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1 Introduction

This paper develops some theory for Galton-Watson trees G (i.e. family trees
associated with Galton-Watson branching processes), starting from the fol-
lowing two known facts.
(i) [Lemma 10] For �xed 0 � u � 1 let Gu be the \pruned" tree obtained by
cutting edges of G and discarding the attached branch) independently with
probability 1 � u. Then Gu is another Galton-Watson tree.
(ii) [Proposition 2] For critical or subcritical G one can de�ne a tree G1,
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interpretable as G conditioned on non-extinction. Qualitatively, G1 consists
of a single in�nite \spine" to which �nite subtrees are attached.
We interpret (i) as de�ning a pruning process (Gu; 0 � u � 1), which is
a tree-valued continuous-time inhomogeneous Markov chain such that G0 is
the trivial tree consisting only of the root vertex, and G1 = G. An analogous
pruning process (G�u; 0 � u � 1) with G�1 = G1 is constructed from the con-
ditioned tree G1 of (ii). Section 3 gives a careful description of the transition
rates and transition probabilities for these processes. The two processes are
qualitatively di�erent, in the following sense. If G is supercritical then on the
event G is in�nite there is a random ascension time A such that GA� is �nite
but GA is in�nite: the chain \jumps to in�nite size" at time A. In contrast,
the process (G�u) \grows to in�nity" at time 1, meaning that G�u is �nite for
u < 1 but G�1� = G�1 is in�nite. A connection between the two processes is
made (Section 3.4) by conditioning (Gu; 0 � u < A) on the event that A
equals the critical time, i.e. the a for which Ga has mean o�spring equal 1.
By rescaling the time parameter we may take a = 1, and the conditioned
process is then identi�ed with (G�u; 0 � u < 1).

These results simplify, and further connections appear, in the special case
of Poisson o�spring distribution, which is the subject of Section 4. There we
consider (G�; 0 � � <1), where G� is the family tree of the Galton-Watson
branching process with Poisson(�) o�spring, and the associated pruned con-
ditioned process (G��; 0 � � � 1). To highlight four properties:

� The distribution of G�1 has several di�erent interpretations as a limit
(Section 4.3).

� For �xed � < 1, the distribution of G�� is the distribution of G�, size-
biased by the total size of G� (Section 4.4).

� The process (G�) run until its ascension timeA > 1 has a representation
in terms of (G��) as (Section 4.5)

(G�; 0 � � < A)
d
= (G��U ; 0 � � < (� log U)=(1 � U))

where U is uniform (0; 1), independent of (G��; 0 � � � 1).

� In constructing G�� by pruning G�1 , a certain vertex becomes distin-
guished, i.e. the highest vertex of the spine of G�1 retained in G��. This
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vertex turns out to be distributed uniformly on G��, and a simple spinal
decomposition of G�� into independent tree components is obtained by
cutting the edges of G�� along the path from the root to the distinguished
vertex (Section 4.6).

Other topics include consequent distributional indentities relating Borel and
size-biased Borel distributions (Sections 4.5 and 4.7) and the interpretation
of trees conditioned to be in�nite as explicit Doob h-transforms, with the
related identi�cation of the Martin boundary of (�;G�) (Section 4.4).

None of the individual results is especially hard; the length of the paper
is due partly to our development of a precise formalism for writing rigorous
proofs of such results. Section 2 contains this formalism and discussion of
known results.

1.1 Related topics

Of course, branching processes form a classical part of probability theory.
Various \probability on trees" topics of contemporary interest are treated in
the forthcoming monograph by Lyons [30], which explores several aspects of
Galton-Watson trees but touches only tangentially on the speci�c topics of
this paper.

Our motivation came from the following considerations, which will be
elaborated in a more wide-ranging but less detailed companion paper [7].
Suppose that for each N there is a Markov chain taking values in the set of
forests on N vertices. Looking at the tree containing a given vertex gives a
tree-valued process, and taking N !1 limits may give a tree-valued Markov
chain. The prototype example (not exactly forest-valued, of course) is the
random graph process (G(N;P (edge) = �=N); 0 � � � N) for which the
limit tree-valued Markov chain is our pruned Poisson-Galton-Watson pro-
cess (G�; 0 � � < 1) [1]. The pruned conditioned Poisson-Galton-Watson
process (G��; 0 � � � 1) arises in a more subtle way as a limit of the Marcus-
Lushnikov (discrete coalescent) process with additive kernel (see [6] for back-
ground on the general Marcus-Lushnikov process and [42, 43, 44, 38] for
recent results on the additive case). More exotic variations of (G�), e.g. a
stationary Markov process in which branches grow and are cut down upon
becoming in�nite, arise as other N !1 limits and are studied in [7]. Finally,
we remark that the unconditioned and conditioned critical Poisson-Galton-
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Watson distributions arise as N ! 1 limits in several other contexts (as
\fringes" in random tree models [3], in particular in random spanning trees
[2, 37]; in the Wright-Fisher model) where there is no natural pruning struc-
ture.

2 Background and technical set-up

Here we set up our general notation for random trees, and present some
background material about Galton-Watson trees.

2.1 Notation and terminology for trees

Except where otherwise indicated, by a tree t we mean a rooted labeled tree,
that is a set V = verts(t), called the set of vertices or labels of t, equipped

with a directed edge relation
t! such that for some (obviously unique) element

root(t) 2 V there is for each vertex v 2 V a unique path from the root to v,
that is a �nite sequence of vertices (v0 = root(t); v1; : : : ; vh = v) such that

vi�1
t! vi for each 1 � i � h. Then h = h(v; t) is the height of vertex v in

the tree t. Formally, t is identi�ed by its vertex set V and its set of directed

edges, that is the set f(v;w) 2 V � V : v
t! wg. If a subset S of verts(t)

is such that the restriction of the relation
t! to S � S de�nes a tree s with

verts(s) = S, then either S or s may be called called a subtree of t. Let
#V 2 f0; 1; 2; : : : ;1g be the number of elements of a set V , and for a tree t
let #t = #verts(t). The number of edges of a tree t is #t� 1. For a tree t

and v 2 verts(t) let children(v; t) := fw 2 verts(t) : v
t! wg denote the set

of children of v in t, and let cvt := #children(v; t), the number of children
of v in t. Each non-root vertex w of t is a child of some unique vertex v of
t, say v = parent(w; t). Let s and t be two trees. Call s a relabeling of t if
there exists a bijection ` : verts(s) ! verts(t) such that v

s! w if and only if

`(v)
t! `(w). Then root(t) = `(root(s)) and h(v; s) = h(`(v); t).

In the discussion above there was no notion of \birth order" for children.
To incorporate this notion, for n 2 N := f1; 2; : : :g let Tn denote the set of
family trees (also called rooted ordered trees or planted plane trees [14, 46])
with n vertices. Figure 1 illustrates the 5 trees comprising T4.

5



@
@
@

�
�
�

�
�
�

@
@
@

@
@
@

�
�
�

root root root root root

Figure 1

� � � � �

� � � �

�

� � �

� � � �

�

� �

We interpret an element t of T := [nTn as a �nite family tree with the
root representing a single progenitor, and each vertex of the tree represent-
ing an individual of the family. Then for g = 0; 1; 2 : : : each vertex at height
g corresponds to an individual in the gth generation of the family. While
the graphical representation of t in Figure 1 involves no explicit labeling of
the vertices v of t, we identify an individual in the gth generation of t as a
sequence of g integers, for instance (2; 7; 4) to indicate a third generation indi-
vidual who is the 4th child of the 7th child of the 2nd child of the progenitor.
Thus, following Harris[22, xVI.2] and Kesten [25], we identify each t 2 Tn as

a rooted labeled tree with verts(t) � V, where V :=
�
[1g=1Ng

�
[ f0g is the

set of all �nite sequences of positive integers, together with a root element

denoted 0. Regard V as a rooted tree, with v
V! w if and only if w = (v; j)

for some j 2 N, where (v; j) 2 Ng+1 is de�ned by appending j to v 2 Ng for
g � 1, and where (0; j) = j 2 N. If w = (v; j) call w the jth child of v, call
j the rank of w, and write j = rank(w). So for each non-root w 2 V, the
positive integer rank(w) 2 N is the last component of the �nite sequence w.
A (�nite or in�nite) family tree is a subtree t of V such that 0 2 verts(t), and
for each v 2 verts(t) the set of children of v is the set f(v; j) : 1 � j � cvtg.
Let T(1) denote the set of all such family trees t. Each t 2 T(1) is a subtree

of V, whose edge relation
t! on verts(t) is de�ned by restriction of the edge

relation
V! on V. A family tree t is therefore uniquely identi�ed by its vertex

set verts(t) � V, and it is convenient to identify t with verts(t). Thus T(1)

is identi�ed as a collection of subsets of V subject to certain constraints in-
dicated above, and we may write for instance v 2 t instead of v 2 verts(t)
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to indicate that v is a vertex of t. >From the de�nitions above

Tn := ft 2 T(1) : #t = ng; T := ft 2 T(1) : #t <1g =
1[
n=1

Tn:

The height of a �nite tree is the maximum height of all vertices in the
tree. There is a natural restriction map rh : T(1) ! T(h) where T(h) is the
set of �nite family trees of height at most h. For t identi�ed as a subset
of V, rht is the tree formed by all vertices of t of height at most h. A tree
t 2 T(1) is identi�ed by the sequence (rht; h � 0). Note that the rht 2 T(h)

are subject only to the consistency condition that rht = rh(rh+1t). The set
T(1) is now identi�ed as a subset of an in�nite product of countable sets

T(1) � T(0) �T(1) �T(2) � � � � :

We give T(1) the topology derived by this identi�cation from the product
of discrete topologies on the T(h). So a sequence of trees tn has a limit
limn tn = t 2 T(1) i� for every h there exists t(h) 2 T(h) and n(h) such
that rhtn = t(h) for all n � n(h); the limit is then the unique t 2 T(1) with
rht = t(h). In particular, for each t 2 T(1), the sequence rnt has limit t as
n!1.

Let s be a tree whose vertex set V is a subset of some set S equipped with a
total ordering. In particular, we have in mind the cases S = N with the usual
ordering, and S = V with lexicographical ordering and 0 as least element.
Suppose each v 2 verts(s) has only a �nite number of children. Then there
is a natural relabeling ` of the vertices of s by V which de�nes a family tree t
associated with s, say t = fam(s). The relabeling ` : verts(s) ! V is de�ned
as follows. Let `(root(s)) = 0. For each non-root vertex v of s let rank(v) be
the rank of v amongst its siblings, that is the number of w 2 verts(s) such
that w has the same parent as v and w � v. For v with height h � 1 in s let
(root(s); v1; : : : ; vh = v) be the path from root(s) to v in s, and de�ne

`(v) := (rank(v1); : : : ; rank(vh)) 2 Nh:

The tree t = fam(s) 2 T(1) is the subtree of V whose vertex set is `(verts(s)),
the range of the relabeling map ` : verts(s) ! V.

For t 2 T(1) and g � 0, let gen(g; t) be the gth generation of individuals
in t, in other words the set of vertices of t of height g. To illustrate notation,
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there are the following identities between subsets of the set V: for all t, for
all h = 0; 1; : : ::

gen(h + 1; t) =
[

v2gen(h;t)

children(v; t); rht =
h[

g=0

gen(g; t):

Let Zht := #gen(h; t), the size of generation h of t. The above identities
imply

Zh+1t =
X

v2gen(h;t)

cvt; #rht =
hX

n=0

Znt; #t =
1X
n=0

Znt:

The abbreviation
Zt := Z1t = c0t

makes a convenient notation for the number in individuals in the �rst gen-
eration of t, that is the number of children of the root 0 of t. Denote the
trivial family tree with the single vertex 0 by �. Starting from r0t = �,
a family tree t is conveniently speci�ed as the unique tree t such that
rht = t(h) for all h for some sequence of trees t(h) 2 T(h) determined recur-
sively as follows. Given that t(h) 2 T(h) has been de�ned, the set of vertices
gen(h; t) = gen(h; t(h)) = rht � rh�1t is determined, hence so is the size
Zht = Zht

(h) of this set; for each possible choice of Zht non-negative integers
(cv; v 2 gen(h; t)), there is a unique t(h+1) 2 T(h+1) such that rht(h+1) = t(h)

and cvt
(h+1) = cv for all v 2 gen(h; t). So a unique tree t 2 T(1) is deter-

mined by specifying for each h � 0 the way in which these Zht non-negative
integers are chosen given that rht = t(h) for some t(h) 2 T(h).

A random family tree is a random element of T(1), formally speci�ed
by its sequence of height restrictions, say T = (rhT ; h = 0; 1; : : :), where
each rhT is a random variable with values in the countable set T(h), and
rhT = rh(rh+1T ) for all h. The distribution of T , denoted dist(T ), is then
determined by the sequence of distributions of rhT for h � 0. Such a dis-
tribution is determined by a speci�cation for each h � 0 of the joint condi-
tional distribution given rhT of the numbers of children cvT as v ranges over
gen(h; rhT ).

De�ne convergence of distributions on T(1) by weak convergence relative
to the product of discrete topologies on T(h). That is, for random family
trees Tn; n = 1; 2; : : : and T , we say that Tn converges in distribution to T ,
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and write either Tn d! T , or dist(Tn) ! dist(T ), or limn dist(Tn) = dist(T )
if

P (rhTn = t) ! P (rhT = t) 8h � 0; t 2 T: (1)

2.2 Galton-Watson trees

Let p(�) = (p(0); p(1); : : :) be a probability distribution on the non-negative
integers with p(1) < 1. Following [22, 25, 34, 35], call a random family tree
G a Galton-Watson (GW) tree with o�spring distribution p(�) if the number
of children ZG of the root has distribution p(�):

P (ZG = n) = p(n) 8 n � 0

and for each h = 1; 2; : : :, conditionally given rhG = t(h), the numbers of
children cvG; v 2 gen(h; t(h)), are i.i.d. according to p(�). Equivalently, for
each h � 1 the distribution of rhG is determined by the formula

P (rhG = t) =
Y

v2rh�1t

p(cvt) 8 t 2 T(h) (2)

where the product is over all vertices v of t of height at most h � 1. The
restriction of the distribution of G on T(1) to the set T of �nite family trees
is then given by the formula

P (G = t) =
Y
v2t

p(cvt) 8 t 2 T (3)

where the product is over all vertices v of t.
Denote the mean of the o�spring distribution of G by �:

� := E(ZG) =
X
n

np(n):

It is well known that P (#G < 1) = 1, or equivalently P (ZhG > 0) ! 0 as
h!1, if and only if � � 1. So for � � 1 the distribution of G is completely
determined by formula (3). Let

Sn =
nX
i=1

Xi where the Xi are i.i.d. copies of (4)
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Whatever �, it is known [15] that the distribution of the total progeny #G
on the event (#G <1) is given by the formula

P (#G = n) =
1

n
P (Sn = n� 1) 8 n = 1; 2; : : : (5)

Let k � 1. Given ZG = k, for 1 � i � k let G(i) be the subtree of G formed
by the ith child of the root and all its descendants, and observe that the
associated family trees fam(G(i)) for 1 � i � k are i.i.d. copies of G. So

dist(#G jZG = k) = dist

 
1 +

kX
i=1

#i

!
(6)

where #1;#2; : : : are i.i.d. copies of #G. For all k � 1 and n � 0

P (#G = n + 1 jZG = k) = P

 
kX

i=1

#i = n

!
=

k

n
P (Sn = n� k) (7)

for Sn as in (4), where the �rst equality spells out (6), and the second equality
generalizes (5). See [15, 27, 39, 47, 48] for derivations of this formula and
other interpretations of the distribution of #G involving random walks and
queues.

2.3 Poisson-Galton-Watson trees

For � � 0 let G� be a GW tree with the Poisson(�) o�spring distribution
p�(n) := e���n=n!. Denote the distribution of G� on T(1) by PGW(�):
>From (3) and (2)

P (G� = t) = e��#t�#t�1
Y
v2t

1

(cvt)!
8 t 2 T (8)

P (rhG� = t) = P (G� = t) exp(�Zh(t)) 8 t 2 T(h): (9)

In this case, Sn in (4) and (5) has Poisson(n�) distribution. So from (5)
the total progeny of a PGW(�) tree has probability distribution P� on
f1; 2; � � � ;1g which is known as the Borel (�) distribution [12, 35, 50]:

P (#G� = n) = P�(n) :=
(�n)n�1

n!
e��n 8 n = 1; 2; : : : (10)
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>From (7), the sum of k independent random variables N�(i), each with the
Borel(�) distribution (10), has distribution on f1; 2; � � � ;1g speci�ed by

P

 
kX

i=1

N�(i) = n

!
=

k

n

(�n)n�k

(n� k)!
e��n 8 n = k; k + 1; : : : (11)

This is the Borel-Tanner distribution [21, 49, 50] with parameters k and �.

2.4 Uniform Random Trees

Let R[n] be the set of all rooted trees labeled by [n] := f1; 2; : : : ; ng. For a
rooted labeled tree t with n vertices, let ~t denote the corresponding rooted
unlabeled tree. Formally, de�ne ~t to be the set of all trees s 2 R[n] obtained

by some relabeling of the vertices of t by [n]. So ~t 2 ~R[n] where ~R[n] is a
set of equivalence classes of elements of R[n]. Let Un be a random tree with
uniform distribution on R[n]. Aldous [4] observed that for G� a PGW(�) tree

( ~G� j#G� = n)
d
= ~Un: (12)

That is, (G� given #G� = n) and Un induce identical distributions on ~R[n]

when unlabeled. To put this another way, �x � > 0 and generate a PGW
family tree G�. Given that verts(G�) = V for some set V with #V = n, let
Gy� 2 R[n] be G� relabeled by a uniform random permutation � : V ! [n].
Then (12) amounts to:

dist(Gy� j#G� = n) = dist(Un): (13)

Call a function 	 of a rooted labeled tree t an invariant if 	(t) = 	(s)
whenever s is a relabeling of t. For example, the number Zht of vertices of t
at height h is an invariant. So is the matrix M(t) = (Mh;c(t); h � 0; c � 0)
where Mh;c(t) is the number of individuals in generation h of t that have c
children. The identity (12) can be restated as

(	(G�) j#G� = n)
d
= 	(Un) 8 invariant 	 (14)

This identity for 	 = M and 	 = (Z1; : : : ; Zn) was discovered earlier and ex-
ploited by Kolchin [26, 27]. The following proposition records a sharper
result, implicit in the discussion of [5] and explicit in [39], which obvi-
ously implies all of these identities (12)-(14). We call formula (15) the Un-
representation of dist(G� j#G� = n).
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Proposition 1 For each n = 1; 2; : : : the conditional distribution of a PGW(�)
tree G� given #G� = n is the same for all � > 0, and identical to the distri-
bution of fam(Un). This common distribution is given by

P (G� = t j#G� = n) = P (fam(Un) = t) =
1

nn�1
n!Q

v2t(cvt)!
(15)

for all t 2 T with #t = n.

2.5 Conditioning on non-extinction

An in�nite random tree G1, which we call G conditioned on non-extinction is
derived in the following proposition from a critical or subcritical GW tree G.
The probabilistic description of G1 involves the size-biased distribution p�

associated with a probability distribution p(�) on the non-negative integers
with mean � 2 (0;1):

p�(n) := ��1np(n) 8 n � 0: (16)

Here is an exact statement of \known result (ii)" in the Introduction.

Proposition 2 (Kesten [25]). Let ZnG := #gen(n;G) be the number of
individuals in the nth generation of a GW tree G with o�spring distribution
p(�) such that p(0) < 1 and � � 1. Then

(i)
dist(G jZnG > 0) ! dist(G1) as n!1 (17)

where dist(G1) is the distribution of a random family tree G1 speci�ed by

P (rhG1 = t) = ��h(Zht)P (rhG = t) 8 t 2 T(h); h � 0: (18)

(ii) Almost surely G1 contains a unique in�nite path (root = V0; V1; V2; : : :)
such that Vh+1 is a child of Vh for every h = 0; 1; 2; : : :.

(iii) For each h the joint distribution of rhG1 and Vh is given by

P (rhG1 = t; Vh = v) = ��hP (rhG = t) 8 t 2 T(h); v 2 gen(h; t) (19)

(iv) The joint distribution of (V0; V1; V2; : : :) and G1 is determined recur-
sively as follows: for each h = 0; 1; 2; : : :, given (V0; V1; : : : ; Vh) and rhG1,
the numbers of children cvG1 are independent as v ranges over gen(h;G1),
with distribution p(�) for v 6= Vh, and with the size-biased distribution p�(�)
for v = Vh; given also the numbers of children cvG1 for v 2 gen(h; rhG1),
the vertex Vh+1 has uniform distribution on the set of cVhG1 children of Vh.
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That (18) de�nes a probability distribution for an in�nite family tree
G1 follows from the well known fact that (��nZnG; n = 0; 1; : : :) is a non-
negative martingale with expectation 1. The sequence of height restrictions
(rnG1; n = 0; 1; � � �) which determines G1 is a Markov chain with state
space T obtained as the Doob h-transform of the Markov chain (rnG; n =
0; 1; � � �) via the space-time harmonic function h(n; t) := ��nZnt. See [41] for
background and other applications of h-transforms, and [31] for an elegant
treatment of the recursive construction (iv) of G1 and the in�nite path (Vh),
which we call the spine of G1. As observed in [31], the construction (iv)
of Vh and G1 such that (18) and (19) hold can also be carried out in the
supercritical case 1 < � < 1. While our focus in this paper will be on
the case 0 < � � 1, we note in passing that for � > 1 the path (Vh) is
almost surely not the only in�nite path from the root in G1; rather, there
are uncountably many such paths almost surely. Also, the conditional limit
theorem (17) does not hold for � > 1 with G1 constructed via (18). Rather,
there is the elementary result that

lim
n!1

dist(G jZnG > 0) = dist(G j#G = 1) for � > 1

where the right side does not have the same distribution as G1 de�ned by
(18), except when p(�) is degenerate.

In particular, Proposition 2 contains the classical result ([9] sec. I.8)
that for the usual integer-valued GW process (ZhG; h = 0; 1; : : :) started at
Z0 = 1, for � � 1 there is the conditioned limit theorem

lim
n!1

dist(Z1G; : : : ; ZhG jZnG > 0) = dist(Z1G1; : : : ; ZhG1) 8 h = 1; 2; : : :

(20)
where (ZhG1; h = 0; 1; : : :) is a Markov chain with state space N and homo-
geneous transition probabilities de�ned as follows. Given ZhG1 = m say, the
number Zh+1G1 of individuals in the next generation of G1 is distributed
as the sum of m independent random variables, with m � 1 of these vari-
ables distributed according to the o�spring distribution p(�) of ZG, and one
variable distributed according to the size-biased o�spring distribution p�(�).
In other words, the process (ZhG1 � 1; h = 0; 1; : : :) is a branching process
with immigration, starting from an initial population of zero, with o�spring
distribution p(�) and immigration distribution p��(�), where p��(�) is the dis-
tribution of Z� � 1 for Z� with the size-biased o�spring distribution p�(�),
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that is
p��(n) := ��1(n + 1)p(n + 1) 8 n = 0; 1; : : : (21)

It is elementary and well known that

p��(�) = p(�) i� p(�) is Poisson(�) for some � � 0.

The following corollary is an easy consequence of this fact combined with the
previous Proposition.

Corollary 3 (Spinal Decomposition of G1). In the setting of Proposition
2, with (Vh) the in�nite spine of G1 derived by conditioning G on non-
extinction, for i = 0; 1; : : : let G(i) be the family tree derived from the subtree
of G1 with root Vi in the random forest obtained from G1 by deleting each
edge along the spine, and let Vi+1 be the Jith child of Vi. Then

(i) the trees G(i); i = 0; 1; : : : are independent and almost surely �nite,
with identical distribution

P (G(i) = t) =
1X

m=0

P (G = t jZG = m) p��(m) 8 t 2 T; (22)

(ii) the trees G(i) have the same distribution as G i� p(�) is Poisson(�);
(iii) conditionally given (G(i); i = 0; 1; : : :) the ranks Ji are independent

and Ji has uniform [ZG(i) + 1] distribution, where ZG(i) = cViG1 � 1.

The common distribution of the G(i) described by (22) is that of a mod-
i�ed GW tree, in which the number of the �rst generation individuals has
distribution p��(�), while these and all subsequent individuals have o�spring
distribution p(�). Note that Vh = (J0; : : : ; Jh�1) 2 Nh for all h � 1. So the
spinal decomposition speci�es the joint distribution of the spine of G1 and
the sequence of �nite family trees derived by cutting all edges of the spine.
This determines the distribution of G1, for it is clear that G1 is a measur-
able function of (Vh) and the G(i). We record now for later use the following
consequence of Proposition 2.

Lemma 4 In the setting of Proposition 2, with (Vh) the in�nite spine of G1
derived by conditioning G on non-extinction, let H be a non-negative integer
random variable independent of G1, and let G(H) be the family tree derived
from the �nite subtree of G1 that contains the root after G1 is cut into two
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subtrees by deletion of the edge (VH ; VH+1). Then for each t 2 T and each
vertex v of t at height h

P (G(H) = t; VH = v) = P (H = h)��h���(cvt)P (G = t) (23)

where

���(n) :=
p��(n)

p(n)
=

(n + 1)p(n + 1)

�p(n)
8 n = 0; 1; : : : (24)

for p(�) the o�spring distribution of G and � :=
P

n np(n) � 1.

Proof. By conditioning on H it su�ces to prove (23) for a constant H, say
H = h. Let th = rht. Then for each v at height h in t the left side of (23)
equals

P (rhG(h) = th; Vh = v)P (G(h) = t j rhG(h) = th; Vh = v) (25)

But for H = h �xed, rhG(h) = rhG1 by construction, so (18) gives

P (rhG(h) = th; Vh = v) = ��hP (rhG = th): (26)

Also, given rhG(h) = th and Vh = v, according to part (iv) of Proposition 2,
G(h) develops over generations h + 1; h + 2; : : : much like G, with individuals
having independent numbers of o�spring, except that in G(h) each individual
except v has o�spring distribution p(�), whereas v has o�spring distribution
p��(�). By consideration of the product formulae (2) and (3), it follows that
for any particular tree t in which v has n o�spring,

P (G(h) = t j rhG(h) = th; Vh = v) = ���(n)P (G = t j rhG = th) (27)

for ���(n) as in (24). Combine (26) and (27) in (25) to obtain (23) for a
�xed H = h. 2

Conditioning on the total progeny. Kennedy [24] obtained an ana-
log of the conditioned limit theorem (20) as n ! 1 with conditioning on
#G = n instead of ZnG > 0, where #G =

P
n ZnG is the total progeny. His

assumption on the o�spring distribution p(�) is that the generating function
g(s) :=

P
n p(n)sn satis�es

9 a > 0 with g(a) = ag0(a) <1; and g00(a) <1: (28)

Reinterpreting his argument in terms of family trees gives the convergence
assertion in (29): the equality follows easily from the product formula (3).
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Proposition 5 Let G be a GW tree whose o�spring generating function g
satis�es (28). Let G be the critical GW tree whose o�spring generating func-
tion is g(a)�1g(as) =

P
n g(a)�1anpnsn for a as in (28). Then

dist(G j#G = n) = dist(G j#G = n) ! dist(G1) as n!1 (29)

where G1 is G conditioned on non-extinction.

In terms of the o�spring mean �, condition (28) is always satis�ed if � > 1
and p(�) is nondegenerate, with a < 1. If � = 1 then (28) holds if and only
if
P

n n
2p(n) < 1, in which case a = 1; then G = G and G1 = G1. If

� < 1 then (28) requires p(n) to decay exponentially, and a > 1; then the
distributions of G1 and G1 are di�erent.

Assume for this paragraph that (28) holds, and consider what happens if
we condition on (#G � n) instead of (#G = n) and then let n!1:

lim
n!1

dist(G j#G � n) =

8><
>:

dist(G j#G = 1) if � > 1
dist(G1) if � = 1
dist(G1) if � < 1

The �rst case is elementary, and the second two cases follow easily from
Proposition 5. Note the paradoxical fact that while

\
n

(ZnG > 0) =
\
n

(#G � n) = (#G = 1)

and both intersections involve decreasing sequences of events,

lim
n

dist(G jZnG > 0) = lim
n

dist(G j#G � n) only if � � 1: (30)

For � > 1 both limits in (30) are the naively de�ned dist(G j#G = 1). For
� = 1 both limits yield dist(G1), which suggests the intuitive interpretation
of G1 as dist(G j#G = 1). However, such interpretations are potentially
slippery, as shown by the fact that for 0 < � < 1

lim
n

dist(G jZnG > 0) = dist(G1) 6= dist(G1) = lim
n

dist(G j#G � n): (31)
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3 Pruning Random Trees

Let T be a random family tree. Call a T(1)-valued process (Tu; 0 � u � 1)
a uniform pruning of T if

T1 = T almost surely and (Tu; 0 � u � 1)
d
= (T (u); 0 � u � 1) (32)

where (T (u); 0 � u � 1) is constructed as follows from some T (1) with

T (1)
d
= T . Here

d
= denotes equality in distribution, meaning equality of

�nite dimensional distributions in a display such as (32). Suppose that given
T (1) there are independent uniform(0; 1) random variables �e attached to
the edges e of T (1); let T y(u) be the component containing the root in the
subgraph of T (1) consisting of those edges e with �e < u, and let T (u) =
fam(T y(u)) be T y(u) relabeled as a family tree.

Let I be an interval of the form either [0; �] for some 0 < � < 1 or
[0; �) for some 0 < � � 1. Call a T(1)-valued process (Tt; t 2 I) a uniform
pruning process if

(Tut; 0 � u � 1) is a uniform pruning of Tt for all t 2 I: (33)

If (Tu; 0 � u � 1) is a uniform pruning of T1 then (Tu; 0 � u � 1) is a uniform
pruning process, and almost surely

T0 = �, the single-vertex tree, and limu"1 Tu = T1. (34)

The second equality means that for almost every ! in the basic probability
space, for each h there exists a u(h; !) < 1 such that rhTu(!) = rhT1(!) for
all u(h; !) < u � 1. It is easily seen that every uniform pruning process is
an inhomogeneous Markov process. All uniform pruning processes (Tt; t 2 I)
share the same co-transition probabilities, which have an obvious invariance
under scaling: for 0 < u � 1 and z 2 I with z > 0,

dist(Tuz j Tz = t) = dist(T (t)
u ) 8 t 2 T(1) (35)

where (T (t)
u ; 0 � u � 1) is a uniform pruning of the �xed tree t. For a

�nite tree t 2 T these transition probabilities are described by the following
formula, which is derived by conditioning on which subtree s of t remains
containing the root after cutting each edge of t with probability 1 � u:

P (Tuz = r j Tz = t) = P (T (t)
u = r) =

X
s

u#s�1(1� u)n(s;t) (36)
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where the sum ranges over all subtrees s of t with 0 2 s and fam(s) = r, and
n(s; t) is the number of edges (v;w) of t such that v 2 s and w 2 t� s. This
formula determines the co-transition probabilities of every uniform pruning
process, for it is easily seen that a T(1)-valued process (Tt) is a uniform
pruning process i� for each h � 0 the height restricted T-valued process
(rhTt) is a uniform pruning process.

If (Tu; 0 � u � 1) is derived from T1 by uniform pruning, the size ZTu
of the �rst generation of Tu is distributed as the sum of ZT1 independent
Bernoulli(u) variables. In terms of probability generating functions [16]

gu(s) :=
1X
n=0

snP (ZTu = n) is given by gu(s) = g1(1� u + us): (37)

In particular, if dist(ZT1) = Poisson(�) for some � � 0 then dist(ZTu) =
Poisson(u�).

The following two lemmas record some more technical properties of uni-
form pruning processes for ease of later reference.

Lemma 6 Let (T (n)
u ; u 2 In) be a sequence of uniform pruning processs and

let tn 2 In be such that tn ! 1 and T (n)
tn

d! T as n ! 1 for some random
family tree T . Then

(i) for each � > 0

dist(T (n)
u ; 0 � u � 1 � �) ! dist(Tu; 0 � u � 1� �) (38)

where (Tu; 0 � u � 1) is a uniform pruning of T1 with T1 d
= T ;

(ii) if tn � 1 for all n then (38) holds also for � = 0.

Proof. The convergence in (38) should be understood as convergence of
�nite dimensional distributions of height restricted processes for each �nite
height h. The probability that a height restricted uniform pruning process
(Tu) passes through some sequence of trees ti; 1 � i � k at times 0 < u0 <
� � � < uk is the product of P (Tuk = tk) and a sequence of co-transition
probabilities of the form (36). The conclusions of the lemma follow from the
fact that the function of (u; r; t) displayed in (36) is continuous in u for all
r; t 2 T. 2

Lemma 7 If (Tu; 0 � u < 1) is a uniform pruning process then T1 :=
limu"1 Tu exists almost surely, and (Tu; 0 � u � 1) is a uniform pruning
of T1.
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Proof. The process (ZTu; 0 � u < 1) is almost surely increasing, hence has
an almost sure limit, say Z1 � 1. Moreover, Z1 < 1 almost surely, as the
following argument by contradiction shows. If P (Z1 = 1) = 3� > 0, than for
all � < � there exists u(�) 2 (1=2; 1) with P (ZTu(�) > 3=�) > 2�. But from the
pruning property, conditionally given ZTu(�) > 3=� the number ZT1=2 exceeds
the number of successes in 3=� independent trials with success probability
(2u(�))�1 > 1=2. By the law of large numbers, P (ZT1=2 > 1=� j Tu(�) > 3=�) !
1 as �! 0. Therefore, for all su�ciently small � this conditional probability
exceeds 1=2, and for such small � we deduce that P (ZT1=2 > 1=�) > �. Let
� ! 0 to deduce that P (ZT1=2 = 1) > �, in contradiction to the fact that
P (ZT1=2 = 1) = 0 because T1=2 2 T(1) and Zt <1 for all t 2 T(1). Thus

P (Z1 <1) = 1. Therefore, limu"1 r1Tu exists almost surely and equals T (1)
1

say, where T (1)
1 is the tree of height at most one in which the root has Z1

children. Now proceed inductively. Suppose for some h that limu"1 rhTu exists

almost surely and equals say T (h)
1 2 T(h). Let Uh = inffu : rhTu = T (h)

1 g.
Then P (Uh < 1) = 1 by inductive hypothesis, and for each v in generation

h of T (h)
1 the number cvTu of children of v in the next generation of Tu is

increasing for Uh < u < 1. Therefore, cvTu has an almost sure limit cv(1) say

as u " 1. That the cv(1) are a.s. �nite for all v in generation h of T (h)
1 can be

shown by a reprise of the previous argument by contradiction for h = 0 after
conditioning on T (h)

1 . It follows that limu"1 rh+1Tu = T (h+1)
1 almost surely

where T (h+1)
1 2 T(h+1) is such that rhT (h+1)

1 = T (h)
1 and each v in generation

h of T (h)
1 has cv(1) children in T (h+1)

1 . So by induction, these limits T (h)
1

exist for all h almost surely, and hence almost surely limu"1 Tu = T1 where

T1 2 T(1) is de�ned by rhT1 = T (h)
1 for all h. 2

3.1 Transition rates

The transition rates for a uniform pruning process will be given in Lemma 8.
Note that in this paper, Markov processes are constructed in fairly explicit
fashion, in contrast to the usual way of specifying a Markov process by stating
its transition rates.

For T1 with #T1 < 1, a uniform pruning process (Tu; 0 � u � 1) is an
inhomogeneous Markov chain with step function paths of jump-hold type on
the countable state space T. This chain is determined by its co-transition
probabilities (36), or by its co-transition rates, which are much simpler and
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can be described as follows. For t in T(1) and w a non-root vertex of t,
let v = parent(w). Deleting (v;w) from the set of edges of t de�nes a
directed graph on verts(t) with two component subtrees, say tw and tw, with
root(tw) = root(t) = 0, and root(tw) = w. Call tw the remaining tree and tw

the pruned branch derived by pruning t below w, or by cutting the edge (v;w)
of t. >From the construction of a uniform pruning process (Tu; 0 � u � 1)
with independent uniform times, there is the following formula: for all �nite
family trees t and r the co-transition rate q̂u(t ! r) from t to r at time
0 < u � 1 given Tu = t is given by

q̂u(t! r) = u�1#V (r; t) (39)

where
V (r; t) := fw 2 verts(t)� f0g : fam(tw) = rg (40)

In words, #V (r; t) is the number of ways to choose a non-root vertex w of t
such that if t is pruned below w, and the remaining tree tw is relabeled as a
family tree, the result is r. Lemma 9 below gives a more explicit description
of how V (r; t) and #V (r; t) are determined by r and t.

Consider now the forwards transition rates of a uniform pruning process
(Tu; 0 � u � 1). For two �nite family trees r and t and 0 < u < 1 let
qu(r! t) be the rate of forwards transitions of from r to t at time u, given
Tu = r. Combining (39) and the obvious identity of unconditional rates

P (Tu = r)qu(r! t) = P (Tu = t)q̂u(t! r) 8 r; t 2 T

gives the following formula.

Lemma 8 For a uniform pruning process (Tu; 0 � u � 1) with #T1 < 1,
the forwards transition rate from r to t at time 0 < u < 1 is

qu(r! t) =
#V (r; t)

u

P (Tu = t)

P (Tu = r)
(41)

The meaning of the combinatorial factor #V (r; t) can be clari�ed in terms
of the following operation on family trees. Suppose that r; s 2 T(1), that
v is a vertex of r, and that j 2 [cvr + 1]. Let t(r; v; j; s) denote the family
tree obtained by attaching the root of s to r as the jth child of v. This
is the unique family tree t whose vertices contain v and a child w of v of
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rank j such that fam(tw) = r and fam(tw) = s. Note that cvt = cvr + 1,
and that #t = #r + #s. The notation is illustrated by Figure 2, in which
t = t(r; v; 2; s) = t(r; v; 3; s) so that #V (r; t) = 2.
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Figure 2

The following lemma is intuitively clear from pictures like Figure 2; we
leave its proof to the dedicated reader!

Lemma 9 For r; t 2 T, let V (r; t) := fw 2 verts(t)� f0g : fam(tw) = rg.
(i) If V (r; t) is not empty, then this set is of the form fw1; w2; � � � ; wkg

where k = #V (r; t) and the wi are consecutive siblings. That is, the wi have
a common parent v 2 t, and wi is the (m + i)th child of v for some m � 0
and 1 � i � k.

(ii) For any particular w 2 V (r; t), the set V (r; t) is the maximal set
fw1; w2; � � � ; wkg of consecutive children of parent(w) such that w = wi for
some i and fam(twi) = fam(tw) for all i.

(iii) The number #V (r; t) equals the number of representations of t as
t = t(r; v; j; s). That is, #V (r; t) is the number of triples (v; j; s) with v 2
r; j 2 [cvr+ 1]; s 2 T such that t(r; v; j; s) = t:

(iv) For r and t such that #V (r; t) � 1, there is a unique vertex v of r
and a unique s 2 T such that t(r; v; j; s) = t for some j 2 [cvr+ 1].

(v) For given r; v and s let I = I(r; v; s) be the set of i such that the
descendants in r of the ith child of v form a family tree identical to s. As
j ranges over i1 � j � im + 1 where fi1; : : : ; img is a maximal sequence of
consecutive elements of I, the tree t = t(r; v; j; s) is the same, and such that
#V (r; t) = m + 1, whereas every other choice of j 2 [cvr+ 1] de�nes a tree
t0 = t(r; v; j; s) with #V (r; t0) = 1.
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Given a family tree r, a vertex v of r, and a random family tree S, say that
a random family tree T is constructed by random attachment of S to r at v
if T = t(r; v; J;S) where J has uniform [cvr+ 1] distribution independently
of S. Part (iii) of the above lemma shows that the distribution of T is then
determined by the following formula: for all v 2 r and j 2 [cvr+ 1]

P (T = t) =
#V (r; t)P (S = s)

cvr+ 1
for t = t(r; v; j; s): (42)

3.2 Pruning a Galton-Watson tree

Throughout this section let (Gu; 0 � u � 1) be the T(1)-valued process
derived by uniform pruning of a GW tree G1 with o�spring distribution p1(�).
We shall describe the forwards transition rates ((45) and Proposition 12) and
transition probabilities (Proposition 14) for this process.

Repeated application of the argument which justi�ed (37) yields \known
fact (i)" from the Introduction.

Lemma 10 (Lyons [29]) The tree Gu is a GW tree whose o�spring dis-
tribution pu(n) := P (ZGu = n) is determined for all n = 0; 1; 2; : : : by the
formula

gu(s) :=
X
n

pu(n)sn = g1(1 � u + us) 8 u 2 [0; 1]: (43)

In particular, if G1 is a PGW(�1) tree then Gu is a PGW(u�1) tree.

Lyons [29, 30] and Haase [20] give applications of Lemma 10 to the theory
of percolation on trees. Note the case g1(s) = sk for some positive integer k,
when (Gu; 0 � u � 1) is a uniform pruning of the deterministic tree in which
each vertex has k children. Let

�1 := E(ZG1) =
X
n

np1(n): (44)

Note that for all 0 � u � 1

E(ZGu) =
X
n

npu(n) = u�1:
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The forwards transition rates. Assuming �1 � 1, so #G1 < 1 almost
surely, we �nd from (3) and (41) that for r; s 2 T, for each v 2 r and
j 2 [cvr+ 1] the forwards transition rate from r to t = t(r; v; j; s) at time u
given Gu = r is

qu(r! t) =
#V (r; t)�1���u (cvr)

cvr+ 1
P (Gu = s) for each t = t(r; v; j; s) (45)

where

���u (n) :=
p��u (n)

pu(n)
for p��u (n) = (u�1)

�1(n + 1)pu(n + 1): (46)

Note that p��u (�) is the distribution of (ZGu)� � 1 for (ZGu)� with the size-
biased distribution derived from the distribution pu(�) of ZGu. The following
lemma, which is the key to a later calculation, shows that p��u (�) is also the
distribution of ZG��u where (G��u ; 0 � u � 1) is a uniform pruning of G��1
de�ned as a GW process with dist(ZG��1 ) = dist((ZG1)� � 1).

Lemma 11 For a non-negative integer random variable Z with mean � 2
(0;1), let Z� have the size-biased distribution P (Z� = n) = nP (Z = n)=�,
let Z�� = Z� � 1, and let Zu denote the sum of Z independent Bernoulli(u)
variables. Then for each 0 � u � 1.

(Z��)u
d
= (Zu)��: (47)

Proof. Let g(s) :=
P

n P (Z = n)sn. Then Z�� has generating function
g0(s)=� where � = g0(1), and Zu has generating function g(1 � u + us) and
mean u�. So (47) amounts to

g0(1� u + us)

�
=

d

ds

g(1 � u+ us)

u�

which is true by the chain rule. 2

In terms of operators on the set of probability measures on the non-
negative integers with �nite non-zero mean, the lemma states that the oper-
ator dist(Z) ! dist(Z��) commutes with the operator dist(Z) ! dist(Zu).

Formula (45) only displays transition rates between �nite trees, assuming
�1 � 1. However, by comparison with (42), and by consideration of similar
formulae for height restricted processes, we obtain the following intuitive
description of the forwards evolution of (Gu) which is valid even without
assuming �1 � 1. Let GW(u) denote the distribution of the GW tree Gu.
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Proposition 12 The distribution of the process (Gu; 0 � u � 1) with G0 = �
is uniquely determined by the following transition rates: at each time u 2
(0; 1), given Gu = r, each vertex v of r with c children runs a risk of appending
a new branch at rate u�1(c + 1)pu(c + 1)=pu(c) where pu(n) = P (ZGu = n)
is determined by (43); given that a branch is appended to v 2 Gu� at time
u the new branch is appended as if by random attachment of a branch with
distribution GW(u).

Let k = supfn : p1(n) > 0g. Provided c < k + 1 it is elementary that
pu(c) is a strictly positive and continuous function of u 2 (0; 1), hence so
is the rate u�1(c + 1)pu(c + 1)=pu(c) appearing above. So these rates are
determined for all 0 � c < k + 1 and 0 < u < 1 as appropriate limits as
�! 0 of naively de�ned conditional probabilities from the joint distribution
of Gu and Gu+�.

As a corollary of Proposition 12 there is the following characterization of
a PGW tree in terms of the evolution of its uniform pruning process. Part
(i) of the corollary sharpens a similar description of uniform pruning for an
unlabeled PGW tree in Aldous [1].

Corollary 13 (i) If G1 is a PGW(�1) tree then Gu is a PGW (u�1) tree. The
rate of attachment of branches to v 2 Gu at time u is then identically equal
to �1, for all 0 < u < 1 and v 2 Gu, and given that at time u a branch is
appended to v 2 Gu� the new branch is appended as if by random attachment
of a branch with distribution PGW(u�1).

(ii) Conversely, if a uniform pruning (Gu) of a GW tree G1 is such that
for some 0 < u < 1, and some vertex v such that P (v 2 Gu) > 0, the rate
of attachment of branches to v given Gu does not depend on the number of
children of v in Gu, then G1 is a PGW (�1) tree for some 0 � �1 <1.

Proof. Part (i) is the specialization of Proposition 12 to a PGW tree. The
assumption in (ii) forces u�1(c + 1)pu(c + 1)=pu(c) = g(u) for some g(u)
not depending on c. It follows that pu(�) is Poisson(u�1) for some �1 < 1,
and hence that g1(1 � u + us) = gu(s) = exp(�u�1(1 � s)). Since this
determines g1(z) = exp(��1(1 � z)) for z 2 (1 � u; 1), and a probability
generating function g1(z) is an analytic function of z for jzj < 1, it follows
that g1(z) = exp(��1(1 � z)) for all jzj < 1, and hence that dist(ZG1) =
Poisson(�1). 2
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Forwards transition probabilities By extension of the earlier notion of
attaching the root of one family tree s as the jth child of some vertex v of
another family tree r to form a new tree t(r; v; j; s), we can make sense of
attaching various trees as variously ranked children of various vertices of r.
Given non-negative integers k(v); v 2 r and for each v 2 r an increasing
sequence of k(v) integers

1 � j1(v) < : : : < jk(v)(v) � cvr+ k(v) (48)

and a sequence of k(v) trees s1(v); : : : ; sk(v)(v), we can construct a new family
tree by attaching the root of si(v) to r as the ji(v)th child of v for each
i 2 [k(v)] and each v 2 r. Given r and k(v); v 2 r, and some distribution
for a random family tree S, say that a random tree T is constructed by
random attachment of k(v) independent copies of S to v for each v 2 r if the
distribution of T is that induced by making the above construction with a
uniform random choice of ji(v); i 2 [k(v)] subject to (48) and random choice
of si(v) according to the distribution of S, independently for each (v; i) with
v 2 r; i 2 [k(v)]. Assuming for simplicity that r is a �nite tree and S is an
almost surely �nite tree, the probability of making the construction with any
particular choice of ji(v) and si(v) is then

Y
v2r

 
cvr+ k(v)

k(v)

!�1 k(v)Y
i=1

P (S = si(v)): (49)

As for random attachment of one copy of S to one vertex v of r discussed
earlier, various choices of ji(v) and si(v) may result in construction of the
same family tree t. So for T constructed by random attachment of k(v)
independent copies of S to v for each v 2 r, the probability P (T = t) is
obtained by summing the expression (49) over all such choices.

The following proposition describes the joint distribution of Gu and G1 for
each �xed 0 � u < 1 in terms of random attachment of branches. The joint
distribution of Gu and Gz for arbitrary 0 � u < z � 1 is then determined
by rescaling. For c � 0 let �Pu(c; �) denote the conditional distribution of
ZG1 � ZGu given ZGu = c. That is, for m � 0

�Pu(c;m) = P (ZG1 � ZGu = m jZGu = c) =
p1(m + c)

pu(c)

 
m+ c

c

!
uc(1 � u)m:

(50)
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It is known [40] that �Pu(c; �) does not depend on c, meaning that ZG1�ZGu
and ZGu are independent, i� p1(�) is Poisson.

Proposition 14 Fix 0 � u < 1. Given Gu, let Ku(v); v 2 verts(Gu) be
independent with distributions �Pu(cvGu; �) and given the Ku(v) for all v 2 Gu
let Ĝ1 be de�ned by random attachment of Ku(v) independent copies of G1 to
v for each v 2 Gu. Then (Gu;G1) d

= (Gu; Ĝ1).

Proof. >From the uniform pruning construction, (Gu;G1) d
= (fam(Gyu);G1)

where Gyu is the subtree of G1 containing the root after removing each edge of
G1 independently with probability 1 � u. It is easily seen that conditionally
given Gyu, independently as v ranges over Gyu the number of children w of v
in G1 that are not children of v in Gu has distribution �Pu(cvGu; �). Moreover,
each one of these children w 2 G1 � Gyu is the root of a subtree of G1 which
when identi�ed as a family tree is an independent copy of G1. The identity

(Gu;G1) d
= (Gu; Ĝ1) now follows after appropriate relabeling, using the two

following consequences of the uniform pruning construction:
(i) for each v 2 V, given v 2 Gyu and both the number c of children of v in Gyu
and the number c+ k of children of v in G1, the set of c ranks of the children
in Gyu is a uniform random subset of [c+ k] of size c;
(ii) for each h � 0, conditionally given rhG1, rhGyu, and the c(v) and c(v)+k(v)
as v ranges over vertices of Gyu of height h, these random subsets of sizes c(v)
picked from [c(v) + k(v)] are independent.

2

3.3 Pruning a GW tree conditioned on non-extinction

In this section, let G1 be a GW tree which is critical or subcritical, with
non-degenerate o�spring distribution, so

�1 := E(ZG1) 2 (0; 1] and #G1 <1 almost surely.

As in the previous section, let

(Gu; 0 � u � 1) be a uniform pruning of G1.
Let G11 be G1 conditioned on non-extinction, as in Proposition 2, and let

(G�u; 0 � u � 1) be a uniform pruning of G11 .

26



Intuitively,

(G�u; 0 � u � 1) is (Gu; 0 � u � 1) conditioned on #G1 = 1 (51)

but as indicated around (31), this interpretation is hazardous for � < 1. Our
descriptions of (G�u; 0 � � � 1) parallel similar descriptions, in terms of weak
limits or h-transforms, of bridges and excursions of Markov processes such
as Brownian motion [17, 41].

To be careful about (51), it follows from Proposition 2 and Lemma 6 that

dist(G�u; 0 � u � 1) = lim
h"1

dist(Gu; 0 � u � 1 jZhG1 > 0) (52)

and from Proposition 5 and Lemma 6 that provided �1 = 1

dist(G�u; 0 � u � 1) = lim
n"1

dist(Gu; 0 � u � 1 j#G1 = n): (53)

Here (52) and (53) refer to convergence of �nite dimensional distributions,
which extends easily to convergence of distributions on suitable path spaces.
Note that (53) is false for �1 < 1. With the conditions and notation of
Proposition 5, the limit in distribution on the right side of (53) is rather
the distribution of the uniform pruning ( �G�u; 0 � u � 1) of �G11 obtained by
conditioning �G on non-extinction, where �G is the critical GW tree such that

dist( �G j# �G = n) = dist(G j#G = n) 8 n � 1:

Since G11 is a tree with only one in�nite path, it is obvious that #G�u <1
almost surely for all u < 1. And, from (34),

G�1� = G�1 = G11 almost surely. (54)

The following proposition provides an explicit formula for the distribu-
tion of G�u via its density relative to the distribution of Gu. Recall that the
distribution of Gu is given by the product formula (3) with pu(�) in place of
p(�).
Proposition 15 The distribution of the uniform pruning process (G�u; 0 �
u < 1) with countable state space T is determined by the co-transition prob-
abilities (36) of any uniform pruning process and the following distribution
of G�u for each 0 � u < 1:

P (G�u = t) = h�(u; t)P (Gu = t) 8 t 2 T (55)
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where h�(0; �) = 1 and for 0 < u < 1

h�(u; t) := (1� u)
X
v2t

�
�h(v)
1 ���u (cvt) (56)

with h(v) the height of v, and cvt the number of children of v in t, and
���u (n) := (n+ 1)pu(n+ 1)(u�1pu(n))�1 for pu(�) the o�spring distribution of
Gu as in (43).

After proving this proposition, we point out some reformulations of it.
Proof. It su�ces to derive (55) for (G�u) constructed as G�u = fam(Gyu) where
Gyu is the component containing the root in the subgraph of G11 consisting of
those edges e with �e � u where the �e are independent uniform(0; 1) random
variables. Let (Vh) be the in�nite spine of G11 , let

Hu := supfh : Vh 2 Gyug

that is the height of the highest spinal vertex of G11 that is a vertex of Gyu.
Formula (55) follows from formula (57) of the next lemma by summation
over v 2 t. 2

Lemma 16 For 0 � u < 1 let V �
u be the vertex of G�u at height Hu which is

the image of VHu 2 Gyu via the relabeling map from Gyu ! G�u. Then for all
t 2 T and v 2 t,

P (G�u = t; V �
u = v) = (1� u)��h(v)1 ���u (cvt)P (Gu = t): (57)

Proof. The next lemma allows this formula to be read from (23) by appli-
cation of Lemma 4 with G = Gu, G1 = fam(G1y

u ) for G1y
u as de�ned below,

and H = Hu. 2

Lemma 17 Fix 0 < u < 1. Let G1y
u be the subtree of G11 which is the

component containing 0 in the random graph de�ned by deletion of each edge
e of G11 not in its in�nite spine and such that �e > u, where the �e are the
independent uniform (0; 1) variables used to construct G�u. Then

(i) The tree G�u is the family tree derived from the �nite subtree of fam(G1y
u )

which remains after cutting the spine of fam(G1y
u ) between heights Hu and

Hu + 1.
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(ii) Let G1u be Gu conditioned on non-extinction. Then

fam(G1y
u )

d
= G1u :

(iii) The height Hu is independent of fam(G1y
u ) with the geometric(1�u)

distribution:

P (Hu = n) = (1� u)un 8 n = 0; 1; : : :

Proof. Part (i) is evident from the de�nitions, and (iii) is obvious because
Hu is the least n such that the edge e := (Vn; Vn+1) has �e > u. To prove (ii),
observe that from the description of G11 in Proposition (2) (iv), the de�nition
of G1y

u , and (43), at each level h of fam(G1y
u ), the vertices of fam(G1y

u )
have independent numbers of o�spring with the o�spring distribution pu(�)
of Gu for non-spinal vertices, and a modi�ed o�spring distribution for spinal
vertices. According to Proposition (2) (iv) applied to G = Gu, a similar

statement applies to G1u . So to show fam(G1y
u )

d
= G1u , it su�ces to check

that
(a) the o�spring distribution of each spinal vertex of fam(G1y

u ) is identical
to the o�spring distribution of each spinal vertex of G1u ;

(b) given that a spinal vertex of fam(G1y
u ) has c children, the rank of the

next spinal vertex of fam(G1y
u ) is uniform on [c].

But, in the notation of Lemma 11, by Proposition 2(iv) applied to G11 and the
construction of G1y

u , each spinal vertex of fam(G1y
u ) has o�spring according

to the distribution of (ZG11 � 1)u + 1 = ((ZG1)��)u + 1. On the other hand,
by Proposition 2 (iv) applied to G1u , each spinal vertex of G1u has o�spring
according to the distribution of (ZGu)� = (ZGu)�� + 1. But

(ZGu)�� + 1
d
= ((ZG1)u)�� + 1

d
= ((ZG1)��)u + 1 (58)

where the �rst equality is due to (43) and the second is the commutation
rule of Lemma 11. This proves (a), and (b) is quite easy. 2

Reformulation of Proposition 15. Since (Gu; 0 � u < 1) and (G�u; 0 �
u < 1) are two uniform pruning processes with the same co-transition prob-
abilities (36), for all t 2 T and 0 < u < 1

dist(G�t ; 0 � t � u j G�u = t) = dist(Gt; 0 � t � u j Gu = t): (59)
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We interpret this as an equality of distributions on the path space 
[0; u],
where for u > 0 we let 
[0; u] be the space of all right continuous step function
paths ! : [0; u] ! T with at most a �nite number of jumps, equipped with the
�-�eld generated by the maps t! !t where ! = (!t; 0 � t � u). Then (59)
combined with (55) amounts to the following formula: for each non-negative
measurable function f de�ned on 
[0; u],

E[f(G�t ; 0 � t � u)] = E[h(u;Gu)f(Gt; 0 � t � u)]: (60)

Implicit in Proposition 15 is the consistency of this prescription of distribu-
tions of (G�t ; 0 � t � u) as u varies. By a standard argument, this consistency
amounts to:

Corollary 18 Relative to the �ltration generated by (Gu; 0 � u < 1),

the process (h�(u;Gu); 0 � u < 1) is a non-negative martingale, with

Eh�(u;Gu) = 1 8 0 � u < 1:

In other words, h�(u; t) de�ned by (56) is a space-time harmonic function
for the chain (Gu; 0 � u < 1), and the Doob h�-transform of (Gu; 0 � u < 1)
is (G�u; 0 � u < 1). See the end of Section 4.4 for identi�cation of the
corresponding Martin boundary.

3.4 The supercritical case

In the critical case, the GW tree conditioned to be in�nite (Proposition 2)
has another interpretation as a limit of supercritical GW trees conditioned
on non-extinction. This fact, and its consequence for pruning processes, are
spelled out in Proposition 19.

It is convenient here to rescale the time parameter to make it identical
to the o�spring mean. So suppose (G�; � 2 I) is a uniform pruning process
parameterized by an interval I with [0; 1] � I � [0;1), such that G� is a
GW tree with E(ZG�) = � for all � 2 I. For example, take I = [0; k] for
some k = 2; 3; : : :, and let (Guk; 0 � u � 1) be a uniform pruning of the
deterministic regular tree in which each vertex has k children. Or, as in the
next section, take G� to be a PGW(�) tree.
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Proposition 19

lim
�#1

dist(G� j#G� = 1) = lim
�#1

dist(G1 j#G� = 1) = dist(G11 ) (61)

lim
�#1

dist(Gu; 0 � u � 1 j#G� = 1) = dist(G�u; 0 � u � 1) (62)

Proof. By application of Lemma 6, it su�ces to show that

dist(G� j#G� = 1) ! dist(G11 ) as � # 1: (63)

Let

F (�) := P (#G� <1); �F (�) := 1 � F (�) = P (#G� = 1): (64)

Let g� be the generating function of ZG�. It is well known that the extinction
probability F (�) is the least non-negative root of the equation

F (�) = g�(F (�)) (65)

and that �F (�) is strictly positive i� � > 1. Fix � > 1 with � 2 I. It is
assumed that (Gu� ; 0 � u � 1) is a uniform pruning of G�, and hence

g�(s) = g�(1 � (�=�) + (�=�)s) (66)

It is easy to see from this formula and the strict convexity of g� that F (�)
is a continuous decreasing function of �. Hence �F (�) # 0 as � # 1, Now �x
h � 0 and t 2 T and compute

P (rhG� = t j#G� = 1) = P (rhG� = t)
1� (1� �F (�))Zht

�F (�)

! P (rh(G1) = t) (Zht) = P (rhG11 = t) as � # 1

where the continuity of P (rh(G�) = t) is evident from (2) and the explicit
formula for p�(�) in terms of p�(�) which can be read from (66), and the last
equality is (18) for � = 1. 2
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The ascension time. In terms of the uniform pruning process (G�; � 2 I)
we de�ne the ascension time A := inff� : #G� = 1g. So A > 1 a.s. The
events (A � �) and (#G� = 1) are identical, so

P (A � �) = P (#G� = 1) = �F (�) 8 � 2 I (67)

and we interpret (62) intuitively as

dist(Gu; 0 � u � 1 jA = 1) = dist(G�u; 0 � u � 1): (68)

In contrast, Proposition 12 implies that #GA� < 1 a.s. and implies an
explicit formula for the joint law of GA� and A, which can be used to ob-
tain a continuously varying conditional distribution of GA� given A = a for
a > 1. But this distribution is concentrated on �nite trees rather than on
in�nite ones. In Section 4.2 we study the Poisson case where there is much
simpli�cation.

4 The PGW pruning process

It follows easily from Lemma 10 by Kolmogorov's extension theorem that
there exists a unique distribution for a T(1)-valued inhomogeneous Markov
process (G�; 0 � � <1) such that

dist(G�) = PGW(�) 8 0 � � <1: (69)

and (Gu�; 0 � u � 1) is a uniform pruning of G� for each � > 0. Essentially
the same Markov process, with states identi�ed as rooted unlabeled trees
rather than family trees, featured in Aldous [1]. We shall show how the
results of section 3 may be simpli�ed and extended in this PGW setting. We
sometimes give both \proof by specialization" from the general GW result in
section 3, and an \autonomous proof" directly exploiting Poisson structure.

4.1 The joint law of (G�;G�)

For each �xed pair of times (�; �) with 0 � � < � <1 this joint law is de-
termined by the PGW(�) distribution of G� and the conditional distribution
of G� given G�, as given by (36). The following specialization of Proposition
14 describes the conditional distribution of G� given G�:
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Proposition 20 Fix � and � with 0 � � < � <1. Given G�, let N�;�(v); v 2
G� be independent with Poisson(���) distribution, and given the N�;�(v); v 2
G� let Ĝ� be de�ned by random attachment of N�;�(v) independent copies of

G� to v for each v 2 G�. Then (G�;G�)
d
= (G�; Ĝ�): In particular

(G�;#G�) d
=

0
@G�;#G� +

N�;�X
i=1

#G�(i)
1
A (70)

where N�;� is the sum of N�;�(v) over all vertices v of G�, so given G� with
#G� = ` the distribution of N�;� is Poisson with mean `(� � �), and given
G� and N�;� the G�(i) are i.i.d. copies of G�.

For general o�spring distribution, the process (#Gu) is not necessarily
Markov, but in the Poisson setting it is. We suspect that either of the results
of the following corollary can be used to characterize the Poisson case.

Corollary 21 The process (#G�; � � 0) with state space f1; 2; : : : ;1g has
the Markov property, and

the process ((1� �)#G�; 0 � � < 1) is a martingale (71)

relative to the �ltration generated by (G�; 0 � � < 1).

Proof by specialization. The forwards Markov property of (#G�; � �
0) follows easily from (70) and the Markov property of (G�; � � 0). The
martingale property is the particular case of Corollary 18 for G1 a PGW(1)
tree.
Autonomous proof. Result (71) can be checked directly from (70) as
follows. Since

E(#G�) = E

 
1X
h=0

ZhG�
!

=
1X
h=0

�h = (1� �)�1 (72)

formula (70) implies that for 0 � � � � < 1

E(#G� j G�) = #G� + #G�(� � �)(1� �)�1 =

 
1� �

1 � �

!
#G�:

With the Markov property of (G�; 0 � � < 1) this gives

E((1� �)#G� j G�; 0 � � � �) = E((1� �)#G� j G�) = (1 � �)#G�
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which is (71). 2

Formulae for the forwards transition probabilities of the Markov chain
(#G�; � � 0) can be obtained as follows from the representation (70). Con-
sider for � > 0 and 0 � � � 1, the distribution of

X�;� :=
N�X
i=1

X�;i

where N� has Poisson (�) distribution, and given N� = n the X�;i for 1 � i �
n are i.i.d. with the Borel(�) distribution P�(�). The distribution of X�;� is
known [13] as the generalized Poisson distribution (GPD) on f0; 1; : : : ;1g
with parameters (�; �), and given by the formula

P (X�;� = k) =
1

k!
�(� + k�)k�1 e���k� 8k = 0; 1; : : : (73)

which follows easily from (11). According to (70), for 0 � � � � < 1
the conditional distribution of #G� � #G� given #G� = ` is GPD(�; �) for
� = `(� � �). That is to say

P (#G� = ` + kj#G� = `) = P (X�;� = k) (74)

as in (73) for � = `(� � �). Take k = m � ` in (74) to obtain the following
formula for 0 � � < � and 1 � ` � m <1 :

P (#G� = m j#G� = `) =
`(� � �)

(m� `)!
(m�� `�)m�`�1e�(m��`�): (75)

Using Bayes' rule and the Borel distributions (10) of #G� and #G�, this for-
mula can be inverted to obtain an expression for the co-transition probability
P (#G� = ` j#G� = m). Due to the Un-representation (15) of dist(G� j#G� =
n) and the scaling property of a uniform pruning process, this co-transition
probability depends on (�; �) only through the ratio �=�, and has a simple
combinatorial interpretation in terms of pruning a uniform random tree. See
Section 4.8 for further discussion and references to earlier appearances of the
same co-transition probabilities.
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4.2 Transition rates and the ascension process

For each h = 1; 2; : : : the height restricted process (rhG�; 0 � � < 1) is
an inhomogeneous Markov chain with countable state space T(h) and step-
function paths, whose co-transition rates and co-transition probabilities can
be read from the general formulae of section 3.

The process (G�; 0 � � < 1) develops with time running forwards by
a process of attachment of trees which can be described as follows, due to
Corollary 13. Starting from G0 = �, the single-vertex tree, at each time � � 0
and at each vertex v of G�, attachments to v are made at rate 1; given G� = r

and that an attachment is made to v 2 r at time �, the tree to be attached
has PGW(�) distribution, and the root of this tree is attached to r as the
jth child of v for a j chosen independently and uniformly from [cvr + 1].
Thus for each v 2 r and j 2 [cvr + 1] the forwards transition rate from r to
t = t(r; v; j; s) at time u given G� = r is

q�(r! t) =
#V (r; t)P (G� = s)

cvr+ 1
for each t = t(r; v; j; s): (76)

The rates (76) for r; t 2 T determine the evolution of (G�; � � 0) only up
to the ascension time A := inff� : #G� = 1g. As noted in Aldous [1],
what happens at time A is that the process attaches an in�nite branch to
some vertex of GA�, which is an almost surely �nite random tree, to form an
in�nite tree GA.

Consider now the ascension process (G�; 0 � � < A) in which the state at
time � is G� if 0 � � < A and1 if A � �, where1 is a state representing
any in�nite tree. The ascension process is a Markov chain with countable
state-space T [ f1g, where 1 is an absorbing state. The distribution of
the ascension process is determined by the initial state G0 = �, the transition
rates (76), and the ascension rate

q�(r!1) = (#r)P (#G� = 1) =: (#r) �F (�): (77)

Note that the total rate of transitions out of each state r 2 T is #r, which
is the sum of the combined rate (#r)F (�) of transitions to all other �nite
trees, and the rate (#r) �F (�) for transitions to1, where F (�) + �F (�) = 1.

We recall now some known features of the function �F : [1;1) ! (0; 1]
and the conditional distribution of G� given that G� <1. See Alon-Spencer
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[8, x6.4 and x6.5], or Aldous [1] for further discussion. For the Poisson(�)
generating function g�(s) = exp(��(1� s)) the equation (65) shows that for
� > 1 the non-extinction probability �F (�) is the strictly positive solution of
1� �F (�) = exp(�� �F (�)). It follows that the inverse function �F�1 : (0; 1] !
[1;1) is

�F�1(u) =
� log(1� u)

u
= 1 +

u

2
+
u2

3
+ � � � (78)

For � � 1 de�ne the conjugate �̂ � 1 by �̂ = �F (�), where F (�) = 1� �F (�)
is the extinction probability. Then for � � 1 it follows from (8) that

P (G� = t) = F (�)P (G�̂ = t) 8 t 2 T (79)

and hence for � � 1

dist(G� j#G� <1) = dist(G�̂) = PGW(�̂): (80)

The formula (77) for the ascension rate combined with these results gives the
following formulae for the joint distribution of A and GA�. Formula (81) and
the variant of (82) for an unlabeled (G�) appear as formulae (13) and (15) in
[1].

Lemma 22 For � � 1 and t 2 T,

P (A � �) = �F (�) (81)

P (GA� = t; A 2 d�) = �F (�)(#t)P (G� = t) d� (82)

P (GA� = t jA = �) = (1� �̂)(#t)P (G�̂ = t) (83)

for �F (�) and the conjugate �̂ as de�ned above. Let U have uniform(0; 1)
distribution. Then 

A;
Â

A

!
:= (A;F (A))

d
=

 � log U

1� U
;U

!
: (84)

Proof. First, P (A � �) = P (#G� = 1) = �F (�), giving (81). Next, given
G� = t, each of the #t vertices has chance �F (�)d� of acquiring an in�nite
branch during time d�, giving (82). Next, for �xed � � 1 the conditional
probabilities P (GA� = t jA = �) are by (82) proportional to (#t)P (G� = t),
and thus by (80) proportional to (#t)P (G�̂ = t). >From (72), the mean of
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the Borel(�̂) distribution is 1=(1 � �̂), and (83) follows. Finally, the fact

that A has distribution function �F means that A
d
= �F�1(U)

d
= �F�1(1�U) =

(� logU)=(1 � U). So

(A; �F(A))
d
=

 � log U

1� U
; 1� U

!
:

and hence

(A;F (A)) = (A; 1� �F (A))
d
=

 � logU

1� U
;U

!

which is (84). 2

4.3 The PGW1(1) distribution

For 0 < � � 1 write PGW1(�) for the distribution of the in�nite tree
obtained by conditioning PGW(�) to be in�nite (Proposition 2). In other
words, PGW1(�) is the distribution of the tree constructed by attaching a
sequence of i.i.d. PGW(�) family trees to a single in�nite spine, as described
in Corollary 3. The particular case PGW1(1) plays a fundamental role in
the sequel. The following proposition summarizes some of the many ways
this process arises as a weak limit. Here G� is a PGW(�) family tree, and
fam(Un) is the family tree derived from Un with uniform distribution on the
set R[n] of nn�1 rooted trees labeled by [n].

Lemma 23 (i) (Grimmett [19])

fam(Un)
d! PGW1(1) as n!1

(ii) For each � 2 (0;1),

dist(G� j#G� = n)
d! PGW1(1) as n " 1:

(iii) For each � 2 (0; 1],

dist(G� j#G� � n)
d! PGW1(1) as n " 1:

(iv) (Kesten [25]) For each � 2 (0; 1]

dist(G� jZhG� > 0)
d! PGW1(�) as h " 1:
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(v)

dist(G� j#G� = 1)
d! PGW1(1) as � # 1:

Proof. Grimmett [19] presented the variant of (i) for unlabeled trees, but his
argument yields the sharper result for family trees. Part (ii) is the particular
case of Proposition 5 for a PGW tree. Either of (i) and (ii) follow from
the other due to the Un-representation (15) of dist(G� j#G� = n). Part (iii)
follows easily from (ii). Part (iv) is Proposition 2 for PGW(�). Part (v) can
be read from (61) for the Poisson family.

4.4 The process (G��; 0 � � � 1)

Let (G��; 0 � � � 1) be a uniform pruning of G11 with PGW1(1) distribution.
As explained in the more general setting of Section 3.3, this process should
be understood intuitively as (G�; 0 � � � 1) conditioned on #G1 = 1 where
(G�; 0 � � � 1) is a uniform pruning of G1 with PGW(1) distribution. Note
that G�1� = G�1 = G11 almost surely, and that for all t 2 T; 0 < � < 1 and
0 < � <1

dist(G�t�; 0 � t � 1 j G�� = t) = dist(Gt�; 0 � t � 1 j G� = t): (85)

According the following proposition, for each �xed � with 0 � � < 1, the
distribution of G�� is the PGW(�) distribution size-biased by total popula-
tion size. We denote this probability distribution on �nite family trees by
PGW�(�). Sheth [42, 43] studied various features of the PGW�(�) distribu-
tion in connection with a model for a coalescent process, and the following
corollary of Proposition 15 is closely related to Sheth's results.

Corollary 24 The process (G��; 0 � � < 1) is an inhomogeneous Markov
chain with countable state space T, whose distribution is uniquely determined
by (85) and the following formula:

P (G�� = t) = (1 � �)(#t)P (G� = t) 8� 2 [0; 1); t 2 T: (86)

Proof by specialization. Apply Proposition 15 for G1 a PGW(1) tree.
Then �1 = 1, and ���u (n) = 1 for all 0 < u < 1 and n = 0; 1; : : :, so (55)
simpli�es to (86).
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Autonomous proof. Formula (85) combined with (86) amounts to the
following formula: for each non-negative measurable function f de�ned on
the path space 
[0; �] de�ned above (60),

E[f(G�t ; 0 � t � �)] = (1 � �)E[(#G�)f(Gt; 0 � t � �)]:

That this is a consistent prescription of dist(G�t ; 0 � t � �) as � varies
amounts to the martingale property of ((1 � �)#G�; 0 � � < 1) obtained
in Corollary 21. The existence and uniqueness in distribution of a process
(G��; 0 � � < 1) satisfying (86) and (85) are now clear by Kolmogorov's

extension theorem. Lemma 7 implies the existence of G�1 := G�1� 2 T(1) as
an almost sure limit, and implies that (G��; 0 � � � 1) is a uniform pruning

of G�1. To �nish the argument it just has to be shown that G�1 d
= G11 . That

is, for each h � 0 and t 2 T

P (rhG�� = t) ! P (rhG11 = t) as � " 1: (87)

But from (85), for � 2 (0; 1] we can compute

P (rhG�� = t) =
1X
n=0

P (rhG� = t j#G� = n)P (#G�� = n) (88)

where we know by the Un-representation (15) of dist(G� j#G� = n) and
Lemma 23 that

P (rhG� = t j#G� = n) = P (rhG1 = t j#G1 = n) ! P (rhG11 = t)

as n!1. But for each �xed n

P (#G�� = n) = (1 � �)nP (#G� = n) ! 0 as � " 1

by inspection of the Borel formula (10), and (87) now follows easily from
(88). 2

The corollary above identi�es the process (G��; 0 � � < 1) as the Doob
h�-transform of (G�; 0 � � < 1) associated with the space-time harmonic
function h�(�; t) := (1��)(#t) for the inhomogeneous Markov chain (G�; 0 �
� < 1) with state-space T. The autonomous proof yields also the following
corollary, where the explicit formula (89) is obtained from (75). The limit
relation (90) is evident from this argument without calculation, but it can
also be checked from (89) and (10) using Stirling's formula.

39



Corollary 25 Every non-negative function h(�; n) such that h(0; 1) = 1 and
the process (h(�;#G�); 0 � � < 1) is a martingale relative to the �ltration
generated by (G�; 0 � � < 1) admits a unique representation as

h(�; n) =
X

m2f1;2;:::;1g

P (m)hm(�; n)

for some probability distribution P (�) on f1; 2; : : : ;1g where for m = 1; 2; : : :

hm(�; n) =
P (#G1 = m j#G� = n)

P (#G1 = m)
= (1� �)nen�

m!(m� n�)m�n�1

(m� n)!mm�1
(89)

and for m = 1
h1(�; n) = lim

m!1
hm(�; n) = (1 � �)n: (90)

In particular, the only h such that h(�;#G�) ! 0 almost surely as � " 1 is
h(�; n) = h1(�; n), so that h(�;#G�) = h�(�;G�) as above.

Essentially, this is an identi�cation of the Martin boundary of the space-
time process ((�;#G�; ); 0 � � < 1) with the set f1; 2; : : : ;1g. Similarly,
the Martin boundary of the space-time process ((�;G�; ); 0 � � < 1) can be

identi�ed with the subset T(1)
0 of T(1) comprising those trees t such that if

(T�; 0 � � � 1) is a uniform pruning of t then #T� < 1 almost surely for
all 0 � � < 1. The extreme harmonic function h corresponding to such a t

is
h(�; t) = P (T� = t)=P (G� = t):

4.5 A representation of the ascension process

Consider again the ascension time A := inff� : #G� = 1g for the PGW
pruning process, studied in Section 4.2. Combining Corollary 24 with the
formulae of Lemma 22 leads to the following rather surprising representation
of the ascension process (G�; 0 � � < A).

Proposition 26

(G�; 0 � � < A)
d
=

 
G��U ; 0 � � <

� logU

1 � U

!
(91)

where U is uniform (0; 1), independent of (G��; 0 � � � 1).
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Proof. Take (G��; 0 � � � 1) independent of A. Then

P (G�
Â

= tjA = a) = P (G�â = t) = (1� â)(#t)P (Gâ = t)

by (86). Comparing with (83), we see (A;GA�)
d
= (A;G�

Â
). By conditioning

on these terminal values and reversing time, (85) implies

(G�; 0 � � < A)
d
= (G�

Â�=A
; 0 � � < A):

Use (84) to rewrite the right side in terms of U and (91) follows. 2
Since P (A > 1) = 1, the identity in distribution (91) implies in particular

that
G� d

= G��U 8 0 � � � 1 (92)

where �U has uniform distribution on (0; �) independent of (G��; 0 � � � 1).
We spell out the meaning of (92) in the following corollary:

Corollary 27 Fix 0 < � � 1. Let G11 have PGW1(1) distribution, and in-
dependently of G11 let U� have uniform distribution on (1� �; 1). Given G11
and U�, construct a random forest F� by cutting each edge of G11 indepen-
dently with probability U�. Then the family tree derived from the component
of F� that contains the root of G11 has distribution PGW(�).

The identity (92) can also be checked as follows. By Corollary 24 and
the Un-representation (15) of dist(G� j#G� = n), the random trees G� and
G��U share a common conditional distribution given their total size. So (92)

amounts to #G� d
= #G��U for all 0 � � � 1, that is

P�(n) =
1

�

Z �

0
P �
� (n)d� 8 0 < � � 1; n = 1; 2; : : : (93)

where P�(�) is the Borel(�) distribution of #G� displayed in (10), and P �
�

is the distribution of G��, which by Corollary 24 is the size-biased Borel(�)
distribution

P �
� (n) := P (#G�� = n) = (1� �)nP�(n): (94)

But (93) in turn amounts to

d

d�
[�P�(n)] = P �

� (n) 8 0 < � < 1; n = 1; 2; : : : (95)

which is easily checked by calculus using the formula (10) for P�(n). We
restate (93) in the following corollary:
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Corollary 28 For each 0 < � � 1 the Borel(�) distribution is the uniform
mixture of size-biased Borel(�) distributions over 0 < � < �.

Let N� denote a random variable with Borel(�) distribution P�(�), and
N�

� a random variable with size-biased Borel(�) distribution P �
� (�). >From

(94) and (95), for 0 < � < 1

E[f(N�
�)] = (1 � �)E[N�f(N�)] = E[f(N�)] + �

d

d�
E[f(N�)] (96)

where the �rst equality holds for every non-negative function f , and the
second equality holds at � for any f such that the derivative exists, as can
be seen by di�erentiation of the next formula (97) with nf(n) instead of
f(n). Apply (93) and the �rst equality of (96) with f(n)=n instead of f(n)
to deduce that for all non-negative function f and 0 � � � 1

E

 
f(N�)

N�

!
=

1

�

Z �

0
(1� �)E[f(N�)] d�: (97)

These formulae imply numerous identities involving moments of N� and N�
�.

For example, (96) for f(n) = n gives easily

E(N�
�) = (1� �)E(N2

�) = (1� �)�2: (98)

Take f = 1 in (97) to obtain

E(1=N�) =
1

�

Z �

0
(1� �) d� = 1 � �=2: (99)

For dk(n) := (n)k=nk, where (n)k := n!=(n � k)! the formula dk+1(n) =
dk(n)� dk(n)=n combined with (97) and an easy induction shows that

E(dk(N�)) = �k�1=k; 8 k � 1; � 2 [0; 1]: (100)

A similar calculation yields

E(dk(N
�
�)) = �k�1; 8 k � 1; � 2 [0; 1): (101)

Since dk(n) is the probability of no repeats in a sequence of k independent
uniform random picks from a set of n elements, we deduce the following
curious result. See also section 4.7 for related results.
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Corollary 29 Let G� have PGW(�) distribution for some 0 < � � 1. Given
G� let V1; : : : ; Vk be k vertices of G� picked independently and uniformly at
random. Then the unconditional probability that these k vertices of G� are
all distinct is �k�1=k. For G�� instead of G� the corresponding probability is
�k�1 for all 0 < � < 1.

4.6 The spinal decomposition of G��

Fix 0 < � � 1. A random tree G�� with PGW�(�) distribution has a number
of remarkable properties as a consequence of the results in Section 3.3. Fol-
lowing the notation of that section, suppose that G�� has been constructed as
G�� = fam(Gy�) where Gy� is the component containing the root in the subgraph
of G11 consisting of those edges e with �e � � where the �e are independent
uniform(0; 1) random variables. Let (Vh) be the in�nite spine of G11 , and let
H� := supfn : Vn 2 G1y

� g, so H� has the geometric(1� �) distribution

P (H� = n) = (1� �)�n 8 n = 0; 1; : : : (102)

Let V �
� 2 G�� be the vertex of G�� at height H� which corresponds to VH� 2 Gy�

via the relabeling map from Gy� ! G��. According to formula (57) specialized
to the case at hand, there is the following re�nement of (86). For 0 � � < 1
and G�� and V �

� 2 G�� de�ned as above,

P (G�� = t; V �
� = v) = (1 � �)P (G� = t) 8t 2 T; v 2 t:

That is, the vertex V �
� of G�� at height H� is a uniform random vertex of G��,

meaning that the conditional distribution of V� given G�� is uniform on G��.
By further examination of the argument in Section 3.3 we deduce:

Corollary 30 (Spinal decomposition of G��). Fix 0 < � � 1. For a random
tree G�� with PGW�(�) distribution, and V � a uniform random vertex of G��,
let H� be the height of V �, and let (root = V �

0 ; : : : ; V
�
H�

= V �) be the path in
G�� from the root to V �, call it a spine of G��. For 0 � i � H� let G(i) be the
family tree derived from the subtree of G�� with root V �

i in the forest obtained
by deleting all edges of G�� on the path from the root to V �. Then

(i) H� has the geometric(1 � �) distribution (102).
(ii) given H� = h the G(i) for 0 � i � h are independent with PGW(�)

distribution, and
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(iii) given H� = h � 1 and these family trees G(i) for 0 � i � h, the path
from the root to V � is de�ned by V �

i = (J1; � � � ; Ji) for 1 � i � h where the
Ji are independent and Ji has uniform [ZG(i) + 1] distribution.

Proof. Lemma 17 combined with the spinal decomposition of G1� given in
Corollary 3 show that this result holds for the particular construction of G��
and H� used to obtain (57), with V � = V �

� . But by change of variables the
result must also be true as stated for any triple (G��; V �;H�) with the same
joint distribution as this particular triple (G��; V �

� ;H�). 2

We remark that our spinal decomposition is the probabilistic analog of
similar combinatorial decompositions of Joyal [23] and Labelle [28], which
were partly anticipated by Meir and Moon [32].

Note that for a �xed 0 < � < 1, it only makes sense to speak of a spine
of a PGW�(�) distributed tree G�� rather than the spine of G��, because
the construction of the spine involves the extra randomization of picking a
uniform random vertex V � of G��. But according to the above discussion, if
(G��; 0 � � < 1) is a uniform pruning process such that G�� has PGW�(�)
distribution for each 0 � � < 1, then with probability one this process
grows a unique in�nite spine as � " 1. This is the spine of the tree G�1�
with PGW1(1) distribution, and this in�nite spine induces a �nite spine in
G�� for each 0 � � < 1 in such a way that the length H� + 1 of this spine
is increasing as � increases. In this construction each of the non-negative
integer-valued processes (H�; 0 � � < 1) and (#G��; 0 � � < 1) is increasing
and inhomogeneous Markov. The transition probabilities of (H�) are quite
obvious. Those of (#G��) can be read from formula (75) and the fact that
(#G��) is the Doob h1-transform of (#G�) for h1(�; n) = (1 � �)n.

Since in the setting of Corollary 30 the entire family tree G�� can be
reconstructed from the random elements whose joint law is described by (i)-
(iii), the spinal decomposition implies the the following recursive construction
of a PGW�(�) tree:

Corollary 31 Let random elements

(H�; G(i); 0 � i � H�; Ji; 1 � i � H�)

have the joint distribution described in (i)-(iii) of Corollary 30. Recursively
de�ne trees G�(i); 0 � i � H� and vertices V �

i ; 0 � i � H�; as follows.
Let G�(0) = G(0); V �

0 = 0; for 1 � i � H� let G�(i) be the family tree
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obtained by attachment of G(i) to G�(i� 1) as the Jith child of V �
i�1, and let

V �
i = (V �

i�1; Ji). Then G�(H�) has PGW�(�) distribution, and the vertex V �
H�

at height H� is a random vertex of G�(H�).

4.7 Some distributional identities

Distributional relationships between random trees imply distributional rela-
tionships between the integer-valued random variables which record the sizes
of trees. In this section we spell out several such relationships.

Borel and size-biased Borel distributions The spinal decomposition
(Corollary 30) expresses G�� as the union of H� + 1 subtrees which can be
relabeled as independent PGW(�) trees. Since we know that #G�� has a
size-biased Borel (�) distribution (94), we deduce:

Corollary 32 Let N�(1); N�(2); : : : be independent with the Borel(�) distri-
bution (10), independent also of H� with the geometric(1 � �) distribution
(102). Then

N�
� := N�(1)+ � � �+N�(H� +1) has size-biased Borel(�) distribution. (103)

An elementary proof of Corollary 32 can be given as follows. By conditioning
on H� = h and using the Borel-Tanner formula (11) for the distribution of
the sum of h + 1 independent Borel(�) variables, for N�

� de�ned by the
sum in (103), and P �

� (�) the size-biased Borel distribution, we obtain for all
0 � h � n� 1

P (H� = h;N�
� = n) =

(h + 1)(n� 1)!

nh+1(n� h� 1)!
P �
� (n): (104)

The right side is easily summed over 0 � h � n� 1 to con�rm that P (N�
� =

n) = P �
� (n).

The decomposition (103) should be compared to the obvious consequence
of (6) that for Z� with Poisson (�) distribution independent of i.i.d. Borel(�)
variables N�(i)

N� := N�(1) + � � �+ N�(Z�) + 1 has Borel(�) distribution: (105)
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We do not know of any reference to the representation (103) of the size-
biased Borel distribution in terms of the more elementary Borel and geo-
metric distributions, or to the companion representation (93) of the Borel
distribution as a mixture of size-biased Borel distributions. But both the
Borel and size-biased Borel distributions have found applications in various
contexts [11, 10, 21, 42, 43, 44, 50] where these representations might prove
useful. See [13, 36, 45] for study of the general class of Lagrangian distribu-
tions, which includes both the Borel and size-biased Borel distributions as
particular cases.

It is a well known consequence of (105) that the Borel(�) distribution P�

of N� is in�nitely divisible. Representation (103) gives P �
� (�) as a convolution

of P� and dist(N�(1) + : : : + N�(H�)), and the latter inherits the in�nite
divisibility property of H�. We deduce

Corollary 33 The size-biased Borel(�) distribution P �
� (�) is in�nitely divis-

ible.

More on the height of a random vertex. For any �nite rooted random
tree T , let HT denote the height of a uniform random vertex V of T . Let Un
have uniform distribution on the nn�1 rooted trees labeled by [n]. >From (86)
and the Un-representation (15) of dist(G� j#G� = n) we have for 0 � � < 1
that

P (HG�� = h j#G�� = n) = P (HG� = h j#G� = n) = P (HUn = h): (106)

On the other hand, by the spinal decomposition of G�� (Corollary 30), there is

the identity (HG��;#G��) d
= (H�; N

�
�) for (H�; N

�
�) with the joint distribution

(104). It follows that

P (HUn = h) =
(h + 1)(n � 1)!

nh+1(n � h � 1)!
8 0 � h � n � 1: (107)

For n � 2 let Dn be the number of vertices on the path from 1 to 2 in Un.
By symmetry, the conditional distribution of HUn, given that the random
vertex V of Un is not the root, is identical to the unconditional distribution
of Dn � 1. So

P (HUn = h) =
1

n
1(h = 0) +

(n � 1)

n
P (Dn = h + 1)1(h � 1)
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and (107) amounts to the result of Meir and Moon [32] that

P (Dn = k) =
k (n� 2)!

nk�1 (n � k)!
8 2 � k � n: (108)

As a variation, for G� with PGW(�) distribution, we can apply Corollary 92
to compute for h = 0; 1; 2; : : : and � 2 (0; 1]

P (HG� � h) =
1

�

Z �

0
P (HG�� � h)d� =

1

�

Z �

0
�hd� =

�h

h + 1
: (109)

Compare with the consequence of Corollary 30 (i) that for � 2 (0; 1)

P (HG�� � h) = �h: (110)

These formulae can also be checked by conditioning on #G� or #G�� to reduce
to (107) and then using (100) and (101).

Some asymptotic distributions. It is known [32] that as n ! 1 the
asymptotic distribution of (HUn)=

p
n is that of a random variable R with

the Rayleigh density re�r
2=2 for each r > 0. Also, as � " 1 the asymptotic

distribution of (1 � �)2N�
� is that of Z2 where Z now denotes a normal

variable with E(Z) = 0 and E(Z2) = 1. Both these assertions are easily
checked by asymptotic density calculations, which establish corresponding
local limit theorems. Since from (86) and (15) we have that

dist(HG�� j#G�� = n) = dist(HG� j#G� = n) = dist(HUn)

and #G�� d
= N�

� it follows that for � close to 1 the distribution of (1��)(HG��)

must be close to that of (1 � �)
q
N�

�R where R is independent of N�
�, and

hence also close to that of jZjR where R is independent of Z. On the other
hand, we know that HG�� has geometric(1� �) distribution, so it is elemen-
tary that the asymptotic distribution of (1 � �)(HG��) is that of a standard
exponential variable �. Thus we deduce the non-trivial identity in distribu-
tion

jZjR d
= �: (111)

In terms of probability densities, this amounts to the well known formulas
2

�

Z 1

0
e�(y

2+t2=y2)=2dy = e�t
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which can be veri�ed by showing that the functions of t on both sides are
equal at 0 and satisfy the same ordinary di�erential equation. Let �t denote
a random variable with the gamma(t) distribution de�ned by the density
�(t)�1xt�1e�x for x > 0. Since

jZj d
=
q

2�1=2; R
d
=
q

2�1; �
d
= �1

the identity (111) is the special case t = 1=2 of the identity in distribution

4�t�t+1=2
d
= �2

2t 8 t > 0 (112)

where �t and �t+1=2 are independent, which is due to Wilks [51]. Evaluation
of moments shows that both (111) and (112) are equivalent to the duplication
formula for the gamma function

�(2z) = 22z�1�(z)�(z + 1=2)=�(1=2):

See Gordon [18] for further probabilistic interpretations of gamma function
identities.

4.8 Size-Modi�ed PGW-trees

Several results of the previous sections have natural generalizations to the
following class of distributions on the set T of �nite family trees. Call a
random tree G� a size-modi�ed Poisson-Galton-Watson tree (SMPGW tree),
or use the same acronym for its distribution, if G� has distribution of the
form

P (G� = t) = f(#t)P (G1 = t) 8t 2 T (113)

for some f with E(f(#G1)) = 1, where G1 is a PGW(1) tree. The distribution
of such a tree G� is determined by its size distribution Q(�), that is the distri-
bution of #G� on the positive integers which is given by Q(n) = f(n)P1(n)
where P1(�) is the Borel(1) distribution of G1. Let (Un) be a sequence of
random trees such that Un has uniform distribution on the set R[n] of nn�1

rooted trees labeled by [n], and let Tn := fam(Un). By the Un-representation
(15) of dist(G� j#G� = n), formula (113) is equivalent to

dist(G� j#G� = n) = dist(Tn) 8 n : P (#G� = n) > 0: (114)
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That is to say

P (G� = t) =
1X
n=1

Q(n)P (Tn = t) (115)

where P (Tn = t) given by formula (15). So the most general SMPGW
distribution is obtained as the distribution of a random tree G� constructed
as follows. Independent of the sequence of random trees (Tn) let S have
distribution Q(�). Then G� := TS has the distribution displayed in (115). The
set of all SMPGW distributions on T is therefore a simplex whose extreme
points are the distributions of Tn for n = 1; 2; : : :.

Clearly, PGW(�) for � 2 [0; 1] and PGW�(�) for � 2 [0; 1) are SMPGW
distributions. Typically a result for SMPGW can be established �rst for the
extreme distributions of Tn, either by a combinatorial argument or by con-
ditioning a result already obtained for the PGW or PGW� family, and then
extended to the SMPGW family by mixing over the extreme distributions.
Following are several illustrations of this theme.

Proposition 34 Suppose (G�u; 0 � u � 1) is a uniform pruning of G� with a
SMPGW distribution. Then

(i) The process (#G�u; 0 � u � 1) is Markov with the following co-
transition probabilities: for 0 < q < 1

P (G�qu = ` j G�u = m) = P (#Um;q = `) 8 1 � ` � m (116)

where Um;q is the component subtree containing root(Um) after each edge of
Um is deleted independently with probability 1� q.

(ii) (Moon [33]) For all 0 < q < 1 and 1 � ` � m

P (#Um;q = `) =

 
m

`

!
(1� q)

q

�
q

m

�m�1
` `
 
m

q
� `

!m�`�1

(117)

(iii) For each 0 � u � 1 the tree G�u is an SMPGW tree whose size
distribution is given by

P (#G�u = `) =
1X

m=1

P (#Um;u = `)P (#G�1 = m) (118)

Proof. In the particular case when G�1 = G� has a PGW(�) distribution for
some 0 � � � 1, the Markov property of (#G�u; 0 � u � 1) was established
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in Corollary 21. By conditioning on #G�1 = n in this special case, it follows
that (#G�u; 0 � u � 1) must also be Markov with the same co-transition
probabilities in the extreme case when G�1 = Tn, hence also by mixing for any
SMPGW tree G�1. The formula (116) for the co-transition probabilities follows
easily from (114). Moon found formula (117) by a combinatorial argument.
By application of Bayes rule, this formula for the co-transition probabilities of
(#G�u; 0 � u � 1) can be obtained from the forwards transition probabilities
(75) of the same process, or vice versa. For part (iii), it is enough to consider
the case G�1 = fam(Un), in which case (G�u) can be constructed as G�u =
fam(Un;u) after using independent uniform variables to de�ne (Un;u; 0 � u �
1) as an increasing process of subtrees of Un. The problem is to show that

dist(fam(Un;u) j#fam(Un;u) = m) = dist(fam(Um)) (119)

By an easy combinatorial argument, for each subset V of [n] with #V = m,
given verts(Un;u) = V the tree Un;u has uniform distribution on the set of
all mm�1 rooted trees labeled by V . It follows that for each V � [n] with
#V = m

dist(fam(Un;u) j verts(Un;u) = V ) = dist(fam(Um))

which of course implies (119). 2

Consider now the closure SMPGW of SMPGW, that is the set of all
probability distributions on T(1) obtainable as weak limits of some sequence
of SMPGW distributions. By an easy variation of the autonomous proof of
Corollary 24, every distribution in SMPGW is a mixture of the PGW1(1)
distribution of G11 and some SMPGW distribution. That is to say, G� has a
SMPGW distribution i�

P (G� 2 �) =
X

n2f1;2;:::;1g

P (#G� = n)P (Tn 2 �) (120)

where T1 d
= G11 has PGW1(1) distribution. The following characterization

of the PGW� process now follows from Lemma 7 and Corollary 25:

Proposition 35 Suppose that (G�u; 0 � u < 1) is a uniform pruning pro-
cess such that G�u has a SMPGW distribution for each 0 � u < 1. Then
(G�u; 0 � u � 1) is a uniform pruning of G�1 := limu"1 G�1, which has a SMPGW
distribution, and the following conditions are equivalent:
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(i) limu"1 P (#G�u � n) = 0 for every n = 1; 2; : : :
(ii) dist(G�u) = PGW�(u) for every u 2 (0; 1]
(iii) dist(G�1) = PGW1(1).

The spinal decomposition for a SMPGW tree. It is instructive to con-
sider the analog for a SMPGW tree of the spinal decomposition of PGW�(�)
stated in Corollary 30. Let V � be a uniform random vertex of G�, let HG�
be the height of V �, and construct family trees G�(i) as before by cutting
all edges along the path from 0 to V �. Then instead of (i),(ii) and (iii) in
Corollary 30 it is clear that by application of that Corollary and (107) we
have

(i)

P (HG� = h;#G� = n) =
(h + 1)(n � 1)!

nh+1(n� h� 1)!
P (#G� = n) 8 0 � h � n � 1

(ii) given HG� = h and #G� = n the G�(i) for 0 � i � h are distributed
like h + 1 independent PGW(1) trees conditionally given that the sum of
their sizes is n.

(iii) The conditional distribution of the path from 0 to V � given HG� =
h � 1 and these family trees G�(i) for 0 � i � h is just as described in (iii)
of Corollary 30 for G� = G��.

It follows easily that the trees G�(i) are i.i.d. i� G� has PGW�(�) distri-
bution for some � 2 (0; 1]. To more precise about the converse:

Corollary 36 If a SMPGW tree G� is such that given HG� = 1 the sizes
#G�(0) and #G�(1) are independent, then G� has PGW�(�) distribution for
some � 2 (0; 1].

In particular, for G� with PGW(�) distribution the #G�(i) for 0 � i �
HG� are not conditionally i.i.d. given HG�. But they are exchangeable:

Corollary 37 For a SMPGW tree G�, the family trees G�(i) for 0 � i � HG�
are conditionally exchangeable given HG�.

This consequence of the spinal decomposition of G� can also be proved
by �rst checking it combinatorially for G� = Tn. Indeed, this case is implicit
in the combinatorial results [23, 28].
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