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Abstract

In this expository paper, we prove the following theorem, which may be of some use in
studying Markov chain Monte Carlo methods like hit and run, the Metropolis algorithm,
or the Gibbs sampler. Suppose a discrete-time Markov chain is aperiodic, irreducible, and
there is a stationary probability distribution. Then from almost all starting points the
distribution of the chain at time n converges in norm to the stationary distribution. This
known theorem is a special case of more general results due to Doeblin, and the paper
concludes with a brief review of the literature.

1. Introduction

This paper is largely expository. We develop in a fairly self-contained way part of
Doeblin's theory for Markov chains in discrete time with a continuous state space, which
provides a framework for demonstrating convergence of algorithms like \hit and run," the
Gibbs sampler, and the Metropolis algorithm. Generally, we follow Orey (1971) and Harris
(1955).

Let (X;B) be a measurable space; we assume that B is countably generated. Let
P (x;A) be a \kernel." In other words, A! P (x;A) is a probability on B for each x 2 X,
while x! P (x;A) is B-measurable for each A 2 B. If � is a probability and P = P (x;A)
is a kernel, the probability �P is de�ned by the relation �P (A) =

R
P (x;A)�(dx). If

�P = �, then � is \invariant" or \stationary." If P and Q are kernels, then (PQ)(x;A) =R
P (x; dy)Q(y;A), the integral being over y 2 X; thus, PQ is a kernel. Multiplication of

kernels is associative. If �, � are probabilities, then k�� �k = supA j�(A)� �(A)j � 1.
We will consider a Markov chain starting from x 2 X at time 0 and moving according

to P ; the position at time n has distribution Pn(x; �). If x is itself chosen at random from
a stationary �, the Markov chain will be a stationary stochastic process with values in X.
Doeblin's theory of these processes involves ', an auxiliary probability on (X;B).

De�nitions. (i) P is \'-irreducible" i� for all x 2 X and all A 2 B with '(A) > 0,
there is a positive integer n = nxA such that Pn(x;A) > 0.

(ii) P is \strongly '-irreducible" i� for all x 2 X and all A 2 B with '(A) > 0, there
is a positive integer n = nxA such that Pm(x;A) > 0 for all m � n.

(iii) P is \'-recurrent" i� for all x 2 X and all A 2 B with '(A) > 0, a Markov chain
which starts from x at time 0 hits A at some positive time, a.s.; of course, this time is
random.

Usually, ' is taken as a �-�nite measure rather than a probability; the extra gener-
ality is more apparent than real; '-recurrence is often called \Harris recurrence" in the
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literature. Typically, the chain will have some periodic structure that needs to be taken
into account, because there are \cyclically moving classes." \Strong irreducibility" pre-
cludes such cycles. The condition does not seem to be standard, but it is useful; indeed,
for some applications of interest, it is fairly easy to establish the existence of a stationary
probability �, relative to which the chain is strongly irreducible. In that setting, the main
result is as follows.

Theorem 1. Let P be a kernel on a separable measurable space, and let � be a
stationary probability. Suppose P is strongly �-irreducible. Then there exists a measurable
set X1 such that (i) �(X1) = 1, (ii) P (x;X1) = 1 for all x 2 X1, (iii) P retracted to X1 is
�-irreducible, and (iv) for any probability � on (X1;B),

k�Pn � �k ! 0 as n!1:

This theorem will be proved in Section 2; in other expositions, strong irreducibility
is derived from other conditions that look weaker. In Diaconis and Freedman (1997),
we proved a theorem like Theorem 1, assuming absolute continuity rather than strong
irreducibility. That condition is stronger, but gives more precise results, by identifying
the exceptional null set of starting points from which convergence to stationarity does not
obtain. For ease of reference, several intermediate results are presented in both papers.

The next theorem establishes the existence and uniqueness of a stationary distribution,
with a geometric rate of convergence to stationarity; the conditions of the theorem are
rather strong. This theorem is well known; there is a self-contained proof in Diaconis and
Freedman (1997). Under the conditions of Theorem 1, geometric convergence need not
obtain; see Athreya, Doss and Sethuraman (1996) or Diaconis and Freedman (1997).

Theorem 2. Let P be a kernel, and ' an auxiliary probability. Suppose that for all
x 2 X and A 2 B,

P (x;A) � �'(A):

(a) There is a unique stationary probability �.
(b) � � �'.
(c) kPn(x; �)� �k � (1� �)n for all x 2 X.
Informally, the condition in Theorem 2 puts a positive lower bound on the transition

densities. In general, this lower bound does not exist (and neither do the densities).
However, a lower bound can be constructed on a measurable rectangle of positive measure|
if not for P , then for a power P k; part of the trick is showing that P k has an absolutely
continuous component with respect to ', at least under suitable regularity conditions.
That will all be done in Section 2. From this perspective, the two key ideas in the proof
of Theorem 1 will be (i) deriving irreducibility from recurrence, and (ii) getting a positive
lower bound on the k-step transition density, on a measurable rectangle of positive '-
measure. After that, Theorem 2 can be proved by a coupling argument. This section
closes with Example 1 to indicate the di�culty in getting lower bounds, and Example 2
to indicate why retraction to X1 is needed in Theorem 1; the construction for Example 1
is discussed in Diaconis and Freedman (1997); Example 2 is quite easy.
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Example 1. Let X = [0; 1] and let B be the �-�eld of Borel sets in X. Let ' be Lebesgue
measure on B. There is a positive measurable function f on X2 with the following property.
If (i) � > 0, (ii) A and B are Borel sets, and (iii) A � B � ff � �g up to a '2-null set,
then '(A)� '(B) = 0.

Example 2. Let X1 be a �nite set, and P a stochastic matrix on X1, with all entries
strictly positive. Under the circumstances, there is a unique stationary probability �, and
P is �-recurrent. Adjoin a sequence of states 1; 2; : : : ; each with �-probability 0, and the
following transition rules: i! i+1 with probability 1=2i; with the remaining probability,
i goes to a point in X1, chosen at random from �. The resulting kernel is strongly �-
irreducible, but not �-recurrent|due to the adjoined states.

2. The Proof of Theorem 1

The proof of Theorem 1 is a bit intricate. We begin with some lemmas which are
variations on Fubini's theorem and Markov's inequality. Let (Xi;Bi) be measurable spaces.
Suppose Bi is countably generated and let 'i be a probability measure on (Xi;Bi). The
setting for Lemma 1 is the product space (X1�X2; B1�B2; '1�'2); Lemma 2 involves
a three-fold product. The leading special case, of course, is Lebesgue measure on the unit
square or unit cube. If A � X1 � X2, then Ax� is the vertical section of A through x,
namely, f y : y 2 X2 and (x; y) 2 A g. Likewise, A�y is the horizontal section through
y. We use � for the generic small positive number, and N for the generic large positive
number.

Lemma 1. Let f be a non-negative, measurable function on X1�X2, with
R
f d'1d'2 �

�. Then '1
�
x : x 2 X1 and

R
f(x; y)'2(dy) �

p
�
	 � p

�.

Proof. Let U(x) =
R
f(x; y)'2(dy); consider U as a random variable on the probability

triple (X1;B1; '1). By Fubini's theorem, E(U) =
R
f d'1d'2. This is at most � by the

conditions of the lemma, so the chance that U � N� is at most 1=N by Markov's inequality.
Put N = 1=

p
� to complete the proof of Lemma 1.

Corollary 1. If A 2 B1 � B2 and ('1 � '2)(A) � �, then

'1fx : x 2 X1 and '2(Ax�) �
p
� g � p

�:

Proof. Use Lemma 1, with f = 1A.

Corollary 2. If B 2 B1 � B2 and ('1 � '2)(B) � 1� �, then

'1fx : x 2 X1 and '2(Bx�) > 1�p� g � 1�p�:
Proof. Set A = X1 � X2 � B. Then ('1 � '2)(A) � �. By Corollary 1,

'1fx : x 2 X1 and '2(Ax�) �
p
� g � p

�:

so that
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'1fx : x 2 X1 and '2(Ax�) <
p
� g � 1�p�:

But '2(Ax�) <
p
� i� '2(Bx�) > 1�p�, which completes the proof.

Lemma 2. Suppose C 2 B1 � B2 and D 2 B2 � B3. Let C 
D be the set of triples
(x1; x2; x3) such that xi 2 Xi and (x1; x2) 2 C and (x2; x3) 2 D. Suppose

('1 � '2 � '3)fC 
Dg � 1� �:

Let A =
�
x : x 2 X1 and '2(Cx�) > 1�p�	 and B =

�
z : z 2 X3 and '2(D�z) > 1�p�	.

Then
'1(A) � 1�p� and '3(B) � 1�p�:

Proof. Since 1D � 1,

('1 � '2 � '3)fC 
Dg =
Z
1C(x1x2)1D(x2x3)'1(dx1)'2(dx2)'3(dx3)

�
Z
1C(x1x2)'1(dx1)'2(dx2):

In particular, ('1 � '2)(C) � 1 � �, and Corollary 2 completes the proof for A. The
argument for B is similar. This completes the proof of Lemma 2.

Our next topic is \C-sets"; we follow Orey (1971) and Harris (1955). Recall that
(X;B) is a measurable space, B is countably generated, and ' is a probability on B. Let
f(x; y) be a non-negative measurable function on X�X, with R f(x; y)'(dy) � 1; this is a
\transition sub-density." There is a corresponding \sub-kernel" P (x; dy) = f(x; y) dy. If
f and g are transition sub-densities, so is

(f ? g)(x; y) =

Z
f(x; u)g(u; y)'(du):

Now f?n can be de�ned in the obvious way. Generally, we write fg for f ? g and fn for
f?n: transition sub-densities will seldom be multiplied in this paper.

Even if f is positive everywhere, f � � may include no positive rectangle|see Ex-
ample 1. However, f2 � � does include positive rectangles; see Proposition 1 in Diaconis
and Freedman (1997). Such results can be extended to the singular case; the proof uses
some ideas from di�erentiation theory, which we review here; a reference is Doob (1953).
Suppose � and � are �-�nite measures on (X;B). Write � << � i� �(A) = 0 implies
�(A) = 0; � � � i� � << � and � << �. In the opposite case, � ? � when �(A) = 0 and
�(X � A) = 0 for some A. The corresponding terminology: \� is absolutely continuous
with respect to �" if � << �; \� is equivalent to �" if � � �; � is \orthogonal to" or
\singular with respect to" � if � ? �.

Suppose B is countably generated. For each n, we can partition X into a �nite
collection Cn of sets, such that
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(i) Cn � B;
(ii) If A 2 Cn then A is a union of sets in Cn+1, so the partitions are \re�ning";
(iii) B is the smallest �-�eld which includes

S
n Cn.

For each n, de�ne the function �n as follows: �n = �(C)=�(C) on C 2 Cn; for now, leave
0=0 indeterminate. Let Bn be the (�nite) �eld generated by Cn. These �elds are increasing;
easy martingale arguments show that �n ! � as n!1, almost surely with respect to �
and �.

The space X now divides into three parts;

(i) f� = 0g, where � = 0 but � > 0;
(ii) f0 < � <1g, where � � �;
(iii) f� =1g, where � > 0 but � = 0.

Of course, any of these sets may have measure 0 with respect to both measures. It is
always the case that �f� = 0g = 0 and �f� = 1g = 0. On sets (i) and (ii), � << �;
retracting � to these two sets gives the part of � that is absolutely continuous with respect
to �, and � = d�=d�. On sets (i) and (iii), � ? �.

Technical di�culties aside, �n is the Radon Nikodym derivative|the \density"|of
� with respect to � on the �eld Bn; �n converges to d�=d� as n gets large. Generally, �
will be a probability, ' being the typical choice; typically, all sets in Cn will have positive
�-measure. In Lemma 3 below, � has mass 1 or less: later, � may have in�nite mass. The
�rst result we need from this theory is easy, but not vacuous: the Cn are speci�ed, while
A is generic.

Lemma 3. Let A 2 B with '(A) > 0. Given � > 0, there is a positive integer n and a
set C 2 Cn such that '(C) > 0 and '(A jC) > 1� �.

Proposition 1. Let P (x; �) be a kernel and let ' be an auxiliary probability measure
on a separable measurable space (X;B). Suppose that P is '-irreducible. Then there is a
set C 2 B, a positive integer n, and a positive real number �, such that (i) '(C) > 0, and
(ii) Pn(x;D) � �'(D) for all x 2 C and all measurable sets D � C.

Proof. We use i; j; k for generic positive integers. Let fk(x; y) = P k(x; dy)='(dy).
As indicated by our review of di�erentiation theory, this function can be constructed in a
jointly measurable way, with values in [0;1]; for each x 2 X, the function will be de�ned
and �nite for '-almost all y, giving the density of the part of P k(x; �) which is absolutely
continuous with respect to '. More explicitly, �x k for now; let fCjg be a re�ning sequence
of partitions that generates B. For each j, let fkj (x; y) be the derivative of P

k(x; dy) with

respect to '(dy), relative to the partition Cj . Finally, let f
k(x; y) = limj!1 fkj (x; y). For

each x 2 X, this limit exists and is �nite for '-almost all y. In principle, the exceptional
null set depends on k and x.

So far, irreducibility has not been used. Now let

(1) Vx(A) =
1X
j=1

P j(x;A);

which is the chance of visiting A 2 B starting from x 2 X. Then Vx is a �-�nite measure
on B. Irreducibility means that ' << Vx for each x; this takes a moment to verify. In
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particular, 0 < dVx=d' � 1 a.e. with respect to Vx, and hence a.e. with respect to '.
Thus, for each x, for '-almost all y,

(2)
1X
j=1

f j(x; y) > 0:

Fubini's theorem now implies that for '3-almost all triples (x; y; z) in X3,

(3)
1X
j=1

1X
k=1

f j(x; y)fk(y; z) > 0:

Consequently, there exist positive integers j and k with

(4) '3
�
(x; y; z) : f j(x; y) > 0 and fk(y; z) > 0

	
> 0:

Hence there is a positive �0 with

(5) '3
�
(x; y; z) : f j(x; y) � �0 and fk(y; z) � �0

	
> 0:

We claim there are measurable sets G1; G2; G3 having positive '-measure, with

(6) '3
�
f j(x; y) � �0 and fk(y; z) � �0

��G1 �G2 �G3

	
> 1� �:

To see this, let fCng be a re�ning sequence of partitions that generates B. Each Cn gives
rise to a partition C3n of X3, comprising sets of the form C1 � C2 � C3 with all Ci 2 Cn.
As is easily veri�ed, fC3ng is a re�ning sequence of partitions that generates B3. Then (6)
is immediate from Lemma 3.

We claim there are measurable subsets A, B of X and a positive real number �1 such
that

(7) '(A) > 0; '(B) > 0; and f j+k(x; z) � �1 > 0 for all x 2 A and z 2 B:

This will follow from Lemma 2, with Gi for Xi and '(� jGi) for 'i. For C, take the set
of all pairs (x; y) with x 2 G1, y 2 G2, and f j(x; y) � �0; for D, take the set of all
pairs (y; z) with y 2 G2, z 2 G3, and fk(y; z) � �0. De�ne A and B as in Lemma 2.
More explicitly, x 2 A i� x 2 G1 and 'fCx� jG2g > 1 � p

�; z 2 B i� z 2 G3 and
'fD�z jG2g > 1 � p

�. According to Lemma 2, both A and B have positive '-measure:
indeed, '(A) � (1�p�)'(G1), and likewise for B. For x 2 A and z 2 B,

'(Cx� \D�z \G2) � (1� 2
p
�)'(G2):

Moreover, if x 2 A, z 2 B, and y 2 Cx� \D�z, then f
j(x; y) � �0 and fk(y; z) � �0, so that

f j+k(x; z) �
Z
Cx�\D�z\G2

f j(x; y)fk(y; z)'(dy) � �02(1� 2
p
�)'(G2):
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This completes the proof of (7), with �1 = �02(1� 2
p
�)'(G2).

Relationship (7) has the lower bound on a rectangle; the irreducibility condition is
used again, to get the bound on a square. In more detail, let C = Ci�2 be the set of all
x 2 B with P i(x;A) � �2. We claim there is a positive integer i and a positive �2 for
which

(8) '(C) > 0:

To verify (8), recall V from (1). By (7), '(A) > 0. By irreducibility, Vx(A) > 0 for all
x 2 B. Since '(B) > 0, relation (8) follows.

Displays (7) and (8) prove the proposition. Indeed, if x 2 C and D is a measurable
subset of C, then

P i+j+k(x;D) =

Z
X
P j+k(y;D)P i(x; dy)

�
Z
y2A

Z
z2D

f j+k(y; z)'(dz)P i(x; dy)

� �1

Z
y2A

Z
z2D

'(dz)P i(x; dy)

= �1P
i(x;A)'(D)

� �1�2'(D);

the third line holds because y 2 A and z 2 D � C � B; the last line is because x 2 C.
This proves the proposition, with n = i+j+k and � = �1�2. The set C is called a \C-set."
Let k be the least n for which there is a positive � such that Pn(x;D) � ��(D) for all
D � C: then C is said to have \order" k. Compare pp. 7{10 in Orey (1971).

Irreducibility and recurrence are two di�erent ideas when the state space is in�nite.
For instance, take the random walk with drift on the integers. This process is irreducible|
it can get from any integer to any other integer|but transient. Proposition 2 below makes
the connection, when there is stationarity. The preliminary Lemma 4 is a well-known
result from ergodic theory. To state it, let (
;F;P) be a probability triple, and let T be
a measure-preserving transformation: that is, T is a measurable mapping of 
 into itself,
and PT�1 = P. If F 2 F, let �F be the time of the �rst visit to F : that is, �F (!) is the
least n = 1; 2; : : : if any with Tn(!) 2 F , and �F (!) =1 if none.

Lemma 4. If P(F ) > 0 then Pf�F <1jFg = 1.

Proof. Let F0 = F � (T�1F [ T�2F [ � � �). Starting from F0 � F , you never return
to F . Suppose by way of contradiction that PfF0g > 0. Now F0; T

�1F0; : : : are pairwise
disjoint sets with the same positive probability, which is impossible. QED

Corollary 3. Suppose X0; X1; : : : is a stationary stochastic process, and PfX0 2 Fg >
0. Let Y = (Y0; Y1; : : :) be an independent copy of X. Given that X0 2 F and Y0 2 F ,
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there is with conditional probability 1 an n > 0 such that Xn 2 F and Yn 2 F : in other
words, X and Y return to F at the same time.

Remark. Suppose P(F ) > 0. Let PF = Pf � jFg. De�ne TF almost surely on F as
TF = T �F . Then TF is measure-preserving relative to PF .

Proposition 2. Let P (x; �) be a kernel on a separable measurable space (X;B). Suppose
that � is a stationary probability, and �(F ) > 0. Suppose further that

�fx : Vx(F ) > 0 g = 1,

with Vx as in (1). Let ~F be the set of x such that a chain starting from x and moving
according to P is almost sure to hit F in�nitely often. Then �( ~F ) = 1.

Proof. Clearly, X =
S
n;m Fn;m, where Fn;m = fx : Pn(x; F ) > 1=m g. Therefore, it

su�ces to prove that Pxf hit F i:o:g = 1 for �-almost all x 2 Fn;m. In view of Lemma 4,
for �-almost all x 2 Fm;n, a chain that starts from x and moves according to P will return
to Fm;n i.o. a.s. On each return, the chain has chance at least 1=m to hit F , and the
conditional form of the Borel-Cantelli lemma completes the proof. Of course, some of the
Fm;n may be empty or �-null; for such Fm;n, the argument is vacuous.

Proposition 3. Let X and Y be two independent chains, with starting measures �
and �, respectively, and transition kernel P . Suppose P is '-irreducible and C is a C-set
of order 1 as in Proposition 1. Suppose that Xn 2 C and Yn 2 C for in�nitely many n,
almost surely. (Both processes are to visit C at the same time.) Then k�Pn � �Pnk ! 0
as n!1.

Proof. Let �1 be the �rst time that both chains hit C. We can rede�ne X and Y
so that with probability � their next move is from '; hence the rede�ned processes agree
from �1+1 forwards; with the remaining probability 1� � the processes continue to move
independently. There will come another time at which both chains are simultaneously in
C, and then another bit of merging can be arranged; and so forth. In short, given any
� > 0, we can construct chains X�

n and Y �
n which start from � and � respectively, such

that

ProbfX�
n = Y �

n for all su�ciently large ng > 1� �:

Hence

lim infn!1 ProbfX�
n = Y �

ng > 1� �;

which completes the proof.

If P is a kernel on (X;B), let P 
 P be the obvious kernel on (X2;B2);

[P 
 P ](x; y; A) = [P (x; �)� P (y; �)](A)

for each product measurable A. Even if P is '-irreducible, then P 2 can be '-reducible|if
P is periodic. On the other hand, if P is strongly '-irreducible, then P 
 P should be
'2-irreducible. We will not need this fact, except for sets of the form A � A, but it does
follow from Lemma 5 below, whose straightforward proof is omitted.
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Lemma 5. Let P be a kernel on (X;B); � and ' are probabilities on (X;B); k is a
positive integer.

(a) (P 
 P )k = P k 
 P k.
(b) If � is stationary under P , then �2 is stationary under P 
 P .
(c) If P is strongly '-irreducible, then P k is strongly '-irreducible.
(d) If P is strongly '-irreducible, A 2 B, '(A) > 0, and (x; y) 2 X

2, there is a
�nite n = nxyA such that (P 
 P )m(A� A) > 0 for all m � n.

(e) If C is a C-set of order k for P relative to ', then C �C is a C-set of order k for
P 
 P relative to '2.

We are now ready to prove Theorem 1. Let C be a C-set, which exists by Proposition 1.
Let k be the order of C, and let Q = P k 
 P k. According to Lemma 5, C � C is a C-set
of order 1 for Q, and �2 is stationary for Q. Let D � X

2 be the set of pairs x; y such that,
starting from x; y and moving according to Q, a chain visits C � C i.o. a.s. We claim

(9) �2(D) = 1:

Indeed, Qn(x; y; C�C) > 0 for all su�ciently large n, by Lemma 5; Proposition 2 completes
the proof of (9). Proposition 3 now shows that

(10) kPnk(x; �)� Pnk(y; �)k ! 0

as n!1 for all (x; y) 2 D.
Let D0 be the set of x 2 X such that the x-section of D has �-measure 1. By Fubini's

theorem, D0 2 B and �(D1) = 1. If x 2 D0, then (10) holds for �-almost all y: hence
kPnk(x; �)� �k ! 0 as n!1 for all x 2 D0. Since � is invariant, �P (D0) = �(D0) = 1.
So D1 = fx : x 2 D0 and P (x;D0) = 1 g is measurable and has �-measure 1. For x 2 D1,
kPnk+1(x; �)� �k ! 0, because

Pnk+1(x; �)� � =

Z
y2D1

[Pnk(y; �)� �]P (x; dy);

so

kPnk+1(x; �)� �k �
Z
y2D1

kPnk(y; �)� �kP (x; dy):

Proceeding in this way, we construct a decreasing sequence of measurable sets Dj with
�(Dj) = 1 and kPnk+j(x; �)� �k ! 0 as n!1 for all x 2 Dj .

Let X1 =
T
j Dj . Clearly, �(X1) = 1. If x 2 X1, it is easily seen that P (x;Dj) = 1 for

all j, so P (x;X1) = 1. Furthermore, kPn(x; �) � �k ! 0 as n ! 1. Finally, the process
starting from x visits C i.o., almost surely: that is so for all x 2 D0, and X1 � D0. Only
recurrence remains to be proved. To do that, �x a measurable set A � X1 with �(A) > 0,
and a point x 2 X1. Let Xn be a Markov process starting from X0 = x and moving
according to P . Let �Xm be this process, but only at the times when it is in C. The law of
�Xm converges in variation distance to �( � jC), for instance by Theorem 2.

By the irreducibility assumption, C =
S
i;j Ci;j , where
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Ci;j = f y : y 2 C and P i(y;A) > 1=j g.
Therefore, we can �nd a � > 0 and a �nite disjoint sequence of sets C1; C2; : : : � C such
that (i) �([k Ck jC) > 1� �, and (ii) for each k there is an i = ik with P

i(y;A) > � for all
y 2 Ck. Now limm Probf �Xm 2 [k Ck g > 1��, so Probf �Xm 2 [k Ck i:o:g > 1��. By the
conditional form of the Borel-Cantelli lemma, Xn 2 A i.o., with probability greater than
1� �. Letting � ! 0 completes the proof. There is (at least) one irritating complication:
we have have not veri�ed that C is a subset of X1. On the other hand, starting from
x 2 X1, the process stays in X1 almost surely: thus, Xn and �Xm can be taken as staying
in X1, if desired.

6. Literature Review

The most accessible references on the Doeblin theory are perhaps Orey (1973) and
Harris (1956); the latter demonstrates the existence of a �-�nite invariant measure � for
a '-recurrent kernel, with � >> '. Other references are Asmussen (1987), Meyn and
Tweedie (1993), and Revuz (1984); Lindvall (1992) discusses the coupling method. Doe-
blin (1940) should be mentioned; Cohn (1993) gives an overview of the history. Eaton (1992)
derives convergence theorems from reversibility; Lamperti (1960) gives martingale recur-
rence conditions. Pitman (1974) has quite sharp results for chains with discrete state space.
Athreya, Doss and Sethuraman (1996) prove convergence to stationarity in the presence
of a stationary measure; they assume the existence of a C-set in condition (1.5)|relative
to a nonstationary auxiliary measure. Their Theorem 5 is like our Theorem 1; they at-
tribute the result to Tierney (1994); Tierney's proof depends on work of Nummelin (1984)
and Revuz (1984), so the arrangement of ideas here may be a bit easier to follow. The
exceptional null set in Theorem 1 can be eliminated by assuming, for instance, recurrence
relative to the stationary probability. Given the existence of a C-set, a regenerative event
can be constructed, and the renewal theorem can be used to prove convergence; see, for
instance, Athreya and Ney (1978). Their De�nition (2.2) makes A a C-set, and their
Theorem (4.1) is a bit stronger than Theorem 1 here. The argument is developed further
in Athreya, McDonald and Ney (1978a). Athreya, McDonald and Ney (1978b) prove the
renewal theorem by a coupling argument like Doeblin's. Also see Nummelin (1994).
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