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Abstract

A sequential construction of a random spanning tree for the Cay-
ley graph of a �nitely generated, countably in�nite subsemigroup V

of a group G is considered. At stage n, the spanning tree T is approx-
imated by a �nite tree Tn rooted at the identity. The approximation
Tn+1 is obtained by connecting edges to the points of V that are not
already vertices of Tn but can be obtained from vertices of Tn via
multiplication by a random walk step taking values in the generating
set of V . This construction leads to a compacti�cation of the semi-
group V in which a sequence of elements of V that is not eventually
constant is convergent if the random geodesic through the spanning
tree T that joins the identity to the nth element of the sequence con-
verges in distribution as n ! 1. The compacti�cation is identi�ed
in a number of examples. Also, it is shown that if h(Tn) and #(Tn)
denote, respectively, the height and size of the approximating tree
Tn, then there are constants 0 < ch � 1 and 0 � c# � log 2 such
that limn!1 n�1h(Tn) = ch and limn!1 n�1 log#(Tn) = c# almost
surely.
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1 Introduction

The Cayley graph of a �nitely generated free group is a regular tree. This
provides a natural way of compactifying such a group: one just adjoins the
collection of \ends". That is, a sequence of group elements converges in the
compacti�cation if and only if the sequence is either eventually constant or
initial segments of the unique shortest path connecting the identity to the
nth element of the sequence converge as n!1.

The Gromov compacti�cation of word hyperbolic groups (cf. [1, 3, 4]) is a
far-reaching generalisation of this idea that is based on the observation that
such groups have Cayley graphs which in some sense are almost tree{like.

Our main aim in this paper is to carry something of the spirit of such
constructions over to a general �nitely generated discrete subsemigroup of a
group. We do this by replacing the full Cayley graph with a natural ran-
domly generated spanning tree and declaring that a sequence of semigroup
elements converges in the compacti�cation if and only if the the sequence is
eventually constant or initial segments of the random path through the span-
ning tree that joins the origin to the nth element of the sequence converges
in distribution as n ! 1. We describe the spanning tree in x2 and give a
number of examples of the associated compacti�cation in x3

The spanning tree is constructed from a sequence of �nite approximating
trees. The asymptotic behaviour of the height and size of these approximat-
ing trees is studied in xx4 and 5, respectively.

2 Construction of the spanning tree

Let G be a countable group with identity e. Fix a �nite subset S � G
and write V for the subsemigroup of G that consists of all �nite products of
elements of S (where we interpret the empty product as e so that e 2 V ).
We will always suppose that V is in�nite.

Fix a probability measure p = (ps)s2S on S with p� := mins2S ps > 0.
Let (Xn)n2N be a sequence of independent S-valued random variables, each
distributed according to p.

De�ne a rooted random tree, T , with root e, vertex set almost surely V ,
and (random) directed edge set E by the following procedure. For g 2 V nfeg
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put

Ng := inffN � 1 : 91 � m1 < : : : < m` = N such that Xm1 � � �Xm`
= gg;

and declare that (gX�1
Ng
; g) 2 E.

Another way of putting this is that T is the limit of the increasing se-
quence of �nite, rooted, trees (Tn)1n=0 de�ned inductively as follows. The
tree T0 has the single vertex feg (and no edges). Suppose that Ti, 0 � i � n,
have been de�ned with Ti having vertex set Vi � V and directed edge set
Ei � Vi � Vi. Then Tn+1 has vertex set

Vn+1 = Vn [ fgXn+1 : g 2 Vng

and directed edge set

En+1 = En [ f(g; gXn+1) : g 2 Vn; gXn+1 =2 Vng:

Of course, it may happen that Tn = Tn+1 for certain values of n.
Recall that the Cayley graph, say �, of the semigroup V with respect to

the generating set S is the directed graph with vertex set V and edge set
consisting of ordered pairs (v;w) where w = vs for somes s 2 S. The rooted
tree T is a spanning tree for �; that is, T has the same vertex set as � and
the edge set of T is a subset of the edge set of �.

Example 1 Suppose that G is the free group on n letters �1; : : : ; �n. Put
S = f�1; �

�1
1 ; : : : ; �n; �

�1
n g, so that V = G. Then E is almost surely the

�xed set of ordered pairs of the form (g1 � � � gk�1; g1 � � � gk) with gi 6= g�1i+1 for
1 � i � k � 1.

Example 2 Suppose that G = Z�Zand S = f(1; 0); (0; 1)g, so that V =
Z+�Z+.

Put Y0 := 0 and Yn := X1 + � � � +Xn for n � 1. Write (Y 0
n; Y

00
n ) for the

components of Yn. Note that

Vn = f(a; b) : a � Y 0
n; b � Y 00

n g

and

f(Y0; Y1); (Y1; Y2); : : : ; (Yn�1; Yn)g � En:
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Put

V !
n := f(a; b) 2 VnnfY1; : : : ; Yng : a > Y 0

m; b = Y 00
m for some 1 � m � ng

and

V "
n := f(a; b) 2 VnnfY1; : : : ; Yng : a = Y 0

m; b > Y 00
m for some 1 � m � ng:

Observe that ifXn+1 = (1; 0), then V !
n+1nV

!
n = f(Y 0

n+1; b) : 0 � b � Y 00
n �1g,

V "
n+1 = V "

n , and En+1nEn = f((Y 0
n; b); (Y

0
n + 1; b)) : 0 � b � Y 00

n � 1g.

Similarly, if Xn+1 = (0; 1), then V !
n+1 = V !

n , V "
n+1nV

"
n = f(a; Y 00

n + 1) : 0 �
a � Y 0

n � 1g, and En+1nEn = f((a; Y 00
n ); (a; Y

00
n + 1)) : 0 � a � Y 0

n � 1g. It is
now clear by induction that if (a; b) 2 V !

n , then ((a� 1; b); (a; b)) 2 En, and
if (a; b) 2 V "

n , then ((a; b� 1); (a; b)) 2 En.
Thus ((a� 1; b); (a; b)) 2 Enf(Y0; Y1); (Y1; Y2); : : :g if and only if Y 0

n < a
and Y 00

n = b for some n, and ((a; b� 1); (a; b)) 2 E if and only if Y 0
n = a and

Y 00
n < b for some n.

Example 3 Suppose that G = Z�Zand S = f(�1; 0); (0;�1)g, so that
V =Z�Z.

Consider (a; b) with a > 0 and b � 0. By de�nition of N(a;b), exactly
a of X1; : : : ;XN(a;b)

must have the value (+1; 0) and exactly b must have
the value (0;+1). Hence, VN(a;b)

also contains the point (a � 1; b) and so
((a; b); (a� 1; b)) =2 E. A similar argument shows that if a � 0 and b > 0,
then ((a; b); (a; b � 1)) =2 E. Thus for every point (a; b) 2 V++ := f(c; d) :
c � 0; d � 0g we have that ((a0; b0); (a; b)) 2 E with (a0; b0) 2 V++ and either
(a; b) = (a0; b0) + (1; 0) or (a; b) = (a0; b0) + (0; 1).

Let T++ be the subtree of T that has vertex set V++ and edge set E++ :=
f(u; v) 2 E : u 2 V++; v 2 V++g. It is clear from what we have just observed
that T++ has the same description as T from the previous example, with the
role of Yn being played by Y ++

n := X++
1 + � � �+X++

n , where (X++
n )n2N is the

subsequence of (Xn)n2N consisting of terms that take on the values (+1; 0)
and (0;+1). Similar remarks apply to the three other quadrants, with the
trees for adjacent quadrants intersecting in a ray that passes through the
vertices on the shared axis.

We remark that if the random walk e;X1;X1X2; : : : is recurrent, then the
procedure in [2] gives another mechanism for constructing a random spanning
tree of V using (Xn)n2N.
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3 The associated compacti�cation

Given a rooted tree � and a vertex � of � , let H(�; � ) denote the height of �,
that is, the number of edges on the unique path joining the root to �. For
v 2 V , de�ne Zk(v), 0 � k � H(v; T ), to be the successive vertices passed
through by the unique path in T that leads from e to v. That is, Z0(v) = e,
ZH(v;T )(v) = v, and (Zk(v); Zk+1(v)) 2 E for 0 � k � H(v; T ) � 1. Put
Zk(v) := v for k > H(v; T ). Note that Zk(v) 2 Bk, the set of elements
of V that can be written as the product of k or fewer elements of S. Set
�m(v) := (Z0(v); : : : ; Zm(v)).

Equip V with the metric

�(u; v) :=
1X

m=0

2�(m+1)
X

w2V (m+1)

���Pf�m(u) = wg �Pf�m(v) = wg
���;

and let V denote the completion of V in this metric. Put @V := V nV .
Observe that a sequence (vn)n2N drawn from V is Cauchy for � if and

only if for all m the distribution of �m(vn) = (Z0(vn); : : : ; Zm(vn)) converges
weakly (or, equivalently, in total variation) as n!1.

Lemma 4 The space V is compact.

Proof. It su�ces to show that V is sequentially compact. Note that for each
m the distribution of (Z0(v); : : : ; Zm(v)) is supported on the �nite subset
B0�B1� � � �Bm � V m+1. The result now follows from a diagonal argument
and the fact that the space of probability measures on a �nite set is compact
for the coincident topologies of weak and total variation convergence.

�

Example 5 Suppose that G is the free group on n letters �1; : : : ; �n. Put
S = f�1; �

�1
1 ; : : : ; �n; �

�1
n g, as in Example 1. Then @V is just the set of ends

of the �xed tree described in Example 1.

Example 6 Suppose that G = Z and S = f�;��g, where � and � are
positive and relatively prime, so that V =Z.

Write

M := inffn : #f1 � k � n : Xk = ��g = �� 1g:
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Of course, M is �nite almost surely. Observe that VM contains at least
one representative for every congruence class mod �. For n � M and
r = 0; 1; : : : ; � � 1, write Rr

n for the largest element of Vn that is congruent
to r mod �. Observe that if Xn+1 = � (respectively,Xn+1 = ��) or n �M ,
then Rr

n+1 = Rr
n + � and (Rr

n; R
r
n+1) 2 En+1 (respectively, Rr

n+1 = Rr
n) for

r = 0; 1; : : : ; � � 1. Therefore, if v � r mod � and v � Rr
M , then v = Rr

k

for some k � M and (ZH(v;T )�k+M(v); : : : ; ZH(v;T )(v)) = (Rr
M ; : : : ; R

r
k) =

(Rr
M ; : : : ; R

r
M + (k �M)�). This, and a similar observation with the roles

of � and �� reversed, shows that a sequence (vn)n2N that is not eventually
constant will be Cauchy if and only if one of the following conditions holds:

(i) vn ! +1 and, for some r = 0; 1; : : : ; � � 1, vn � r mod � for all
su�ciently large n,

(ii) vn ! �1 and, for some r = 0; 1; : : : ; � � 1, vn � r mod � for all
su�ciently large n,

and each possibility leads to a di�erent limit point. Thus @V consists of
� + � points, with \� boundary points at +1 and � boundary points at
�1". Note that this conclusion agrees with that of the previous example
when � = � = 1.

Example 7 Suppose that G = Zand V = Z+, so that S is a �nite set of
nonnegative integers that contains 1. Let � denote the largest element of
S. Note that with probability one there are in�nitely many times n such
that Xn+1 = : : : = Xn+� = 1. It is clear from the construction of T that if
v � X1+� � �+Xn for such an n, then Zk(v) = Zk(X1+� � �+Xn) = X1+� � �+Xk

for 0 � k � n = H(X1 + � � � + Xn; T ). Therefore, a sequence (vn)n2N that
is not eventually constant will be Cauchy if and only if vn ! +1, and each
such sequence converges to the same limit point. Thus V coincides with
Z
�
+ =Z+ [ f+1g, the usual one-point compacti�cation of Z+.

Example 8 Suppose that G = Z�Zand S = f(1; 0); (0; 1)g, so that V =
Z+�Z+, as in Example 2.

De�ne Y0; Y1; : : : as in Example 2. For v = (v0; v00) 2 V put

M(v) = minfn : Y 0
n = v0 or Y 00

n = v00g:

Then Zk(v) = Yn for 0 � k � M(v). If Y 0
M(v) < v0, then Zk(v) = (Y 0

M(v) +

k �M(v); Y 00
M(v)) for M(v) + 1 � k � H(v; T ). Similarly, if Y 00

M(v) < v00, then

Zk(v) = (Y 0
M(v); Y

00
M(v) + k �M(v)) for M(v) + 1 � k � H(v; T ).
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It follows that a sequence (vn)n2N = ((v0n; v
00
n))n2N that is not eventually

constant will be Cauchy if and only if one of the following three conditions
holds:

(i) there exists a such that v0n = a for all n su�ciently large and v00n ! +1
as n!1,

(ii) v0n ! +1 as n ! 1 and there exists b such that v00n = b for all n
su�ciently large,

(iii) v0n ! +1 as n!1 and v00n ! +1 as n!1.

If two sequences satisfy (i) with the same (respectively, di�erent) choice of a,
then they converge to the same (respectively, di�erent) limit points. A similar
remark holds for (ii). Any two sequences satisfying (iii) converge to the same
limit point. Finally, if a sequence satis�es one of the conditions (i)-(iii) and
another sequence satis�es one of the other conditions, then the two sequences
converge to di�erent limit points. Consequently, V is homeomorphic toZ�+�
Z
�
+.

Example 9 Suppose that G = Z�Zand S = f(�1; 0); (0;�1)g, so that
V =Z�Z.

It is clear from the previous Example and Example 3 that V is home-
omorphic to Z� �Z�, where Z� = Z[ f�1;+1g is the usual two-point
compacti�cation of Z.

Example 10 Suppose that G is the semidirect product of an aribitrary �nite
group H and Z. Recall that this means that as a set G can be identi�ed with
the Cartesian product H �Zand there is some automorphism � of H such
that the group operation is given by (h; z)(h0; z0) = (h�z(h0); z+ z0). Write f
for the identity of H. Take S = f(�1; 0); : : : ; (�m; 0); (f;+1); (f;�1)g, where
�1; : : : ; �m generate H as a semigroup, so that V = G.

With probability one there exist times I � J such that XI ; : : : ;XJ 2
f(�1; 0); : : : ; (�m; 0)g and the set of products of the form Xi1 � � �Xik with
I + 1 � i1 < : : : < ik � J is all of H � f0g. Put

K := maxfk 2Z : (h; k) 2 VI for some h 2 Hg

and

L := minf` 2Z : (h; `) 2 VI for some h 2 Hg:
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Note that VJ contains (h;K) for every choice of h 2 H and no point of the
form (g; r) for g 2 H and r > K. Similarly, VJ contains (h;L) for every
choice of h 2 H and no point of the form (g; r) for g 2 H and r < L. It
follows that if v = (h; z) 2 V with z � K, then Zk(v) = Zk((h;K)) for 0 �
k � H((h;K); T ) and Zk(v) = (h;H((h;K); T )+ k �K) for H((h;K); T ) �
k � H(v; T ) = H((h;K); T ) + z � K. Similarly, if v = (h; z) 2 V with
z � L, then Z`(v) = Z`((h;L)) for 0 � ` � H((h;L); T ) and Z`(v) =
(h;H((h;L); T )+L�`) forH((h;L); T ) � k � H(v; T ) = H((h;L); T )+L�z.
Consequently, V is homeomorphic to H �Z�.

Example 11 Suppose that G is the semidirect of product of ZandZ2 (that
is, the in�nite dihedral group D1). More speci�cally, G can be identi�ed
with Z� Z2 as a set and if Z2 is written \multiplicatively" as f+1;�1g,
then the group operation is given by (z; �)(z0; �0) = (z + �z0; ��0). Take S =
f(0;�1); (1;+1)g, so that V = G.

It is not hard to see that with probability one T is the �xed tree with

E = f((0;+1); (0;�1)); ((1;+1); (1;�1)); ((2;+1); (2;�1)); : : : g

[ f((�1;�1); (�1;+1)); ((�2;�1); (�2;+1)); ((�3;�1); (�3;+1)); : : :g

[ f((0;+1); (1;+1)); ((1;+1); (2;+1)); ((2;+1); (3;+1)); : : : g

[ f((0;�1); (�1;�1)); ((�1;�1); (�2;�1)); ((�2;�1); (�3;�1)); : : :g :

The following observations follow immediately:

(i) If v = (z;+1) (respectively, (z;�1)) with z > 0, then H(v; T ) = z
(respectively, H(v; T ) = z + 1) and Zk(v) = (k;+1) for 0 � k � z.

(ii) If v = (z;�1) (respectively, v = (z;+1)) with z < 0, then H(v; T ) =
�z + 1 (respectively, H(v; T ) = �z + 2) and Zk(v) = (�k + 1;�1) for
1 � k � �z + 1.

Thus @V has only two points and V is not homeomorphic to Z��Z2.

Remark 12 In all of the above examples, the compacti�cation only depends
on the set S and not on the probability distribution p. Also, the left and
right actions of the semigroup V on itself have continuous extensions to V .
It would be interesting to know to what extent these two observations hold
generally.
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4 Growth of the height

For a rooted tree � , de�ne h(� ) to be the supremum of the heights of vertices
of � . Recall that p� := mins2S ps > 0.

Theorem 13 There exists a constant ch 2 [p�; 1] such that

lim
n!1

n�1h(Tn) = ch

almost surely.

Proof. Clearly, h(Tn) � n.
Form;n 2 N, write Tm

n for the tree built fromXm+1; : : :Xm+n in the same
manner that Tn is built from X1; : : : ;Xn. Write V m

n for the vertex set of Tm
n .

For v 2 Vm, H(v; Tm) is the minimum of those integers k for which we can
�nd 1 � `1 < : : : < `k � m such that v = X`1 : : :X`k , and similar comments
apply to Tm+n and Tm

n . If u 2 Vm+n, then there exists v 2 Vm and w 2 V m
n

such that u = vw and we have H(u; Tm+n) � H(v; Tm) + H(w;Tm
n ) for all

choices of v and w. Consequently, h(Tm+n) � h(Tm) + h(Tm
n ). Kingman's

subadditive ergodic theorem [5] now shows that n�1h(Tn) converges almost
surely as n!1.

We next show that the limit is almost surely at least p�. Let (gk)k2N
be the sequence of elements of S guaranteed by Lemma 14 below. De�ne a
sequence of independent random variables (Wk)k2N by

W1 = inff` � 1 : X` = g1g

and

Wk+1 = inff` � 1 : XW1+���+Wk+` = gk+1g; k � 1:

Observe that Wk has a geometric distribution with success probability pgk .
Hence Wk is stochastically dominated by a random variable having a geo-
metric distribution with success probability p�. By the strong law of large
numbers,

lim sup
k!1

(W1 + � � �Wk)=k � 1=p�:

Note that

fh(Tn) < kg � fW1 + � � �+Wk > ng
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and so

lim inf
n!1

h(Tn)=n � p�:

Finally, we show that the limit is almost surely constant. In the notation
above,

h(Tm
n ) � h(Tm+n) � h(Tm) + h(Tm

n ) � m+ h(Tm
n ):

Thus, h(Tm+n)�m � h(Tm
n ) � h(Tm+n), and we conclude that

lim
n!1

h(Tn)=n = lim
n!1

h(Tm
n )=n

for all m. Therefore limn!1 h(Tn)=n is a tail random variable for (Xn)n2N,
and the Kolmogorov zero{one law gives the result.

�

For k = 0; 1; : : : set @Bk = BknBk�1, where we put B�1 = ;. A straight-
forward compactness argument establishes the following result.

Lemma 14 There exists a sequence (gk)k2N of elements of S such that

g1 � � � gk 2 @Bk for all k.

Remark 15 Both the upper and lower bounds on the limit in Theorem 13
are attainable. To see that the upper bound is attainable, take G to be the
free group on two generators �; � and put p� = p� = 1

2. Then h(Tn) = n
for all n. To see that the lower bound is attainable, take G to be Zand
p+1 = p�1 =

1
2 . It is easy to see that

h(Tn) = #f1 � i � n : Xi = +1g _#f1 � i � n : Xi = �1g

and

lim
n!1

n�1#f1 � i � n : Xi = +1g

= lim
n!1

n�1#f1 � i � n : Xi = �1g

=
1

2
:

10



5 Growth of the size

Observe that #(@Bn) � (#(S))n for all n, and from Lemma 14 that @Bn 6= ;
for all n. Also, @Bm+n � fuv : u 2 @Bm; v 2 @Bng for all m;n so that
#(@Bm+n) � #(@Bm)#(@Bn). A standard subadditivity argument shows
that there is 0 � b � log#(S) such that limn!1 n�1 log#(@Bn) = b. It is
not hard to see that b is zero when G is abelian. An example of a situation
in which b is not zero is when V contains two or more free elements.

We will write #(Tn) for #(Vn).

Theorem 16 There is a constant c# 2 [0; log 2] such that

lim
n!1

n�1 log#(Tn) = c#; a:s:

The constant c# is nonzero if and only if b is nonzero.

Proof. It is clear from the construction that #(VnnVn�1) � #(Vn�1) for all
n and so #(Tn) � 2n for all n.

In the notation of the proof of Theorem 13, Vm+n = VmV
m
n , and hence

log#(Vm+n) � log #(Vm) + log#(V m
n ). An application of the subadditve

ergodic theorem shows that n�1 log#(Tn) converges almost surely as n!1.
An appeal to the Kolmogorov zero{one law similar to the one in the proof of
Theorem 13 shows that the limit is constant.

As c# � b, it only remains to show that if b is not zero, then neither is c#.
For this it certainly su�ces to show that if we choose K su�ciently large,
then with probability one Bn � VKn for all n su�ciently large.

Consider v 2 Bnnfeg written as a product v = g1 � � � gm of elements of
S, where 1 � m � n. De�ne a sequence of independent random variables
(Wk)mk=1 by

W1 = inff` � 1 : X` = g1g

and

Wk+1 = inff` � 1 : XW1+���+Wk+` = gk+1g; 1 � k � m� 1:

Observe that Wk has a geometric distribution with success probability pgk .
Note that

fv =2 VKng � fW1 + � � �+Wm > Kng:
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The random variableW1+ � � �+Wm is stochastically dominated by a random
variable of the form ~W1 + � � � ~Wn, where ~W1; : : : ; ~Wn are iid with common
distribution the geometric distribution with success probability p�. Thus, by
Markov's inequality,

Pfv =2 VKng � e��Kn�(�)n;

where

�(�) = P[e�
~W1] =

p�e�

1 � (1� p�)e�

for 0 < � < � log(1� p�). Therefore

PfBn 6� VKng � #(Bn)e
��Kn�(�)n:

The sequence of terms given by the righthand side is summable when K is
su�ciently large, and the result follows from the Borel-Cantelli lemma.

�
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