In the first
application, the clustering algorithm is repeatedly applied to each bootstrap sample and the
final partition is obtained by plurality voting, i.e., by taking the majority class label for each
observation. A valuable by-product of this bootstrap procedure are the cluster votes for
individual observations. The second bagging approach forms a new dissimilarity matrix by
recording for each pair of observations the proportion of time they were clustered together in
the bootstrap clusters (Breiman, pers. comm.). This new dissimilarity matrix is then used
as an input to a clustering algorithm and the resulting partition is considered final. The
partitioning clustering algorithm PAM (see Section 1.2) is used here, but Bag! and Bag2
can be applied to an arbitrary clustering procedure.

3.1 Bagging a clustering algorithm, Bag1

For a fixed number of clusters K

1. Apply the clustering algorithm P to the original learning set £ to obtain cluster labels
P(x;, L) = g; for each observation, i = 1,...,n.

2. Form the bth bootstrap sample £ = (x4,...,x2).

(o

3. Apply the clustering algorithm P to the perturbed learning set £* and obtain cluster
labels P(x?, £%) for each observation in £°.

4. Permute the cluster labels assigned to the perturbed learning set £° so that there is
maximum overlap with the original clustering of these observations. More specifically,
let Sk denote the set of all permutations of the integers 1, ..., K. Find the permutation
% € Sk such that

n

i[(ﬁ(?(xf,zb)) = P, L)) = max 3 1(w(P(x, £) = P(x, £),

TES}( i1

where [(-) is the indicator function, equaling 1 if the condition in parentheses is true,
and 0 otherwise, and let

g =" (P(x}, L")
denote the cluster label for the ith observation of the bth bootstrap sample.

13



5. Repeat steps 2 — 4 B times (here B = 20), and assign a bagged cluster label for each
observation by majority vote, that is, let

i = argmax; ¢, > [(Tb(’P(Xi,,Cb)) = k)
{b: x;€LP}

Also record a cluster vote, which is the proportion of votes in favor of the “winning”
cluster assignment, that is,

maxi cker S wecry (TP, L)) = k)
#{b 1 X; € Eb} '

CV(XZ) =

Note the alignment in Step 4 of the Bag! procedure: the labels of the observations from each
of the perturbed datasets are permuted in such a way that there is the least disagreement
between these labels and the original labels from the clustering applied to the entire dataset.
The method described next bypasses this alignment step by considering pairs of observations,
rather than individual observations, and by building a new dissimilarity matrix.

3.2 Bagging a clustering algorithm, Bag?2

For a fixed number of clusters K
1. Initialize two n X n matrices A = (a,;) and M = (m;;) to zero.
2. Form the bth bootstrap sample £* = (x4,...,x).

n

3. Apply the clustering algorithm P to the perturbed learning set £* and obtain cluster
labels P(x?, £%) for each observation in L.

4. For each pair of observations, update the matrices A and M as follows:
a;j  ai; + [(xi €Ll x;eLl Pxi,Lh)= P(Xj,ﬁb)),
mi;  mi; +1(xi € £, x; € L"),

5. Repeat steps 2 — 4 B times (here B = 20), and define a new dissimilarity matrix
D= (dij), by dij =1- aij/mij.

6. Cluster the n original observations on the basis of this new dissimilarity matrix.

Note that the clustering algorithm applied in Step 6 need not be the same as the algorithm
applied in Step 3. Also, note that procedure Bag2 does not directly produce cluster votes
as Bagl does. Nevertheless, it is possible to assess the confidence of the refined cluster
assignments using, for example, the silhouette widths in PAM.
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4 Simulated data

The proposed methods for estimating the number of clusters and for cluster accuracy im-
provement are applied to simulated datasets. In Section 4.1, the Clest procedure is compared
to existing approaches for estimating the number of clusters. In Section 4.2, the cluster bag-
ging procedures Bagl and Bag?2 are applied to simulated data and compared, in terms of the
accuracy of cluster assignments, to a single application of the clustering algorithm PAM. In
addition, for Bagl, it is investigated how well the cluster vote of an observation reflects the
accuracy of its assigned cluster label.

4.1 Estimating the number of clusters
4.1.1 Simulation models

Procedures for estimating the number of clusters in a dataset are evaluated using simulated
data from a variety of models, including those considered by Tibshirani et al. [31]. The
models used for comparison contain different numbers of overlapping and non-overlapping
clusters, different numbers of variables, and a wide range of covariance matrix structures. In
addition, a variable number of irrelevant or “noise” variables are included in the models. A
noise variable is a variable whose distribution does not depend on the cluster label, and such
variables are added to obscure the underlying clustering structure which is to be recovered.

e Model 1: 1 cluster in 10 dimensions. n = 200 observations are simulated from the uni-
form distribution over the unit hypercube in p = 10 dimensions.

e Model 2: 3 clusters in 2 dimensions. The observations in each of the three clusters are
independent bivariate normal random variables with means (0,0), (0,5), and (5,-3), respec-
tively, and identity covariance matrix. There are 25, 25, and 50 observations in each of the
3 clusters, respectively.

e Model 3: j clusters in 10 dimensions, 7 noise variables. Each cluster is randomly chosen
to have 25 or 50 observations and the observations in a given cluster are independently drawn
from a multivariate normal distribution with identity covariance matrix. For each cluster,
the cluster means for the first three variables are randomly chosen from a N(0s, 2513) distri-
bution, where 0, denotes a 1 x p vector of zeros and I, denotes the p x p identity matrix. The
means for the remaining seven variables are (. Any simulation where the Euclidean distance
between the two closest observations belonging to different clusters is less than 1 is discarded.

e Model 4: j clusters in 10 dimensions. Fach cluster is randomly chosen to contain 25 or
50 observations, with means randomly chosen as N(04¢,3.6I10). The observations in a given
cluster are independently drawn from a normal distribution with identity covariance matrix
and appropriate mean vector. Any simulation where the Euclidean distance between the two
closest observations belonging to different clusters is less than 1 is discarded.
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e Model 5: 2 elongated clusters in 3 dimensions. Cluster 1 contains 100 observations gen-
erated as follows. Set x; = xy = x5 = ¢, with ¢ taking on equally spaced values from —0.5 to
0.5. Gaussian noise with standard deviation of .1 is then added to each variable. Cluster 2 is
generated in the same way except that the value 10 is added to each variable. This results in
two elongated clusters, stretching out along the main diagonal of a three-dimensional cube,
with 100 observations each.

e Model 6: 2 elongated clusters in 10 dimensions, 7 noise variables. The clusters are gen-
erated as in Model 5, but, in addition, 7 noise variables are simulated independently from
a normal distribution with mean 0 and variance v? for the vth variable, 4 < v < 10.

e Model 7: 2 overlapping clusters in 10 dimensions, 9 noise variables. Each cluster contains
50 observations. The first variable in each of the two clusters is normally distributed with
mean 0 and 2.5, respectively, and with variance 1. The remaining 9 variables are simulated
from the N(0g,Io) distribution (independently of the first variable).

e Model 8: 3 overlapping clusters in 13 dimensions, 10 notse variables. Each cluster con-
tains 50 observations. The first three variables have a multivariate normal distribution with
mean vectors (0,0,0), (2,-2,2), and (-2,2,-2), respectively, and covariance matrix X, where
i =1,1 <1< 3, and 055 = 0.5,1 <1 # 7 < 3. The remaining 10 variables are simulated
independently from the N(0y¢, I) distribution.

Note that Models 1, 2, 4, and 5 were considered in Tibshirani et al. [31]. Model 3 is
similar to model 3 in [31], with the addition of seven noise variables. Model 6 is the same
as Model 5, with the addition of seven noise variables.

Fifty datasets were simulated from each model and the methods described in Section 2 were
applied to the resulting datasets. We are primarily interested in comparing the percentage of
simulations for which each procedure recovers the correct number of clusters, as this quantity
reflects the accuracy of the procedure. However, for the purpose of future applications, it
is useful to also know whether a method tends to underestimate or overestimate the true
number of clusters. Hence, the full distribution of the number of clusters estimated by each
method is presented in Table 2. Note that only the methods Clest, gap, gapPC, and hart
have the capability to identify one cluster in the data.

4.1.2 Results

Figure 1 displays barplots for the percentage of simulations for which a given method cor-
rectly recovered the number of clusters for each of the eight models. Table 2 provides a more
detailed account of the simulation results for each of the procedures. It can be seen that
Clest gave uniformly good results over the range of models, its worst performance being for
Model 7 with two overlapping clusters. The rest of the methods failed for at least one of
the eight models considered. The gap procedure failed twice (Models 5 and 6) and gapPC
failed once (Model 6). Neither gap nor gapPC were able to identify the presence of the two
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clusters for Model 6, which is a model with two drawn-out clusters and seven noise vari-
ables with varying variances. Both gap and gap PC consistently estimated one cluster for this
model, perhaps because both methods are based on the within clusters sums of squares and
consequently are more affected by the variables with larger variances. In a majority of the
simulations from Model 7 Clest, gap, and gapPC failed to distinguish between one and two
clusters. The simple hart index did well for this model. The rest of the procedures do not
have by definition the ability to estimate one cluster and hence generally identified the two
clusters. Interestingly, for Model 8 with three overlapping clusters, sil and ch performed
poorly, choosing two clusters in a majority of the simulations, while hart and Clest showed
the best performance. Overall, most methods tended to underestimate more often than they
overestimated the number of clusters, but the situation was reversed for hart and kl. For
Model 1 it is only fair to compare Clest, gap, gapPC, and hart, as the other methods only
estimate K > 2.

In summary, for the simulation models considered here, Clest was the most robust and accu-
rate method, whereas hart showed the worst performance. gapPC was better than gap and
the rest of the methods showed similar performance.

For a given model, it is of interest to consider the median value of the statistics used by
each method to estimate the number of clusters. For each number of clusters &k, the plots of
the median values, over the 50 simulated datasets, of the Clest d-statistic, gapPC, and sil
statistics are shown in Figures 2, 3, and 4, respectively. The d-statistic does not generally
have local maxima except for Model 5. There, a local maximum appears at K = 4 clusters,
but the global maximum occurs at K = 2. It can be seen that the ability of Clest to
distinguish between one and two clusters is very low for Mlodel 7; the median of the d, values
is less than the significance cut-off d,,;, used in the Clest algorithm. Indeed, the results in
Table 2 show that Clest identified two clusters for only 30% of the datasets simulated from
Model 7. The figures suggest that for the majority of the models, the global maximum of
the median d-statistic is more pronounced than the global maxima of the median gapPC
and sil statistics, respectively. This again suggests good robustness and accuracy properties
for the Clest method.

4.2 Improvement of clustering accuracy
4.2.1 Simulation models

By and large, given the true number of clusters K, a single application of PAM was able to
recover the true partitions in the datasets simulated from the models of the previous section.
These models are thus unsuitable for comparing methods aimed at improving the accuracy
of cluster assignments, and data should be simulated from models with a sufficient amount of
overlap between the clusters in order to provide room for a possible improvement in accuracy.

In this section, observations for each cluster are generated independently from multivariate

normal distributions. That is, for each cluster k, n; independent observations are generated
from N(pg, Xi), where pi and 3, denote respectively the 1 x p mean vector and p X p covari-
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ance matrix for cluster &, k = 1,..., K. The parameters of the models are set in such a way
that the clusters are overlapping to a certain degree. Eight types of models, with varying
number of variables, covariance matrix structure, and number of clusters are considered and

listed in Table 3.

One hundred datasets were simulated for each model. For each dataset, three sets of cluster
labels were obtained by applying the PAM clustering algorithm as well as the Bagl and Bag2
bagging procedures with PAM and B = 20 bootstrap samples. The three partitions were
compared to the true partition as follows. The assigned cluster labels of the observations
were permuted in order to minimize the proportion of observations with cluster labels dis-
agreeing with the true class labels (see Step 4 of the algorithm Bag! in Section 3.1). The
resulting disagreement rate is referred to as the clustering error rate and the distribution of
the error rates over the 100 realizations was compared between the three methods for each
of the simulation models.

For the Bag! procedure we also investigated how well the cluster votes relate to the accuracy
of individual cluster assignments. To this end, observations were binned by their cluster
votes and in each bin the percentage of correctly and incorrectly labeled observations was
examined. The bins corresponding to high cluster votes should contain a high percentage
of correctly classified observations. The observations were also grouped according to the
correctness of their assigned labels and the distributions of the cluster votes in the two
groups were compared.

4.2.2 Results

Improvement of clustering accuracy. For each simulation model, Figure 5 displays
boxplots of the clustering error rates computed over 100 simulations. For all models but
Model II the results are shown for one value of the parameter A only. The clusterings
produced by bagging procedures Bagl and Bag?2 were in general at least as accurate and
often substantially more accurate than the clusterings resulting from a single application of
the PAM algorithm. It can also be seen from Figure 5 that for most models considered, the
Bagl procedure was slightly superior to Bag?2.

To quantify the improvement of bagging over a single application of PAM, improvement
statistics 717 and 75 were defined to represent the percentage change of the clustering error
rate relative to a single application of PAM. That is, the improvement statistic ¢; for Bagj,
J = 1,2, is defined as the ratio (e, —¢;)/eq, where eq, €1, and e3 denote the median clustering
error rates for PAM, Bagl, and Bag2, respectively, over the 100 simulated datasets. The
improvement statistics are displayed above the boxplots in Figure 5.

Both bagging procedures showed the largest improvement over a single application of PAM
for Model IT with A = 6. This model contains a large number of noise variables (99),
with complete overlap between the clusters, and only one variable with no overlap between
the clusters. A single application of PAM did not perform well in the presence of a large
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number of noise variables, while aggregation by bagging greatly improved the accuracy of
the clustering. The improvement statistics for the bagging procedures were very small and
sometimes negative for Model II with A = 3 and Model V with A = 2. For these models,
aggregation had no impact on the quality of the partitions. In general, the improvement
statistic rises as the separation between the clusters increases, unless the performance of a
single application of PAM is nearly optimal (data not shown).

Cluster votes. Recall that cluster votes C'V can be obtained as by-products of the plurality
voting in the Bagl procedure. For each model, the observations were stratified according to
whether they were correctly classified by Bag! or not, and the distributions of the cluster
votes between the two types of observations were compared using boxplots in Figure 6. It
can be seen that the cluster votes for correctly allocated observations are higher than those
for incorrectly allocated ones. Another way to evaluate whether the cluster votes are good
indicators of the accuracy of cluster assignments is to group the observations according to
the value of their cluster votes and to consider the fraction of correctly allocated observations
within each bin. The barplot of Figure 7 displays the proportion of correct allocations as
a function of cluster votes for Model VI; this model was used for demonstration purposes
because of the diversity of its cluster votes. Figure 7 shows that the proportion of misclas-
sifications for an observation is inversely related to its cluster vote. Cluster votes are thus
good indicators of the accuracy of a cluster assignment.

5 Microarray data

DNA microarrays are a new and promising biotechnology which allows the monitoring of ex-
pression levels in cells for thousands of genes simultaneously. Microarrays are being applied
increasingly in biological and medical research to address a wide range of problems, such as
the classification of tumors [1, 2, 16, 26, 27, 29]. A reliable and precise classification of tumors
is essential for successful diagnosis and treatment of cancer. Current methods for classifying
human malignancies rely on a variety of morphological, clinical, and molecular variables. In
spite of recent progress, there are still uncertainties in diagnosis. Furthermore, it is likely
that the existing classes are heterogeneous and comprise diseases which are molecularly dis-
tinct and follow different clinical courses. By allowing the monitoring of expression levels on
a genomic scale, microarray experiments may lead to a more complete understanding of the
molecular variations among tumors and hence to a finer and more reliable classification.

There are three main types of statistical problems associated with tumor classification: (i)
the identification of new tumor classes using gene expression profiles - cluster analysts; (ii)
the classification of malignancies into known classes - discriminant analysis; and (iii) the
identification of “marker” genes that characterize the different tumor classes - variable se-
lection. Microarray data present a “large p, small n” problem, that is, a very large number
of variables (genes) relative to the number of observations (tumor samples). The publicly
available datasets typically contain expression data on 5,000-10,000 genes for less than 100
tumor samples. Both numbers are expected to grow, the number of genes reaching on the
order of 30,000-40,000, an estimate for the total number of genes in the human genome.
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Applications of clustering methods to microarray data can be found in Alizadeh et al. [1],
Alon et al. [2], Golub et al. [16], Ross et al. [29], Tibshirani et al. [31], and van der Laan &
Bryan [33]. We refer the reader to Dudoit et al. [11] for a discussion of discriminant analysis
in the context of microarray experiments.

In this section, our proposed clustering resampling methods are applied to gene expression
data from four recently published cancer microarray studies: the lymphoma dataset of Al-
izadeh et al. [1], the leukemia (ALL/AML) dataset of Golub et al. [16], the 60 cancer cell
line (NCI 60) dataset of Ross et al. [29], and the melanoma dataset of Bittner et al. [3]. Note
that the expression levels are in general highly processed data: the raw data in a microarray
experiment consist of image files, and important pre-processing steps include image analy-
sis of these scanned images and normalization. Because we chose to use publicly available
datasets, most of these decisions were beyond our control, and one should bear in mind that
different pre-processing decisions can have a large impact on the measured expression levels

(Yang et al. [34, 35]).

5.1 Data and pre-processing

5.1.1 Description of the datasets

Lymphoma. This dataset comes from a study of gene expression in the three most preva-
lent adult lymphoid malignancies: B-cell chronic lymphocytic leukemia (B-CLL), follicu-
lar lymphoma (FL), and diffuse large B-cell lymphoma (DLBCL) (see Alizadeh et al. [1]
and http://genome-www.stanford.edu/lymphoma for a detailed description of the exper-
iments). Gene expression levels were measured using a specialized cDNA microarray, the
Lymphochip, containing genes that are preferentially expressed in lymphoid cells or which
are of known immunological or oncological importance. In each hybridization, fluorescent
cDNA targets were prepared from a tumor mRNA sample (red-fluorescent dye Cyb) and
a reference mRNA sample derived from a pool of 9 different lymphoma cell lines (green-
fluorescent dye Cy3). The cell lines in the common reference pool were chosen to represent
diverse expression patterns, so that most spots on the array would exhibit a non-zero signal
in the Cy3 channel. This study produced gene expression data for p = 4, 682 genes in n = 81
mRNA samples. The mRNA samples comprise 29 cases of B-CLL, 9 cases of FL, and 43
cases of DLBCL. Alizadeh et al. [1] further demonstrated that the DLBCL class is heteroge-
neous and comprises two distinct subclasses of tumors with different clinical behaviors. The
gene expression data are summarized by an 81 x 4, 682 matrix X = (z;;), where z;; denotes
the base-2 logarithm of the Cy5/Cy3 background-corrected and normalized fluorescence in-
tensity ratio for gene 5 in lymphoma sample i. The mean percentage of missing observations
per array is 6.6% and missing data were imputed as outlined in Section 5.1.2. The data were
standardized as described in Section 5.1.3.

Leukemia. The leukemia dataset is described in Golub et al. [16] and available at http://waldo.wi.mit.¢
This dataset comes from a study of gene expression in two types of acute leukemias: acute
lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). Gene expression levels
were measured using Affymetrix high-density oligonucleotide arrays containing p = 6,817
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human genes. The data comprise 47 cases of ALL (38 B-cell ALL and 9 T-cell ALL) and 25
cases of AML. Following Golub et al. (Pablo Tamayo, pers. comm.), three pre-processing
steps were applied to the normalized matrix of intensity values available on the website (after
pooling the 38 mRNA samples from the learning set and the 34 mRNA samples from the
test set): (i) thresholding: floor of 100 and ceiling of 16,000; (ii) filtering: exclusion of genes
with max /min < 5 or (max —min) < 500, where max and min refer respectively to the
maximum and minimum intensities for a particular gene across the 72 mRNA samples; (iii)
base-10 logarithmic transformation. The data are then summarized by a 72 x 3,571 matrix
X = (x;;), where z;; denotes the expression level for gene ;7 in mRNA sample ¢. There are
no missing values and the data were standardized as described in Section 5.1.3. Note that
this standardization differs from the one described in Golub et al. [16].

NCI 60. In this study, cDNA microarrays were used to examine the variation in gene ex-
pression among the 60 cell lines from the National Cancer Institute’s (NCI 60) anti-cancer
drug screen (Ross et al. [29], http://genome-www.stanford.edu/nci60). The cell lines
were derived from tumors with different sites of origin: 7 breast, 6 central nervous sys-
tem (CNS), 7 colon, 6 leukemia, 8 melanoma, 9 non-small-cell-lung-carcinoma (NSCLC),
6 ovarian, 2 prostate, 8 renal, 1 unknown (ADR-RES). Gene expression was studied using
microarrays with 9,703 spotted cDNA sequences. In each hybridization, fluorescent cDNA
targets were prepared from a cell line mRNA sample (red-fluorescent dye Cy5) and a refer-
ence mRNA sample obtained by pooling equal mixtures of mRNA from 12 of the cell lines
(green-fluorescent dye Cy3). To investigate the reproducibility of the entire experimental
procedure (cell culture, mRNA isolation, labeling, hybridization, scanning, etc.), a leukemia
(K562) and a breast cancer (MCF7) cell line were analyzed by three independent microarray
experiments. Ross et al. screened out genes with missing data in more than two arrays.
In addition, because of their small class size, the two prostate cell lines and the unknown
cell line were excluded from our analysis. The data are summarized by a 61 x 5,244 matrix
X = (z;j), where z;; denotes the base-2 logarithm of the Cy5/Cy3 background-corrected
and normalized fluorescence intensity ratio for gene j in cell line :. The mean percentage of
missing observations per array is 3.3% and missing data were imputed as outlined in Section
5.1.2. The data were standardized as described in Section 5.1.3.

Melanoma. The melanoma dataset is described in the recent paper of Bittner et al. [3] and
available at http://www.nhgri.nih.gov/DIR/Microarray. There are 31 melanoma samples
and 7 control samples. Gene expression levels were measured using cDNA microarrays
of 8,150 spots, representing 6,971 unique genes. In each hybridization, fluorescent cDNA
targets were prepared from a melanoma or control mRNA sample (red-fluorescent dye Cyb5)
and a common reference mRNA sample (green-fluorescent dye Cy3). The following pre-
processing steps were applied by Bittner et al.: (i) a gene was excluded from the analysis if
its average mean intensity above background for the least intense signal (Cy3 or Cy5) across
all experiments was < 2,000 or its average spot size across all experiments was < 30 pixels;
and (ii) a floor and ceiling of .02 and 50, respectively, were applied to the individual red and
green intensities. This initial screening resulted in a dataset of 3,613 genes. Finally, Bittner
et al. did not include the 7 control samples in their analysis. The data are summarized
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by a 31 x 3,613 matrix X = (z,;), where x;; denotes the base-2 logarithm of the Cy5/Cy3
background-corrected and normalized fluorescence intensity ratio for gene j in mRNA sample
2. There were no a priori known classes for this dataset, but the analysis of Bittner et al.
suggests that two classes may be present in the data, with observations in one of the classes
(Group A in the figures) being more tightly clustered. There were no missing values and
the data were standardized as described in Section 5.1.3. Note that this standardization is
slightly different from the one described in Bittner et al. [3].

5.1.2 Imputation of missing data

For the lymphoma and NCI 60 datasets, each array contains a number of genes with flu-
orescence intensity measurements that were flagged by the experimenter and recorded as
missing data points. Missing data were imputed by a simple £ nearest neighbor algorithm,
in which the neighbors are the genes and the distance between neighbors is based on the
correlation between their gene expression levels across arrays. For each gene with missing
data: (i) compute its correlation with all other p — 1 genes, and (ii) for each missing array,
identify the k£ nearest genes having data for this array and impute the missing entry by the
average of the corresponding entries for the k neighbors. A value of & = 5 neighbors was
used for the lymphoma and NCI 60 datasets. For a detailed study of imputation methods in
microarray experiments the reader is referred to the recent work of Troyanskaya et al. [32]
which suggests that a nearest neighbor approach provides accurate and robust estimates of
missing values.

5.1.3 Standardization

The gene expression data were standardized so that the observations (arrays) have mean
0 and variance 1 across variables (genes). Standardizing the data in this fashion achieves
a location and scale normalization of the different arrays. In a study of normalization
methods, we have found scale adjustment to be desirable in some cases, in order to prevent the
expression levels in one particular array from dominating the average expression levels across
arrays (Yang et al. [35]). Furthermore, this standardization is consistent with the common
practice in microarray experiments of using the correlation between the gene expression
profiles of two mRNA samples to measure their similarity [1, 26, 29].

5.1.4 Preliminary gene selection

Expression levels were monitored for thousands of genes in each of the four studies. How-
ever, the majority of the genes exhibit near constant expression levels, as measured by the
variance of the expression levels across tumor samples. Genes showing nearly constant ex-
pression levels are not likely to be useful for classification purposes, therefore, we chose to
exclude low variance genes from the clustering process.

Figure 8 displays for each dataset the individual gene variances divided by the maximum

variance over all genes. All four variance curves show a sharp drop-off which gradually
flattens. The plots are remarkably similar for all the datasets, with the melanoma dataset

22



having the fastest drop-off. In this report, the p = 100 most variable genes were used to
analyze the leukemia, lymphoma, and melanoma datasets, and the p = 200 most variable
genes were used for the NCI 60 dataset as it contains more classes. Increasing the number
of genes to p = 300 — 400 or decreasing the number of genes to p = 50 did not have much
effect on the results (data not shown).

5.1.5 Correlation matrices

The following is not part of the cluster analysis per se, but is an interesting side-step which
may be predictive of the results of the forthcoming analysis. Recall that for the first three
datasets, tumor classes were known «a priori, and for the melanoma dataset two classes were
proposed by Bittner et al. [3]. For each dataset, images of the n x n correlation matrix for
the n mRNA samples are displayed in Figures 9, 10, 11, and 12, with observations grouped
according to their a priori known or proposed classes. Note that if observations are highly
correlated within classes, the correlation image in this representation should exhibit bright
red squares along the diagonal.

Lymphoma. The existence of three well separated classes for the lymphoma dataset is
reflected in Figure 9 for both sets of genes, the classes being more clearly separated when
the majority of the genes are screened out. Recall, that gene expression levels were measured
using a specialized cDNA microarray, the Lymphochip, enriched in genes that are involved
in the immune system. This may partly account for the clear separation of the classes even
when the correlation matrix is computed using the full set of genes. When PAM is applied
to the lymphoma dataset using the 100 genes with the largest variance, the K = 2,3,4,5
partitions are as follows. For K = 2, one cluster consists of the FL. and DLBCL classes
combined and the other consists of the CLL class. This could reflect differences in tissue
sampling, as the CLL mRNA samples were obtained from peripheral blood cells as opposed
to lymph node biopsy specimens for the FI. and DLBCL samples. For K = 3, all three
classes (CLL, FL, DLBCL) are recovered as distinct clusters. For K = 4, the largest DIL-
BCL class is divided into two clusters of approximately equal size and the remaining two
classes (CLL and FL) are recovered as two distinct clusters. The two DLLBCL clusters have
a 75% overlap with the proposed subclasses of Alizadeh et al. [1]. Finally, for K = 5, the
smallest class FL is divided into two clusters and the rest of the clusters are as with K = 4.
Based on this analysis, we do not expect to recover more than 4 classes in the lymphoma data.

Leukemia. Images of the correlation matrix for the leukemia dataset are displayed in Figure
10. The three classes corresponding to the ALL T-cell, ALL B-cell, and AML samples clearly
stand out in the image of the correlation matrix for the 100 genes with the largest variance,
but are indistinguishable in the image of the correlation matrix based on all genes. When
the PAM algorithm is applied to the leukemia dataset using the 100 genes with the largest
variance, the results are as follows. For K = 2, 8 ALL T-cell observations are misallocated
with the AML observations. For K = 3, one ALL B-cell sample is clustered with the ALL
T-cell tumors and the rest of the observations are allocated correctly. For K = 4, the ALL
B-cell samples are partitioned into two clusters. Finally, for K’ = 5, the AML samples are
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partitioned into two clusters. Based on the correlation matrix, one would expect to identify
three tumor classes in this dataset.

NCI 60. For the NCI 60 cell line dataset, the classes are not clearly distinguishable from the
images of the correlation matrix. The colon, leukemia, and melanoma cell lines display the
strongest correlations within class, while the breast, NSCLC, and ovarian cell lines seem to be
the most heterogeneous classes. When the PAM algorithm is applied to the NCI 60 dataset
using the 200 genes with the largest variance and varying the number of clusters K < 8,
only five types of cell lines tend to cluster together (CNS, colon, leukemia, melanoma, and
renal cell lines). Based on this observation, one should not expect to recover more than 5
classes.

Melanoma. Finally, for the melanoma dataset, the image of the correlation matrix for the
p = 100 most variable genes (Figure 12) could possibly suggest the existence of a subclass of
tumors which includes the Group A samples of Bittner et al. [3]. However, some observations
in this cluster (the first one from the left in particular) were not identified by Bittner et al.
as being part of the tight cluster. Indeed, when PAM is applied to the melanoma dataset
using the 100 genes with the largest variance, four additional observations are joined to the
19 observation cluster (Group A) proposed by Bittner et al.. Dividing the data into three
clusters results in a split of the 19 observations into two clusters. One would expect to
identify at most two or three classes for this dataset because of the small sample size.

5.2 Estimating the number of clusters

The existing and new methods of Section 2 were applied to estimate the number of clusters
for each of the four microarray datasets; the results are presented in Table 4. Note the
quotation marks for the “known” column in the table: the DLBCL class for the lymphoma
dataset is likely to contain two subclasses and the two melanoma classes in Bittner et al. [3]
were proposed but not confirmed.

The methods Clest and sil correctly estimated the presumed number of classes for all but
the NCI 60 dataset, where both methods identified three clusters only. The gap and gapPC
methods overestimated the number of clusters for all datasets, with the exception of gapPC
identifying 8 clusters for the NCI 60 dataset. The ch method estimated 2 clusters for each
of the four datasets, while kl and hart identified 4 classes for the lymphoma dataset.

For Clest, gapPC. and sil, we further investigated how the strength of the evidence for the
estimated number of clusters varied between datasets. Figure 13 displays plots of the dj,
gapPCy, and sily, statistics vs. the number of clusters k. Error bars for dj and gapPC}, are
based on the standard deviations of ¢; and log trW under their respective null distributions
(Section 2). While the evidence for the existence of clusters is very strong for the lymphoma,
leukemia, and NCI 60 datasets, the evidence for the two clusters in the melanoma dataset is
much weaker. In particular, for Clest, the maximum value of the d; statistic barely reaches
the d,.;, threshold of .05. For the leukemia dataset, the dj, statistic clearly peaks at k = 3
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clusters and drops off abruptly; for the lymphoma and NCI 60 datasets the decrease is
more gradual. Note that according to Clest there was not enough evidence to identify the
two DLBCL subclasses. Alizadeh et al. [1] identified these subclasses using subject matter
knowledge to select the genes for the clustering procedure; here the genes were selected in
an unsupervised manner.

5.3 Improvement of clustering accuracy

Recall that mRNA samples in the lymphoma, leukemia, and NCI 60 datasets were assigned
class labels from the laboratory analyses of the tumor samples or from a priori knowledge of
the cell lines. For the melanoma dataset, tumor class labels were obtained from the statisti-
cal analysis described in Bittner et al. [3]. In the discussion that follows, these class labels
are treated as known.

The cluster bagging methods Bag! and Bag2 of Section 3 were applied to the four microarray
datasets. For the lymphoma, leukemia, and melanoma datasets, the number of clusters
estimated by Clest agreed with the “known” number of clusters and that number was used
as an input to Bag! and Bag2. In addition, for the lymphoma dataset, we investigated how
the cluster votes changed when the number of clusters is increased to K = 4. The NCI 60
dataset comprises cell lines from 8 different sites of origin, but the methods Clest and sil
estimated the number of clusters to be only 3. Therefore, the methods Bag! and Bag2 were
applied to the NCI 60 dataset with 3 and 8 clusters. The resulting cluster assignments and
cluster votes for all four datasets are discussed next.

5.3.1 Lymphoma

The clustering algorithm PAM and the Bagl and Bag?2 procedures were applied to the
lymphoma dataset with K' = 3 clusters. All three clustering procedures recovered the known
tumor classes (data not shown for Bag2). Figure 14 displays barplots for the cluster votes
and silhouette widths, where the observations are color-coded by class and by whether the
cluster assignment matched the known tumor class. The cluster votes are very high for all
samples. Note that the silhouette widths are much more variable than the cluster votes.
Figure 14 also displays cluster votes for Bag! with K = 4 clusters. While the cluster votes
stay unchanged for the CLL and FL observations, they decrease for the DLLBCL observations.
The DLBCL class is split into two clusters, similar to the subclasses reported in Alizadeh et
al. [1], and these do not seem as stable as the three original tumor classes.

5.3.2 Leukemia

The PAM, Bagl, and Bag2 procedures were applied to the leukemia dataset with K' = 3
clusters. A single application of PAM clustered one of the AML cases with the ALL T-cell
cases; Bagl clustered one ALL T-cell case with the ALL B-cell cases and one ALL B-cell
case with the AML cases; finally, Bag2 misallocated the same two samples as Bag! and one
of the samples misallocated by PAM. Note that the misallocated cases are the same as the
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ones that were hard to predict in the study of discrimination methods of Dudoit et al. [11].

Figure 15 displays barplots of the cluster votes and silhouette widths. Again, the silhouette
widths are more variable than the cluster votes. Recall that a negative silhouette width
indicates that the corresponding observation is closer to observations in a cluster other than
its own, i.e., its label is suspicious. A few observations that were correctly classified by a
single application of PAM have negative or very small silhouette widths, and two of these
observations were mislabeled by the procedure Bagl and carried low cluster votes. This
raises the possibility that the tumors were misdiagnosed in the laboratory.

5.3.3 NCI 60

Recall that for this dataset three of the cell line classes (breast, NSCLC, and ovarian) are
heterogeneous and cannot be identified with a single application of PAM. Here, the clus-
tering algorithm PAM and the Bagl and Bag2 procedures were applied with K = 3 and
K = 8 clusters. For K = 3, all three procedures resulted in nearly identical partitions, and
the cluster votes of the cell lines belonging to the 3 heterogeneous classes were lower than
those of the cell lines belonging to the 5 more homogeneous classes. In particular, the eight
melanoma cell lines had the highest cluster votes and the NSCLC cell lines had the lowest
cluster votes (figure not shown).

Interestingly, when Bagl was applied to the NCI 60 dataset with K = 8 clusters, the
final partition contained only 2 clusters. Although each application of PAM to a bootstrap
learning set produced 8 clusters, the plurality voting eliminated unstable clusters. This
suggests that the Bag! procedure may be able to correct for a misspecified number of clusters
through the voting step.

5.3.4 Melanoma

The PAM, Bagl, and Bag2 procedures were applied to the 31 melanoma observations with
K = 2 clusters and the results compared to the cluster assignments of Bittner et al. [3].
Figure 16 displays barplots of the cluster votes and silhouette widths. The Bag! and Bag2
partitions were identical. In general, the cluster votes for the melanoma dataset were lower
than the cluster votes for the lymphoma and leukemia datasets. Several observations allo-
cated by Bittner et al. to the small cluster were reclassified to the large cluster by PAM,
Bagl, and Bag2. For instance, the first observation from the left was assigned the highest
cluster vote and placed into the large cluster. Bittner et al. reclassified this observation as
well in a later analysis (Radmacher, pers. comm.).

To date, the existence of the two melanoma classes and the correctness of the allocations
have not been experimentally or clinically verified. Survival data is available on 15 patients
as well as other clinical information. However, these data do not carry enough power to
validate the allocation of the observations into the two clusters.
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6 Discussion

Resampling methods such as bagging and boosting have been applied successfully in the
context of discriminant analysis to improve prediction accuracy. In this paper, we have pro-
posed resampling methods to address two main problems in cluster analysis: (i) estimating
the number of clusters, if any, in a dataset; (ii) improving and assessing the accuracy of a
given clustering procedure. Since the groups obtained from cluster analysis are often used
later on for prediction purposes, the approaches to these two problems rely on and extend
ideas from discriminant analysis. Although the methods are applicable to general clustering
problems, particular attention is given to the clustering of tumors using gene expression data.
The performance of the proposed and existing methods were compared using simulated data
and gene expression data from four recently published cancer microarray studies.

6.1 Estimating the number of clusters

For problem (i), we proposed a prediction-based resampling method, Clest, which estimates
the number of clusters K based on the reproducibility of cluster assignments. In the compar-
ison studies of Sections 4 and 5, Clest was generally found to be more robust and accurate
than six existing methods. For the simulated datasets, Clest performed well across a wide
range of models with varying numbers of overlapping and non-overlapping clusters, different
numbers of variables and covariance matrix structures. Unlike methods based on between or
within clusters sums of squares, the resampling method seems robust to the varying covari-
ance structure of the variables. For the microarray datasets, Clest and sil correctly estimated
the number of clusters (as determined from a priori known or putative tumor and cell line
classes) for three out of the four datasets; the performance of other methods was significantly
worse.

A number of decisions were made regarding the different parameters of the Clest algorithm.
The clustering (PAM) and prediction methods (DLDA) considered in this paper focus on
similar features of the data, namely, the distance of the observations from cluster “centers”.
More work is needed to investigate the robustness of Clest to these choices. In particular,
it would be interesting to consider prediction methods (e.g. classification trees) which fo-
cus on different aspects of the data than the clustering method. While it may appear that
having a classifier as a further parameter of the algorithm creates more room for error, we
have found that this is not the case in practice. When the classifier in Clest performs poorly,
other methods for estimating the number of clusters also perform poorly. Another important
choice in the Clest algorithm is the reference null distribution used to calibrate the observed
similarity statistics {5 for different numbers of clusters. The uniformity hypothesis was used
here, a natural alternative would be to consider random permutations of the variables, i.e.,
permutations of the entries of the design matrix within columns. In Clest, the observed sim-
ilarity statistics {3 are compared across numbers of clusters & by considering their distance
from their expected value ¢) under the null distribution. A more sensitive calibration may
be achieved by taking scale into account, i.e., by dividing the difference statistic dj by the
standard deviation of {; under the null, or even by considering p-values p; for ¢;,. We briefly
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considered these refinements and found that on their own they did not allow good discrimi-
nation between the different ks. The Clest method does use however the idea of p-value in
combination with the differences dy, as it imposes an upper limit on the p-value p;. Finally,
the choice of cut-off parameters d,,;, and p,,,. were rather ad hoc and could be fine tuned.

Note that we have not considered model-based methods, such as the Bayesian approach of
Fraley & Raftery [14]; we are currently setting up a new comparison study including such
methods. Another issue which was only briefly addressed in this paper is the selection of
variables on which to base the clusterings. For the microarray datasets, genes were selected
based on the variance of their expression levels across samples and it was found that the
clusterings were fairly robust to the number of genes.

6.2 Improvement of clustering accuracy

For problem (ii), a resampling method known as bagging in discriminant analysis is used to
generate and aggregate multiple clusterings. Two applications of bagging were considered.
In the first application, Bagl, the clustering algorithm is repeatedly applied to each boot-
strap sample and the final partition is obtained by plurality voting. The second bagging
procedure, Bag2, forms a new dissimilarity matrix by recording for each pair of observations
the proportion of time they were clustered together in the bootstrap clusters. This new
dissimilarity matrix is then used as an input to a clustering algorithm and the resulting
partition is considered final.

For the microarray and simulated datasets considered in this study, the clusterings produced
by bagging procedures Bagl and Bag2 were in general at least as accurate and often sub-
stantially more accurate than the clusterings resulting from a single application of the PAM
algorithm. Although the bagging procedures were illustrated using PAM, Bagl and Bag2
are applicable to any clustering algorithm and it would be worthwhile to evaluate the im-
provement in accuracy for methods such as k-means or self-organizing maps. We suspect
that, as in prediction, the increase in accuracy observed with PAM is due to a decrease in
variability achieved by aggregating multiple clusterings. It would be interesting to carry out
a more thorough study of the bias and variance properties of different clustering methods,
as was done for classifiers in Breiman [7]. Other ongoing research directions include the
investigation of different resampling schemes, similar in spirit to the adaptive resampling
schemes used in boosting.

A valuable by-product of the Bagl procedure are the cluster votes which can be used to
assess the confidence of cluster assignments for individual observations. Our study indicates
that cluster votes are generally good indicators of the accuracy of a cluster assignment. In
the context of tumor microarray data, samples with low cluster votes could be “flagged”
and sent for new laboratory analyses. The cluster votes could also be used as weights when
building predictors from the classes obtained by clustering. Note that we could also compute
for a given observation the distribution of the cluster votes for each cluster and interpret
the results as in fuzzy clustering (see Kaufman & Rousseeuw [20] for a discussion of fuzzy
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clustering).

An interesting feature of the Bagl procedure was raised in the application to the NCI 60
dataset using K = 8 clusters. Although each application of PAM to a bootstrap learning set
produced 8 clusters, the plurality voting reduced the number of clusters to 2. This suggests
that Bagl may be able to correct for a misspecified number of clusters by eliminating unsta-
ble clusters through the voting step. To investigate this more thoroughly one would need to
carry out a simulation study in which the wrong number of clusters is given as an input to
Bagl. We are also exploring other methods for “aligning” the original and bootstrap cluster
labels in step 4 of the algorithm.

For most models considered in this study, the Bagl procedure was found to be slightly
superior to Bag2. We are further exploring the general idea of creating a new dissimilarity
matrix by resampling as in Bag2. Resampling could lead to dissimilarity matrices that are
more robust to the initial choice of dissimilarity matrix and pre-processing decisions such as
standardization. The new dissimilarity matrices could be used as inputs to other clustering
algorithms than the one used on the bootstrap samples.
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Table 2: FEstimating the number of clusters, results for
simulated data. For each simulation model, the distribu-
tion of the estimated number of clusters is recorded for
each method. The true number of clusters is denoted by
“*7 and the modes for the distribution of the 50 estimates
are indicated in bold for each method. Note that sil, ch,
and k[ do not have the ability to estimate K =1 cluster.

Method Number of clusters, K

Model 1
™ 2 3 4 5 >5
Clest 48 2 0 0 0 0
gap 48 0 1 1 0 0
gapPC 50 0 0 0 O 0
sil - 37T 6 4 3 0
ch - 42 7 1 0 0
kl - 12 14 11 13 0
hart 0 5 22 16 7 0
Model 2
1 2 3 4 5 >5
Clest 0 1 49 0 0 0
gap 0 0 50 0 O 0
gapPC 0 0 50 0 O 0
sil - 5 45 0 O 0
ch - 0 50 0 O 0
kl - 0 41 2 7 0
hart o 0 0 2 2 46
Model 3
1 2 3 4% 5 >5
Clest 0 1 20 29 0 0
gap 0 1 16 33 0 0
gapPC 0o 1 12 37 0 0
sil - 17 24 9 0 0
ch - 8§ 20 22 0 0
kl - 3 11 35 1 0
hart 0 0 8 42 0 0
Model 4
1 2 3 4% 5 >5
Clest 0 0 1 49 0 0
gap 0 0 0 50 0 0
gapPC 0 0 1 49 0 0
sil - 5 8 37 0 0

continued on next page
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continued from previous page

Method Number of clusters, K
ch - 5 7 38 0 0
ki - 0 1 49 0 0
hart 0 0 0 50 0 0
Model 5

1 2 3 4 5 >5
Clest 0 44 0 6 0 0
gap 0 0 0 19 31 0
gapPC 0 50 0 0 O 0
sil - 50 0 0 O 0
ch - 3 0 47 0 0
kl - 50 0 0 O 0
hart 0o 0 0 0 0 50
Model 6

1 2 3 4 5 >5
Clest 0 43 7 0 0 0
gap 47 3 0 0 0 0
gapPC 43 5 1 10 0
sil - 41 5 4 0 0
ch - 43 5 2 0 0
kl - 16 9 17 8 0
hart 0o 1 0 5 14 30
Model 7

1 2 3 4 5 >5
Clest 26 15 6 3 0 0
gap 25 22 2 1 0 0
gapPC 31 17 2 0 0 0
sil - 42 6 1 1 0
ch -39 10 0 1 0
kl - 13 15 10 12 0
hart 6 39 5 0 0 0
Model 8

1 2 3* 4 5 >5
Clest 0 16 34 0 0 0
gap 0 22 28 0 0 0
gapPC 0 28 21 10 0
sil - 50 0 0 O 0
ch - 50 0 0 O 0
ki - 25 17 4 4 0
hart 0 3 43 4 0 0
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Table 3: Improvement of clustering accuracy, description
of simulation models.

Model Cluster mean Cluster covariance Cluster Parameter
vectors matrices sizes A
Model 1
K=2 s =(0,0) =1 ny =50 1,3,6
p=2 pe = (0,A) ny = 50
Model 11
K =2 M1 = (0, 099) Y = 1100 ny = 50 3, 6
p =100 gz = (A,0qg) ny = H0
Model II1
[( = 3 H1 = 013 ny = 50 15,2
P = 13 M2 = (A, —A,A,Olo) Y = A3 03710 Ng = 50
0103 I
H3 = — 2 n3 = 50
Model IV
K =3 H1 = 013 ny = 50 2
pP= 13 M2 = (A, —A,A,Olo) Y = A13 Ng = 50
H3 = — 2 ng = 50
Model V
K =3 H1 = 016 ny = 50 2
p=16 ;= (A,0,A,0,A,0,04) 5= As Do ny = 50
0106 Lo
M3 = (0,—A,0,—A,0,—A,010) ng = 25
Model VI
K=3 =04 = B O ny =50 1.5,2
0105 Lo
pP= 15 M2 = (A, A, A, A, A, 010) Ng = 50
H3 = —[2 n3 = 50
Model VII
K =3 H1 = 015 Y = © 05710 ny = 50 2
0105 Lo
pP= 15 M2 = (A, A, A, A, A, 010) Ng = 50
H3 = — U2 ns = 50
Model VIII
K =2 H1 = 015 21 = ( © 05710 ) ny = 50 2
0105 ILio
- - - D 05, -
P = 15 M2 = (A,A,A,A,A,Olo) 22 = Ng = 50
0105 ILio
Here, 0,,,, is an m x n matrix of zeros; A, is the p X p matrix such that a; = 1, and
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a;; = 0.5,1 # j; B, is the p x p matrix such that b; = 1, bj;41 = bj;—1 = 0.5, and
bij:().l,jyéz'—l,i,z'—l—l;

05 05 —-01 —-0.1 -0.1 1.0 0.1 0.1 0.1 0.1
05 10 05 =01 -0.1 0.1 2.0 0.1 0.1 0.1
C=|-01 05 15 05 —-01 [,andD=] 0.1 0.1 1.0 0.1 0.1
-0.1 -0.1 05 1.0 0.5 0.1 0.1 0.1 2.0 0.1
-0.1 -0.1 -0.1 0.5 0.5 0.1 0.1 0.1 0.1 1.0

Table 4: Estimating the number of clusters, results for microarray data.

Dataset “known” | Clest | gap | gapPC'| sil | ch | kl | hart
Lymphoma 3 3 10 8 312 14| 4
Leukemia 3 3 10 5 31213 3
NCI 60 8 3 10 8 31216 2
Melanoma 2 2 9 4 21218 1
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Figure 1: FEstimating the number of clusters, results for simulated data — For each of the
eight simulation models, the barplots represent the percentage of simulations for which the
number of clusters was correctly estimated by each method (out of 50 simulations).
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Figure 2: Fstimating the number of clusters, results for simulated data — For the Clest
procedure, plots of median dj vs. k for each simulation model (medians are computed over
50 simulations). The horizontal line corresponds to the d,,;, cut-off of 0.05, and the true
number of clusters is indicated by a filled plotting symbol.
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Figure 3: FEstimating the number of clusters, resulls for simulated data — For the gapPC
procedure, plots of median gapPCy, vs. k for each simulation model (medians are computed
over 50 simulations). The true number of clusters is indicated by a filled plotting symbol.
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Figure 4: Fstimaling the number of cluslers, resulls for simulaled dala — For the sil proce-
dure, plots of median sily vs. k for each simulation model (medians are computed over 50
simulations). The true number of clusters is indicated by a filled plotting symbol.
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Figure 5: Improvement of clustering accuracy, results for simulated data — Boxplots of the
clustering error rates (over 100 simulations) for a single application of PAM (Pam0), and bag-
ging procedures Bag! (PamB1) and Bag2 (PamB2). Clustering error rates and improvement
statistics ¢; and 15 are defined in Section 4.2.
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Figure 6: Cluster votes, results for simulated data — Boxplots of cluster votes stratified
according to correct and incorrect allocations. (The number of cluster votes considered for
each model is equal to the number of observations n times the number of simulations, here

100.)
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Figure 7: Cluster votes, results for simulated data — Barplot of cluster votes for Model VI
with A = 2; correct cluster allocations are represented with black bars, incorrect cluster
allocations with shaded bars . (The total number of cluster votes is equal to the number of
observations n = 150 times the number of simulations, here 100.)
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Figure 8: Gene variances for microarray datasets — Plots of the variance of the expression
levels of each gene across mRNA samples. The variances are scaled by the maximum variance
over all genes and the genes are ordered by variance in descending order. The vertical lines
correspond to 50, 100, 200, and 500 genes, and the horizontal lines correspond to ratios of
variances of 0.1, 0.2, 0.3, 0.4, and 0.5.
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Figure 9: Correlation matriz, lymphoma dataset — Images of the correlation matrix for the
81 B-CLL, FL, and DLBCL samples based on expression profiles for all p = 4,682 genes
(panel (a)) and for the p = 100 genes with the largest variance (panel (b)). The mRNA
samples are ordered by class, first B-CLL (blue), then FL (orange), and finally DLBCL
(magenta). Correlations of zero are represented in black, increasingly positive correlations
are represented with reds of increasing intensity, and increasingly negative correlations are
represented with greens of increasing intensity. The color bar below the images may be used
for calibration purposes.
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Figure 10: Correlation matriz, leukemia dataset — Images of the correlation matrix for the
72 ALL B-cell, ALL T-cell, and AML samples based on expression profiles for all p = 3,571
genes (panel (a)) and for the p = 100 genes with the largest variance (panel (b)). The mRNA
samples are ordered by class, first ALL B-cell (blue), then ALL T-cell (orange), and finally
AML (magenta).

Figure 11: Correlation matriz, NCI 60 dalasel — Images of the correlation matrix for the 61
cell line mRNA samples based on expression profiles for all p = 5,244 genes (panel (a)) and
for the p = 200 genes with the largest variance (panel (b)). The mRNA samples are ordered
by class: 7+2 breast, 6 CNS, 7 colon, 6+2 leukemia, 8 melanoma, 9 NSCLC, 6 ovarian, 8

renal.
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Figure 12: Correlation matriz, melanoma dataset — Images of the correlation matrix for the
31 melanoma mRNA samples based on expression profiles for all p = 3,613 genes (panel
(a)) and for the p = 100 genes with the largest variance (panel (b)). The mRNA samples
are ordered by class, as proposed in Bittner et al. [3], first Group B (blue), then Group A
(orange).
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Figure 13: FEstimating the number of clusters, results for microarray data — Plots of dj,
gapPCy, and sily vs. k, with error bars based on the standard deviations for the first 2
statistics computed as in Section 5.2. The horizontal lines for the d; plots correspond to a
dpnin cut-off of 0.05. The estimates for the number of clusters are indicated by filled plotting
symbols.
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Figure 14: Cluster votes and silhouette widths, lymphoma dataset, K = 3,4 clusters — Sil-
houette plot for a single application of PAM (Pam0) with K = 3 and plot of cluster votes for
Bagl (PamB1) with K =3 and 4. The “known” classes of the observations are represented
by different shades of gray and incorrect cluster assignments are indicated by hatching. For
K =4, the DLBCL subclasses reported in Alizadeh et al. [1] are taken as the “true” classes.
Observations are ordered as in Figure 9.
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Figure 15: Cluster votes and silhouette widths, leukemia dataset, K = 3 — Silhouette plot for a

single application of PAM (Pam0) and plot of cluster votes for Bag! (PamB1). Observations
are ordered as in Golub et al. and not as in Figure 10.
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Figure 16: Cluster votes and silhouette widths, melanoma dataset, K = 2 — Silhouette

plot for a single application of PAM (Pam0) and plot of cluster votes for Bag! (PamB1).
Observations are ordered as in Figure 12.
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