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Abstract

In 1986, Merzbach and Nualart demonstrated a method of transforming a two-parameter point process

into a planar Poisson process of unit rate, using random stopping sets. Merzbach and Nualart's theorem

applies only to a special class of point processes, since it requires two restrictive conditions: the (F4)

condition of conditional independence and the convexity of the 1-compensator. The (F4) condition was

removed in 1990 by Nair, but the convexity condition remained. Here both the (F4) condition and the

convexity condition are removed by making use of predictable sets rather than stopping sets. As with

Nair's theorem, the result extends to point processes in higher dimensions.

1 Introduction.

Suppose N is a point process. Is it possible to rescale the domain in such a way that N is transformed into

a Poisson process with rate 1?

When N is a simple point process on the line, the question is answered by Papangelou (1972) and by

Br�emaud (1972), using the characterization of the Poisson process of Watanabe (1964). Provided its com-

pensator is continuous, any such N can be transformed into a unit rate Poisson process via random stopping
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times.

Now suppose that N is a multivariate point process, i.e. a countable sequence of point processes on the

line. Meyer (1971) shows that provided an orthogonality condition is satis�ed, N can be transformed into

a sequence of independent unit rate Poisson processes on the line. This result is also proven by Aalen and

Hoem (1978) for the self-exciting case, and an elegant proof by Brown and Nair (1988) generalizes Meyer's

result to include a wide class of multivariate point processes.

When N is a point process on the plane, the situation is more complex. Merzbach and Nualart (1986)

show that N can be transformed into a unit rate Poisson process using random stopping sets, provided

several conditions are met. For instance, N must satisfy the conditional independence condition (F4) of

Cairoli and Walsh (1975). The need for this condition is removed by Nair (1990). However, both Merzbach

and Nualart (1986) and Nair (1990) assume the convexity of the 1-compensator. This convexity condition

is rather stringent; for example self-exciting point processes generally do not satisfy this condition.

The current paper investigates transformations based on F1-predictable sets rather than stopping sets

and eliminates the need for the conditions mentioned above. However, the existence of the F1- and F2-

intensities is assumed, which is also required by Merzbach and Nualart (1986) but not by Nair (1990). As

with the result of Nair (1990), the result extends to the case where N is a point process in Rk, for k > 2.

The next section introduces planar point processes, predictable sets, stopping sets, and some related

concepts. In section 3 the result on transforming planar point processes to Poisson processes is presented,

and a brief comparison of the use of stopping sets and predictable sets is given. An example is provided in

section 4. In section 5, the result is extended to point processes in higher dimensions.

2 Preliminaries

First, some notation. In what follows, z, z0, and z00 represent elements of R2
+, the positive quadrant of the

plane, while s; s0; t; t0; t00; x and y denote elements of R+.

Before de�ning planar point processes, some ordering of points in the plane is required. For z = (s; t)

and z0 = (s0; t0) 2 R2
+, say z < z0 if s < s0 and t < t0. Similarly, z � z0 if s � s0 and t � t0. Let (z; z0]

denote the rectangular region in R2
+ consisting of all points greater than z and less than or equal to z0; i.e.

(z; z0] = fz00 : z < z00 � z0g.
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Let (
;F ; P ) be a complete probability space. A �ltration F(z) is a collection of sub-�-�elds of F which

is increasing (i.e. F(z) � F(z0) for z � z0), right continuous (i.e. F(z) = \
z0>z

F(z0)) and complete (i.e. each

F(z) contains the null sets of F).

For z = (s; t), de�ne F1(z) as [
t0�0

F(s; t0). Similarly, F2(z) = [
s0�0

F(s0; t). The focus of most of this

paper is on properties related to the �ltration F1; the de�nitions and results related to F2 are analogous.

The �-�eld P1 generated by sets of the form F � (z; z0], for z � z0 and F 2 F1(z), is called the F1-

predictable �-�eld, and an element of P1 is an F1-predictable set. A process X onR2
+ is called F1-predictable

if it is P1-measurable; i.e. if f(!; z) : ! 2 
; z 2 R2
+; X(!; z) 2 Bg 2 P1, for any Borel set B 2 R2

+.

A mappingD from 
 to the closed subsets of R2
+ is called an F1-stopping set provided z0 2 D(!) implies

z 2 D(!) for all z < z0, and f! : z 2 D(!)g 2 F1(z) for all z 2 R2
+.

A process N (z) on R2
+ is increasing if N (z; z0] � 0 for every z < z0, and N (s; 0) = N (0; t) = 0 for every

s,t � 0. If an adapted process N (z) on R2
+ taking values in N [ f1g is right-continuous and increasing,

then N is a point process.

For X a process on R2
+ and B a Borel set in R2

+, let X(B) denote
R
1B(z)dX(z), provided the integral

exists. In particular, if z = (s; t) < (s0; t0) = z0, then X(z; z0] can be written as

X(z0)�X(s; t0)�X(s0; t) +X(z): (2.1)

A point process is called simple if all its jumps are of size 1, i.e. if lim
�#0

N ((s � �; t � �); (s; t)] = 0 or 1,

for each s,t 2 R+. A Poisson process on R2
+ is a simple point process N where for any disjoint Borel sets

B1; :::; Bn in R2
+, N (B1), ..., N (Bn) are independent Poisson random variables. If the mean of N satis�es

EN (B) = �(B) for any Borel set B, where � denotes Lebesgue measure on R2
+, then N is said to have unit

rate.

A 1-martingale is an integrable F1-adapted process X where for each z � z0,

E[X(z; z0]jF1(z)] = 0. If N is an F1-adapted point process, then a 1-compensator A of N is an increasing

F1-predictable process so that N � A is a 1-martingale. The existence and uniqueness of A for simple,

integrable N are proven by Jacod (1975).

Suppose that A is the 1-compensator of N and that there exists an integrable, non-negative, real-valued,

F1-predictable process � such that with probability 1, for each z 2 R2
+,Z

z0<z

�(z0)d�(z0) = A(z); (2.2)
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where � denotes Legesbue measure. Then � is called an F1-intensity of N.

3 Transformation of Planar Processes

This section contains a result on transformations changing point processes on R2
+ into Poisson processes.

First, recall the following lemma of Nair (1990), which generalizes a similar result in Brown, Ivano� and

Weber (1986) for 1-parameter point processes.

Lemma 3.1. If N is an F1-adapted point process on R2
+ with deterministic, continuous 1-compensator A

and at most one point on any vertical line, then N is a Poisson process whose mean corresponds to A.

Theorem 3.2. Suppose N is a simpleF-adapted point process on R2
+ with F1-intensity �1 and F2-intensity

�2. If with probability one,
1R
0

�1(!; s; t)dt = 1 for all s 2 R+, then there is a sequence of F1-predictable

sets Dz such that M (z) :=
R
1Dz

dN is a Poisson process on R2
+ with unit rate.

Proof. De�ne a process �z on R+ as follows. Fix z = (s; t) 2 R2
+. For s

0 � s, let

�z(!; s
0) = inf

8<
:t0 :

t0Z
0

�1(!; s
0; t00)dt00 > t

9=
; ; (3.1)

with the convention that inff;g =1. For s0 > s, let �z(!; s0) = 0.

By assumption, for any s0 2 R+,
1R
0

�1(!; s
0; t00)dt00 = 1 a.s., so �z(!; s

0) < 1 a.s. In addition, observe

that by de�nition of �z(s
0), for almost all ! 2 
,

�z (!;s
0)Z

0

�1(!; s
0; t0)dt0 � t;

and since �1 <1, in fact equality holds, i.e.

�z (!;s
0)Z

0

�1(!; s
0; t0)dt0 = t: (3.2)

Let M (z) =
R
1Dz

dN , where Dz is the random closed region bounded by �z and the axes. That is,

Dz =

8<
:(!; s0; t0) 2 
�R2

+ : s0 � s;

t0Z
0

�1(!; s
0; t00)dt00 � t

9=
; (3.3)
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which may be abbreviated as

fs0 � sg \

8<
:

t0Z
0

�1(s
0; t00)dt00 � t

9=
; (3.4)

To see that Dz is F1-predictable, recall the elementary fact that if any process Xs is G-measurable, for

0 � s � t, then the integral
tR
0

Xsds is also G-measurable (see e.g. Appendix A3.3 of Daley and Vere-Jones

(1988)). From this and the fact that �1 is P1-measurable, it follows that

(
t0R
0

�1(s0; t00)dt00 � t

)
2 P1. The

set fs0 � sg is also trivially F1-predictable (i.e. P1-measurable). Therefore Dz 2 P
1.

In order to show that M is a Poisson process, it is �rst necessary to show that M is a well-de�ned

point process. For each ! 2 
, since 1Dz
is nonnegative, the ordinary Lebesgue integral

R
1Dz

dN =R
s

R
t

1Dz
(s; t)dN (s; t) is clearly well-de�ned. Therefore the random measure M is well-de�ned.

Moreover, M is F1-adapted. Since Dz is an F1-predictable set, the indicator 1Dz
is an F1-predictable

(and hence F1-adapted) process. Since 1Dz
and N are both F1-adapted, so is their product. Therefore the

integral
R
s

R
t

1Dz
(s; t)dN (s; t) 2 F1.

In order to be a point process, M must furthermore take values in Z [ f1g, be increasing, and be

right-continuous. It is clear from the de�nition of M that M inherits from N the property of taking values

in Z+ [ f1g.

To show that M is increasing, recall from equation (??) that for (x; y) � (x0; y0) 2 R2
+,

M ((x; y); (x0; y0)] = M (x0; y0)�M (x; y0) �M (x0; y) +M (x; y)

=

Z
1D(x0;y0)dN �

Z
1D(x;y0)dN �

Z
1D(x0;y)dN +

Z
1D(x;y)dN

=

Z
1D(x0;y0)nD(x;y0)dN �

Z
1D(x0;y)nD(x;y)dN; (3.5)

the last equation following from the fact that D(x;y0) � D(x0;y0) and D(x;y) � D(x0;y), as is evident from the

de�nition of Dz in (??) or (??). Further, since y � y0 and

D(x0;y0) nD(x;y0) = fx < s0 � x0g \

8<
:

t0Z
0

�1(s
0; t00)dt00 � y0

9=
;

and

D(x0;y) nD(x;y) = fx < s0 � x0g \

8<
:

t0Z
0

�1(s
0; t00)dt00 � y

9=
; ;

one sees that D(x0;y0) nD(x;y0) � D(x0;y) nD(x;y). From the fact that the point process N is nonnegative, it

follows that
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Z
1D(x0;y0)nD(x;y0)dN �

Z
1D(x0;y)nD(x;y)dN

which with (??) establishes that M ((x; y); (x0; y0)] � 0. In order forM to be increasing, M must also satisfy:

M (s; 0) =M (0; t) = 0 (3.6)

for every s; t � 0. N is a point process, so (??) holds with M replaced by N . Since M =
R
1Dz

dN , (??)

clearly holds for M as well.

In order to establish that M is a point process, only the right-continuity of M remains to be veri�ed.

Fix any ! 2 
. From the de�nition of � in (??) and the fact that �1 < 1, it follows that for any x 2 R+,

�z0 (!; x) # �z(!; x) as z0 # z. Consequently, for any (x; y) 2 R2
+, 1Dz0

(!; x; y) # 1Dz
(!; x; y) as z0 # z, and the

right-continuity ofM follows by monotone convergence. ThusM is a well-de�ned, F1-adapted point process.

Using Lemma 2.1 of Nair (1990) and the assumption that the F2-intensity of N exists, N contains at

most one point on any vertical line a.s. This is true also of M , since the de�nition of M implies that N has

a point at (s; t) if and only if M has a point at (s;
tR
0

�1(t
0)dt0).

For z = (s; t), Let C(z) =
R
1Dz

dA, where A is the 1-compensator of N , i.e. A(z) =
sR
0

tR
0

�1(s
0; t0)dt0ds0.

In other words, C(z) =
sR
0

�z (s)R
0

�1(s0; t0)dt0ds0. Recall from (??) that for all s0 � s,
�z (s

0)R
0

�1(s0; t0)dt0 = t, so

C(z) =
sR
0

tds0 = st. Thus, C is the 1-compensator of the unit rate Poisson process.

For any z = (s; t) � (s0; t0) = z0, the random set (Dz ; D
0
z] de�ned as Dz0 n fD(s;t0) [ D(s0;t)g is F1-

predictable, since it is the symmetric di�erence of F1-predictable sets. Further, for any F 2 F1(z), since

(F �R2
+) is also F

1-predictable, the set (F �R2
+) \ (Dz; Dz0 ] is F

1-predictable as well. Since the process

1(F�R2
+
)\(Dz ;Dz0

] is thus F
1-predictable and is clearly bounded and nonnegative, one may apply the martin-

gale property (see e.g. equation (1) of Nair (1990)) to N � A, and obtain:

E[
R
1(F�R2

+
)\(Dz ;Dz0 ]

dN ] = E[
R
1(F�R2

+
)\(Dz ;Dz0 ]

dA].

Since the above holds for all F 2 F1(z), it follows that

E[
R
1(Dz ;Dz0

]dN jF
1(z)] = E[

R
1(Dz ;Dz0

]dAjF
1(z)].

Therefore

E[M (z; z0]� C(z; z0]jF1(z)] = E[
R
1(Dz ;Dz0

]dN �
R
1(Dz ;Dz0

]dAjF
1(z)] = 0.
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Thus M � C is a 1-martingale; i.e. C is the 1-compensator of M . From Lemma 3.1, the proof is complete.

2

Remark 3.3. The relation of Theorem 1 to the results of Nair (1990) and Merzbach and Nualart (1986) is

of interest. The results of the previous authors involve transforming the point process N via a sequence of

stopping sets. Notice that the sets Dz de�ned in Theorem 1 are generally not stopping sets, since they may

fail to meet the requirement that if a stopping set contains a point z0, then it must also contain all points

less than z0.

Theorem 3.3 of Nair (1990) assumes that A is 1-convex, i.e. that A(s+�s; t)�A(s; t) � A(s+2�s; t)�

A(s+�s; t), for all s, �s, and t 2 R+. When �1 exists, the 1-convexity of A is equivalent to the assumption

in Theorem 4 of Merzbach and Nualart (1986) that for any t,
tR
0

�1(s; t
0)dt0 is a nondecreasing function of s.

This means that each function �z(s0) is decreasing in s0. This condition ensures thatDz is an F1-stopping set.

Note that Theorem 5 of Merzbach and Nualart (1986) and Theorem 3.4 of Nair (1990) relax the convexity

condition slightly. For example, in Theorem 5 of Merzbach and Nualart (1986), �1(s; t)=�(s) is assumed

nondecreasing in s, for all t � 0, where � is some positive decreasing function. Though a bit weaker than

the convexity condition, this condition also holds only in rather special cases. The situation is the same in

Nair (1990).

Remark 3.4. In applications, one often observes a point process N on a �nite subregion S � R2
+, and

typically the requirement in Theorem 3.2 that
1R
0

�1(!; s; t)dt = 1 is not met. One can nevertheless apply

Theorem 1 to the process �N := N + N 0, where N 0 is an F-adapted Poisson process independent of N with

F1-intensity 1 on Sc and F1-intensity 0 on S. Let ��1 be the F1-intensity of the process �N . In transforming

�N as in Theorem 1, a point z = (s; t) is moved to (s,
tR
0

��1(s; t0)dt0). Similarly, the region S corresponds

in the transformed plane to a region T := f(s;
tR
0

��1(s; t0)dt0) : (s; t) 2 Sg � R2
+. Note that the shape of T

is random. If �1 is a left-continuous version of the F1-intensity of N , and S is the set of points under a

left-continuous function f(x), i.e. S = f(x; y) 2 R2
+ : y � f(x)g, then from the de�nitions of T and �1 it

follows that T is the set of points under some left-continuous function g(x). Further properties of T may be

a subject for future research.

Corollary 3.5. Suppose that N satis�es the conditions of Theorem 3.2, and let ��1 be any integrable,
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nonnegative, F1-predictable process. De�ne D�
z and M� by

D�
z :=

8<
:(!; s0; t0) 2 
�R2

+ : s0 � s;

t0Z
0

��1(!; s
0; t00)dt00 � t

9=
; ;

M�(z) :=

Z
1D�

z
dN:

Then M� is a Poisson process on R2
+ with unit rate if and only if ��1 = �1, �-a.e., where � is the product

measure �� P , and � denotes Lebesgue measure on R2
+.

Proof. In order for the statement to have meaning, it should �rst be noted that the set f��1 = �1g is

always a �-measurable set. Since both ��1 and �1 are F1-predictable, so is ��1 � �1. Thus by the de�nition

of predictability,

f��1 � �1 = 0g 2 �(fF1
z � (z; z0]; z; z0 2 R2

+g) � �(F � B);

where B denotes the Borel subsets of R2
+. That is, f�

�
1 = �1g is �-measurable.

If ��1 = �1 �-a.e., then ��1 is a version of the F1-intensity of N , so M� is a unit-rate Poisson process by

Theorem 3.2.

For the other direction, suppose that M� is a unit-rate Poisson process, and that

�(f��1 6= �1g) > 0. We must show that this leads to a contradiction.

Either �(f��1 > �1g) > 0 or �(f��1 < �1g) > 0; suppose that �(f��1 > �1g) > 0. (The case where

�(f��1 < �1g) > 0 can be proven equivalently.)

Some de�nitions are required. For z 2 R2
+, de�ne sequences of sets Iz, Jz, J

�
z , and Kz as follows:

Iz := f(!; z0) : ��1(!; z
0) > �1(!; z

0); z0 � zg ; (3.7)

Jz :=

8<
:(!; s0;

t0Z
0

�1(!; s
0; t00)dt00) : (!; s0; t0) 2 Iz

9=
; ; (3.8)

J�z :=

8<
:(!; s0;

t0Z
0

��1(!; s
0; t00)dt00) : (!; s0; t0) 2 Iz

9=
; : (3.9)

Kz := f! 2 
 : �(fz0 : ��1(!; z
0) > �1(!; z

0); z0 � zg) > 0g ; (3.10)
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Observe that Iz and (Kz � R2
+) are each F

1-predictable sets, since ��1 and �1 are both F1-predictable

processes. Similarly, since
t0R
0

�1(s
0; t00)dt00 and

t0R
0

��1(s
0; t00)dt00 are both F1-predictable, it follows that Jz and

J�z are F1-predictable sets as well.

Let M be de�ned as in Theorem 3.2. Both M and M� are well-de�ned point processes, as shown in the

proof of Theorem 3.2.

SinceM� is by assumption a Poisson process with unit rate, and since the process 1J�
z
\(K�R2

+
) is bounded,

nonnegative and F1-predictable, applying the martingale property one obtains:

E

Z
1J�

z
\(Kz�R2

+
)dM

� =

Z
1J�

z
\(Kz�R2

+
)d�(z)

= E[�(J�z )jKz]; (3.11)

where the random variable �(J�z ) denotes the Lebesgue measure of the random subset J�z � R2
+.

Similarly, by Theorem 3.2 M is a Poisson process of unit rate, so

E

Z
1Jz\(Kz�R2

+)
dM =

Z
1Jz\(Kz�R2

+)
d�(z)

= E[�(Jz)jKz]: (3.12)

Since �(f��1 > �1g) > 0 by assumption, P (f! : �(f��1 > �1g)g) > 0, and since K(t;t) " f! : �(f��1 > �1g)g

as t!1, we must have P (Kz) > 0 for some z. Fix such a z, and choose any ! 2 Kz. For any (!; s
0; t0) 2 Iz,

��1 > �1, and therefore �(J�z ) > �(Jz): Thus,

E[�(J�z )jKz] > E[�(Jz)jKz]: (3.13)

Combining (??), (??), and (??) yields:

E

Z
1J�

z
\(Kz�R2

+
)dM

� > E

Z
1Jz\(Kz�R2

+
)dM;

i.e.,

E[M�(J�z )jKz] > E[M (Jz)jKz]: (3.14)

For each ! 2 
, M�(J�z ) = N (Iz), by de�nition of M� and J�z . Similarly, by de�nition of M and Jz,

M (Jz) = N (Iz), for every !. Thus

E[M�(J�z )jKz] = E[N (Iz)jKz] = E[M (Jz)jKz]: (3.15)
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Equation (??), together with (??), yields a contradiction. 2

Remark 3.6. Corollary 3:5 may be useful for the evaluation of point process models. Given a point process

N and a model specifying the F1-conditional intensity, ��1, by Corollary 3:5 the problem of assessing the

�t of the model boils down to examining whether M� is a planar Poisson process of unit rate. Much has

been written on the latter problem; see e.g. Diggle (1983), Heinrich (1991), or Andersen, Borgan, Gill, and

Keiding (1992).

4 Example

Rathbun (1995) describes a planar version of the self-exciting point process analyzed by Hawkes (1971).

Here the F1-intensity may be given by:

�1(s; t) = f(s; t) +
R
1fs0<sg g(s � s0; jt� t0j) dN (s0; t0)

where f and g are deterministic, nonnegative functions from R2 to R. Similarly, the F1-intensity of a

k-dimensional version of a Hawkes process can be given by:

�1(t1; :::; tk) = f(t1; :::; tk) +
R
1ft0

1
<t1g g(t1 � t01; jt2 � t02j; :::; jtk� t0kj) dN (t01; :::; t

0
k)

where f and g are now deterministic nonnegative functions from Rk to R.

Such processes generally do not satisfy the convexity condition of Merzbach and Nualart (1986) and Nair

(1990). For instance, suppose N is a planar Hawkes process and f and g are decreasing functions. Then for

any s, s0, and t 2 R+ such that N (s; t) = N (s0; t), �1(x; y) is decreasing in x for s < x < s0 and y � t. Thus
tR
0

�1(x; y)dy is decreasing in x for s < x < s0, which violates the convexity condition.

5 Extension to higher dimensions

In this section, Theorem 3.2 is generalized to include the case where N is a point process in Rk
+, for k � 2.

First, a few of the previous de�nitions must be extended.

For z = (t1; :::; tk) and z
0 = (t01; :::; t

0
k) 2 R

k
+, say z < z0 if ti < t0i for each i, and say z � z0 if ti � t0i for each

i. A �ltration F onRk
+ maybe de�ned exactly as in Section 2. Let F1(z) denote [

u2;u3;:::;uk
F(t1; u2; u3; :::; uk),

where z = (t1; :::; tk). The F1-predictable �-�eld P1, the 1-compensator A and the F1- intensity � of N can
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be de�ned exactly as in Section 2.

The following lemma is an extension of Lemma 3.3 of Brown, Ivano� and Weber (1986). A slightly

stronger version is given in Proposition 4.2 of Nair (1990) and proven for the three-dimensional case.

Lemma 5.1. If N is an F1-adapted point process on Rk
+ with deterministic, continuous 1-compensator A

and at most one point on every hyperplane ft1 = tg, then N is a Poisson process whose mean corresponds

to A.

Theorem 5.2. Suppose that N is a simple F-adapted point process on Rk
+ with F1-intensity �1, F

2-

intensity �2, : : : , and Fk-intensity �k. If with probability one, for all t1; t2; : : : ; tk�1 2 R+,

1Z
0

�1(!; t1; t2; t3; :::; tk)dtk =1;

then there is a sequence of F1-predictable sets Dz, such that M (z) :=
R
1Dz

dN is a Poisson process on Rk
+

with unit rate.

PROOF. Fix z = (t1; :::; tk), and for s1 � t1; s2 � t2; :::; sk�1 � tk�1 de�ne �z(!; s1; s2; :::; sk�1) as

infft0k :
t0
kR
0

�1(!; s1; s2; :::; sk�1; sk)dsk > tkg, letting �z(!; s1; : : : ; sk�1) = 0 otherwise.

De�ne Dz and M by:

Dz =

8<
:(!; s1; : : : ; sk) 2 
 �Rk

+ : s1 � t1; : : : ; sk�1 � tk�1;

skZ
0

�1(!; s1; : : : ; sk�1; s
0
k)ds

0
k � tk

9=
; ;

M (z) =

Z
1Dz

dN:

It follows by the same argument as in Theorem 3.2 that Dz is F
1-predictable and thatM is a well-de�ned

F1-adapted point process. Further, from Proposition 4.1 of Nair (1990) it follows that with probability 1,

N has at most one point on any hyperplane perpendicular to the t1-axis, and therefore the same is true forM .

Let C(z) =
R
1Dz

dA, where A is the 1-compensator of N .

Now

A(z) =

t1Z
0

t2Z
0

:::

tkZ
0

�1(!; s1; s2; :::; sk)dskdsk�1:::ds1

11



and

C(z) =

t1Z
0

:::

tk�1Z
0

�z(!;s1;:::;sk�1)Z
0

�1(!; s1; s2; :::; sk)dsk:::ds1:

As in Theorem 3.2, for each ! 2 
 and each (s1; :::; sk�1) � (t1; :::; tk�1),

�z(!;s1;:::;sk�1)R
0

�1(s1; s2; :::; sk)dsk = tk

so

C(z) =
t1R
0

:::
tk�1R
0

tkdsk�1:::ds1 = t1t2:::tk.

Thus C(z) is the 1-compensator of the unit rate Poisson process in Rk
+.

It follows from exactly the same argument as in Theorem 3.2 that C is the 1-compensator of M . Using

Lemma 5:1, the proof is complete. 2
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