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Abstract

Following up on Baum and Petrie (1966) we study likelihood based
methods in hidden Markov models, where the hiding mechanism can
lead to continuous observations and is itself governed by a parametric
model. We show that procedures essentially equivalent to maximum
likelihood estimates are asymptotically normal as expected and consis-
tent estimates of their variance can be constructed, so that the usual
inferential procedures are asymptotically valid.
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1 Introduction and basic results

Hidden Markov models, that is stochastic point functions of �nite Markov
chains, have become important in a number of areas of application. These
include, �rst and foremost, speech recognition, see Rabiner (1989) for an
introduction and survey, the study of excitation periods in ion channels, see
Ball and Rice (1992) for a survey, models for heterogenous DNA sequences,
Churchill (1992), among others. The main focus of these e�orts have been
algorithms for the �tting of these models and, in particular, see Rabiner, the
implementation of likelihood based methods. It is, in fact, not obvious that
the likelihood can be computed in linear time. But that is the case. There
has been comparatively little work on the study of the inferential properties
of likelihood methods in these models. The notable exceptions to this are
the papers of Baum and Petrie (1966) and Petrie (1969) and most recently
Leroux (1989), (1991). Concurrently with our work Ryd�en (1994a, 1994b)
has also pursued likelihood based procedures in hidden Markov models.

Speci�cally, Baum and Petrie showed that, when observing a determin-
istic �nite point function of a �nite Markov chain, maximum likelihood es-
timates of the parameters of the model governing the chain are consistent
and asymptotically normal. Leroux formulated hidden Markov models in
the generality we shall present and established consistency of maximum like-
lihood estimates of both the parameters of the Markov chain and the con-
ditional distribution of the observations given the Markov chain. Unlike the
Baum-Petrie techniques, which were used both for establishing consistency
and asymptotic normality, Leroux's approach based on results of Fursten-
berg and Kesten (1960) and Kingman's subadditive ergodic theorem (1976)
appears incapable of giving results beyond consistency. On the other hand
we shall show, by adding a few essential ideas to the penetrating analysis of
Baum and Petrie, that the log likelihood for hidden Markov models obeys
the local asymptotic normality (LAN) conditions of LeCam (see LeCam and
Yang (1990), for instance). Hence, e�cient analogues of maximum likelihood
estimates can be constructed, and the information bound giving their asymp-
totic variance estimated. We shall also indicate how our results need to be
strengthened to yield asymptotic e�ciency of maximum likelihood estimates,
when they are consistent. Consistency of maximum likelihood estimates can
also be established with our methods but under conditions slightly stronger
than those of Leroux (1991).
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The paper is constructed as follows. In the rest of this section we formally
introduce the models we consider, state our main assumptions and results,
and further discuss the strengths and weaknesses of these as well as extensions
and further questions, some of which we intend to pursue. In section 2 we give
without proof some lemmas needed to establish our main theorem, discuss R1: Changed

the heuristic behind them, and give a proof of the theorem based on these
lemmas. Finally in section 3 we state more lemmas, give the proofs of all the Changed

lemmas which may not immediately be derived from the work of Baum and
Petrie or others.

Formally we assume that observations (Y1; : : : ; Yn) 2 Yn, for some space

Y, are distributed according to P
(n)
# , # 2 � open � Rp and described as

follows:

i) (Hidden chain) We are given (but do not observe) a stationary ergodic
Markov chain X1; : : : ;Xn; : : : with states f1; : : : ;Kg, stationary ini-
tial probability �#(i), 1 � i � K and transition probability matrix
k�#(i; j)kK�K.

ii) (Yi is a function of the present Xi and an external randomization only.)
Given X1; : : : ;Xn the Yi are conditionally independent, and given Xi,
Yi is independent of Xj, j 6= i.

iii) (Stationarity) The conditional distribution of Yi given Xi doesn't de-
pend on i.

iv) The conditional distributions of Yi given Xi = a are dominated by �,
a � �nite measure for all i, a, #. The conditional density is denoted by
g#(�ja).

We may then write the density of (Y1; : : : ; Yn) with respect to product
measure �(n) as,

g#(y1; : : : ; yn) =
X

(x1;:::;xn)

f#(x1; : : : ; xn; y1; : : : ; yn) (1.1)

where

f#(x1; : : : ; xn; y1; : : : yn) = �#(x1)
n�1Y
j=1

�#(xj; xj+1)
nY
i=1

g#(yijxi) (1.2)
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is the joint density of (X1; : : : ;Xn; Y1; : : : ; Yn) with respect to (counting
measure)(n) ��(n). We denote the joint distribution of (Xi; Yi), 1 � i < 1,
by P#, a probability on (
;A) where 
 is the space of x; y sequences and A
is the Borel � �eld.

This model, more or less given in Leroux (1989), is more general than
it appears to be at �rst sight. It includes all situations where Yi = h(Xi�j ;
1 � j � t, �i, #), 1 � i � n where the �i are i.i.d. and independent of the X's
and t is �xed, since we can always take (X1+i; : : : ;Xt+i) i � 0 as our hidden
chain. We will need the following assumptions.

A1: For all #; a; b, �#(a; b) � 
(#) > 0.

A2: For all a; b, the map # ! �#(a; b) has three continuous derivatives.
Hence so has #! �#(a). R2: Changed

Was it needed?
Note that A1 and A2 imply that for all #0 there exists � > 0, 
(#0) > 0 such
that

inff�#(a; b) : j#� #0j � �g � 
(#0) (1.3)

inff�#(a) : j#� #0j � �g � 
(#0): (1.4)

A3: The maps #!5 log g#(yja) has three derviatives for all y; a. Further, R3: Changed

for all #0 there exists � > 0, � > 0 such that if,

q#0(y; �) � supfj 5 log g#(yja)j : a; j#� #0j � �g

then

E#0 exp[�q#0(Y1; �)] <1 (1.5)

A4: For all #0 there exists � > 0, r > 32 such that if, It was r > 16.

�#0(y) = supfg#(yja)
g#(yjb) : a; b; j#� #0j < �g

then,

E#0�
r
#0
(Y1) <1 (1.6)
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A5: Let # = (#1; : : : ; #p) and

q#0j(y; �) = supfj @j

@#i1 : : : @#ij
log g#(yja)jg;

where the sup is taken over f1 � il � p; l = 1; : : : ; j; 1 � a � K; j#�
#0j � �g. Assume for all #0, some � > 0, j = 2; 3

E#0

n
(q#0j(Y1; �))

2+�
o
<1: (1.7)

Let (Xi; Yi), �1 < i < 1 be the two sided stationary sequence de�ned by
our model and, R4: Changed

All the
terms for m =
1 were added,
most are 0.

W (Y1; Y0; Y�1; : : :) �
1X

m=�1

Wm(Y1; Y0; : : :) (1.8)

where

Wm(Y1; Y0; : : :) (1.9)

� E#0f5 log g(YmjXm)jY1; Y0; : : :g � E#0f5 log g(YmjXm)jY0; Y�1; : : :g
+ E#0f5 log�(Xm;Xm+1)jY1; Y0; : : :g
� E#0f5 log�(Xm;Xm+1)jY0; Y�1; : : :g

We show in Lemma 3.5 that, under A1-A4,W 2 L2(P#0) and we can then
de�ne,

I(#0) � E#0

n
WW T

o
: (1.10)

Fix #0 and let L0, P0, E0 be law, probability and expectation under #0. Let
�n � n�1=2, #n � #0 + ��n, and

Ln(� ) � g#n
g#0

(Y1; : : : ; Yn): (1.11)

Our main goal is to establish the following,

Theorem 1.1 Suppose assumptions A1-5 hold. Then there exist �n, ran-
dom p vectors, such that, if j�nj = O(1), R5: Changed
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logLn(�n) = �Tn �n � 1

2
�Tn Jn�n +Rn(�n) (1.12)

where

E0�n = 0; (1.13)

E0�n�
T
n ! I(#0); (1.14)

Jn ! I(#0); (1.15)

�n
L0! N (0; I(#0)); (1.16)

P0(jRn(�n)j > n�
=2=en) < maxfen; n�1g for any en ! 0 and 
 < 2(1 �
16=r)=5 for r satisfying (1.6), and I(#0) given in (1.10).

Note that (1.12) is just local asymptotic normality (LAN) in the sense
of LeCam. In order to implement this result for inferential purposes we can
proceed more or less as in LeCam and Yang (1990) pp. 57-65. We need

A6: The parameter # is identi�able in the sense that if for some #; #0 2 �
P
(n)
# = P

(n)
#0 for all n, then # = #0. R6: Not

changed
Lemma 1.1 If A1{A6 hold, then there exists an estimate f~#n(Y1; : : : ; Yn)gn�1
which is

p
n consistent. That is, for each #0, ~#n � #0 = OP0(�n).

Let the Gn grid denote the set of all (�j1; : : : ;�jp)�nn�
=2p where the ji
are integers and 
 is as in Theorem 1.1. If Lemma 1.1 holds we can and shall
without loss of generality suppose that ~#n takes on values in the Gn grid only.
Let,

#̂n = local maximizer of g#(Y1; : : : ; Yn) on Gn (1.17)

closest to ~#n among the points of the �n grid, and for given �n, de�ne the
matrix În by, R7: Changed

Înab = ���2n log

8<
:

g#̂n(a;b)g#̂n
g#̂n(a;0)g#̂n(0;b)

(Y1; : : : ; Yn)

9=
; (1.18)

#̂n(a; b) = #̂n + �n�n(ea + eb) (1.19)

where e1; : : : ; ep are the standard basis vectors and e0 = 0. Thus, #̂n is a

grid version of the closest root of the likelihood equation to ~#n and �În is a
second di�erence grid evaluated version of the Hessian at #̂n. Then, R8: Changed
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Corollary 1.1 If A1 - A6 hold, #̂n is as in (1.17) and I(#0) is nonsingular,
then, R9: Changed

n1=2(#̂n � #0)
L0! N (0; I�1(#0)) (1.20)

În
P0! I(#0): (1.21)

We are now able to construct asymptotically e�cient estimates, tests, etc
by pretending that #̂n is approximately N (#; �2nÎ

�1). This result does not
give what one would ideally like:

a) That the M.L.E. #̂�n is asymptotically normal (#0; �2nI
�1(#0))

b) That the Hessian of the log likelihood at #̂�n, n
�1k @2

@#a@#b
log g#̂�n(Y1; : : : ; Yn)k

converges in probability to { I(#0).

Part a) requires
p
n consistency of the MLE and uniform (permitting �n to

be data determined) LAN while b) requires consistency of the MLE and some
sort of uniform convergence of the Hessian. These are open problems.

Discussion of assumptions:

Evidently using f# and Bayes rule we can construct maps from Yn to
fProbabilities on (
;A)g, (y1; : : : ; yn) ! P#(� jy1; : : : ; yn) such that
P#(� jY1; : : : ; Yn) is a regular conditional probability on 
 given (Y1; : : : ; Yn).
The key property in Baum and Petrie's and our analysis is that (X1;X2; : : : ; )
are an inhomogeneous Markov chain under P#(� jy1; y2; : : : ; ). Assumptions
A1, A2, and A4 guarantee that, with probability 1, this chain has strong
geometric ergodicity properties which among other things guarantee the ex-
istence of I(#0) in (1.10). A1 and A2 can easily be relaxed by specifying that
only some power of the transition matrix needs to have all entries positive.
A4 is clearly not very demanding. A3 intersects with A1, A2, and A4 guar-
anteeing the validity of appropriate Taylor expansions. It is evidently a much
stronger moment condition than what is required for valid Taylor expansions
in the i.i.d. case. However, we do not presently see how it can be relaxed.
It evidently holds for Gaussian location and scale families, for instance, as
does A5 which is essentially a standard condition of the Cram�er type.

Extensions: Two extensions worth considering are,
a) To drop the requirement that the state space of X be �nite.
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b) To the case where the hidden process is a Markov random �eld.

The �rst extension includes most nonlinear ARMA processes which have
been proposed { see Priestley (1988), Tong (1991). Let : : : ; ��1; �0; �1; : : :
be an iid sequence of random variables with distribution from a parametric
family, fF#g, and

Yj = h(�j; �j�1; : : : ; #); 1 � j � n: (1.22)

Since Xj = f�j�k : k � 0g is a Markov chain on R1 this falls under case a).
For a discussion of Edgeworth expansions of smooth statistics in such models
see G�otze and Hipp (1992).

Estimation of parameters in hidden Markov �elds by ad hoc methods
has been considered by Frigessi (1990) and others. Likelihoods even for
directly observed �elds are only computable by simulation but extension of
our approach replacing likelihoods of the hidden process by pseudo likelihoods
may be valuable. See Qian and Titterington (1991)

We intend to pursue special cases of both extensions. It also appears that
extensions to continuous time situations where observations are not simply
point functions of the hidden process may also be possible and interesting.
A simple example discussed in Daley and Vere Jones (1989), and pursued by
Ryd�en (1994b), is that of Cox processes driven by a �nite state continuous R10: Changed

Markov process.

2 Proof of theorem 1.1

We begin with an outline of our proof of theorem 1.1. Details are given
at the end of the section after the statement of some lemmas. Let Ya;b =
(Ya; : : : ; Yb) and Xa;b be the corresponding X block. Also de�ne Y(k)

m =
Ymk+1;mk+k and X(k)

m be the corresponding X block where 0 � m � N =
n=k � 1. To simplify the notation we assume that n is a multiple of k. We
argue in II below that if k does not divide n we can neglect the resulting
end e�ect. For convenience we use the subscript � in the sequel to stand
for #n = #0 + �n�n, where f�ng is a bounded sequence. Let, `� (Y(k)

m jXmk+1)
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denote the conditional likelihood of Y(k)
m given Xmk+1 and let

L�m �
PK

a=1 P� [Xmk+1 = ajY1;mk]`�(Y(k)
m ja)PK

a=1 P0[Xmk+1 = ajY1;mk]`0(Y
(k)
m ja)

; (2.1)

denote the likelihood ratio of Y(k)
m given Y1;mk. Also, let

L(d)
�m �

PK
a=1 P� [Xmk+1 = ajYmk�d;mk]`�(Y(k)

m ja)PK
a=1 P0[Xmk+1 = ajYmk�d;mk]`0(Y

(k)
m ja)

; (2.2)

denote the likelihood ratio of Y(k)
m given Ymk�d;mk, and

L��m �
`� (Y (k)

m jXmk+1)

`0(Y
(k)
m jXmk+1)

(2.3)

the likelihood ratio of Y(k)
m given Xmk+1.

I. Write

logLn(� ) =
NX

m=1

logL�m + log
g#n
g#0

(Y1; : : : ; Yk) (2.4)

and

NX
m=1

logL�m =
NX

m=1

log L��m +
NX

m=1

log(1 +
(L�m � L��m)

L��m
): (2.5)

Taylor expanding we get

NX
m=1

log

 
1 +

(L�m � L��m)

L��m

!
(2.6)

=
NX

m=1

(L�m � L��m)�
NX

m=1

(L�m � L��m)

L��m
(L��m � 1)

� 1

2
(1 +Rn)

NX
m=1

(L�m � L��m)
2

(L��m)
2

:

II. We expect jL�m � 1j = OP0(k=n)
1=2. We shall establish this and in so

doing also show that if n = Nk + r, 0 < r < k, then the di�erence between
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logLn(� ) and log LNk(� ) is oP0(1). Further, X1;X2; : : : remains a Markov R11: Changed

chain given the Y 's. Although the chain is not stationary, it satis�es a strong
mixing condition. Thus, we expect that the knowledge of Y 's and X's in the
distant past adds very little information to the present and jL�m � L��mj =
oP0((k=n)

1=2) so that we can and do show that the last two terms of (2.6) are R12: Changed

negligible. The second term in (2.4) is also negligible. This uses arguments
based on the Baum-Petrie results which are stated under our conditions in
lemmas 3.1{3.4.
III. We write the �rst term as

NX
m=1

(L�m � L��m) =
NX

m=1

(L(d)
�m � L��m) +

NX
m=1

(L�m � L(d)
�m): (2.7)

We show that the second term is negligible for d!1, d = o(k) using Baum- R13: Changed

Petrie again and that the �rst term is negligible using uniform mixing and
the Ibragimov-Linnik lemma (Lemma 3.7 below).
IV. We Taylor expand

PN
m=1 logL

�
�m in � and apply uniform mixing to show

it has the LAN structure.
Finally,

V. We evaluate I(#0) necessarily by a di�erent starting formula than Baum-
Petrie's, but again rely on their results to dispose of possible long range
dependence.

The proof of Theorem 1.1 is based on the following lemmas whose proofs
are given in the next section.

We adopt the following notation. We say

An = Obn (an) (2.8)

i� there exists some M0, c(�)& 0 such that for all M >M0 and n > n(M)

P0[jAnj �Man] � c(M)bn:

In particular, O0 (an) � O(an) and O1 (an) � OP0(an).

Lemma 2.1 If A1 - A4 hold, r > 16, k = n4�+
5

4

 , � > 2

r
, 4� + 
 < 1

2
,


 > 0 then for any j� j < M , R14: Changed

NX
m=1

log(L�m=L
�
�m) = Oen

�
n�
=2=en

�
(2.9)

for any en ! 0, nen !1
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The lemma
is now weaker
(k = o(n�1=4)
and not k =
o(n�1=2).

Lemma 2.2 If A1 - A5 hold, r > 32, k = n4�+
 , 4�+ 
 < 1
4 then,

E0 sup
j� j<M

� NX
m=1

����log L��m � �n�
T 5 log `0(Y

(k)
m jXmk+1) (2.10)

� 1

2n
�T





 @2

@#i@#j
log `0(Y

(k)
m jXmk+1)





�
����
)

= O(k2=n1=2);

where kaijk is the matrix with entries aij.

Lemma 2.3 Under A1 - A4

lim
k!1

1

k
E0

��
5 log `0(Y

(k)
0 jX1)

� �
5 log `0(Y

(k)
0 jX1)

�T�
= I(#0) (2.11)

where I(#0) is de�ned as in (1.10).

Lemma 2.4 Under A1 - A4, if k = o(n)

1

n

NX
m=1

E0f55T log `0(Y
(k)
m jXmk+1)jXmk+1g P0! I(#0) (2.12)

1

n

NX
m=1

E
1=2
0 fj 5 log `0(Y

(k)
m jXmk+1)j4jXmk+1g = OP0(1) (2.13)

max
m

P0[j�n5 log `0(Y
(k)
m jXmk+1)j � �jXmk+1] = oP0(1) (2.14)

where 55T h � (5h)(5h)T .

Lemma 2.5 Under A1 - A4,

1

n

NX
m=1






 @2

@#a@#b
log `0(Y

(k)
m jXmk+1)






 P0! �I(#0) (2.15)

Proof of Theorem 1.1: >From lemma 2.1 we see that if � � �n we can
replace the left hand side of (2.5) by

PN
m=1 logL

�
�nm + Oen

�
n�2
=5=en

�
if R15: Changed

Since, 
 is now
smaller we have
no problem.
The last line of
the display was
changed, since
Lemma 2.2 is
weaker.
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k = n4�+
, � > 2
r
, 4�+ 
 < 1

4
.

Lemma 2.2 now guarantees that

NX
m=1

log L��nm = �n�
T
n

NX
m=1

5 log `0(Y
(k)
m jXmk+1) (a)

+
1

2n

NX
m=1

�Tn






 @
2 log

@#i@#j
`0(Y

(k)
m jXmk+1)






 �n
+Oen

�
n�1=2+8�+2
=en

�
:

Let

�mn = �n�
T
n 5 log `0(Y

(k)
m jXmk+1); 1 � m � N: (b)

We claim that this is a triangular sequence of martingale summands with
respect to the � �elds Fmn = �(X1;(m+1)k+1;Y1;(m+1)k), 1 � m � N . This
follows from the Markov property which gives,

E0f`#
`0
(Y(k)

m jXmk+1)jF(m�1)ng = E0f`#
`0
(Y(k)

m jXmk+1)jXmk+1g � 1 (c)

and the usual interchange of di�erentiation and integration. Further, I(#0)
is well de�ned and by Lemma 2.4 equation (2.12), R16: Changed

NX
m=1

E0(�
2
mnjF(m�1)n)

P0! �Tn I(#0)�n; (d)

and by lemma 2.4,

NX
m=1

E0(�
2
mn1(j�mnj � �)jF(m�1)n) (e)

� [
NX

m=1

E
1=2
0 (�4mnjF(m�1)n)] max

1�m�N
P
1=2
0 [j�mnj � �jF(m�1)n]

= oP0(1)

The central limit theorem for triangular arrays of martingale summands (see
Hall and Heyde (1980) for example) establishes that R17: Changed

�n�
T

NX
m=1

5 log `0(Y
(k)
m jXmk+1)

L0! N (0; �TI(#0)� ): (f)
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Finally, lemma 2.5 establishes that the last term in (a) tends to �1
2
�TI(#0)� .

The theorem is proved.
2

Proof of Lemma 1.1: We construct a minimum distance estimator. The
proof is based on LeCam (1956). The construction is simple under the as-

sumption that for some k <1, the map #! P
(k)
# is 1�1 and � compact. In R18: Changed

that case it is possible to construct
p
n consistent estimates by considering

P (k)
n , the empirical distribution of the vectors fYa+b : 0 � b � k � 1g, for

1 � a � n � k + 1. See Ryd�en (1995) for a proof that k = 2K under some R19: Changed

what di�erent conditions than ours and Ryd�en (1994a) for the construction
of the

p
n consistent estimator. In general, let � =

S1
j=1�j with �j+1 � �j,

j � 1 compact sets, and de�ne Tnjk = ft 2 �j : n�1=4dK(P
(k)
t ; P (k)

n ) =

min#2�j dK(P
(k)
# ; P (k)

n )g where dK(�; �) is the Kolmogorov distance. Then let
~# 2 Tn where Tn = Tnjk with Tnjk non-empty and radius less than n�1=4 and
minimal j + k.

2

Proof of Corollary 1.1: The corollary follows in a standard fashion by
the methods of LeCam (1986) and LeCam and Yang (1990). Let GMn =
GnTf# : j# � #0j < Mn�1=2g. Note that there are O(n
=2) points in GMn.
Write Rn = Rn(� ) for the remainder term in (1.12). It follows from Theorem
1.1 that R20: Changed

P0

0
@ sup
�n�1=22GMn

���Ln(� )� ��n + 1=2�TJn�
��� > �

1
A (a)

� O(n
=2) sup
�n�1=22GMn

P0(jRn(� )j > �) (b)

P0! 0:

Hence #̂n is in distance OP0(n
(1+
)=2) of R21: Changed

n�1=2 arg maxf�T�n � 1=2�TJn�g = n�1=2J�1n �n; (c)

which proves Corollary 1.1.
2
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3 Further lemmas and proofs

We begin with four lemmas which are straightforward extensions of key
results of Baum and Petrie (1966) (lemma 2.1, lemma 2.2, and corollary 2.3)
valid under assumptions A1 - A3 and hence the proofs are omitted. They
contain the essential information that knowledge of y's and x's in the distant
past adds very little information to the present. Lemma 3.1 guarantees strong
mixing conditions.

Let
�0(y) =

�
1 + (K � 1)
�2(#0)�#0(y)

��1
In what follows we write P#(AjB; y1; : : : ; yn) if P#(AjB;Y1; : : : ; Yn) is a ver-
sion of the regular conditional probability of A given B, Y1; : : : ; Yn, and
P#(AjB; y1; : : : ; yn) is de�ned for all #, A, B and y1; : : : ; yn. This is easily
done if we can de�ne densities g#(yjx) valid for all #,y and x.

Lemma 3.1 For j#� #0j � � and all #0,

P#[Xi+1 = bjXi = a; y1; : : : ; yn] � �0(yi+1) > 0: (3.1)

Lemma 3.2 If Ct is an event depending on Xi, Yi, i � t, only, then for all
j#� #0j � �, #0, d � 2,

jP#[Ctjyt�1; : : : ; yt�d+1]� P#[Ctjyt�1; : : : ; yt�d]j �
t�1Y

j=t�d+1

(1� 2�0(yj))

� expf�2
t�1X

j=t�d+1

�0(yj)g

Lemma 3.3 Let Ct be as above and

M+
d (#) = max

a
P#[Ctjy1; : : : ; yn;Xt�d = a]

and de�ne M�
d (#) as the corresponding minimum. Then, for all #0, j#�#0j �

�,

���M+
d (#)�M�

d (#)
��� � t�1Y

j=t�d+1

(1 � 2�0(yj)) (3.2)

14



Lemma 3.4 If A1 and A2 hold then for all #0, j#� #0j � �, y1; : : : ; y`, a; b

P#[X`+1 = ajy1; : : : ; y`;X1 = b] � 
(#0): (3.3)

The following two lemmas are of general utility in missing data models.

Lemma 3.5 If P � Q, e� � dQ
dP

, T 2 L1(Q), and B is a sub �-�eld, then

EP jEQ(T jB)j � E
1

r
P fjT jrgE

1

s
P

n
es�
o
E

1

t
P fe�t�g; (3.4)

where 1
r
+ 1

s
+ 1

t
= 1.

Proof of lemma 3.5: Note that,

EQ(T jB) = EP (Te�jB)
EP (e�jB) (a)

So, (3.4) is bounded by

EP

���EP (Te
�jB)EP (e

��jB)
��� � EP

n
jT je�EP

�
e��jB

�o
(b)

� E
1

r
P fjT jrgE

1

s
P

n
es�
o
E

1

t
P

n
e�t�

o
:

2

Lemma 3.6 Let # ! U#, # 2 R, be continuously di�erentiable where U#(�)
is a stochastic process on (
;A), B is a sub �eld of A. Then, if P# � � and
`# � dP#=d�, suppose

(i) #! @
@#
log `#

(ii) #! E#j@U#@#
j

(iii) #! E#[U2
#]

(iv) #! E#(
@
@#

log `#)2

are all continuous.
Then,

@

@#
E#

�
U#

����B
�
= E#

 
@U#

@#

����B
!
+ cov#

( 
U#;

@

@#
log `#

! ����B
)

(3.5)
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Proof of lemma 3.6: Write, �(#; #+�) = log(`#+�=`#),

E#+�(U#+�jB) =
E#

�
U#+�e

�(#;#+�)
���B�

E#

�
e�(#;#+�)

���B� : (a)

Then

@

@#
E#(U#jB) =

@

@�
E#(U#+�e

�(#;#+�)jB)
���
�=0

(b)

� E#(U#jB) @

@�
E#(e

�(#;#+�)jB)
���
�=0

provided the right hand side exists. Interchange of integration and di�er-
entiation may be justi�ed under our condition by a delicate but standard
argument we do not reproduce. We get that the right hand side of (b) is,

E#

 
@U#

@#

���B
!
+ E#

 
U#

@

@#
log `#

���B
!
� E#

�
U#

���B�E#

 
@

@#
log `#

����B
!

(c)

and (3.5) follows.
2

We also need a basic lemma from Ibragimov and Linnik (1971) (theorem
17.2.2 (p. 307)) which we quote for completeness.

Lemma 3.7 If �; � have joint distribution P with marginals P1, P2 such that
kP � (P1 � P2)k � � where k � k is variational distance and for some � > 0,
and Ej�j2+� � c1, Ej�j2+� � c2 then

jE(��)� E(�)E(�)j � c�1�� (3.6)

where � = 2=(2 + �) and c = 4 + 3c�=21 c
1��=2
2 + 3c1��=21 c

�=2
2 .

Here are the additional lemmas we need to carry out I-V. Let

��;i;m(a; b) � P� [Xi+1 = b j Xi = a; Y1; : : : ; Ym] (3.7)
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Lemma 3.8 In our model, if 1 � i � m� 1,

��;i;m(a; b)

�0;i;m(a; b)
=

E0

�
f�
f0
(X1;m;Y1;m)jXi = a;Xi+1 = b;Y1;m

�

E0

�
f�
f0
(X1;m;Y1;m)jXi = a;Y1;m

� : (3.8)

Proof of lemma 3.8: Note that,

P� [Xi+1 = b;Xi = ajY1;m] (a)

=
E0

�
f�
f0
(X1;m;Y1;m)1(Xi+1 = b;Xi = a)jY1;m

�

E0

�
f�
f0
(X1;m;Y1;m)jY1;m

�

P� [Xi = ajY1;m] =
E0

�
f�
f0
(X1;m;Y1;m)1(Xi = a)jY1;m

�

E0

�
f�
f0
(X1;m;Y1;m)jY1;m

� (b)

E0

(
f�
f0
(X1;m;Y1;m)1(Xi = a)jY1;m

)
(c)

= E0

(
f�
f0
(X1;m;Y1;m)jXi = a;Y1;m

)
P0[Xi = ajY1;m]

Substitute (a), (b) on the LHS of (3.8) and simplify using (c) and an analo-
gous expression for the numerator in (a) to get the RHS.

2

Let

Sn � f(a; b; i;m; � ) : m� i � dn; 1 � m � n; j� j �Mg
and E0m(�) � E0(�jY1;m), P�m(�) � P� (�jY1;m), etc.

Lemma 3.9 Suppose A1, A3, and A4 hold and

dn = o(n1=2= log n): (3.9)
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Then,

P0

"
inf
Sn

E0m

(
f�
f0
(Xi;m;Yi;m)jXi = a;Xi+1 = b

)
� 1

2

#
= 1 � o(n�1): (3.10)

Proof of lemma 3.9: >From (1.2), if j� j �M ,

f�
f0
(Xi;m;Yi;m) � (inf

c;d

��
�0

(c; d))m�i+1 inf
c

��
�0
(c) exp

8<
:�M�n

mX
j=i

q0(Yj ;M�n)

9=
; : (a)

By A1 and A2, if j� j � M then the �rst two terms are larger than (1 �
r� )m�i+1 for a �xed r = r(M) <1 so that

inf
Sn

E0m

(
f�
f0
(Xi;m;Yj;m)jXi = a;Xi+1 = b

)
(b)

� (1 + o(1)) expf(�(dn + 1)M�n max
1�j�n

q0(Yj ;M�n)g:

But by (3.9) and A3, for some � > 0, R22: Changed

R23: ChangedP0[ max
1�j�n

q0(Yj;M�n) � log 2=Mdn�n] (c)

� nP0[q0(Y1;M�n) � log 2=Mdn�n]

� n expf��(log 2=M)cn log ngE0e
�q0(Y1;M�n);

where cn !1 and (3.10) follows.
2

Lemma 3.10 Suppose A1 - A4 hold and � > 2
r
. Suppose dn ! 1, dn =

o(n1=2=(log n)2). Then

sup
Sn

�������;i;m�0;i;m
(a; b)� 1

����� = O1=n

�
n�1=2+�

�
(3.11)

Proof of lemma 3.10: By lemmas 3.8 and 3.9 it is enough to show that,

sup
Sn

fjE0m(
f�
f0
(Xi;m;Yi;m)jXi = a;Xi+1 = b) (a)

�E0m(
f�
f0
(Xi;m;Yi;m)jXi = a;Xi+1 = c)jg

= On�1

�
n�1=2+�

�
:
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Consider the following three Markov chains, X 0
i+1; : : : ;X

0
m; X

00
i+1; : : : ;X

00
m;

X 000
i+1; : : : ;X

000
m where,

i) The fX 0
jg and fX 00

j g are independent. Both have transition probabilities
�0;j;m, for going from j to j + 1, i � j � m, with Y1;m held �xed, X 0

i =
X 00

i+1 = a and X 0
i+1 = b, X 00

i+1 = c. and
ii) X 000

` = X 00
` 1(` � T ) + X 0

`1(` > T ) where T = minf` : X 0
` = X 00

` , i < ` �
mg ^m. Note that,

fX 00
` : i � ` � Tg and fX 000

` : i � ` � Tg (b)

have the same distribution. Further, if E0m, P0m now refer to probabilities
on the space on which the data and the X 0

j , X
00
j , X

000
j are de�ned,

���E0m(
f�
f0
(Xi;m;Yi;m)jXi = a;Xi+1 = b) (c)

� E0m(
f�
f0
(Xi;m;Yi;m)jXi = a;Xi+1 = c)

���
=

���E0m(
f�
f0
(X0

i;m;Yi;m)� f�
f0
(X00

i;m;Yi;m))
���

= jE0m[(
f�
f0
(X0

i;T ;Yi;T )� f�
f0
(X000

i;T ;Yi;T )) (d)

� �0
��
(X 0

T+1)
f�
f0
(X 0

T+1; : : : ;X
0
m; YT+1; : : : ; Ym)

��
�0

(X 0
T ;X

0
T+1)]

���:
By A1 and A2, for j� j � M , dn as above there exists c(M) < 1 such that,
if An � maxfq0(Yj ;M�n) : 1 � j � ng,

expf��n(T � i)(MAn + c)g (e)

� f�
f0
(X0

i;T ;Yi;T )

� expf�n(T � i)(MAn + c)g
The same holds if X0

i;T is replaced by X000
i;T and also

f�
f0
(X0

T+1;m;YT+1;m) � expf�ndn(MAn + c)g: (f)

By A3 and (c) of the proof of lemma 3.9

An = On�1

�
(log n)2

�
: (g)
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Then, from (d), (e), (f), and (g), (a) follows if

sup
Sn

fE0m(e
(T�i)an � e�(T�i)an)g = On�1

�
n�1=2+�

�
(h)

for

an = O(�n(log n)
2): (i)

Now,

P0m[T > i+ t] �
i+tY

j=i+1

(1 �K�20(Yj)): (j)

since for j � i

P0m[X
0
j+1 = X 00

j+1jX 0
j = a;X 00

j = b] =
X
c

�0;j;m(a; c)�0;i;m(b; c) (k)

� K�20(Yj+1)

by lemma 3.1. But, by A4

P0

�
min
1�j�n

fK�20(Yj)g � bn

�
= P0

"
max
1�j�n

f�0(Yj)g � 
2((K=bn)1=2 � 1)

K � 1

#
(l)

= o(n�1)

if

bn = o(n�2=r): (m)

Note that for any integer valued random variable N � 1

EaN = a+
1X
t=1

(at+1 � at)P [N > t] (n)

>From (j), (l), (n), if bn = o(n�2=r), bnn�=(log n)2 !1, then an = o(bn) and, R24: Changed

with probability 1 � o(n�1),

maxfE0m(e
(T�i)an � e�(T�i)an) : m� i � dn; 1 � m � ng

� ean � e�an +
1X
t=1

(ean � 1)et(an�bn)

= ean � e�an + (ean � 1)ean�bn(1� e(an�bn))�1

= O(an(bn � an)
�1)

= O(anb
�1
n )
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and (a) follows from (h).
2

Lemma 3.11 If A1 - A4 hold, � > 2
r
, then

sup
Sn

jP�m[Xm = a]� P0m[Xm = a]j = O1=n

�
n�1=2+2�

�
(3.12)

Proof of lemma 3.11: For �xed a let V�;`;m 2 RK be the column vector
with coordinates:

V�;`;m(�) = P�m[Xm = ajX` = �]; ` � m: (a)

Then,

V�;`;m = ��;`;m : : : ��;m�1;mV�;m;m: (b)

By lemma 3.3

supfjV�;`;m(b)� V�;`;m(c)j : b; c; j� j < Mg (c)

�
m�1Y
j=`+1

(1 � 2�0(Yj))

� e�(m�`�1)Bn

where,

Bn = 2 min
1�j�n

�0(Yj): (d)

Then,

supfjV�;`;m(b)� V�;`;m(c)je(m�`�1)bn : b; c; j� j �M; ` � mg = On�1 (1) (e)

if bn = o(n�
2

r ), by arguing as in (l) of lemma 3.10. Therefore, if c�;`;m =
K�1P

b V�;`;m(b) then

supfkV�;`;m � c�;`;m1kebn(m�`�1) : m; `; j� j �Mg = On�1 (1) (f)

where k � k is the L1 on Rk and 1 is the vector of 1's. Then from (b),

kV�;`;m � V0;`;mk = k��;`;mV�;`+1;m � �0;`;mV0;`+1mk (g)

� k(��;`;m � �0;`;m)V�;`+1;mk+ kV�;`+1;m � V0;`+1;mk:
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Further, from lemma 3.10, if m� ` = o(n1=2=(log n)2), bn = o(n�2=r)

k(��;`;m � �0;`;m)V�;`+1;mk � �ne
�(m�`�1)bn (h)

where �n = On�1 (cn), cn = n�1=2+� since

(��;`;m � �0;`;m)1 = 0: (i)

Iterating (g) and using (h), we get, if dn = o(n1=2=(log n)2), bn = o(n�2=r)

supfkV�;`;m � V0;`;mk : m� ` � dn; j� j �Mg = On�1

�
cnb

�1
n

�
: (j)

Finally,

jP�m[Xm = a]� P0m[Xm = a]j (k)

= jX
b

fP�m[X` = b]V�;`;m(b)� P0m[X` = b]V0;`;m(b)gj

� jX
b

(P�m[X` = b]� P0m[X` = b])V�;`;m(b)j+ kV�;`;m � V0;`;mk:

By (f) the �rst term in (k) is, if m � ` � dn, = On�1

�
e�dnbn

�
. If we use (j)

and put bn = n��, dn = n�(log n)2 the lemma follows.
2

Lemma 3.12 Under A1 - A4, if k = o(n1=2�
), for some 
 > 0,

sup

(�����`�`0 (Y(k)
m jXmk+1)� 1

����� : j� j �M; 1 � m � N

)
(3.13)

= O1=n

�
n�
=2

�
Proof of lemma 3.12: Note that for any p > 1 ,

E0 sup

(�����`�`0 (Y
(k)
0

���X1)� 1

�����
p

: j� j �M

)
(a)

= E0 sup

(�����E0

" 
�0
��
(X1)

f�
f0
(X

(k)
0 ;Y

(k)
0 )� 1

! ����X1;Y
(k)
0

#�����
p

: j� j �M

)

� (1 + o(1))E0 sup

(�����f�f0 (X
(k)
0 ;Y

(k)
0 )� 1

�����
p

: j� j �M

)
+ o(1)
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But, for any di�erentiable function A(#) with A(0) = 0,

sup
n���eA(#) � 1

��� ; j#j � �
o
� � sup

n
jA0(#)j eA(#) : j#j � �

o
(b)

� �M�e
�M�

where M� � supfjA0(#)j : j#j � �g. We conclude that,

E0 sup

(�����f�f0 (X
(k)
0 ;Y

(k)
0 )� 1

�����
p

: j� j �M

)
(c)

� (M�n)
pE0

8<
:
0
@ kX
j=1

~q(Yj;M�n)

1
A
p

exp

2
4pM�n

kX
j=1

~q(Yj ;M�n)

3
5
9=
; ;

where

~q(y; �) = q(y; �) + supfjr log�#(a; b)j : j#� #0j < �; a; bg: (d)

Bound the right hand side of (c) by,

(M�n)
pE

1

1+�

0

8><
>:
0
@ kX
j=1

~q(Yj ;M�n

1
A
p(1+�)

9>=
>;E

�
1+�

0

8<
:exp

2
4p(1 + �)M�n

�

kX
j=1

~q(Yj;M�n)

3
5
9=
; (e)

The second term in (e) is bounded by

kp
h
E0

n
~qp(1+�)(Y1;M�n)

oi 1

1+� (f)

and use A3 to bound the third by,"
max
a

E0

(
exp

 
p(1 + �)

�
M�nq(Y1;M�n)

! ����X1 = a

)#k�=(1+�)
(g)

=

 
1 +

O(1)p
n

!k�=(1+�)

= 1 + o(1)

since k = o(n1=2) and �n ! 0. Therefore,

P0

�
sup

1�m�N

j� j�M

(�����`�`0 (Y(k)
m jXmk+1)� 1

�����
)
� n�
=2

�
(h)

� O(1)
n

k
(k�n)

p
np
=2

= o(n�1)
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if k = O(n1=2�
), p > 2 + 3=
.
2

Lemma 3.13 Under A1 - A4 if k = o(n1=2�
), for some 
 > 0 and � > 2
r

sup

( jL�m � L��mj
L��m

: 1 � m � N; j� j �M

)
= O1=n

�
n�

1

2
+2�
�
: (3.14)

Proof of lemma 3.13: By (3.1)

min
a

`�
`0
(Y(k)

m ja)B�(Y1;mk) � L�m � max
a

`�
`0
(Y(k)

m ja)B�(Y1;mk) (a)

where,

B�(Y1;mk) =

P
a P� [Xmk+1 = ajY1;mk]`0(Y(k)

m ja)P
a P0[Xmk+1 = ajY1;mk]`0(Y

(k)
m ja)

: (b)

But,

jB� (Y1;mk)� 1j � max
a

�����P� [Xmk+1 = ajY1;mk]

P0[Xmk+1 = ajY1;mk]
� 1

����� : (c)

It follows from lemmas 3.11 and 3.4,

supfjB�(Y1;mk)� 1j : j� j �M; 1 � m � Ng = On�1

�
n�1=2+2�

�
: (d)

On the other hand

`�
`0
(Y(k)

m ja) =
�0
��
E0

(
f�
f0
(X(k)

m ;Y(k)
m )

���Xmk+1 = a;Y(k)
m

)
(e)

so that by (a) of the proof of lemma 3.10, if k = o(n1=2=(log n)2)

supfj`�
`0
(Y(k)

m ja)�
`�
`0
(Y(k)

m jb)j : m; j� j �M;a; bg = On�1

�
n�1=2+�

�
: (f)

>From (a), (d), (f), and lemma 3.12 we obtain lemma 3.13.
2

24



Lemma 3.14 Under A1 - A5

E0

NX
m=1

jL��m � 1j = O

 �
n

k

�1=2!
(3.15)

Proof of lemma 3.14: Note that

E0fjL��0 � 1jjX1 = ag = kL� (Y1;kjX1 = a)� L0(Y1;kjX1 = a)k (a)

where k � k denotes variational distance. Therefore
E0fjL��0 � 1jjX1 = ag (b)

� kL�((X1;k;Y1;k)jX1 = a)� L0((X1;k;Y1;k)jX1 = a)k (c)

� 2H(L0a;L1a)
�
2�H2(L0a;L1a)

�1=2
where L0a, L1a are the laws in (c) and H is Hellinger distance, by a standard
inequality (LeCam (1986) p. 47). But,

1�H2(L0a;L1a) (d)

= E0

8<
:
 
f�
f0

! 1

2

(X1;k;Y1;k)jX1 = a

9=
;

= E0

��
��
�0

�1=2
(a)

k�1Y
1

�
��
�0

�1=2
(Xi;Xi+1)

kY
i=1

E0

2
4 g�

g0

!1=2

(YijXi)

3
5 ����X1 = a

�
:

But

kY
i=1

E0

2
4
 
g�
g0

!1=2

(YijXi)

3
5 (e)

=
kY
i=1

E0

n
e
1

2
log(g�=g0)(YijXi)

o

�
kY
i=1

"
1 � �2n

2
j� j2pE0

��
1

4
q20(Yi;M�n) +

1

2
q02(Yi;M�n)

�
e
j� j
2
�nq0(Yi;M�n)

�#

� 1�O

 
k

n

!
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by Taylor expansion and A3 and A5. Similarly, by A1 and A2:

E0

(�
��
�0

�1=2
(a)

k�1Y
1

�
��
�0

�1=2
(Xi;Xi+1)

���X1 = a

)
� 1�O

 
k

n

!
: (f)

Finally, we conclude from (e) and (f):

KX
a=1

H2(L0a;L1a)�0(a) = O

 
k

n

!
: (g)

The lemma is proved by (a), (b), and (g).
2

Lemma 3.15 If L(d)
�m is given by (2.2), r > 8, k = o(n1=2�
) for some 
 > 0,

d = n� log2 n, � > 2
r
then

sup
n���L(d)

�m � L�m

��� : j� j �M; 1 � m � N
o
= On�1

�
n�1��

�
: (3.16)

Proof of lemma 3.15: By lemma 3.2, if Bn is given by (d) of lemma 3.11,

sup
1�m�N

j� j�M

fjP� [Xmk+1 = ajYmk�d;mk]� P� [Xmk+1 = ajY1;mk]jg (a)

� max
m�1

8<
:
mk�d�1X

`=1

mkY
j=`+1

(1 � 2�0(Yj))

9=
;

� e�(d�1)Bn

1� e�Bn

= O1=n

�
n�1�2�

�
by arguing as for (l) of lemma 3.10. But, by lemma 3.1,

P0[X` = ajY1;n] � min
a;b

�0;`�1;n(a; b) (b)

� minf�0(Yj) : 1 � j � ng
and, hence

P0[min
a;`

P0[X` = ajY1;n] � n��] = 1� o(n�1): (c)
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But, arguing as for lemma 3.13,

jL�m � L(d)
�mj � Am(� )max

a

`�
`0
(Y(k)

m ja) +Am(0)L�m (d)

where

Am(� ) � max
a

� jP� [Xmk+1 = ajY1;mk]� P� [Xmk+1 = ajYmk�d;mk]j
P0[Xmk+1 = ajYmk�d;mk ]

�
: (e)

By (a) and (c),

supfAm(� ) : m; j� j �Mg = On�1

�
n�(1+�)

�
(f)

and lemma 3.15 follows from (d), lemma 3.12, and lemma 3.13.
2

Lemma 3.16 Suppose A1 - A4 hold. Let d = n� log2 n, � > 2
r
, and k = n4�+


for some 
 > 0, 4�+ 
 < 1
2 , so that r > 16. Then

E0

8<
:
 X

m

�
L(d)
�m � L��m

�!2
9=
; = O(n�
) (3.17)

Proof of lemma 3.16: For any �xed u, we �rst bound

E0

n
(L(d)

�m)
u
o
� E0

( 
max
a

P�
P0

[Xmk+1 = ajYmk�d;mk]max
a

`�
`0
(Y(k)

m ja)
!u)

: (a)

Now the �rst term in (a) is uniformly bounded by lemma 3.4. The second is
bounded by,

expfM�nu
(m+1)kX
j=mk+1

q0(Yj;M�n)g: (b)

Thus, if k = o(n1=2), by A3, for all u, eventually,

E0(L
(d)
�m)

u � C1(1 + C2�n)
k � C3: (c)
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Similarly,

E0(L
�
�m)

u � C4: (d)

Now,

jL(d)
�m � L��mj (e)

� max
a;b

�����`�`0 (Y(k)
m ja)�

`�
`0
(Y(k)

m jb)
�����

+max
a

`�
`0
(Y(k)

m ja)max
a

����P�P0 [Xmk+1 = ajYmk�d;mk]� 1
����

= On�1

�
n�1=2+�

�
+On�1

�
�1=2+2�

�

by (f) of lemma 3.13, lemma 3.12, lemma 3.4 and lemma 3.11 and (a) of
lemma 3.15. Let cn = cn�1=2+2� for some large enough c. Note that

E0

���L(d)
�m � L��m

���2+8� (f)

� c2+8�n + E0

n
jL(d)

�m � L��mj2+8�1(jL(d)
�m � L��mj � cn)

o
� c2+8�n + E16�2

0

n
jL(d)

�m � L��mj(2+8�)=16�
2
o
P 1�16�2

0

n
jL(d)

�m � L��mj > cn
o

� 2c2+8�n

for large enough n.
We will apply the Ibragimov-Linnik lemma 3.7, with � = 8� . Note that, if

d � k, by the geometric ergodicity of the chain under A1, A2, the variational
norm distance between the joint distribution of (L(d)

�m1
� L��m1

; L(d)
�m2

� L��m2
)

and the product of the marginals is bounded by C�jm1�m2 j for some C <1,
� < 1 and all m1, m2. Hence, using (f) above

E0

8<
:
 

NX
m=1

(L(d)
�m � L��m)

!2
9=
; = O

�
n

k
c2n

�
(g)

= O(n�
 )

under our conditions on k, cn.
2
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Proof of lemma 2.1: It's enough to show all terms on the RHS of (2.6)

are Oen

�
n�
=2=en

�
. The �rst term is equal to

NX
m=1

(L�m � L(d)
�m) +

NX
m=1

(L(d)
�m � L��m) = Oen

�
n�
=2e�1=2n

�
(a)

by lemma 3.15 and lemma 3.16. The second term can be bounded by

sup
1�m�N

j� j�M

( jL�m � L��mj
L��m

)
NX

m=1

jL��m � 1j = Oen

 
n�1=2+2�

�
n

k

�1=2
=en

!
(b)

= Oen

�
n�
=2=en

�

by lemmas 3.13 and 3.14. Finally the third term is negligible since

jRnj �
 
1� sup

( jL�m � L��mj
L��m

: 1 � m � N; j� j �M

)!�2
(c)

= On�1 (1)

and

NX
m=1

 jL�m � L��mj
L��m

!2

= O1=n

�
n�


�
(d)

both by lemma 3.13.
2

Proof of lemma 2.2: Expand

logL��m = �n�
T 5 log `0(Y

(k)
m jXmk+1) (a)

+
1

2n
�Tk @2

@#i@#j
log `0(Y

(k)
m jXmk+1)k�

+ �3n

Z 1

0

(1� �)2

2

X
a;b;c

�a�b�c
@3

@#a@#b@#c
log `�� (Y

(k)
m jXmk+1)d�:
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We use a classical formula based on lemma 3.6. If B is generated by Xmk+1,
Y(k)

m , and we suppress arguments in f#,

@3

@#a@#b@#c
log `#(Y

(k)
m jXmk+1) (b)

= E#

(
@3

@#a@#b@#c
log f#

���B
)
+ cov#

(
@2

@#a@#b
log f#;

@

@#c
log f#

���B
)

+ cov#

(
@2

@#a@#c
log f#;

@

@#b
log f#

���B
)
+ cov#

(
@2

@#b@#c
log f#;

@

@#a
log f#

���B
)

� cov#

(
@

@#a
log f#

@

@#b
log f#;

@

@#c
log f#

���B
)

� cov#

(
@

@#a
log f#

@

@#c
log f#;

@

@#b
log f#

���B
)

� cov#

(
@

@#b
log f#

@

@#c
log f#;

@

@#a
log f#

���B
)
� @3

@#a@#b@#c
log �#(Xmk+1):

We see from (b) and assumptions A1 and A2 that to bound the third term
in (a) it su�ces to bound, for j#� #0j �M�n, all a; b; c

E0

8<
:E#

2
4j kX

j=1

@3

@#a@#b@#c
log g#(Yj jXj)j

���Y1; : : : ; Yk
3
5
9=
; ; (c)

E0

�
E#

�������
kX

j=1

@2

@#a@#b
log g#(YjjXj)

������ (d)

�
0
@1 + j kX

j=1

@

@#c
log g#(Yj jXj)j

1
A ���Y1; : : : ; Yk

��
;

and

E0

8<
:E#

2
4j kX

j=1

@

@#a
log g#(Yj jXj)j3

���Y1; : : : ; Yk
3
5
9=
; : (e)

We can apply lemma 3.5 to all of these and use A3 to conclude that, under
A5, (c){ (e) are uniformlyO(k3). To do so we take r in the lemma as close to
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1 as possible and s and t as large as necessary since, by A3, and by arguing
as in lemma 3.16 (b), E0 exp jt�j < 1 for all k = o(n1=2), t. Therefore, the
expectation of the remainder in (a) is O(n�3=2k3). The lemma follows since R25: Changed

there are n=k terms like that in the LHS of (2.10). under our assumptions. My stupid mis-
take of the last
revision was
forgetting the
need for a sen-
tence like the
last one.

2

Lemma 3.17 Let �k � �j + 2 and

S(j; k) � max
a;b;c

�����P0[X�k = a
���X�j+2;Y�j+2;0;X1 = b] (3.18)

� P0[X�k = ajX�j+2;Y�j+2;0;X1 = c]
����
�

Then,

S(j; k) � 2
�1(#0)
0Y

i=�k+1

(1� 2�0(Yi)) (3.19)

Proof of lemma 3.17:

P0[X�k = ajX�j+2;Y�j+2;0;X1 = b] (a)

=
P0[X1 = bjX�j+2;Y�j+2;0;X�k = a]

P0[X1 = bjX�j+2;Y�j+2;0]
P0[X�k = ajX�j+2;Y�j+2;0]:

Then

S(j; k) � 2max
a;b

(�����P0[X1 = bjX�j+2;Y�j+2;0;X�k = a]

P0[X1 = bjX�j+2;Y�j+2;0]
� 1

�����
)
: (b)

But,

P0[X1 = bjX�j+2;Y�j+2;0] (c)

=
X
c

P0[X1 = bjX�k = c;Y�k+1;0]P0[X�k = cjX�j+2;Y�j+2;0]

and hence,

S(j; k) (d)

� 2max
a;b

P
c jP0[X1 = bjX�k = c;Y�k+1;0]� P0[X1 = bjX�k = a;Y�k+1;0]j

minb P0[X1 = bjX�j+2;Y�j+2;0]

� 2
�1(#0)K
0Y

j=�k+1

(1� 2�0(Yj))
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by lemma 3.3 and 3.4
2

Proof of lemma 2.3: Without loss of generality take #0 = 0. Write,

`#(Y1; : : : ; YkjX1) =
kY

j=1

gj#
g(j�1)#

(X1;Y1;j) (a)

where gj#(X1;Y1;j) is the joint density of (X1;Y1;j), for j � 1, and g0# =
�#(X1). Take dim(#) = 1. The generalization is trivial. Then

@

@#
log `#(Y

(k)
0 jX1) (b)

=
kX

j=1

"
@

@#
log gj#(X1;Y1;j)� @

@#
log g(j�1)#(X1;Y1;j�1)

#
:

The terms in brackets are of course martingale summands and we arrive at
the identity, R26: Changed

E0

8<
:
 
@

@#
log `0(Y

(k)
0 jX1)

!2
9=
; (c)

=
kX

j=1

E0

8<
:
 
@

@#
log gj0(X1;Y1;j)� @

@#
log g(j�1)0(X1;Y1;j�1)

!2
9=
;

=
kX

j=1

E0

n
U2
j (X1;Y1;;j)

o
; say

=
kX

j=1

E0

n
U2
j (X�j+2;Y�j+2;1)

o

where (Xj ; Yj), �1 < j <1 is the two sided stationary sequence such that
(Xj ; Yj), j � 1 are distributed according to P#. We claim that,

E0

n
U2
j (X�j+2;Y�j+2;1)

o
! I(#0) (d)
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and that combined with (c) clearly establishes (2.11). Now, if we use
b0

b
(#)

for @
@#

log b(#),

Uj(X�j+2;Y�j+2;1) (e)

= E0

8<
:

1X
m=�j+2

g00
g0
(YmjXm) +

0X
m=�j+2

�00
�0

(Xm;Xm+1)

���� X�j+2;Y�j+2;1

9=
;

� E0

8<
:

0X
m=�j+2

g00
g0
(YmjXm) +

�1X
m=�j+2

�00
�0

(Xm;Xm+1)

���� X�j+2;Y�j+2;0

9=
;

by the usual formula. Consider the �rst part of the mth term in the sum in
(e),

U
(1)
jm (f)

� E0

(
g00
g0
(YmjXm)

���X�j+2;Y�j+2;1

)
� E

(
g00
g0
(YmjXm)jX�j+2;Y�j+2;0

)

=
KX
a=1

g00
g0
(Ymja)fP0[Xm = a

���X�j+2;Y�j+2;1]� P0[Xm = a
���X�j+2;Y�j+2;0]g:

Note that, by the (backward) martingale convergence theorem, for �xedm <
0,

U
(1)
jm

P0! E0

(
g00
g0
(YmjXm)jY1; Y0; : : : ;

)
� E0

(
g00
g0
(YmjXm)jY0; Y�1; : : : ;

)
(g)

as j !1.
Note that,

P0 fXm = ajX�j+2;Y�j+2;0g (h)

=
X
b

P0 fXm = ajX�j+2;Y�j+2;0;X1 = bgP0 fX1 = bjX�j+2;Y�j+2;0g

and

P0 fXm = ajX�j+2;Y�j+2;1g (i)

=
X
c

P0 fXm = ajX�j+2;Y�j+2;0;X1 = cgP0 fX1 = cjX�j+2;Y�j+2;1g
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so that,

max
a
jP0 fXm = ajX�j+2;Y�j+2;0g � P0 fXm = ajX�j+2;Y�j+2;1gj (j)

� max
a;b;c

����P0 fXm = ajX�j+2;Y�j+2;0;X1 = bg

� P0 fXm = ajX�j+2;Y�j+2;0;X1 = cg
����

= S(j;�m):

We conclude by lemma 3.17 that,

jU (1)
jm j � 2
�1(#0)

KX
a=1

�����g
0
0

g0
(Ymja)

�����
0Y

k=m+1

(1 � 2�0(Yk)) (k)

� 2
�1(#0)Kq0(Ym;M�n) exp

0
@�2 0X

k=m+1

�0(Yk)

1
A :

Now, by (k)

E0(
�kX

m=�j+2

U
(1)
jm )

2 (l)

� 4
�2(#0)K
2

�kX
m1=�j+2

�kX
m2=�j+2

E0

(
q0(Ym1

;M�n)q0(Ym2
;M�n)

exp

2
4�2

0
@ 0X
t=m1

�0(Yt) +
0X

t=m2

�0(Yt)

1
A
3
5
)
:

Applying the H�older inequality to each term and using A3 we obtain

E0

8><
>:
0
@ �kX
m=�j+2

U
(1)
jm

1
A
2
9>=
>; (m)

� C�

X
m1

X
m2

E
(1+�)�1

0 exp

2
4�2(1 + �)

0
@ 0X
t=m1

�0(Yt) +
0X

t=m2

�0(Yt)

1
A
3
5 :

But, if m1 � m2

E0

8<
:exp

2
4�2(1 + �)

0
@ 0X
t=m1

�0(Yt) +
0X

t=m2

�0(Yt)

1
A
3
5
9=
; (n)
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= E0

8<
:

0Y
t=m2

E0

�
e�4(1+�)�0(Yt)

���Xt

�m2�1Y
t=m1

E0

�
e�2(1+�)�0(Yt)

���Xt

�9=
;

� 
�m2

4(1+�)

m2�m1

2(1+�)

� 

jm1j
2(1+�)

where 
s = maxaE0(e�s�0(Y1)jX1 = a) < 1 for all s > 0. Using the bound
from (n) in (m) we obtain, for some C� <1, 
 � 
2(1+�), R27: Changed

E0

8><
>:
0
@ �kX
m=�j+2

U
(1)
jm

1
A
2
9>=
>; � 2C�

j�2X
m=k

m
m(1+�)�1 (o)

� 2C�

k(1+�)�1(1� 
(1+�)

�1
)�1:

Thus for any � > 0 there exists k = k(�) such that, for all j > k + 2,

E0

8><
>:
0
@ �kX
m=�j+2

U
(1)
jm

1
A
2
9>=
>; � �: (p)

A similar argument shows that for �xed k, some C <1, all j,

E0(
0X

m=�k

U
(1)
jm )

4 � C: (q)

By a similar but easier argument if

U
(2)
jm = E0

(
�00
�0

(Xm;Xm+1)jX�j+2;Y�j+2;1

)
(r)

� E0

(
�00
�0

(Xm;Xm+1)jX�j+2;Y�j+2;1

)

Then

U
(2)
jm

P0! E0

(
�00
�0

(Xm;Xm+1)jY1; Y0 : : :
)
� E0

(
�00
�0

(Xm;Xm+1)jY0; Y�1; : : :
)

(s)

and (p) and (q) carry over as well. We conclude that (d) follows since in
fact, by (g), (p){(s),

Uj(X�j+2;Y�j+2;1)
L2! W (Y1; Y0; : : : ; ): (t)
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The lemma follows.
2

Proof of lemma 2.4: We begin with proving (2.12). In view of lemma 2.3
it is enough to show that for all � ,

Var0

 
1

n

NX
m=1

�TE0

n
55T log `0(Y

(k)
m jXmk+1)jXmk+1

o
�T
!
! 0: (a)

But if we let hk;m(Xmk+1) denote the mth summand in (a), lemma 3.7 and
geometric ergodicity of the fXjg guarantees that the expression in (a) is
bounded by,

CE0h
2
k;1(X1)Nn�2: (b)

Also,

E0h
2
k;1(X1) (c)

� M4E0j 5 log `0(Y
(k)
1 jX1)j4

� M4E0j
kX
i=1

5 log g0(YijXi) +
k�1X
i=1

5 log�0(Xi;Xi+1) +
�00
�0
(X1)j4

= O(k2)

by invoking the formula of (e) of lemma 2.3 and lemma 3.7 again. Thus,
E0h

2
k;1(X1)Nn�2 = O(kn�1) = o(1) and (a) and (2.12) follow. To prove

(2.13) we take expectations and note that it is enough to show,

E0j 5 log `0(Y
(k)
1 jX1)j4 = O(k2): (d)

But this is just (c). Finally, (2.14) follows from,

P0[�nj 5 log `0(Y
(k)
1 jX1)j � �] � n�2��4E0j 5 log `0(Y

(k)
1 jX1)j4 (e)

= O(k2n�2):

2
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Proof of lemma 2.5: By a standard identity valid under our conditions.






E0

 
@2

@#a@#b
log `0(Y

(k)
m jXmk+1)

!




 = �E0(55T log `0(Y
(k)
m jXmk+1)): (a)

Therefore, by lemma 2.3 and stationarity

1

n
E0

NX
m=1

k @2

@#a@#b
log `0(Y

(k)
m jXmk+1)k ! �I(#0): (b)

Now use A5 and argue as in the proof of (2.12) to obtain the lemma.
2
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