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Abstract

We give two new proofs of Cs�aki's formula for the law of the ratio 1 � Q of
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1 Introduction

In his study of asymptotic distributions arising from empirical processes in non-parametric
statistics, Smirnov [25] showed that the formula

P (I � a;M � b) =
1X

k=�1

exp(�2k2(a+ b)2)�
1X

k=�1

exp(�2[b+ k(a+ b)]2) (1)

for a; b � 0 de�nes the joint distribution of a pair of non-negative random variables
(I;M). Doob [11] showed that (I;M) may be constructed as

I := � inf
0�u�1

bu and M := sup
0�u�1

bu

where (bu; 0 � u � 1) is a standard Brownian bridge. Besides the many applications of
this law of (I;M) in the theory of empirical processes (for which see Shorack and Wellner
[24, x2.2]), this law is of interest on account of some of its remarkable properties which
can be found scattered in the probabilistic literature. To quickly recall some of these
properties, the asymptotic distribution of the Kolmogorov-Smirnov statistic is that of
the absolute maximum I _M = sup0�u�1 jbuj, which can be read from (1) as

P (I _M � b) =
1X

k=�1

(�1)k exp(�2k2b2): (2)

As explained by Vervaat's [27] construction of a Brownian excursion from Brownian
bridge, the law of the maximum of a standard Brownian excursion found by Kennedy
[16] and Chung [9] is identical to the law of I +M , known as the amplitude or range of
the bridge, whose distribution is given by the formula [12]

P (I +M > b) = 2
1X
k=1

(4k2b2 � 1) exp(�2k2b2) (3)

for b � 0. See also [2] for a survey of transformations related to Vervaat's construction.
As observed by Chung [9], the distribution of I _M is characterized by the Laplace
transform

E exp(�1
2
�2(I _M)2) =

�
2�

sinh(�2�)
(4)

while that of I +M is characterized by the companion formula

E exp(�1
2�

2(I +M)2) =

 
�
2�

sinh(�2�)

!2

: (5)
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Consequently, the law of (I +M)2 equals the law of the sum of two independent copies
of (I _M)2. For x � 0; y > 0 let T (3)

x;y denote the �rst hitting time of y by a BES(3)x

process (R(3)
x;t ; t � 0), that is a three-dimensional Bessel process started at x, which may

be constructed as R(3)
x;t :=

q
(x+B1;t)2 +B2

2;t +B2
3;t where the (Bi;t; t � 0) for i = 1; 2; 3

are three independent standard Brownian motions started at 0. It is well known that for
y > 0

E exp(�1
2�

2T
(3)
0;y ) =

y�

sinh(y�)
(6)

so the identities (4) and (5) amount to the equalities in distribution

(I _M)2
d
= T

(3)
0;�=2 and (I +M)2

d
= T

(3)
0;�=2 +

bT (3)
0;�=2 (7)

where bT (3)
0;�=2 is an independent copy of T

(3)
0;�=2. As far as we know there is still no satisfying

explanation in terms of Brownian paths for these remarkable identities found by Chung.
For further discussion of these results, their relation to the functional equations satis�ed
by the Jacobi theta and Riemann theta functions, and various applications, see [5, 4, 30].

Let Q := I=(I +M). Cs�aki [10, Theorem 2] deduced from (1) a fairly complicated
expression for P (I + M < u;Q < v), from which he obtained by letting u ! 1 the
remarkable formula [10, (2.12)]

P (Q � v) = 2v2(1� v)
1X
n=1

1

n2 � v2
= (1� v)(1� �v cot(�v)) (8)

for 0 < v < 1. Section 2 of this paper presents a novel approach to Cs�aki's formula (8)
via the alternative expression

P (Q � v) = 2v2(1� v)
Z 1

0
d�

 
sinh(v�)

v sinh(�)

!2

: (9)

By (6), for T
(3)
v;1 the hitting time of 1 by a BES(3)v process, there is the standard formula

E exp(�1
2�

2T
(3)
v;1 ) =

sinh(v�)

v sinh(�)
(10)

so if we let bT (3)
v;1 denote an independent copy of T

(3)
v;1 , and set

T �
v := T

(3)
v;1 +

bT (3)
v;1
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then

E exp(�1
2
�2T �

v ) =

 
sinh(v�)

v sinh(�)

!2
: (11)

In Section 3, the appearance of this quantity as the integrand in (9) is explained in
terms of the path decomposition at the maximum for the Brownian bridge, deduced
as in Pitman-Yor [20] from Williams' [28] path decomposition at the maximum for a
one-dimensional di�usion. The path decomposition of the bridge at its maximum allows
the law of the bridge restricted to the event (Q � v) to be constructed by a random
Brownian scaling operation from a back-to-back joining of the paths of two independent
BES(3)v processes run until their �rst hits of 1. In Section 4 we deduce some corollaries
of this result involving the joint law of M and Q. Section 5 presents a more re�ned
result, which gives an explicit description of the law of the bridge conditioned on Q = q
for an arbitrary q 2 [0; 1]. We note in particular that in the limiting case q = 0 this
conditional distribution on C[0; 1] is absolutely continuous with respect to the law of a
standard Brownian excursion, with a density factor at ! 2 C[0; 1] that is proportional to
(sup0�u�1 !u)2. In Section 6 we present some further identities involving the local time
of the bridge at 0 up to time 1. Finally, Section 7 records some basic properties of the
distribution of Q determined by Cs�aki's formula (8).

2 A derivation of Cs�aki's formula

Let jN j denote the absolute value of a standard Gaussian variable N , so

P (jN j � x) =
Z x

0

q
2
�
e�

1
2
y2dy

and assume that N is independent of the bridge (bt; 0 � t � 1). Our starting point is
the formula

P (jN jI � x; jN jM � y) =
2

cothx+ coth y
(12)

which we have discussed already in [23, Ex. (4.24) of Chapter XII]. See also [8, 22]. As
shown by Perman and Wellner [18], the Smirnov-Doob formula (1) can be deduced from
(12) by inversion of Laplace transforms. But since

Q :=
I

I +M
=

jN jI
jN jI + jN jM (13)
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we can proceed directly from (12) to the distribution of Q, without consideration of
Laplace transforms. Easily from (12), for x; y � 0

P (jN jI � x; jN jM 2 dy) =
2 sinh2(x) dy

sinh2(x+ y)
(14)

which combined with (13) gives

P (Q � v) = P

 
jN jI � v

(1� v)
jN jM

!
(15)

=
Z 1

0
dy

2 sinh2
�

vy
1�v

�
sinh2

�
y

1�v

� (16)

= (1� v)
Z 1

0
d�

2 sinh2(v�)

sinh2(�)
(17)

so we have arrived at formula (9). To complete the proof of Cs�aki's formula (8), it only
remains to check the identity

Z 1

0
d�

2 sinh2(v�)

sinh2(�)
= 1 � �v cot(�v): (18)

But after expanding

2 sinh2(v�) = cosh(2v�)� 1 =
1X
n=1

(2v)2n

(2n)!
�2n

the identity (18) follows easily from the classical identities [13, 3.523.2]

Z 1

0
d�

�2n

sinh2(�)
= �2njB2nj (n = 1; 2; : : :) (19)

where Bm is the mth Bernoulli number, and [13, 1.411.7]

1X
n=1

22njB2nj
(2n)!

x2n = 1 � x cotx (jxj < �): (20)
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3 Path decomposition at the maximum

We start by formulating the path decomposition of the Brownian bridge at its maximum
in terms of the following construction, which we adapt from [28, 29, 19, 5, 20]. See also
[21] for variations of this construction and [14, 15, 26] for other decompositions of the
Brownian path involving the range process and BES(3) pieces.

Construction 1 Given two continuous path processes with random �nite lifetimes, each
with initial value 0 and �nal value z, say R := (R(t); 0 � t � �) and ( bR := ( bR(t); 0 �
t � b�) with R(�) = bR(b�) = z, construct a random element r of C[0; 1], say

r := (r(u); 0 � u � 1) := BRIDGE
h
(R(t); 0 � t � �); ( bR(t); 0 � t � b�)i

with r(0) = r(1) = 0 by �rst pasting R and bR back to back and then transforming the
resulting path by Brownian scaling to have lifetime 1; that is

r(u) :=

(
��1=2R(u�) if 0 � u � V

��1=2 bR((1� u)�) if V � u � 1
(21)

where � := � + b� and V := �=�.

In the following applications, � and b� will be the �rst hitting times of some level z > 0 by
the processes R and bR respectively. Then V is evidently the a.s. unique time at which
r attains its maximum level, so V is a measurable function of r with

sup
0�u�1

r(u) = r(V ) = z��1=2

and R and bR can then be recovered from r via the formulae

� = z2=r2(V )

(R(t); 0 � t � �) = (zr(t=�)=r(V ); 0 � t � V �)

( bR(t); 0 � t � b�) = (zr(1 � t=�)=r(V ); 0 � t � (1 � V )�):

So the joint distribution of (R; bR) determines the distribution of r := BRIDGE
h
R; bRi,

and vice versa.
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Theorem 2 Let (bu; 0 � u � 1) be a standard Brownian bridge, and let

(b�u; 0 � u � 1) := BRIDGE
h
(Bt; 0 � t � �1); ( bBt; 0 � t � b�1)i (22)

where (Bt; 0 � t � �1) and ( bBt; 0 � t � b�1) are two independent copies of a standard
Brownian motion started at 0 and run until its �rst hitting time of 1. Then for every
non-negative measurable function F de�ned on the path space C[0; 1] there is the identity

E [F (bu; 0 � u � 1)] =
p
2� E [F (b�u; 0 � u � 1)M�] (23)

where
M� := sup

0�u�1
b�u = 1=

p
�1 + b�1: (24)

Proof. Copy the proof of [20, Theorem 3.1] in dimension 1, with the one-dimensional
Bessel process (jBtj; t � 0) replaced by (Bt; t � 0). 2

Corollary 3 Fix 0 < v < 1 and let

(ebv;u; 0 � u � 1) := BRIDGE
h
(R

(3)
v;t � v; 0 � t � T

(3)
v;1 ); (

bR(3)
v;t � v; 0 � t � bT (3)

v;1 )
i

(25)

where (R(3)
v;t ; 0 � t � T

(3)
v;1 ) and (

bR(3)
v;t ; 0 � t � bT (3)

v;1 ) are two independent copies of a BES
(3)
v

process run until its �rst hitting time of 1. Then for every non-negative measurable
function F de�ned on the path space C[0; 1] there is the identity

E [F (bu; 0 � u � 1)1(Q � v)] =
p
2� v2E

h
F (ebv;u; 0 � u � 1)fMv

i
(26)

where fMv := sup
0�u�1

ebv;u = (1� v)q
T �
v

with T �
v := T

(3)
v;1 +

bT (3)
v;1 : (27)

Proof. In (23) replace F (� � �) by
F (� � �)1(Q � v) = F (� � �)1(I=M � a) where v = a=(a+ 1); a = v=(1� v)

to see that

E [F (bt; 0 � u � 1)1(Q � v)] =
p
2�E [F (b�u; 0 � u � 1)M�1(Ga)] (28)

for Ga the event
Ga := (I�1 > �a) \ ( bIb�1 > �a)
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where It := inf0�u�tBu and hats indicate corresponding variables de�ned in terms of the
other independent Brownian motion. Since P (Ga) = (a=(a+1))2 = v2, formula (28) can
be recast as

E [F (bt; 0 � u � 1)1(Q � v)] =
p
2� v2E [F (b�u; 0 � u � 1)M� jGa] : (29)

But conditionally on Ga the processes (Bt; 0 � t � �1) and ( bBt; 0 � t � b�1) are two
independent copies of Brownian motion started at 0 and run until its hitting time of
1, with conditioning to hit 1 before �a. By mapping the interval [�a; 1] linearly to
[0; 1], and scaling time by a factor of (a + 1)2 = 1=(1 � v)2, these two processes can be
constructed from two independent copies of Brownian motion started at v and run until
its hitting time of 1, with conditioning to hit 1 before 0. As shown by Williams [28],

such a conditioned Brownian motion is a copy of (R(3)
v;t ; 0 � t � T

(3)
v;1 ). Thus the processes

(Bt; 0 � t � �1) and ( bBt; 0 � t � b�1) given Ga are distributed like two independent
copies of the process 0@R(3)

v;t(1�v)2 � v

1� v
; 0 � t � T

(3)
v;1

(1� v)2

1A (30)

Thus (29) holds with the process (b�t ; 0 � t � 1) conditioned on Ga replaced by (ebt; 0 �
t � 1) de�ned as in (25), and with the density factor M� in (29) replaced by the
corresponding quantity de�ned in terms of the BES(3)v processes, that is

fMv :=
1q

(T �
v )=(1 � v)2

=
(1 � v)q

T �
v

;

and these substitutions in (29) yield (26). 2

As a check on formula (26), we note that the previous formula (23) is recovered from
(26) in the limit as v " 1. To see this, observe that as v " 1 the distribution of the process
in (30) converges to that of (Bt; 0 � t � �1), and hence the distribution of the process
(ebv;u; 0 � u � 1) converges to that of (b�u; 0 � u � 1). For a discussion of the limiting
case of (26) as v # 0, see the end of Section 5.
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4 Some consequences of the path decomposition

If in (26) we take F (bu; 0 � u � 1) = M�1f(M) with M := sup0�u�1 bu as before, and f
an arbitrary non-negative Borel function, then we deduce from (26) that

E
�
M�1f(M)1(Q � v)

�
=
p
2� v2E

24f
0@1 � vq

T �
v

1A35 (31)

where the distribution of T �
v is determined by the Laplace transform (11). In particular,

for arbitrary real r

E (M r1(Q � v)) =
p
2� v2(1� v)r+1E

�
(T �

v )
�(r+1)=2

�
: (32)

For any non-negative random variable X there is the formula

E(X�p) =
21�p

�(p)

Z 1

0
d��2p�1E exp(�1

2
�2X) (p > 0) (33)

obtained by application of Fubini's theorem. So (32) combined with (11) yields

E (M r1(Q � v)) =
p
2� (1 � v)r+1

2
1�r

2

�( r+12 )

Z 1

0
d��r

 
sinh(v�)

sinh(�)

!2

(r > �1): (34)

This formula determines the distribution of M restricted to the event (Q � v) by a
Mellin transform. In the special case r = 0 we recover from (34) the alternative form (9)
of Cs�aki's formula (8).

By another application of formulae (31) and (11), we deduce the following character-
ization of the law of M restricted to the event (Q � v): for all real � and 0 < v < 1

E

"
1

M
exp

 
� �2

2M2

!
1(Q � v)

#
=
p
2�

sinh2 (�v=�v)

sinh2 (�=�v)
where �v := (1 � v): (35)

5 Conditioning the bridge on Q

Formulae for various conditional expectations given Q = v are obtained by di�erentiating
formulae of the previous section with respect to v. For instance, in the special case r = �1
formula (32) simpli�es to give for 0 � v � 1

E[M�11(Q � v)] =
p
2�v2 (36)
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and hence by di�erentiation

E(M�1 jQ = v) = 2
p
2� v=fQ(v) (37)

where, by application of Cs�aki's formula (8),

fQ(v) := P (Q 2 dv)=dv =
d

dv
(1 � v)(1� �v cot(�v)): (38)

See Section 8 for further discussion of this density. By di�erentiation of formula (35) we
obtain for 0 < v < 1, with �v := 1 � v,

E

"
1

M
exp

 
� �2

2M2

!
1(Q 2 dv)

#
=

2
p
2� �

�v2
sinh(�v=�v) sinh(�)

sinh3(�=�v)
dv (39)

If we apply this formula with � := �=�v and v replaced by q then in terms of the amplitude

A := I +M = M=(1 �Q)

we deduce the simpler formula

E

"
1

A
exp

 
� �2

2A2

!�����Q = q

#
=

2
p
2� � sinh(�q) sinh(�(1 � q))

fQ(q) sinh
3(�)

(40)

for 0 < q < 1. In view of (6) and (10) this can be interpreted as follows. Let

Tq := T
(3)
0;1 + T

(3)
q;1 + T

(3)
1�q;1

where T (3)
x;y is as before the �rst hitting time of y by a BES(3)x process, and we now assume

that the three random times T
(3)
0;1 , T

(3)
q;1 , and T

(3)
1�q;1 are independent. Then from (6) and

(10) we have

E exp(�1
2�

2Tq) =
� sinh(�q) sinh(�(1 � q))

q(1� q) sinh3(�)
: (41)

Let
Aq := 1=

q
Tq: (42)

Then (41) allows (40) to be rewritten

E

"
1

A
exp

 
� �2

2A2

!�����Q = q

#
=

2
p
2�q(1� q)

fQ(q)
E

"
exp

 
� �2

2A2
q

!#
: (43)
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It now follows by uniqueness of Laplace transforms that for an arbitrary non-negative
Borel function g and 0 < q < 1 there is the identity

E [g(A) jQ = q] =
2
p
2�q(1� q)

fQ(q)
E(Aqg(Aq)): (44)

That is to say, the conditional density of A at a givenQ = q is identical to afAq
(a)=E(Aq),

where fAq
is the density of Aq := 1=

q
Tq. In particular, by (44) for g = 1,

E(Aq) =
1

2
p
2�

fQ(q)

q(1� q)
: (45)

Formula (61) gives bounds which imply that E(Aq) lies in the interval (0:19; 0:22) for all
q 2 (0; 1). In view of (41), (42) and (33) for p = 1=2, we see that (45) amounts to the
identity Z 1

0
d�

� sinh(�q) sinh(�(1 � q))

sinh3(�)
=

fQ(q)

4
: (46)

This identity can also be deduced by integration of (40) with respect to d�. Since

4
Z v

0
dq � sinh(�q) sinh(�(1 � q)) = 2�v cosh(�)� sinh(�) + sinh(� � 2v�) (47)

the identity (46) is in turn equivalent to

Z 1

0
d�

(2�v cosh(�)� sinh(�) + sinh(� � 2v�))

sinh3(�)
= P (Q � v) (48)

as given by Cs�aki's formula (8). We were able to con�rm this by symbolic integration
using Mathematica.

The above discussion invites an interpretation in terms of a path decomposition of
the bridge conditioned on Q = q. Such an interpretation is provided by the following
corollary of Theorem 2, which extends the previous formula (44) from an identity of
one-dimensional distributions to an identity of distributions on the path space C[0; 1].

Fix q 2 (0; 1). Take three independent BES(3) processes, with starting levels 0; q and

1 � q, say R0, Rq and bR1�q, whose hitting times of 1 are T (3)
0;1 , T

(3)
q;1 and bT (3)

1�q;1. De�ne a
continuous path S := (S(w); 0 � w � Tq), starting at q at time 0, and ending at q at

time Tq := T
(3)
0;1 + T

(3)
q;1 + T

(3)
1�q;1, by concatenation of the three paths

(Rq(t); 0 � t � T
(3)
q;1 );
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(R0(T
(3)
0;1 � u); 0 � u � T

(3)
0;1 );

(1�R1�q(T
(3)
1�q;1 � v); 0 � v � T

(3)
1�q;1):

Let (byq;u; 0 � u � 1) be the process derived from S by the Brownian scaling operation

byq;u := (S(uTq)� q)=
q
Tq. So by construction, (byq;u; 0 � u � 1) is a process starting and

ending at 0 whose amplitude is Aq := 1=
q
Tq as above, with the feature that the process

attains its maximum value before its minimum.

Corollary 4 Let �min denote the a.s. unique time that the Brownian bridge (bu; 0 �
u � 1) attains its minimum on [0; 1], and �max the corresponding time for the maximum.
Then for every non-negative measurable function F de�ned on the path space C[0; 1]
there is the identity

E [F (bu; 0 � u � 1) j �max < �min; Q = q] =
2
p
2�q(1� q)

fQ(q)
E
h
F (byq;u; 0 � u � 1)Aq

i
(49)

where Aq := 1=
q
Tq is the amplitude of (byq;u; 0 � u � 1).

Proof. By application of (23), and the de�nition of conditional expectations, we deduce
that for 0 < q < 1

E [F (bu; 0 � u � 1) j �max < �min; Q = q] =
E [F (b�u; 0 � u � 1)M� j ��max < ��min; Q

� = q]

E [M� j ��max < ��min; Q
� = q]

where M�, ��max, �
�
min and Q� are M;�max, �min and Q evaluated for (b�u; 0 � u � 1)

instead of (bu; 0 � u � 1). In particular, by construction M� = 1=
p
�1 + b�1: Now, from

the construction of (b�u; 0 � u � 1), we see that the event (��max < ��min; Q
� = q) is

identical to the event (I�1 > c; bIb�1 = c) where c=(c + 1) = q; c = q=(1 � q). With this
conditioning, the process (Bu; 0 � u � �1) becomes a Brownian motion run until it �rst
reaches 1, conditioned to reach 1 before reaching �c, while the process ( bBu; 0 � u � b�1)
is a Brownian motion run until it �rst reaches 1 and conditioned on inf0�u�b�1 Bu = �c.
According to Williams' path decomposition at the minimum [28], the latter process
can be constructed by concatenation of two BES(3) pieces. After rescaling as in the
proof of Corollary 3 these two fragments are represented by the second two paths in the
concatenation of three paths which de�nes the process S, and the argument is completed
similarly to the proof of Corollary 3. 2

Note that due to the invariance of the bridge under time reversal, the event (�max <
�min) appearing above is an event of probability 1=2 that is independent of the pair
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(Q;A). Corollary 4 combined with this remark provides an explicit description of the
unique family of conditional distributions for (bu; 0 � u � 1) given Q = q that is weakly
continuous in q for q 2 [0; 1]. In particular, the law of (bu; 0 � u � 1) given Q = 0 is
obtained either by letting q # 0 in Corollary 4, or by conditioning on (Q � v) and letting
v # 0 in Corollary 3. (See formulae (58) and (59) for the required asymptotics of fQ(v)

and P (Q � v) as v # 0). Let (eb0;u; 0 � u � 1) be the process de�ned by formula (25) for

v = 0. That is, (eb0;u; 0 � u � 1) is constructed by putting back-to-back two independent

copies of a BES
(3)
0 run until its �rst hit of 1, then Brownian scaling to obtain lifetime 1.

Then formula (26) implies that

E [F (bu; 0 � u � 1) jQ = 0] =
3
p
2�

�2
E
h
F (eb0;u; 0 � u � 1)fM0

i
(50)

where fM0 := sup
0�u�1

eb0;u = 1p
T �
0

with T �
0 := T

(3)
0;1 +

bT (3)
0;1 : (51)

It is known [7] that the law of (bu; 0 � u � 1) given I = 0, de�ned similarly as a weak
limit, is the law of a standard Brownian excursion (or BES(3) bridge), as determined by
[20, Theorem 3.1 with � = 3],

E [F (bu; 0 � u � 1) j I = 0] =

r
�

2
E
h
F (eb0;u; 0 � t � 1)(fM0)

�1
i
: (52)

Thus the limit in distribution as v # 0 of (bu; 0 � u � 1) given (Q � v), as determined
by (50), is not the same as the limit in distribution as v # 0 of (bu; 0 � u � 1) given
(I � v), as determined by (52), despite the identity of the events (Q = 0) and (I = 0).
See Billingsley [6, p. 441] for similar variations of the classical Borel paradox. As a check
on the constants of integration, it is known [5] that the mean squared maximum of a
Brownian excursion is �2=6. Thus (52) for F (� � �) =M2 gives

�2

6
= E(M2 j I = 0) =

r
�

2
E(fM0)

in agreement with (50) for F (� � �) = 1.

6 Some Further Identities

The formula (12) which we used as our starting point was derived in [23] as a consequence
of the following trivariate identity, which characterizes the joint law of (I;M;L) where

L := lim
"#0

1

2"

Z 1

0
dt 1(jbtj � ")
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is the local time at 0 of the bridge up to time 1:

P (jN jI � x; jN jM � y; jN jL 2 d`) = exp

 
� `

2
(cothx+ coth y)

!
d` (53)

We note that Corollary 3 could be applied to give another characterization of the law of
(I;M;L).

Let (�`; ` � 0) denote the usual local time process at zero of a standard Brownian
motion (Bt; t � 0). As shown in [3], the law of the pseudo-bridge (b#t ; 0 � t � 1) de�ned
by

b#t := Bt�1=
p
�1

is absolutely continuous with respect to that of the bridge, with density (
q
�=2L)�1.

Equivalently, for every non-negative measurable function F de�ned on the path space
C[0; 1] there is the identity

E [F (bt; 0 � t � 1)] =
q

�
2 E

h
F (b#t ; 0 � t � 1)L#

i
(54)

where L# = 1=
p
�1 is the local time at 0 of (b#t ; 0 � t � 1) up to time 1. In terms of the

Brownian motion (Bt), de�ne

It := � inf
0�u�t

Bu; Mt := sup
0�u�t

Bu; At := It +Mt; Qt :=
It
At

:

It was shown in [21] that Q�1 has uniform distribution on (0; 1). In view of (54) and
Cs�aki's formula (8), this implies

E
h
L�1g(Q)

i
=

r
�

2

Z 1

0
dv g(v)

for all non-negative Borel functions g. This formula can also be obtained quite easily
from Theorem 2. From this formula we deduce that

E[L�1 jQ = v] =

r
�

2

1

fQ(v)
: (55)

Compared with (37), this gives the curious formula

E[M�1 jQ = v] = 4vE[L�1 jQ = v]: (56)

As shown by L�evy[17], the random variables M and 2L have identical Rayleigh dis-
tributions, with P (M > x) = P (2L > x) = exp(�2x2) for x > 0. The conditional

14



distribution ofM given Q = v, which is determined by (35), could also be described by a
series density derived from (1). It does not seem easy to describe the conditional law of
L given Q = q so explicitly, though the density of jN jL on the event (Q � v) can be read
from (53), and this could be used to give integral expressions for conditional moments
of L given Q � v or Q = v.

7 The distribution of Q

We record in this section some properties of the distribution of Q which follow from
Cs�aki's formula (8) for P (Q � v). By di�erentiation of (8), the density at q 2 (0; 1) is

fQ(q) =
�2q(1� q)

sin2 �q
+ (2q � 1)� cot�q � 1 (57)

It is easily checked using (57) that

fQ(q) = fQ(1 � q) � 2�2

3
q as q # 0 (58)

where the �rst equality is obvious from the symmetry of Brownian bridge with respect
to a sign change. Easily from (58)

P (Q � q) = P (Q � 1� q) � �2

3
q2 as q # 0 (59)

This distribution of Q is close in most respects to the beta(2,2) distribution with den-
sity 6q(1 � q). Both densities are concave and symmetric about 1=2. The beta(2,2)
distribution is slightly more peaked, with modal density 3=2 = 1:5 at q = 1=2, whereas

fQ(1=2) =
�2

4
� 1 = 1:4674 : : : : (60)

The density of the law of Q relative to the beta(2,2) law is subject to the bounds

0:978 � �2 � 4

6
� fQ(q)

6q(1� q)
� �2

9
� 1:097 (61)

where the lower bound is attained at 1=2 and the upper bound is sharp at 0+ and
1�. The total variation distance between these two densities was found by numerical
integration using Mathematica to beZ 1

0
dq jfQ(q)� 6q(1� q)j � 0:019 (62)
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For n > 0 the nth moment E(Qn) =
R 1
0 dq q

nfQ(q) can be evaluated by integration by
parts as follows:

E(Qn) =
Z 1

0
dv (1� P (Q � v))nvn�1 =

n

n+ 1
+ n�

Z 1

0
dvvn(1� v) cot(�v): (63)

For m = 1; 2; : : : there is the classical identity [1, 23.2.17]Z 1

0
dv B2m+1(v) cot(�v) = 2(2m+ 1)!(�1)m+1 �(2m+ 1)

(2�)2m+1
(64)

where Bn(v) is the nth Bernoulli polynomial, which is of degree n with rational coe�-
cients, and �(s) :=

P1
n=1 n

�s is the Riemann zeta function. Also, by symmetry,

E[(Q� 1=2)2m�1] = 0: (65)

It follows that for n = 1; 2; : : :

E(Qn) =
n

n + 1
+

bn=2cX
m=1

an;m
�(2m + 1)

�2m
(66)

for some rational coe�cients an;m determined by (63), (64) and (65). For instance

E(Q) =
1

2
; E(Q2) =

2

3
� 3�(3)

�2
; E(Q3) =

3

4
� 9�(3)

2�2
; (67)

E(Q4) =
4

5
� 8�(3)

�2
+

30�(5)

�4
; E(Q5) =

5

6
� 25�(3)

2�2
+

75�(5)

�4
: (68)
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