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1 Introduction

For 0 < � � 2, let (Su)u�0 be a real-valued �-stable L�evy process with S0 = 0. As shown

by Breiman (1968), the process (Xt)t2Rde�ned by

Xt := e�t=�Set

is a two-sided stationary Markov process, called an �-stable Ornstein-Uhlenbeck (OU)

process. For � = 2 and S a standard Brownian motion, X is the usual Gaussian OU

process. The OU process derived from a symmetric �-stable L�evy process for 0 < � < 2

was studied and characterised by Adler et al. (1990). Recently, in connection with the

asymptotic distribution of the maximum of normalised sums of i.i.d. random variables

in the domain of attraction of a stable law, Bertoin (1997) studied features of the OU

process derived from an �-stable subordinator for 0 < � < 1. In this case S is a positive

increasing process, while X is a strictly positive process with paths of locally bounded

variation and only positive jumps. For the subordinator S there is the well known L�evy-

Itô representation

Su =
X

0<v�u

�Sv (1)

where �Sv = Sv � Sv� and f(v;�Sv) : v > 0; �Sv > 0g is the random set of points of a

Poisson point process (PPP) on ]0;1[�]0;1[ with an intensity measure c dv s�(�+1)ds

for some constant c > 0. Since �Xw = e�w=��Sew the change of variables

(w; x) = (log v; v�1=�s); (v; s) = (ew; ew=�x)

transforms (1) into

Xt =
X
w�t

e�(t�w)=��Xw (2)

where f(w;�Xw) : w 2 R; �Xw > 0g is the set of points of a PPP on R�]0;1[ with an

intensity measure c dw x�(�+1)dx that is the push{forward of c dv s�(�+1)ds by the change

of variables. The representation (2) of the positive �-stable OU process X admits several
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possible interpretations. For instance, X might be regarded as a shot-noise process, or

as a storage process Brockwell et al. (1982). Here we interpet Xt as the total mass at

time t of an in�nite system of masses in a stochastic equilibrium. Each point (w;�Xw)

represents a mass of magnitude �Xw entering the system at time w; once it has entered,

each mass is subject to deterministic exponential decay at rate 1=� per unit time. Let Xt

be the simple point process on ]0;1[ which describes the distribution of masses present

at time t. So Xt has a point e�(t�w)=��Xw for each w � t with �Xw > 0. Then

(Xt)t2R is a stationary, time{homogeneous, Markov process. For each t 2 R the point

process Xt is a PPP whose intensity measure is the �-stable L�evy measure cx�(�+1)dx,

and Xt =
R1
0
xXt(dx) is the sum of all masses present at time t.

Let X̂t := X(�t)�, t 2 R, be the time{reversal of (Xt)t2R. Then (X̂t)t2R is also a

stationary, time{homogeneous, Markov process. For each t 2 R the point process X̂t is

a PPP with intensity measure cx�(�+1)dx. Points in the evolving support die at rate 1,

up to its death time each point undergoes exponential increase at rate 1=�, and points

behave independently.

The counting{measure{valued processes X := (Xt)t2Rand X̂ := (X̂t)t2Rare a typical

example of the general class of time{reverse pairs of stationary measure{valued Markov

processes which is the subject of this paper.

Our interest in such processes arose from study of another sort of measure{valued

process describing the evolution of a system of masses subject to coalescent collisions.

Let S# denote the ranked in�nite simplex, that is, the set of all probability measures

(x1; x2; : : : ) on the positive integers such that x1 � x2 � : : : . Regard an element of S# as

a fragmentation of a unit mass into clusters of masses xi. The ranked additive coalescent

(X#(t))t�0 is the S#-valued Markov process in which each pair of mass clusters fxi; xjg

merges to form of cluster of mass xi+xj at rate xi+xj, and after such a merger the masses

are relabelled so that they are again in ranked order. See Evans and Pitman (1997) for

details of the construction of such Markov processes, and references to their application

to physical and chemical processes of coagulation, condensation and polymerisation. As

shown in Pitman (1996) and Aldous and Pitman (1997) the additive coalescent arises

from the evolution of tree components in a random graph process, and has asymptotic
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properties related to the 1
2
�stable subordinator and to Aldous's continuum random tree.

Let H be a PPP on R+ with intensity (2�)�1=2v�3=2 dv and write � =
R
v H(dv).

We can think of � as the value at time 1 of a 1
2
�stable subordinator and H as the

Poisson process of sizes of jumps made by the subordinator in the time interval [0; 1].

Let V = (V1; V2; : : : ) be the S#-valued random variable such that �V1 > �V2 > : : :

are the locations of points of H, and write Qs, s 2 R, for the conditional distribution

of V given � = e2s. It was shown in Evans and Pitman (1997) that the weak limit

as n ! 1 of the ranked additive coalescent started at time �1
2
log n with initial state

the uniform distribution on f1; : : : ; ng is a ranked additive coalescent (X#(s))s2R such

that the distribution of X#(s) is Qs for every s 2 R. This limiting process is called the

standard additive coalescent in Aldous and Pitman (1997) . There the following result is

given regarding the asymptotic distribution of X#(s) as s!1: the distribution of

e2s(1�X#
1 (s);X

#
2 (s);X

#
3 (s); : : : )

converges as s ! 1 to that of (�;�V1;�V2; : : : ): The limiting behaviour as s ! 1 of

the process

(e2(s+t)(X#
2 (s+ t);X#

3 (s+ t); : : : ))t�0

is also easy to describe. When s is large, X#
1 (s + t) � 1 and X#

k (s + t) � 0, k � 2, so

that the masses X#
2 (s + t);X#

3(s + t); : : : are coalescing with each other at a negligible

rate whilst each one is being removed by a coalescence with X#
1 (s + t) at approximate

rate 1. Therefore, if we build a random measure Y(s)
t on ]0;1[ by placing unit mass

at each point e2(s+t)X#
2 (s + t); e2(s+t)X#

3 (s + t); : : : , it follows that (Y(s)
t )t�0 converges

in distribution as s ! 1 to a stationary, measure{valued, time{homogeneous, Markov

process Y1 := (Y1
t )t�0 with the same description as (X̂t)t�0, where X̂ is as above with

� = 1
2 .

Further examples of the class of processes considered in this paper can be derived

from functional forms of classical limit theorems in extreme value theory, as presented

in Resnick (1987). We thank David Aldous for pointing out this connection to us. To

illustrate, let (�k)1k=1 be i.i.d. exponentially distributed random variables with common

mean 1. De�ne a counting{measure Vt, t � 0, by placing a unit mass at each of the
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points �betc�t for 1 � k � betc. As s!1 the process (Vs+t)t�0 converges in distribution

to a stationary, measure{valued, time{homogeneous Markov process (Wt)t�0 with the

following description. The marginal distribution of Wt is that of a PPP on R with

intensity measure e�x dx. As time evolves, points appear in space and time according

to a PPP with intensity e�x dx dt, x 2 R, t > 0, and after they are born points move

with constant velocity �1. Similar results hold for sequences of i.i.d. random variables

in the domain of attraction of the other classical extreme value limit distributions. In

particular, the process X derived earlier from the positive �-stable OU process could be

obtained this way.

De�ne a 
ow ('t)t2R on ]0;1[ by 't(v) := vet=�. It is apparent that the reason the

processes X and X̂ (and Y1) are stationary is that for each t 2 R the push{forward

of the measure cv�(�+1) dv by the map 't is the measure etcv�(�+1) dv. Similarly, if we

de�ne a 
ow ( t)t2Ron R by  t(x) := x+t, then the push{forward of the measure e�x dx

by the map  t is the measure ete�x dx, and this is what leads to the stationarity of W.

We observe in Section 3 that any similarly related measure and 
ow on an arbitrary

measurable space give rise to a stationary, measure{valued, time{homogeneous, Markov

processes with structure similar to that of X, X̂, Y1 and W.

What is not so obvious is that if we �x an integer n and let Yn
t be the measure

that assigns unit mass to each of the n largest points of Y1
t , then Yn := (Yn

t )t�0 is

itself a stationary, measure{valued, time{homogeneous, Markov process with a simple,

explicit description in the framework of jumping Markov processes introduced by Jacod

and Skorokhod (1996), following the study of piecewise deterministic Markov processes

by Davis (1984). We prove this fact in Section 6 and generalise it to similarly constructed

processes for other suitably related pairs of measures and 
ows on arbitrary measurable

spaces. In Section 7 we show that the time{reversal Ŷn := (Ŷn
t )t�0 of Yn and its

generalisations are also jumping Markov processes with simple, explicit descriptions.

Finally, we establish in Section 8 the generalisation of the result that for each n the

distribution of Yn
0 is the unique stationary distribution for the semigroups of both Yn

and Ŷn. Moreover, we show that if we start a Markov process with the same semigroup

as either Yn or Ŷn in any initial state, then the distribution of the process at time t
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converges in total variation as t!1 to the distribution of Yn
0 .

2 Measures and 
ows

Hypothesis 1 Consider a measurable space (E; E) equipped with a 
ow ' : E�R! E

of measurable bijections of E into itself. That is, ' is (E � B(R))nE - measurable, and,

if we put 't(v) = '(v; t), then '0 is the identity map and 's � 't = 's+t for s; t 2 R.

Suppose further that � is a non-trivial, �-�nite measure on E with the property that

't(�), the push{forward of � by 't, coincides with the measure et� for all t 2 R. From

now on we will suppose that we are always dealing with a 
ow ' and a measure � that

are related in this way.

Example 2 Take E = Rd, � to be Lebesgue measure, and '(v; t) = e�t=dv.

Example 3 Fix �1 � a < b � 1 and put E =]a; b[. Suppose that � is a Borel

measure on E with the following properties:

(i) � is di�use,

(ii) �(E) =1,

(iii) �(]a0; b[) <1, 8a0 > a,

(iv) �(]a0; b0[) > 0, 8a � a0 < b0 � b.

Take ' to be the unique function with the property

�(]'(v; t); b[) = e�t�(]v; b[):

For example, if E =]0;1[ and �(dv) = cv�(�+1)dx for some c; � > 0, then '(v; t) = vet=�.

The case c = (2�)�1=2 and � = 1=2 was the one encountered in Section 1 in connection

with asymptotics of the standard additive coalescent.
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3 Construction of the in�nite particle system

Recall our standing Hypothesis 1. We want to generalise the de�nition of the process

Y1 of Section 1 by building a stationary, measure{valued process with the following

properties:

(i) the marginal distribution of the process at each time is Poisson with intensity �,

(ii) each atom lives for an exponentially distributed amount of time with mean 1,

(iii) up to its death time, each atom follows the deterministic 
ow ',

(iv) atoms behave independently.

Consider the following construction. Call an integer-valued, �-�nite measure with

atoms of mass 1 a simple point measure (SPM). Given a SPM z on E � R+ with the

property that A 7! z(A � [0; s]) is a SPM on E for each s 2 R+, de�ne for each t 2 R

another SPM �t(z) on E by

�t(z)(A) = z('�t(A)� [0; e�t[): (3)

Now let � denote Lebesgue measure on R+. Suppose that Z is a PPP on E � R+

with intensity � 
 � de�ned on some complete probability space (
;F ;P). The process

�t(Z), t � 0, has the properties listed above. Because of its status as generalisation of

the process in Section 1, we will denote �t(Z) as Y1
t , t � 0.

4 Construction of the �nite particle system

Now that we have generalised the process Y1, we will generalise the construction of the

process Yn from Section 1.

Hypothesis 4 From now on, suppose that L is a measurable subset of E with the

properties:

(i) 0 < �(L) <1,
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(ii) 's(L) � 't(L) for all s < t,

(iii) 't(L) =
T

s<t 's(L) for all t 2 R.

SetK(s) = '�s(L) for s 2 R, so thatK(s) � K(t) for all s < t andK(t) =
T

u>tK(u)

for all t 2 R. Put

K(�1) =
\
s2R

K(s);

K(1) =
[
s2R

K(s);

�K(t) = K(1)nK(t); t 2 [�1;1]:

For a positive integer n and a SPM x on E, put

�n(x) := inffs 2 R : x(Ks) � ng: (4)

Set

�n(x) := K(�n(x))

��n(x) := �K(�n(x)):

For each n de�ne a SPM 
n(x) on E by


n(x) := x(� \ �n(x)); (5)

where we adopt the conventions inf R = �1 and inf ; = 1. Note that 't(
n(x)) =


n('t(x)) for all t 2 R and all positive integers n.

For (Y1
t )t�0 constructed in Section 3, put

Yn
t = 
n(Y

1
t ) = (
n � �t)(Z):

It follows from the stationarity of (Y1
t )t�0 that (Yn

t )t�0 is also a stationary process for

each positive integer n.

Example 5 Return to Example 2 above. One can take L � Rd to be any compact set

that has 0 in its interior and is star-shaped with respect 0. In particular, if L = fv 2

R
d : jvj � 1g, then Yn

t is the simple point process whose points are the n points of Y1
t

closest to 0.
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Example 6 Return to Example 3 above. Set L = [a0; b[ for some �xed a0 2]a; b[. Then

Yn
t is the simple point process whose points are the n largest points of Y1

t . When

E =]0;1[ and �(dv) = (2�)�1=2v�3=2 dv, we recover the process the Yn considered in

Section 1.

5 The canonical case

It is clear that Yn is unchanged if we replace Y1
t by (Y1

t \ K(1))nK(�1). We

will therefore suppose without loss of generality from now on that K(1) = E and

K(�1) = ;. In this case we can de�ne a measurable injection  : E ! R� L by

 (v) = (� (v); '�(v)(v)) where � (v) = infft 2 R : 't(v) 2 Lg = infft 2 R : v 2 K(t)g.

The pushed{forward process ~Yn
t :=  (Yn

t ), t � 0, is de�ned in the same manner as Yn

but with the de�ning ingredients (E; ('t)t2R; L; �) replaced by ( ~E; ( ~'t)t2R; ~L; ~�), where
~E = R� L, ~'t((s; v)) = (s � t; v), ~L =]�1; 0]� L, and ~�(ds; dv) = �(L) esds
 ~�(dv)

for a certain probability measure ~� on L that is concentrated on K(0)n
S

t<0K(t). We

will call such a special case of the general construction a canonical case. Any instance of

the general construction is just an instance of a canonical case in disguise.

6 Markov property of the �nite particle system

We want to show that (Yn
t )t�0 (and later its time-reversal) is a time{homogeneous, strong

Markov process. This will be a consequence of corresponding properties of the PPP Z.

To state these properties, let F�
t , t 2 R, be the sub-�-�eld of F generated by the random

variables Z(A \ (K(t)� R+)), A 2 E � B(R+), and let Ft := F�
t+ _ N , where N is the

sub-�-�eld of F generated by the P-null sets. Similarly, let G�s , s 2 R+ be the sub-�-�eld

of F generated by the random variables Z(A \ (E � [0; s])), A 2 E � B(R+), and let

Gs := G�s+ _N .

Lemma 7 (i) Suppose that T is a R-valued stopping time for the �ltration (Ft)t2R.

Then Z(� \ ( �K(T ) � R+)) is conditionally independent of FT given T , and the
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conditional distribution of Z(� \ ( �K(T ) � R+)) given T = t is the distribution of

Z(� \ ( �K(t)�R+)).

(ii) Suppose that S is a R+-valued stopping time for the �ltration (Gs)s2R+. Then

Z(� \ (E�]S;1[)) is conditionally independent of GS given S, and the conditional

distribution of Z(�\(E�]S;1[)) given S = s is the distribution of Z(�\(E�]s;1[)).

Proof. (i) The result is clear for constant T , and hence for T that take on �nitely

many values. By our standing Hypotheses 1 and 4, �(
S

s<tK(s)) = lims"t �(K(s)) =

lims"t e
s�(L) = et�(L) = �(K(t)) and K(t) =

T
s>tK(s). Hence,

�(
\
s<t

�K(s)n �K(t)) = 0 = �( �K(t)n
[
s>t

�K(s)):

Thus,

lim
s!t
PfZ(� \ ( �K(s)�R+)) 6= Z(� \ ( �K(t)�R+))g = 0;

so that the distribution of Z(� \ ( �K(t) � R+)) is continuous in total variation in t. A

standard approximation argument similar to the one used to prove the strong Markov

property for Feller processes (cf. Sections III.8,9 of Rogers and Williams (1994)), enables

one use this continuity to pass to general T .

(ii) The proof is similar.

�

We also need the following result, which is elementary and well known.

Lemma 8 Suppose that R1; : : : ; Rn are i.i.d. uniform random variables on [0; a[ for

some a. Then the random variable �(log(
Wn

i=1Ri) � log a) is exponentially distributed

with mean 1=n, and the conditional distribution of the random measure
Pn

i=1 �Ri
(� \

[0;
Wn

i=1Ri[) given
Wn

i=1Ri = r is that of
Pn�1

i=1 � ~Ri
, where ~R1; : : : ; ~Rn�1 are i.i.d. uniform

random variables on [0; r[.

Write Mn for the set of �nite, simple point measures x on E such that

x(K(t)n
[
s<t

K(s)) 2 f0; 1g for all t 2 R
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and

x(E) = n:

Equip Mn with the �-�eld Mn generated by the maps x 7! x(B), B 2 E. It is clear

from considering the canonical case that by modifying Z on a P-null set we can ensure

that Yn
t 2 Mn for all t � 0. Then the map (t; !) 7! Yn

t (!) from R+ � 
 into Mn is

(B(R+)�F)nMn - measurable.

The structure of Yn is quite simple. Fix n and put

S0 := 0;

T0 := infft 2 R : Z(K(t)� [0; 1[) = ng;

Sk+1 := inffs > Sk : Z(K(Tk)� [0; e�s[) = n� 1g; k � 0;

Tk+1 := infft > Tk : Z(K(t)� [0; e�Sk+1 [) = ng

= infft > Tk : Z((K(t)nK(Tk))� [0; e�Sk+1 [) = 1g; k � 0:

While the de�nition of both Sk and Tk depends on n, to simplify displays this dependence

is not carried in the notation. By construction,

Yn
s = 's(Z((� \K(Tk))� [0; e�Sk [)); Sk � s < Sk+1:

Consequently,

Yn
s = 's�r(Y

n
r ); Sk � r � s < Sk+1:

From Lemma 7 and Lemma 8,

PfSk+1� Sk > s j S0; : : : ; Sk;Y
n
S0
; : : : ;Yn

Sk
g = e�ns:

Moreover,

PfYn
Sk+1

2 B j S0; : : : ; Sk+1;Y
n
S0
; : : : ;Yn

Sk
g = Gn('Sk+1�Sk (Y

n
Sk
); B);

where the kernel Gn is de�ned as follows. Given x 2 Mn, let �Yn;x be a PPP on E

with intensity �(� \ ��n(x)). Denote the points of x by fv1; : : : ; vng. Write �xi for the

SPM whose points are fv1; : : : ; vi�1; vi+1; : : : ; vng. Let In be uniformly distributed on

f1; : : : ; ng and independent of �Ynx. Then Gn(x; �) is the distribution of 
n(�xIn + �Yn;x).
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Example 9 In the setting of Example 3, label the points of x as v1 > � � � > vn. Then

Gn(x; �) is the distribution of �xIn + �Wn
, where Wn is independent of In with distribution

PfWn � wg = exp(��(]w; vn[)), w < vn.

It follows from these observations that Yn is for each n a time{homogeneous, strong

Markov process with a corresponding collection of laws (P n;x)x2Mn
and transition semi-

group (P n
t )t�0 de�ned as follows. On the same probability space that Z is de�ned, de�ne

an independent collection R1; : : : ; Rn of i.i.d. random variables uniformly distributed on

[0; 1[. Consider x 2Mn with points fv1; : : : ; vng. Put �Zn;x := Z(� \ (��n(x)� [0; 1[)). Set

Zn;x :=
Pn

i=1 �(vi;Ri) +
�Zn;x and Xn;x

t = (
n � �t)(Zn;x), t � 0. Then P n;x is the distribu-

tion of the Mn-valued process Xn;x and P n
t (x; �) is the distribution of theMn-valued r.v.

Xn;x
t .

In fact, (P n;x)x2Mn
is for each n = 1; 2; : : : the collection of laws of a quasi{Hunt

jumping Markov process in the sense of Jacod and Skorokhod (1996). The corresponding

local characteristics are as follows. The deterministic evolution f is the 
ow on Mn

obtained by pushing{forward using the 
ow ' on E. The cumulative jump rates (`x)x2Mn

are given by `x(t) = nt, and the jump kernel � is just Gn.

7 Time reversal

Recall that Yn
t = (
n � �t)(Z), t � 0, where �t and 
n are de�ned in (3) and (5),

respectively. The time-reversal of Yn is therefore the process (Ŷn
t )t�0 = ((
n��̂t)(Z))t�0,

where we set

�̂t(z)(A) = z('t(A)� [0; et])

for a SPM z on E�R+ with the property that A 7! z(A� [0; s]) is a SPM on E for each

s 2 R+.
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The structure of Ŷn is also relatively simple. Fix n and put

Ŝ0 = 0;

T̂0 = infft 2 R : Z(K(t)� [0; 1]) = ng;

Ŝk+1 = inffs > Ŝk : Z(K(T̂k)� [0; es]) = n+ 1g

= inffs > Ŝk : Z(K(T̂k)�]e
Ŝk; es]) = 1g; k � 0;

T̂k+1 = infft < T̂k : Z(K(t)� [0; eŜk+1]) = ng; k � 0:

By construction,

Ŷn
s = '̂s(Z((� \K(T̂k))� [0; eŜk ])); Ŝk � s < Ŝk+1;

where we put '̂s = '�s. Consequently,

Ŷn
s = '̂s�r(Ŷ

n
r ); Ŝk � r � s < Ŝk+1:

From Lemma 7,

PfŜk+1� Ŝk > s j Ŝ0; : : : ; Ŝk; Ŷ
n
Ŝ0
; : : : ; Ŷn

Ŝk
g = exp(��(�n(Ŷ

n
Ŝk
))

Z s

0

er dr)

and

PfŶn
Ŝk+1

2 B j Ŝ0; : : : ; Ŝk+1; Ŷ
n
Ŝ0
; : : : ; Ŷn

Ŝk
g = Ĝn('̂Ŝk+1�Ŝk (Ŷ

n
Ŝk
); B);

where the kernel Ĝn is de�ned as follows. Given x 2 Mn, let v be the unique atom of

x such that v =2 K(u) for any u < �n(x). Let Vn be an E-valued random variable with

distribution �(� \ �n(x))=�(�n(x)). Then Ĝn(x; �) is the distribution of x� �v + �Vn.

It is clear that Ŷn is for each n a time{homogeneous, strong Markov process with

a corresponding collection of laws (P̂ n;x)x2Mn
and transition semigroup (P̂ n

t )t�0 de�ned

as follows. On the same probability space that Z is de�ned, de�ne an independent

collection R1; : : : ; Rn of i.i.d. random variables uniformly distributed on [0; 1[. Consider

x 2 Mn with points fv1; : : : ; vng. Put ~Zn;x := Z(� \ (�n(x)�]1;1[)). Set Ẑn;x =Pn
i=1 �(vi;Ri) +

~Zn;x. and X̂n;x
t := (
n � �̂t)(Ẑn;x). Then P̂ n;x is the distribution of the

Mn-valued process X̂n;x and P̂ n
t (x; �) is the distribution of the Mn-valued r.v. X̂n;x

t .
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For each n the collection (P̂ n;x)x2Mn
is the collection of laws of a quasi{Hunt jumping

Markov process with local characteristics (f̂n; (^̀n;x)x2Mn
; �̂n) de�ned as follows. The

deterministic evolution f̂n is the 
ow on Mn obtained by pushing{forward using the 
ow

'̂ on E. The cumulative jump rate ^̀
n;x(t) is �(�n(x))

R t
0
es ds, and the jump kernel �̂n

is Ĝn.

8 Ergodic behaviour

Theorem 10 For each n = 1; 2; : : : the common distribution of Yn
0 and Ŷn

0 is the unique

stationary distribution for each of the semigroups (P n
t )t�0 and (P̂ n

t )t�0. Both P n
t (x; �)

and P̂ n
t (x; �) converge in total variation to this stationary distribution as t!1 for each

x 2Mn.

Proof. To prove both assertions for (P n
t )t�0, it su�ces to show for each pair x;y 2 Mn

that the total variation distance between P n
t (x; �) and P

n
t (y; �) converges to 0 as t!1.

By the coupling inequality (cf. Section V.54 Rogers and Williams (1987)), this in turn

will follow if we can show that there is a P-a.s. �nite random time S such that Xn;x
t =

Xn;y
t for all t � S. From the construction of Xn;x and Xn;y we see that it su�ces to take

S = infft � 0 : (Zn;x + Zn;y)(K(�n(x) _ �n(y))� [0; e�t[) = 0g

=
n_
i=1

(� logRi) _ infft � 0 : Z(K((�n(x) _ �n(y))nK(�n(x) ^ �n(y)))� [0; e�t[) = 0g:

A similar coupling argument works for (P̂ n
t )t�0. Choose u such that x(K(u)) = 0 and

y(K(u)) = 0. From the construction of X̂n;x and X̂n;y, we see that it su�ces to take as

the coupling time

S = infft � 0 : Z(K(u)�]1; et]) = ng:

�
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