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Abstract

This paper shows how the invariance of the arc-sine distribution on (0, 1) under
a family of rational maps is related on the one hand to various integral identities
with probabilistic interpretations involving random variables derived from Brow-
nian motion with arc-sine, Gaussian, Cauchy and other distributions, and on the
other hand to results in the analytic theory of iterated rational maps.

1 Introduction

Lévy[20, 21] showed that a random variable A with the arc-sine law

d
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can be constructed in numerous ways as a function of the path of a one-dimensional
Brownian motion, or more simply as

4

A= 2(1 &cos0) (1 &cos20) = cos? O (2)

1 1
2 2
where © has uniform distribution on [0, 27| and £ denotes equality in distribution. See
[31, 7] and papers cited there for various extensions of Lévy’s results. In connection with
the distribution of local times of a Brownian bridge [29], an integral identity arises which
can be expressed simply in terms an arc-sine variable A. Section 5 of this note shows
that this identity amounts the following property of A, discovered in a very different

context by Cambanis, Keener and Simons [6, Proposition 2.1]: for all real ¢ and ¢

u

Atiea T T 4 (3)

at & a4 (el

As shown in [6], where (3) is applied to the study of an interesting class of multivariate
distributions, the identity (3) can be checked by a computation with densities, using (2)
and trigonometric identities. Here we offer some derivations of (3) related to various
other characterizations and properties of the arc-sine law. For u € [0, 1] define a rational

(u2 N M)‘l _ a(lea)

a 1 ©a w4+ (1 ©2u)a

function

(4)

So (3) amounts to @, (A) 2 A, as restated in the following theorem. It is easily checked
that @), increases from 0 to 1 over (0,u) and decreases from 1 to 0 over (u, 1), as shown

in the following graphs of Q,(a) for 0 <« <1 and v = k/10 with £ =0,1,...,10.



Theorem 1 For each u € (0,1) the arc-sine law is the unique absolutely continuous
probability measure on the line that is invariant under the rational map a — Q,(«a).

The conclusion of Theorem 1 for @Q/2(a) = 4a(l < a) is a well known result in the
theory of iterated maps, dating back to Ulam and von Neumann [38]. As indicated in [3]
and [22, Example 1.3], this case follows immediately from (2) and the ergodicity of the
Bernoulli shift § — 20 (mod 27). This argument shows also, as conjectured in [15, p.
464 (A3)] and contrary to a footnote of [37, p. 233], that the arc-sine law is not the only

non-atomic law of A such that 4A(1 < A) L A. For the argument gives 4A(1 < A) LA
if A= (1<&cos2nl)/2 for any distribution of U on [0,1] with (2U mod 1) L U/, and

it is well known that such U exist with singular continuous distributions, for instance
U= X.,27" for X,, independent Bernoulli(p) for any p € (0,1) except p = 1/2.
See also [15] and papers cited there for some related characterizations of the arc-sine law,
and [13] where this property of the arc-sine law is related to duplication formulae for
various special functions defined by Euler integrals. Stroock [37, p. 233] asked whether
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any of Lévy’s arc-sine laws might be derived by first showing that the relevant Brownian
functional A satisfied 4A(1 & A) 2 A. As far as we know this question is still open.

Section 2 gives a proof of Theorem 1 based on a known characterization of the stan-
dard Cauchy distribution. In terms of a complex Brownian motion Z, the connection
between the two results is that the Cauchy distribution is the hitting distribution on R
for Zy = +i, while the arc-sine law is the hitting distribution on [0, 1] for Zy = oc. The
transfer between the two results may be regarded as a consequence of Lévy’s theorem
on the conformal invariance of the Brownian track. In Section 4 we use a closely related
approach to generalize Theorem 1 to a large class of functions @) instead of ¢),. The
result of this section for rational ) can also be deduced from the general result of Lalley
[18] regarding Q-invariance of the equilibrium distribution on the Julia set of @), which
Lalley obtained by a similar application of Lévy’s theorem.

2 Proof of Theorem 1

Let A have the arc-sine law (1), and let C' be a standard Cauchy variable, that is

dy

P(C e dy) = m

(y €R). (5)
We will exploit the following elementary fact [33, p. 13]:
AL1/(1407). (6)
Using (6) and C' £ <C, the identity (3) is easily seen to be equivalent to
uC (1 eu)/C L, (7)

This is an instance of the result of E. J. G. Pitman and E. J. Williams [28] that for a large
class of meromorphic functions ' mapping the half plane H* := { € C : Imz > 0}
to itself, with boundary values mapping R (except for some poles) to R, there is the
identity in distribution

G(C) £ ReG(1) + (ImG(1))C (8)

where 1 = /&l and z = Rez 4+ 1Im z. Kemperman [14] attributes to Kesten the remark
that (8) follows from Lévy’s theorem on the conformal invariance of complex Brownian
motion Z, and the well known fact that for 7 the hitting time of the real axis by Z, the



distribution of Z, given Zy = z is that of Rez 4+ (Im z)C. As shown by Letac [19], this
argument yields (8) for all inner functions on H*, that is all holomorphic functions
from H* to H" such that the boundary limit G(x) := lim,jo G(x + iy) exists and is real
for Lebesgue almost every real . In particular, (8) shows that

if G is inner on HT with G(:) = 7, then G(C) el (9)

As indicated by E. J. Williams [39] and Kemperman [14], for some inner G on H"

with G(i) = 1, the property G(C) £ (' characterizes the distribution of ¢ among all
absolutely continuous distributions on the line. These are the G whose action on R is
ergodic relative to Lebesgue measure. Neuwirth [26] showed that an inner function ¢
with G(¢) =i is ergodic if it is not one to one. In particular,

Gu(z) i =uz el Su)/z (10)

as in (7) is ergodic. The above transformation from (3) to (7) amounts to the semi-
conjugacy relation

Q.o =70, where y(w) := 1/(1 + w?). (11)

So ), acts ergodically as a measure preserving transformation of (0,1) equipped with
the arc-sine law. It is easily seen that for v € (0,1) a @),-invariant probability measure
must be concentrated on [0, 1], and Theorem 1 follows.

See also [35, p. 58] for an elementary proof of (7), [1, 23, 24, 2] for further study of
the ergodic theory of inner functions, [16, 19] for related characterizations of the Cauchy
law on R and [17, 9] for extensions to R".

3 Further Interpretations

Since w — 1/(1 + w?) maps ¢ to oo, another application of Lévy’s theorem shows that
the arc-sine law of 1/(1 + C?) is the hitting distribution on [0, 1] of a complex Brownian
motion plane started at oo (or uniformly on any circle surrounding [0, 1]). In terms of
classical planar potential theory [32, Theorem 4.12], the arc-sine law is thus identified
as the normalized equilibrium distribution on [0,1]. The corresponding characterization
of the distribution of 1 <2A on [&1,1] appears in Brolin [5], in connection with the
invariance of this distribution under the action of Chebychev polynomials, as discussed
further in the next section. Equivalently by inversion, the distribution of 1/(1 &2A) is



the hitting distribution on (<00, 1] U [1, 00) for complex Brownian motion started at 0.
Spitzer [36] found this hitting distribution, which he interpreted further as the hitting
distribution of (©o0, 1] U1, 00) for a Cauchy process starting at 0. This Cauchy process
is obtained from the planar Brownian motion watched only when it touches the real axis,
via a time change by the inverse local time at 0 of the imaginary part of the Brownian
motion. The arc-sine law can be interpreted similarly as the limit in distribution as
|z| = oo of the hitting distribution of [0, 1] for the Cauchy process started at @ € R. See
also [30] for further results in this vein.

4 Some generalizations

We start with some elementary remarks from the perspective of ergodic theory. Let
Aa) := 1 <2a, which maps [0, 1] onto [&1,1]. Obviously, a Borel measurable function
fT has the property

HEVE (12)

for A with arc-sine law if and only if
f(l S2A4A) £ 1 &2A4 where f=XoffoA™l. (13)

Let p(z) := 1(z 4+ z7'), which projects the unit circle onto [¢1,1]. Tt is easily seen from
(2) that (13) holds if and only if there is a measurable map f from the circle to itself
such that

f(U)éUand fop(u):pof(u) for |u| =1 (14)
where U has uniform distribution on the unit circle. In the terminogy of ergodic theory
[27], every transformation fT of [0,1] which preserves the arc-sine law is thus a factor

of some non-unique transformation f of the circle which preserves Lebesgue measure.
Moreover, this f can be taken to be symmetric, meaning

fZ) = f(2).
If f acts ergodically with respect to Lebesgue measure on the circle, then f! acts ergod-
ically with respect to Lebesgue measure on [0,1], hence the arc-sine law is the unique
absolutely continuous ff-invariant measure on [0,1]. This argument is well known in
case f(z) = 2z for d = 2,3, ..., when it is obvious that (14) holds and well known that f
is ergodic. Then f(:z;) = Ty(x), the dth Chebychev polynomial [34] and we recover from
(14) the well known result ([3],[34, Theorem 4.5]) that

T,(1224) L1824 (d=1,2,...). (15)
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Let D := {2z :|z| < 1} denote the unit disc in the complex plane. An inner function
on D is a function defined and holomorphic on D, with radial limits of modulus 1 at
Lebesgue almost every point on the unit circle. Let ¢(z) := (1 4+ z)/(1 <z) denote the
Cayley bijection from D to the upper half-plane H*. It is well known that the inner
functions ¢ on HY, as considered in Section 2, are the conjugations G = ¢ o f o ¢!
of inner functions f on D. So either by conjugation of (9), or by application of Lévy’s
theorem to Brownian motion in D started at 0,

if fis inner on D with f(0) = 0, then f(U) Ly (16)

where U is uniform on the unit circle. If f is an inner function on D with a fixed point in
D, and f is not one-to-one, then f acts ergodically on the circle [26]. The only one-to-one
inner functions with f(0) = 0 are f(z) = ¢z for some ¢ with |¢| = 1. By combining the
above remarks, we obtain the following generalization of (15), which is the particular
case f(z) = 2%

Theorem 2 Let f be a symmetric inner function on D with f(0) = 0. Define the
transformation f on [&1,1] via the semi-conjugation

foplz)=po f(z) for |z| = 1, where p(z) := =+, (17)

If A has arc-sine law then
J(1e24) £ 1824, (18)
Fxcept if f(2) = z or f(z) = &z, the arc-sine law is the only absolutely continuous law

of A on [0,1] with this property.

It is well known that every inner function f which is continuous on the closed disc is
a finite Blaschke product, that is a rational function of the form

fz) =]l

=1

2 <=a;
1 &a;z

(19)

for some complex ¢ and «a; with |¢| =1 and |a;| < 1. Note that f(0) = 0 iff some a; =0,
and that f is symmetric iff ¢ = +1 with some a; real and the rest of the a; forming
conjugate pairs. In particular, if we take ¢ = 1,41 = 0,a3 = a € (&1,1), we find that
the degree two Blaschke product




for a = 1 &2u is the conjugate via the Cayley map ¢(z) := i(1 + 2)/(1 &z) of the
function G, (w) = uvw (1 <u)/w on HT, which appeared in Section 2. For f = fi_,,
the semi-conjugation (17) is the equivalent via conjugation by ¢ of the semi-conjugation
(11). So for instance

Quoyod=~o0do fi_y, where ’yoqb(z):# (20)
so that
yod(z) = (1 eRez)if |2] =1,

and Theorem 1 can be read from Theorem 2.

Consider now a rational function R as a mapping from C to C where C is the Riemann
sphere. A subset A of C is completely R-invariant if A is both forward and backward
invariant under R: for z € C, 2 € A & R(z) € A. Beardon [4, Theorem 1.4.1] showed
that for R a polynomial of degree d > 2, the interval [&1, 1] is completely R-invariant iff
R is Ty or <1, A similar argument yields

Proposition 3 Let f be a symmetric finite Blaschke product of degree d. Then there
exists a unique rational function f which solves the functional equation

fop(z)=po f(z) for = € C, where p(z) := 3(z + z71). (21)

This f has degree d, and [<1,1] is completely f-invariant; Conversely, if [&1,1] is
completely R-invariant for a rational function R, then R = [ for some such f.

Proof. Note that p maps the circle with +1 removed in a two to one fashion to (&1 1)
while p fixes +1, and maps each of D and D" := {z : |z| > 1} bijectively onto [&1,1]° :
C\[¢1,1]. Let us choose to regard

p_l(w) =w+1vV1 Sw?

as mapping [<1,1]° to D. Then f:=po fop ! isa well defined mapping of [<1, 1]° to
itself. Because f is continuous and symmetric on the unit circle, this f has a continuous
extension to C, which maps [&1,1] to itself. So f is continuous from C to C, and
holomorphic on [&1,1]°. It follows that f is holomorphic from C to C, hence f is
rational. Clearly, f leaves [©1, 1] completely invariant.

Conversely, if [&1, 1] is completely R-invariant for a rational function R, then we can
define f := p~' o Ro p as a holomorphic map D to D. Because R preserves [&1,1] we
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find that f is continuous and symmetric on the boundary of . Hence f is a Blaschke
product, which must be symmetric also on D by the Cauchy integral representation of

f 0

As a check, Proposition 3 combines with Theorem 2 to yield the special case K =
[<1, 1] of the following result:

Theorem 4 (Lalley [18]) Let K be a compact non-polar subset of C, and suppose that
K is completely R-invariant for a rational mapping R with R(oco) = oo. Then the
equilibrium distribution on K is R-invariant.

Proof. Lalley gave this result for K = J(R), the Julia set of a rational mapping R, as
defined in any of [5, 22, 4, 18], assuming that R(co) = co ¢ J(R). Then K is necessarily
compact, non-polar, and completely R-invariant. His argument, which we now recall
briefly, shows that these properties of K are all that is required for the conclusion.
The argument is based on the fact [32, Theorem 4.12] that the normalized equilibrium
distribution on K is the hitting distribution on K for a Brownian motion Z on C started
at co. Stop Z at the first time 7 that it hits K. By Lévy’s theorem, and the complete
R-invariance of K, the path (R(Z;),0 <t < 7) has (up to a time change) the same law
as does (Z;,0 <t < 7). So the distribution of the endpoint Z, is R-invariant. O

According to a well known result of Fatou [22, p. 57], the Julia set of a Blaschke
product f is either the unit circle or a Cantor subset of the circle. According to Hamilton
[11, p. 281], the former case obtains iff the action of f on the circle is ergodic relative
to Lebesgue measure. Hamilton [12, p. 88] states that a rational map R has [&1,1]
as its Julia set iff R is of the form described in Proposition 3 for some symmetric and
ergodic Blaschke product f. In particular, for the Chebychev polynomial T} it is known
[4] that J(Ty) = [&1,1] for all d > 2, and [25, Theorem 4.3 (ii)] that J(Q,) = [0, 1] for
all 0 < w < 1. Typically of course, the Julia set of a rational function is very much more
complicated than an interval or smooth curve [22, 4, 8].

Returning to consideration of the arc-sine law, it can be shown by elementary argu-
ments that if () preserves the arc-sine law on [0,1] and Q(a) = Py(a)/Pi(a) with P; a
polynomial of degree ¢, then ) = @, or 1 &Q, for some u € [0, 1]. This and all preceding
results are consistent with the following:

Conjecture 5 FEvery rational function R which preserves arc-sine law on [0,1] is of the
form R(a) = L(1 & f(1 &2a)) where f is derived from a symmetric Blaschke product f
with f(0) =0, as in Theorem 2.



5 Some integral identities

Let (B, t > 0) denote a standard one-dimensional Brownian motion. Let

o(z) = L e_%ZZ); O(z) = /:O o(z)dz = P(By > z).

According to formula (13) of [29], the following identity gives two different expressions
for the conditional probability density P(By € dx| By = b)/dx for U with uniform
distribution on [0, 1], assumed independent of (B;,t > 0):

T <bu )) dut — O(|z|+ b <:>:1;|) (22)

L
b i “0( u(l e #(0)

The first expression reflects the fact that B, given By = b has normal distribution with
mean bu and variance u(l <u), while the second was derived in [29] by consideration

of Brownian local times. Multiply both sides of (22) by 1/2/7 to obtain the following
identity for A with the arc-sine law (1): for all real « and b

1 (l‘ <:>bA)2 b2 -

K ST ) =269 b . 2

o (3 T )| = 2 el 4 2
row (xobA? 22 (zeb? 4 (el + o)
DAy AR b 24
Aled) AT Taa © A < (24)
where the equality in distribution is a restatement of (3). So (23) amounts to the identity
1 [ 2? y? _

E — =20 25

oo (o3 (5 155))| =280l + ) (2

for arbitrary real «,y. Moreover, the identity in distribution (3) allows (25) to be deduced
from its special case y = 0, that is

E lexp (@%)] — 23(|z|), (26)

which can be checked in many ways. For instance, P(1/A € dt) = dt/(nt\/t &1) for
t > 1 so (26) reduces to the known Laplace transform [10, 3.363]

% /1“ ﬁe—” d=T(2N) (A0 (27)
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This is verified by observing that both sides vanish at A = oo and have the same derivative
with respect to A at each A > 0. Alternatively, (26) can be checked as follows, using the
Cauchy representation (6). Assuming that C' is independent of By, we can compute for
x>0

E [exp (%x—;)] _ 2 BlexplieC By)] = 17 E [exp(e| Bi|)] = 2B(x).  (28)

We note also that the above argument allows (24) and hence (3) to be deduced from (23)
and (26), by uniqueness of Laplace transforms.
By differentiation with respect to x, we see that (25) is equivalent to

x 1 [ 2? y? 2 _Llogyy
= - = /— ’ > 0).
E[AGXP(%(A—I_l@A))] e (z>0,y >0) (29)

That is to say, for each © > 0 and y > 0 the following function of u € (0,1) defines a
probability density on (0,1):

X

T e 1 R | (30)

2mu(1 Su) 2 l <u

This was shown by Seshadri [35, §p. 123], who observed that f,, is the density of
T.y/(1 +1T,,) for T,, with the inverse Gaussian density of the hitting time of x by a
Brownian motion with drift y. In particular, f.g is the density of 2?/(2? 4+ B}). See also
[29, (17)] regarding other appearances of the density f. 0.

6 Complements

The basic identity (3) can be transformed and checked in another way as follows. By
uniqueness of Mellin transforms, (3) is equivalent to

u? (1 &u)? a 1

= 31
A€2 + (1 <:>A)€2 A€2 ( )

where 5 is an exponential variable with mean 2, assumed independent of A. But it
is elementary and well known that Aey and (1 & A)ey are independent with the same
distribution as B}. So (31) amounts to

1 _ (32)



where X and Y are independent standard Gaussian. But this is the well known result of
Lévy([20] that the distribution of 1/X? is stable with index 1. The same argument yields
the following multivariate form of (3): if (Wi,...,W,) is uniformly distributed on the
surface of the unit sphere in R", then for a; > 0

n 2 n N2
Z a; 4 (Zizl al) ‘ (33)
=1

w o Wy

This was established by induction in [6, Proposition 3.1]. The identity (32) can be recast
as

X2Y? g X?

= 0). 34

a?X?2+c2Y?2 (a+c)? (a,¢>0) (34)

This is the identity of first components in the following bivariate identity in distribution,

which was derived by M. Mora using the property (7) of the Cauchy distribution: for

p>0

2 2 . 2y2)2
((XY(l +p)) 7(X &p’Y?) ) 4 (X2,Y72). (35)
X2 1 p2Y2 X2 1 p2Y?
See Seshadri [35, §2.4, Theorem 2.3| regarding this identity and related properties of the
inverse Gaussian distribution of the hitting time of ¢ > 0 by a Brownian motion with
positive drift. Given (X?,Y?), the signs of X and Y are chosen as if by two independent
fair coin tosses, so (34) is further equivalent to

XY a X
VX241 Y2 a+e
As a variation of (26), set # = v/2X and make the change of variable z = V/2Au in

the integral to deduce the following curious identity: if X is a standard Gaussian then

forallz > 0
El—L | x>a) = ﬁ (x> 0) (37)
XX o2 o B ’

As a check, (37) for large = is consistent with the elementary fact that the distribution
of (x(X <a)| X > x) approaches that of a standard exponential variable £, as © — oo.
The distribution of (x/(XvX? <a?)| X > x) therefore approaches that of 1//2¢; as

x — 0o, and F(1/\/2e1) = /7 /2.
By integration with respect to h(x)dx, formula (37) is equivalent to the following
identity: for all non-negative measurable functions h

2 X xh(x)de
s 0 XVX2&22

(a,c>0). (36)

1(X > 0)

:E[/OXh(:z;)dxl(Xz()) .

12



That is to say, for U with uniform (0,1) distribution, assumed independent of X,

1
\/gE [ (VIeU?|X])] = B[|IX]A(|X]U)].
Equivalently, for arbitrary non-negative measurable ¢

Blg((1eU?)X?)| = Vark [ |X| (X U?)]. (38)

Now X2 £ Ae, where ¢, is exponential with mean 2, independent of A; and when the
density of X? is changed by a factor of /27| X| we get back the density of ;. So the
identity (38) reduces to

(1 <:>U2)A€2 é U2€2

and hence to

(1sUA L2
This is the particular case a = b = ¢ = 1/2 of the well known identity

d

ﬁa—l—b,c ﬁa,b — ﬁa,b—l—c

for a,b,c > 0, where (3, , denotes a random variable with the beta(p, ¢) distribution on
(0,1) with density at u proportional to u?~'(1 <wu)?™!, and it is asumed that (3,45 . and
B4, are independent.
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