LOCAL FIELD U-STATISTICS

STEVEN N. EVANS

ABSTRACT. Using the classical theory of symmetric functions, a general dis-
tributional limit theorem is established for U-statistics constructed from a
sequence of independent, identically distributed random variables taking val-
ues in a local field with zero characteristic.

1. INTRODUCTION

Since the work of Hoeffding and Halmos in the 1940s, U-statistics constructed
from sequences of independent, identically distributed real random variables have
played a central role in theoretical and applied statistics. They have also at-
tracted considerable attention from probabilists because they exhibit a rich limit
theory that parallels that of i.i.d. sequences (for example, strong laws, central
limit theorems, large deviation results, and Berry—Esseen—type theorems have been
established for them). Surveys with extensive bibliographies may be found in
[Ser80, KB94, Lee90].

Our aim in this paper is to initiate an investigation into the properties of U—
statistics on algebraic structures other than the reals: namely, local fields. A local
field K is any locally compact, non-discrete field other than the field of real numbers
or the field of complex numbers. All local fields are totally disconnected, and are
either finite algebraic extensions of the field of p-adic numbers — in which case the
characteristic is zero — or finite algebraic extensions of the the less familiar p-series
field (the field of formal Laurent series with coefficients drawn from the finite field
with p elements) — in which case the characteristic is non-zero. We give an overview
of some of the basic properties of local fields in §2.

Probability on local fields has a substantial, if somewhat scattered, literature,
and a comprehensive book-length treatment has yet to be written. For the con-
venience and interest of the reader we have included a representative (but by no
means complete) bibliography in the references.

The natural definition of the notion of U-statistic on the local field K is the
following direct translation of the familiar Euclidean definition.

Definition 1.1. Let {Xj}ren be an infinite sequence of independent, identically
distributed random variables taking values in the local field K. Fix a symmetric
Borel function ¥ : K — K for some m € N (that is, the value of the function
¥ is unchanged by permutations of its arguments). The sequence of U -statistics
corresponding to {Xg treny and ¥ is the sequence of K—valued random variables
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{Zk }k>m given by

i = > WX, Xiyy o X)),
1<ii<io - <im <k
The following result is proved in §3. Some remarks on the hypotheses are given
after the proof.

Theorem 1.2. Suppose that the local field K has characteristic zero, the support of
the common distribution of the random variables X is compact, and the function
U is continuous. Let {k(h)}nen be a sequence of positive integers such that k(h)
converges to infinity as h — oo and also k(h) thought of as an element of K con-
verges to some k* € K as h — oo. Then the sequence {Zyn)}nen of U-statistics
converges in distribution as h — 0.

2. LOCAL FIELDS

This section is essentially a summary of selected results from [Tai75, Sch&4].
We refer the reader to these works for a fuller account. Before giving the general
definition of a local field, we begin with the prototypical example.

Example 2.1. Fix a positive prime p. We can write any non-zero rational number
r € Q\{0} uniquely as r = p°(a/b) where a and b are not divisible by p. Set
|r] = p~*. If we set |0] = 0, then the map |- | has the properties:

2| =0 2 =0;
(2.1) ley| = |=|yl;
|z +y| < x|V ]yl

The map (z,y) — |z <y| defines a metric on Q@ and we denote the completion of Q
in this metric by Q@,. The field operations on Q) extend continuously to make @, a
topological field called the p-adic numbers. The map | - | also extends continuously
and the extension continues to have properties (2.1). The closed unit ball around
0, Z, .= {x € Qp : |2| < 1}, is the closure in @, of the integers Z, and is thus a
ring (this is also apparent from the properties (2.1)) called the p-adic integers. As
Zp={x € Qp: |x| < p}, the set Z, is also open. Any other ball around 0 is of the
form {x € Q, : |z| < p~*} = p*Z,, for some integer k. Such a ball is the closure
of the rational numbers divisible by p*, and is thus a Zy—module (this is again
also apparent from the properties (2.1)). In particular, such a ball is an additive
subgroup of @,. Arbitrary balls are translates (= cosets) of these closed and open
subgroups. In particular, the topology of @@, has a base of closed and open sets,
and hence Q) is totally disconnected. Further, each of these balls is compact, and
hence @, is also locally compact.

A local field is a locally compact, non—discrete, totally disconnected, topological
field. (As an aside, a locally compact, non-discrete, topological field that is not
totally disconnected 1s necessarily either the real or the complex numbers. A local
field with characteristic zero is a finite algebraic extension of the p—adic number
field for some prime p. A local field with non-zero characteristic is a finite alge-
braic extension of the p—series field, that is, the field of formal Laurent series with
coefficients drawn from the finite field with p elements for some prime p.)

From now on, let K be a fixed local field. There is a real-valued mapping on K
which we denote by  + |z|. This map has the properties (2.1) and it takes the
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values {¢" : k € Z}U {0}, where ¢ = p® for some prime p and positive integer ¢ (so
that for K = Q, we have ¢ = 1).

A map with properties (2.1) is called a non-archimedean valuation. The property
|z + y| < |#|V |y| is known as the ultrametric inequality or the strong triangle
inequality. The mapping (z,y) — |z <y| on K x K is a metric for K that gives the
topology of K. A consequence of (2.1) is that if |¢| # |y|, then |z 4+ y| = || V |y|.
This latter result implies that for every “triangle” {z,y,z} C K we have that at
least two of the lengths |z <y, |z &2], |y ©2| must be equal and is therefore called
the isosceles triangle property.

3. PROOF OF THEOREM 1.2

Write E for the support of the common distribution of the Xj. By the ultrametric
Stone—Weierstrass theorem (see, for example, §A.4 of [Sch84]), polynomials are
uniformly dense in the space of continuous functions from the compact set £™ into
K. Therefore, for each € > 0 there exists a polynomial ¢ such that

sup Q21 ..., 2m) ©V(z1, ..., 2m)| < e

(1,..,.zm)EE
Define a symmetric polynomial Q : E™ — K by
— 1
Q($1a MR $m) = % Z Q(xo'(l)a M| $U(m))a
: oES

where &, denotes the symmetric group on m letters and we have used the assump-
tion that K has zero characteristic to conclude that m! # 0. By the strong triangle
inequality and the symmetry of ¥,

sup |§(1‘1,...,xm)<:>\I!(x1,...,xm)|
Em

(€1,..,&m)E
1
= sup o Q(Iala"wxom)Q\Ij(l‘gl,...,xam)
(@1, @m)EE™ m! Ugg:m [ (1) (m) (1) (m) ]
< Jmi]~le.

Thus, again by the strong triangle inequality,

> QX Xiyy -, Xi)) &7, < |m!| e
1< <io< - <im <k
It thus clearly suffices to consider the special case of the theorem when ¥ is a
symmetric polynomial. By replacing X by X ¢ and ¥(xq,...,2m) by ¥(x; +

¢, ..., &m+ ¢), we may further suppose that 0 € E. Moreover, because
k(h k*(k* <1)...(k 1
lim 3 1:11111(()): (W el). (K omt 1)
h h m m!

1<i1<ia< - <im <k(h)
by assumption, we may suppose that ¥ has no constant term.
Given a positive integer n and integers Ay > Ay > ... > 0 with 0 = A1 =
An42 = ..., define the corresponding monomial symmetric function M, » in the
variables (#1,...,#,) by

M, a(z1, ..., 2,) = Zxo‘,
o
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where the sum is over all distinct permutations o = (aq, ..., ap) of (Ar,... An)
and

(a4

Y=g

o
The symmetric polynomials M, » with >, A; < d form a basis for the vector space
of symmetric polynomials in (z1,...,2,) of total degree at most d (cf. Ch T of

[Mac95] or Ch 7 of [Sta99]). Consequently, we have

U(xy,...,8m) = ZCAMm,A(l‘l, C ),
A

for suitable constants ¢y, where the sum is over all A with 0 = A1 = Apg2 = .. .,
only finitely many of the ¢y are non-zero, and ¢g = 0 (by our added assumption
that ¥ has no constant term). Observe for such A that if £ := max{r : A, > 0},
then

1<ii<in< - <im <k
Note that limy, (kr(:lzz) exists. It therefore suffices to show that the random vectors
(M A (X1, Xi)),

where A ranges over those non—zero partitions such that 0 = App1 = A2 = ...
and )", A; is at most the total degree of W, converge in distribution as k — oo.

Given a non-negative integer j, define the power sum symmetric function P, ;
in the variables (z1,...,2,) by

P”J(xlwu,l‘n) ::$j+"'+x‘£,

and given integers py1 > po > ... 2> 0 with 0 = pipq41 = finga = .. ., set
Py u(ee,...,2,) = HPn,u,(l‘l,~~~,l‘n)~
i

We have

M, a(z1,...,20) = chupn,u(l’h ceey )
I
where the sum is over all g with >~ u; = >, A; and, importantly, the constants
exp do not depend on n (cf. Ch I of [Mac95] or Ch 7 of [Sta99], and note that we
are again using the assumption that K has characteristic 0).
It thus suffices to show for any positive integer J that the random vectors

k k k
(ZXZ»,ZXZZ,...,ZXZJ)
i=1 i=1 i=1

converge in distribution as k& — co. However, this process is just a random walk on
the compact subgroup of the additive group of K/ generated by {(z,z?,...,27):
z € E}, and the added assumption that 0 € E ensures that the random walk
converges in distribution to Haar measure on this subgroup. d

Remark 3.1. The hypothesis that K has zero characteristic was used several times
in the above proof. We do not know whether the result has a counterpart for
non-zero characteristics.
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Remark 3.2. The role played by the hypothesis that k() converges in K is apparent
from the proof. However, because the assumption initially looks rather unusual,
we emphasise its importance with the following simple example. Suppose that IK is
the field of p—adic numbers Q,, m = 2, and ¥(xq, 22) = 1 + 22. Then

k
Zy = (ke1) X

i=1
As we observed in the proof, if 0 is in the support of the common distribution of
X, then Zle X; converges in distribution as & — oo to Haar measure on the
subgroup of (@, generated by the support. Note that if & is of the form p* + 1, then
|k <1| = p~*, whereas if k is of the form p® + 2, s > 1, then p does not divide k <1
and hence |k < 1| = 1. Consequently, we must take & — oo along a subsequence in
order for Z; to have a limit in distribution.

Remark 3.3. In principle, the steps in the proof can be reversed to describe the lim-
iting distribution as the push—forward by an appropriate function of Haar measure
on the compact additive subgroup of K generated by (z,z?, 23, .. ) for z in suit-
able fixed translate of the support of the distribution of the Xj. It does not appear
that one can give a more effective characterisation of the limit. In the next section
we examine some particularly simple examples where it possible to say something

concrete about the limit.

4. SOME EXAMPLES

Suppose that K is the field of p-adic numbers (@, for some prime p and X} takes
only the values 0 and 1 with positive probability. Then Zle X; = Zle X2=...,
and these sums converge in distribution to Haar measure on the ring of p-adic
integers Z,.

Write E,, . for the ' elementary symmetric function of n variables; that is,

E,,(x1,...,2,) := Z Ty .. X, N>
1<i1<...<ir<n
If we put ¥ = E,, ., then Z; = (:@::)Ekm(Xl, ..., Xg). Write U for a random
variable with Haar distribution on Z,. Then, by a classical determinantal identity
(see Example 8 in §1.2 of [Mac95]), Eg (X1, ..., Xg) converges in distribution as
k — oo to

v 1 0 ... 0 0
v uUv 2 ... 0 0
1 o . VU S)...(Usr+1) (U)
r! o : : : r! r
v uv v ... U rel
v v u ... U U
(this is also clear from elementary considerations: if {#1,...,2,} C {0, 1}, then
E, ,(z1,...,2,) counts how many subsets of size r can be drawn from a set of

(1 + -+ x,) objects).
We note in passing that the random variable U is the simplest example of the
natural analogue on @Q, of a Gaussian random variable. Moreover, the random

variables (g) are, in a very natural sense, orthogonal and appear in a theory of
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stochastic integration and Wiener chaos on (,. We refer the reader to [Eva89a,
Evadl, Eva93, Eva95] for details.
Write H,, . for the 't complete symmetric function of n variables; that is,

H, ,(z1,...,2,) is the sum of all monomials of total degree » in the variables
z1,...,%,. By another classical determinantal identity (see Example 8 in §1.2 of
[Mac95]), Hg »(X1,..., Xg) converges in distribution as & — oo to
U <1 0 ... 0 0
) v U « ... 0 0 U
—det | : : : .. .. : :(<:>1)’“< )
7,,! . . . . . . P
v v v ... U <rel)
v v u ... U U

Note that {Hg »(X1,..., Xg)} is not a sequence of U-statistics for some function
v,

Finally, given a partition A of some integer 7, let S, x(21,...,2,) be the Schur
funetion in the variables 1, ..., z, associated with A (see §1.3 of [Mac95]). From a
classical determinantal formula expressing Schur functions in terms of the complete
symmetric functions (see Equation (3.4) of [Mac95])

Sk)\(Xl, .. .,Xk) = det (Hk,A,—i+j(X1, .. "Xk))lgi,jSN

for any N that is at least the length of the partition A (that is, the number of
non-zero parts in A). By the above, the right-hand side converges in distribution
as k — oo to

det ((@1)*"i+j< ! )) :(<:>1)Tdet<< C)U )) :
Ni©iti) ) icijen Ai=it+j/))icij<n

From Example 4 in §1.3 of [Mac95], we see that the right—hand side is

H U Sey (l‘)

TEN hx(l‘) ’

where A is the partition dual to A and ¢y () (resp. hy/(x)) denotes the content
(resp. hook length) of X' at x (that is, if z is the box in the i*" row and j** column of
the Young diagram of X', then ey (2) := j <i and hy/(2) is the number of boxes in
the hook with corner at ). There is a natural identification of boxes in the Young
diagram of a partition with boxes in the Young diagram of the dual partition.
Under this identification, cx/(x) = <exa(z) and hy(z) = hy(x). Consequently,
Skea(X1, ..., Xg) converges in distribution as k& — oo to

H U—|—C)\(l‘).

o @)
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