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Abstract

As advanced traveler information systems become increasingly prevalent the impor-
tance of accurately estimating link travel times grows. Unfortunately, the predominant
source of highway tra�c information comes from single-trap loop detectors which do not
directly measure vehicle speed. The conventional method of estimating speed, and hence
travel time, from the single-trap data is to make a common vehicle length assumption
and to use a resulting identity relating density, 
ow, and speed. Hall and Persaud (Hall
and Persaud, 1989) and Pushkar, Hall, and Acha-Daza (Pushkar et al., 1994) show that
these speed estimates are 
awed. In this paper we present a methodology to estimate
link travel times directly from the single-trap loop detector 
ow and occupancy data
without heavy reliance on the 
awed speed calculations. Our methods arise naturally
from an intuitive stochastic model of tra�c 
ow. We demonstrate by example on data
collected on I-880 data (Skabardonis et al., 1994) that when the loop detector data
has a �ne resolution (about one second), the single-trap estimates of travel time can
accurately track the true travel time through many degrees of congestion. Probe vehicle
data and double-trap travel time estimates corroborate the accuracy of our methods in
our examples.

1 Introduction

Accurate estimation of freeway travel times based on loop detector data is an important goal
in transportation. In addition to providing a real-time measurement of congestion, automated
travel time estimates provide a useful measure of throughput and could possibly be employed
to detect incidents. Also, accurate prediction, a related problem, could provide valuable
information for scheduling in the shipping industry. Since most existing freeways are equipped
only with single-trap loop detectors, it is highly desirable to �nd estimation techniques using
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only the 
ow and occupancy data that these these detectors provide. In this paper we develop
methods for using these inexpensive, existing detectors to obtain accurate estimates of freeway
travel times. We demonstrate our methods on data from I-880 (Skabardonis et al., 1994).

Our methods are based on a simple stochastic model in which vehicles that arrive
at an upstream point during a given interval of time have a common probability distribution
of travel times to a downstream point. In estimating this travel time distribution, we make
use of an approximate relationship between 
ow, occupancy, and speed. We discuss the
relationship of our method to previous work based on cross-correlations (Dailey, 1993). We
also suggest extensions to situations involving multiple entrances and exits and to transition
periods between congestion and free 
owing tra�c when we would not expect our model to
hold even approximately.

The I-880 data on which we demonstrate our methods is an excellent test set for
several reasons. First, it contains a wide range of road and tra�c conditions. Second, in addi-
tion to the 
ow and occupancy measurements, double-trap speed measurements are available
for use as a fairly accurate standard of comparison. Finally, probe vehicle data provides a
loop-independent source of travel time validation.

The organization of the paper is as follows: In Section 2 we give a brief introduction
to previous work in this area. In Section 3 we build a stochastic model of freeway 
ow from
which our estimation techniques arise naturally and discuss variations and extensions. In
Section 4 we demonstrate the methods on data from the I-880 data set (Skabardonis et al.,
1994). We explore the limitations of our method and compare it to related work (Dailey,
1993). The estimates resulting from our methodology compare very favorably to travel time
estimates from both the double-trap speed measurements and probe vehicles.

2 Previous Work

Because of the importance of accurate travel time measurements for tra�c management op-
erations, there have been a number of studies that have attempted to determine link travel
times on both freeways and arterial streets. An excellent overview of methods to determine
travel time on arterial streets is given by Sisiopiku and Rouphail (Sisiopiku and Rouphail,
1994b). One common technique involves using regression analysis to relate the 
ow and oc-
cupancy reported by single-trap loop detectors to the travel time on the link. The details
of these di�erent approaches are given in Sisiopiku and Rouphail (Sisiopiku and Rouphail,
1994b) and the references therein, and hence we do not review them here. Another approach
is based on a real time simulation of the freeway, either microscopic (Sisiopiku and Rouphail,
1994a) or macroscopic (Sanwal et al., 1996). The measurements from the existing loop detec-
tors are used as input to the model and the link speed, and hence travel time, are taken as
output. Since this approach requires a model of tra�c behavior at either the microscopic or
macroscopic level it is very complex, and necessarily model dependent.

On freeways, a common method of estimating travel time is to estimate the speed
from the loop detectors and to convert. Since most systems have single-trap loop detectors,
which only measure 
ow and occupancy, the speed is calculated using the relationship:

speed =

ow

occupancy � g
(1)
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where 1=g is the average e�ective car length|the sum of the car length and the width of
the loop detector|in the correct units. The factor of g simply converts occupancy to density.
Hall and Persaud (Hall and Persaud, 1989) and Pushkar, Hall, and Acha-Daza (Pushkar et al.,
1994) investigated this relationship and discovered many problems. They showed that the ac-
curacy of (1) is a function of many factors including location and weather. They also presented
results suggesting that it is prone to a systematic bias with respect to occupancy. Single-trap
loop detector speed estimates have consequently been shunned by the transportation research
community.

Dailey (Dailey, 1993) uses cross-correlation of the 
ow at the upstream and down-
stream detectors to estimate travel time between two single-trap loop detectors placed 0.5
miles apart. In Section 3.2 we discuss the relationship of this approach to ours. However, as
we will see in Section 4.3, while cross-correlation can lead to accurate estimates, without mod-
i�cation it is unable to track the travel time even during moderate levels of congestion. Dailey
aggregates 
ow to �ve second intervals prior to cross-correlation. In Section 4.2 we explore
in detail the e�ects of aggregation on the accuracy of the travel time estimate. Our �ndings
show that too much aggregation can result in a loss of information, and in our examples we
show it is desirable to have a small level of aggregation.

3 Methodology

The methodology for our procedures for estimating travel times between single loop detectors
is based on a stochastic model, which, although over-simpli�ed, suggests procedures whose
e�ectiveness will be demonstrated in subsequent sections.

We consider point processes of arrivals during a time interval [TB; TF ], initially in
a single lane. For simplicity we assume that the arrivals are exchangeable (thus not distin-
guishing say between cars and trucks, for example) and let X(t) be the cumulative number
of arrivals upstream and Y (t) the cumulative number of arrivals downstream. Denoting the
arrival times upstream by �i and the travel times by �j, where we use i to label vehicles inde-
pendently of arrival order and the summation is over all possible �i, not just those in [TB; TF ],
we have

dX(t) =
X
i

�(t� �i)dt (2)

dY (t) =
X
j

�(t� �j � �j)dt (3)

where �(�) is Dirac's delta function. Our model postulates that conditional on �i (and all
other upstream events), �i has a distribution independent of i, �i (and all upstream events) for
TB � �i � TF . That is, the �i are also exchangeable given this information (but not necessarily
mutually independent). This assumes a certain homogeneity during the interval [TB; TF ],
precluding, for example, a change of regime during this time. Let f(�) denote the marginal
density of �i under these assumptions, p(�) the conditional density of �i given TB � �i � TF and
q(�) the density of �i + �i, the arrival time at the downstream detector given TB � �i � TF .
If TB = �1 we then have that, conditional on X(�), the expected process of downstream
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arrivals satis�es

E[dY (t)jX] =
Z t

�1

X
j

�(t� �j � �j)f(�j)d�j dt (4)

=
X
j

f(t� �j) dt (5)

= (
Z t

�1

f(t� v)dX(v)) dt (6)

where E(�) is the expectation operator.
However, TB = �1 is unrealizable. On the other hand, if cars arrive before TB, (6)

does not hold without further requirements. The most natural condition is that 0 < a � �i � b
which implies that f = 0 outside [a; b]. We will refer to the interval of possible travel times
[a; b] as the �t window. If d is the distance between the upstream and downstream detectors
this condition corresponds to assuming that cars only travel at speeds between d

b
and d

a
. In

this case for TB + b � t � TF + a, (6) holds since �1 can then be replaced by TB.
We can rewrite the expectation of (6) in terms of p; f; q as

q(t) =
Z t

TB

f(t� v)p(v)dv (7)

for TB + b � t � TF + a.
In practice the processes are aggregated in discrete time units of length �; we will

assume that TB; TF ; a and b are multiples of �. If we approximate f; p; q by discrete mass
functions fs, ps, qs, where qs is the mass in the interval [s�; (s + 1)�), for example, we are
led to a discrete approximation of (7), for (TB + b)=� � t � (TF + a)=�� 1

qt =
t=��1X
v=TB=�

ft�vpv: (8)

This in turn leads to a natural estimation scheme in which we replace qt and pv by the
counts yt, xv of arrivals at the downstream and upstream detectors in consecutive intervals
and apply a natural measure of discrepancy, least squares, to �t (8). That is we estimate fs,
a=� � s � b=�� 1, by minimizing

(TF+a)=��1X
t=(TB+b)=�

0
@yt �

b=��1X
s=a=�

xt�sfs

1
A
2

(9)

over ff : fs � 0;�
P
fs = 1g. This is the basis of our scheme.

We can arrive at (9) from (6) by arguing conditionally on X(�). This has the
advantage of allowing the possibility of \constant" p as in the purely stationary case, but
makes considering aggregated processes conceptually more awkward.

We note three signi�cant modi�cations:

1. Other forms of smoothing are possible as well. For example, the density f could be
approximated by a density depending on a �nite number of parameters.
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2. The least squares criterion (9) is computationally by far faster, but it may be more
e�ective to use an information measure between the observed and expected downstream

ows such as

(TF+a)=��1X
t=(TB+b)=�

yt log
b=��1X
s=a=�

xt�sfs (10)

Alternatively this can be looked at as a nonparametric maximum likelihood estimate
conditional on the X(�) process.

3. We can allow the possibility of cars enterning and/or exiting from the lanes between
detectors by adding probabilities � for entering and 
 for exiting leading to (in the
discretized version)

qt = � + (1 � 
)
t=��1X
v=TB=�

ft�vpv: (11)

However, we do not pursue these modi�cations further here.
Having determined estimates f̂s, of the fs we now have a choice as to which measure

of the travel time distribution we use as a summary. The most natural is the mean of the
estimated travel time distribution. However, a somewhat more stable choice of parameter (in
view of the di�culties of selecting a and b which we discuss below) is the mode, i.e. max�1 fs,
where we again plug in our estimate. If fs is symmetric unimodal the two measures, of course,
agree.

The essential di�culty we face is the choice of the parameters a and b and to a
lesser extent the \stationary" periods, [TB; TF ]. To an even lesser extent we face, as in all
deconvolution problems, a choice of � in (9). If � is very small the number of parameters
fs being estimated is large and this can lead to well known instabilities. On the other hand,
taking � too large may result in bias if the unaggregated travel time distribution is not
constant on consecutive � units of time. In fact we �nd that 1 second aggregation seems to
lead to more satisfactory results than coarser aggregations for our data.

The choice of a and b:
If the model (7) holds for a = a0 and b = b0 > a0 there appears to be no penalty for

using a < a0 and/or b > b0 in (9). This is however illusory since both increase the number of
parameters to be estimated and b > b0 decreases the amount of data usable in (9).

We have found empirically that an adaptive choice of a; b is required for generally
satisfactory results in both congested and uncongested periods. The width b� a of what we
call the �t window can be taken fairly small and �xed; the range in speed of drivers during
homogeneous regimes is not great. But the center of the window, a+b

2 , has to move. We have
found that using (1) with a reasonable value of g works well.

The choice of TB, TF :
In a homogeneous period choosing jTB � TF j as large as possible gives us maximum

precision. However, the larger jTB � TF j the more we run the risk of (7) failing due to a
transition in regime (e.g. from free 
ow to congested tra�c) at some TC 2 (TB; TF ). In
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practice moderate values of jTB � TF j give travel time estimates which track well throughout
the day.

We mention only brie
y that it may be possible to detect the transitions described
in the previous paragraph. Suppose for instance that a transition from free 
ow to congestion
occurs at TC where TB < TC < TF . Then the density of �i given �i � TC is fL and given
�i > TC is fH . Then (7) changes to

q(t) =
Z t^TC

TB

fL(t� v)p(v)dv +
Z t_TC

TC

fH(t� v)p(v)dv (12)

where fL is concentrated on [aL; bL], fH on [aH; bH] and aL < aH, bL < bH . Model (12) can
be �t in exactly the same way as (7) is �t by (9). However, with a = aL and b = bH we see
that 1 + bL � aH additional f 's plus the parameter TC need to be �t. We do not pursue this
here but note that if (7) is �t rather than (12), then having a large �t window permits us to
observe that the distribution �t by (9) is bimodal thus signaling lack of �t. However, its mode
and mean may be poor guides to the \actual" travel times.

3.1 Extending Methodology to Multiple Lanes

The formulation thus far is for a single lane of tra�c but can be extended to model multiple
lanes with exits and entrances. For the most part we will not pursue such a formulation here
except to note a useful special case. Consider, for example, a four lane freeway with lane 1
being the high occupancy vehicle (HOV) lane and lane 4 the exit/entrance lane. We might
assume that the 
ows in lanes 2 and 3 are similar, ignore lane changes into and out of them,
and model the travel times in these two lanes as having the same probability mass function,
f . The 
ows in these two lanes could be used jointly to estimate f . Let the upstream and
downstream 
ows be denoted by xit and yit, i = 2; 3. The travel time distribution, f , is then
estimated by minimizing

3X
i=2

(TF+a)=��1X
t=(TB+b)=�

0
@yit �

b=��1X
s=a�

fsx
i
t�s

1
A
2

(13)

analogously to (9). Using the data from the two lanes in this fashion will hopefully result in
a better estimate of f than that resulting from either lane alone. (Note that this method of
combining data from the two lanes is not the same as adding the two 
ows.)

3.2 Relation to Cross Correlation

We next relate this formulation to a commonly used method for �nding delays between sta-
tionary time series|cross correlation. Suppose that U(t) and V (t) are stationary time series
with U(t) = V (t� � )+Z(t), where the stationary noise series Z is independent of V . Let the
covariance function of V (t) be denoted by �V V (u) and let the cross covariance function of U
and V be �UV (u) = Cov(U(t+ u); V (t)). Then

�UV (u) = �V V (u� � ) (14)
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and since �V V (u) is maximal at u = 0, the cross covariance function is maximal at � , the lag
between the two series. This relationship has been used (Dailey, 1993) to estimate travel
times between loop detectors.

What if the lag between the series is not �xed, but is random, there being variation
in travel time from vehicle to vehicle? We will consider the same model for travel times as
that used earlier, following the development of Brillinger (Brillinger, 1974). Let X and Y be
the point processes of arrivals de�ned above and assume additionally that they are stationary.
X(I) is the total number of arrivals in the interval I, etc. For stationary point processes, the
analogous objects to the mean and covariance function of ordinary time series are the �rst
moment measure and the covariance measure (Brillinger, 1972). The �rst moment measure
is E[dX(t)] = �dt, where � is the mean 
ow rate, and this is also the �rst moment measure
of Y . The second moment measure of X is �XX(u)du dt = E[dX(t + u)dX(t)], the second
momentmeasure of Y is similarly de�ned and the second cross momentmeasure is �Y X(u)du =
E[dX(t)dY (t + u)]. We will make use of the covariance densities, �XX(u) = �XX(u) � �2,
with �Y Y (u) and �Y X(u) being similarly de�ned.

Having de�ned this notation, the starting point of the analysis, using the same
assumption on travel times as that above, is (6). We have, assuming TB = �1, and since
f(s) = 0, s < 0,

�Y X(u)du dt = EX [E (dX(t)dY (t+ u)jX)] (15)

= EX

�Z
1

�1

f(t+ u� v)dX(v)dX(t) dv
�

(16)

=
�Z

1

�1

f(s)�XX(u� s)ds
�
du dt: (17)

Converting to cross covariances we have

�Y X(u) =
Z
1

�1

f(s)�XX(u� s) ds: (18)

The cross covariance function is the convolution of the travel time density function with the
autocovariance function of X. The degenerate case of constant travel time � , f(s) = �(s� � ),
gives �Y X(u) = �XX(u� � ), as in (14).

From (18), we can derive an expression for the mean travel time:Z
1

�1

u�Y X(u) du =
Z
1

�1

f(s)
Z
1

�1

Z
1

�1

u�XX(u� s) du ds (19)

=
Z
1

�1

f(s)
Z
1

�1

(r + s)�XX(r) dr ds (20)

=
�Z

1

�1

sf(s) ds
��Z

1

�1

�XX(r) dr
�

(21)

where we have used the fact that �XX(r) is an even function. From this expression, we see
that the mean travel time can be expressed in terms of the �rst moment of the cross covariance
function and the integrated autocovariance function.

The development is unsatisfactory since it assumes both TB = �1, TF = 1 and
stationarity of X and Y on all of (TB; TF ). Suppose however, in analogy to the development
leading to (7), we only ask that

E[dX(t)dX(t+ u)] = �XX(u)dudt (22)
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for f(u; t) : TB � t � u � TF � t; TB � t � TFg where �XX(u) is necessarily de�ned for
juj � TF � TB and

E[dX(t)dY (t+ v)] = �Y X(v)dvdt (23)

for TB � t � TF , a � v � b. Then, we are led to,

�Y X(v)dtdv = EX (E(dX(t)dY (t+ v)jX)) (24)

= E(dX(t)
Z b

a
f(s)dX(t + v � s)) (25)

=

 Z b

a
�XX(v � s)f(s)ds

!
dvdt (26)

valid for a � v � b if b� a � TF �TB. We can no longer obtain a relation between the means
of �Y X , �XX, and f since the �rst two functions are not de�ned on all of R. However, suppose
f is symmetric unimodal and �XX(v) is (necessarily also symmetric) unimodal for jvj �
b� a. Then the modes of f and �Y X coincide on (a; b) by Wintner's theorem (Dharmadhikari
and Joag-dev, 1988). If we estimate �Y X(v) as usual from aggregated data by (TF � TB �

a)�1�
PTF=�

t=(TB+a)=�
xtyt+v and maximize for a � v � b we see that we have arrived essentially

at Dailey's method since the cross correlation and second cross moment functions realize their
maxima at the same point. Under the symmetry and unimodality conditions we again have a
consistent estimate of max�1 fs =

Pb
s=a sfs. This correspondence is borne out by our analysis

of the I-880 data.
Finally, a simple relation between cross-correlation and our method can be seen by

noticing that the normal equations for least squares based on (9) are

(TF+a)=��1X
t=(TB+b)=�

ytxt�v =
b=��1X
s=a=�

0
@(TF+a)=��1X
t=(TB+b)=�

xt�sxt�v

1
A fs (27)

for a � v � b. Now, under the assumption of stationarity and appropriate ergodicity con-
ditions the left hand side of (27), after normalization, is a reasonable estimate of �Y X(v),
and the coe�cients of fs on the right hand side of (27) are similarly reasonable estimates of
�XX(v � s). Thus, our approach may be thought of as solving an empirical version of (26).

4 Results

In this section we present some results of the application of our methodology to real free-
way data. The data comes from a seven mile section of highway I-880 in Hayward, Califor-
nia (Skabardonis et al., 1994). This section of freeway was instrumented with type 170 loop
controllers spaced approximately 1/3 of a mile apart. Each loop controller monitored eight
to ten mainline, double-trap loop detectors. In addition to 
ow and occupancy, double-trap
loop detectors allow one to make fairly reliable measurements of vehicle speed by observing
the time it takes for a vehicle to pass over both detectors. This speed data is used to form a
travel time estimate that serves as a standard of comparison for our methods. As a side point
we should note that it is possible for the double-trap speed estimates to be incorrect as well.
In order to calculate speed the loop controller tries to match up pulses on the downstream
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trap with the corresponding pulses on the upstream trap. Since the loops are separated by
less than 20 feet the loop controller usually has no problem matching up the correct pairs of
pulses. But if a heavy truck goes over the detectors then every axle might trigger a pulse.
In this case the loop controller can inadvertently match up two pulses incorrectly and hence
calculate an incorrect speed that is much higher than the true speed.

Although the loop detector signals are sampled by the 170 controller at a rate of
1/60'th of a second, we aggregated this to � = 1 second resolution for the purpose of this
study. In Section 4.2 we investigate the e�ects of using a larger value of �. Loop data was
collected during the peak commute times of 5:00 - 10:00 a.m. and 2:00 - 7:00 p.m. during
24 weekdays in the spring of 1993. A very small amount of missing 
ow data was replaced
with zeros, and clock o�-sets were estimated by hand since the loop controller clocks were not
properly synchronized.

In addition to the loop detector data, there were four probe vehicles that were driving
up and down the freeway during the same time period. The probe vehicles, which maintained a
headway of approximately 7 minutes, were equipped with computers that accurately recorded
the car's movement, and hence travel time, down the freeway. The probe vehicle travel times
are an important piece of information because they give us a loop-independent measurement
of the travel time down the freeway.

4.1 E�ect of Fit Window

The �rst results that we present illustrate the importance of choosing the �t window, [a; b].
For this experiment we focus on two loop detectors separated by 2200 feet and we concentrate
on only the third lane from the center. At free-
ow speeds of 60 miles per hour the travel
time is 25 seconds. We use (9) to estimate the travel time distribution, and we use a data
window of jTB � TF j = 300 seconds and � = 1 second. However, we explore two di�erent �t
windows, a static one and an adaptive one, and demonstrate that the adaptive window does
signi�cantly better. The �rst window is based on the assumption that the vehicles will always
be traveling between 15 and 70 mph, and hence, for these two detectors [a; b] = [21; 100]. The
second window is an adaptive window that is centered at an estimate of the travel time based
on the loop detector data. In this scheme, the speed is �rst estimated from the upstream
single-trap loop detector using the relationship in (1), with 1=g = 22:6 feet. The travel time
is then calculated for this pair of loop detectors assuming that the speed is constant for the
entire link. Finally the window is centered at this calculated travel time and given a width
of 20 seconds (i.e. b � a = 20). Note that the center of this window is adjusted based on
the single-trap loop data at every time period and is therefore adaptive. Figures 1 and 2
show the travel times estimated every 2 minutes from 5:00 a.m. until 10:00 a.m. for these two
loop detectors. During the early morning, 5:00 a.m. to 6:30 a.m. when the tra�c is light, the
travel time is roughly between 25 and 30 seconds. Around 6:30 a.m. there was a incident that
caused congestion to form upstream and hence caused an increase in the travel time. Figure 1
gives the estimate of the travel time for the static �t window. As one can see the estimate
of this travel time is quite noisy even during the free 
owing tra�c conditions of the early
morning. But when we restrict the size of our �t window to only 20 parameters and center it
on the car-length travel time estimate we see a signi�cant improvement as shown in Figure 2.
Not only are we now able to accurately track the travel time in free 
owing conditions, but
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Figure 1: Travel time for static �t window
based on a rational speed assumption. Solid
line shows double-trap estimates.

Figure 2: Travel time for adaptive �t window
based on a constant car length assumption.
Solid line shows double-trap estimates.

we are also able to give reasonable estimates during the periods of congestion.
To examine this further, we give plots of the estimate of the travel time distribution,

f̂s, for a particular time point. We choose the time point of 9:08 a.m. because the static, wide
�t window in Figure 1 fails to �nd the correct mode but the adaptive, narrow �t window in
Figure 2 succeeds. Figure 3 is a plot of f̂s for the static �t window [a; b] = [22; 100]. The
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Figure 3: Distribution of f̂s for static �t win-
dow based on rational speed.

Figure 4: Distribution of f̂s for adaptive win-
dow based on constant car length.

true travel time is taken as the mode of the distribution and in this plot the mode is s = 96
seconds, which corresponds to a speed of 15.6 mph. In this �gure one can see that the mass
centered around 28 and 29 seconds is much more likely to be the true travel time. Indeed,
when we restrict the �t window to be [a; b] = [17; 37], as in Figure 4, we �nd that the mode
is now taken as s = 24 seconds|which, according to the double-trap loop detectors, is the
correct travel time.
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Note that the center of the �t window is simply the estimate of travel time based on
the single-trap speed calculation. Although it is known that this speed calculation is highly
inaccurate and prone to various biases (Hall and Persaud, 1989), for our purpose it is quite
su�cient because it gives us a rough estimate of the true travel time. Since we then center
our �t window on this estimate and only �t over 20 parameters, this �rst guess allows us to
essentially �lter out any extraneous peaks that might appear in f̂s as we saw in Figure 3.

4.2 E�ect of Aggregation

In this section we describe some of our results with respect to data aggregation. As discussed,
if we assume the travel time distribution f is constant on consecutive � second intervals and
TB; TF ; a; b are multiples of �, then (9) can be used to estimate the coarsened travel time
distribution f . When these assumptions hold, the �-fold reduction in parameters reduces the
variance in f̂s. However, the decrease in variance may come at a great cost in terms of bias.

Since by assumption the mode of f corresponds to a � interval of travel times on
which f is constant, we need a convention for choosing a single summary travel time. A
natural candidate is the midpoint of the modal class, (max�1fs � 0:5)�, where we once again
plug in f̂s for our travel time estimate. For level � of aggregation, denote our estimate of the
travel time at the ith time point as �̂�i . Also, let ~�i stand for the travel time estimate at the
ith time point based on the double-trap speed measurement. To compare results at di�erent
levels of aggregation we consider the average L1 distance between our travel time estimates
and the double-trap estimates as a function of aggregation:

1

N

NX
i=1

j�̂�i � ~�ij (28)

where N is the number of times at which travel time estimates are made.
For example, we estimated f at N = 77 equally spaced 3 minute intervals from

6 a.m. to nearly 10 a.m. between a certain northbound pair of detectors using � = 1; : : : ; 12
seconds. In each case the �t window at the unaggregated level was chosen by using (1) to �nd
an initial center, c. Then a was taken as the largest � multiple less than or equal to c�10, and
b as the smallest � multiple greater than or equal to c+10. This insured that the �t window
[a; b] was always a � multiple, yet continued to cover the middle of the common car length
based travel time estimate. TF � TB = 600 seconds was used as well. Figure 5 shows the plot
of (28) versus �. Indeed the dips at � = 3 seconds and � = 11 seconds show that aggregation
can improve the estimates in this L1 sense. However, the nearby peaks demonstrate the other
edge of the sword. Figures 7 and 8 show the travel time estimates side by side for � = 10
seconds and � = 11 seconds, respectively. Although the levels of aggregation di�er by only a
second, the results are dramatically di�erent. � = 11 seconds does well because the middle
of the 4th aggregated travel time interval is 38.5 seconds, which is very close to the free 
ow
travel time. Conversely, � = 10 seconds does poorly because the corresponding mid-interval
misses the mark for most of the morning.

Of the 77 time points in our example, 50 were during periods of low density. One
might therefore ask if the L1 error analysis is being driven mostly by the performance of
the estimators during low occupancy. Further, one could argue for judging the magnitude of
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Figure 5: L1 distance between estimates based
on (9) and double-trap speed based estimates
as a function of �.

Figure 6: Relative L1 distance between es-
timates based on (9) and double-trap speed
based estimates as a function of � grouped
by density level.

errors relative to the (double-trap) travel times, rather than absolutely. Figure 6 addresses
these points by showing average relative L1 distances as a function of �, with the averages
taken over estimates corresponding to di�erent levels of density. By relative L1 error, we
mean that the summand in (28) is replaced with j�̂�i � ~�ij=~�i. As expected, the results during
low occupancy (< 30%) are very similar to Figure 5. However, two new striking features
appear. First, periods of medium density (30% � 50%) are more di�cult to estimate than
high density (> 50%) in the relative sense. The nine periods of medium density take place
roughly from 7:15 until 7:30 and again from about 8:20 until 8:30. The ~�i are lower during
these transition periods than during high density (7:30 to 8:20), but the absolute errors are
comparable. Hence, the relative errors are in the 15% - 20% range. This agrees with our
stochastic model that associates transition with bi-modality of the travel time distribution.
The second striking feature is that during periods of high density the relative error is nearly
constant as a function of aggregation. This occurs since during high occupancy the estimates
gravitate towards the center of the �t window, which is basically the same for all �. This
point is discussed further in section 4.5. It is important to keep in mind that the L1 distances
are distances between two sets of estimates, not estimates and the \truth". Although the
~�i are believed to be fairly accurate, they may also su�er some degree of breakdown during
transition and/or high occupancy.

This example demonstrates our general �nding that when the \true" travel time
minus �=2 (or more generally minus whatever point from the � interval of equally likely
travel times that is returned as a summary) is nearly a multiple of � for large portions of the
estimation period, then aggregation can be bene�cial. But when this is not true the ensuing
bias can outweigh the variance reduction bene�ts. This bias is most noticeable during low
occupancy when fairly constant free-
ow travel times are present for much of the day. Since
one never knows the true travel times in advance, this strongly suggests leaving the data at a
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Figure 7: Travel time estimates using car
length based �t window and � = 10 seconds.
Solid line shows double-trap estimates.

Figure 8: Travel time estimates using car
length based �t window and � = 11 seconds.
Solid line shows double-trap estimates.

small enough level of aggregation that the bias is tolerable, yet not so small that the variance
gets too large. We �nd � = 1 second to be a good level for the data at hand.

4.3 Cross-Correlation Estimates

In Section 3.2 we noted that the regression method and the cross-correlation method are
related. In this section we empirically investigate this by using a cross correlation method
to estimate travel times. As was noted in Section 3.2, we do this by estimating the cross
covariance function, �XY (u), as �rst indicated in equation (18). This is essentially Dailey's
method (Dailey, 1993, equations 20 and 21). In order to properly compare this method with
our regression method presented earlier we use the same pair of loop detectors and the same
time period as was used in Section 4.1. We also use the same amount of data, TF �TB = 300
seconds.

Figure 9 is an estimate of the travel time using the cross correlation method with an
aggregation of � = 5 seconds. This is essentially Dailey's method with the slight modi�cation
of having a static window [a; b] = [22; 100] (without this window Dailey's method is even more
noisy). As in the regression method, the choice of [a; b] is very important. In the regression
method the interpretation of [a; b] is that the support of the distribution of travel times,
fs, only exists on [a; b]. Therefore we computed the estimate f̂s only over the interval [a; b]
and assumed that it was zero everywhere else and referred to [a; b] as the �t window. In
the cross correlation method the interpretation is slightly di�erent because we compute the
cross correlation over the entire range of [TB + a; TF ]. Then we search for the mode of the
distribution over the range [a; b]. Hence, the meaning of the range [a; b] has changed from
being a �t window to being a search window. The importance of the search window can be
seen in Figure 10 where the search window is now the same adaptive window that was used
in Section 4.1 with b� a = 20 seconds.

Note how in both of these �gures the estimated travel time is only a multiple of
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Figure 9: Travel time for single link for cross-
correlation method and static �t window, � =
5 seconds. Solid line shows double-trap esti-
mates.

Figure 10: Travel time for multiple links for
cross-correlation method and adaptive �t win-
dow, � = 5 seconds. Solid line shows double-
trap estimates.

� = 5 seconds. As was discussed in Section 4.2, the reason that the cross correlation estimate
in Figures 9 and 10 is doing so well during the early morning is because the true travel time
is 25 seconds, which is a multiple of � (we chose a multiple of � instead of the center of the
aggregation window). In the late morning, the true travel time is 26 or 27 seconds and hence
the estimate jumps back and forth between 25 and 30 seconds as can be seen in Figure 10.
If we decrease the level of aggregation to � = 1 second we can overcome this chattering
e�ect. Figure 11 is the travel time estimate with � = 1 second and a static �t window
[a; b] = [22; 100]. This should be compared to Figure 9. Figure 12 is the travel time estimate
with � = 1 second with an adaptive �t window and should be compared to Figure 10. It is
clear from these �gures that it is essential to properly center and restrict the search window,
[a; b], in order to have satisfactory results. Finally, one should compare Figure 12 to Figure 2
and note that they are quite similar. These two �gures represent a direct comparison between
the regression and the cross correlation methods with the same �t/search window, b� a = 20
seconds, and the same level of aggregation, � = 1 second.

Figure 13 gives the estimate of the cross covariance, �XY (v), at three consecutive
time slices of 5:22, 5:24, and 5:26. The correct travel time for all three time points is around
25 seconds. The mass centered at 25 seconds in the cross covariance functions can easily be
visually tracked through the three time slices. In the �rst and third time slice the global
peak of the cross covariance function agrees with the results from the double-trap speed
measurement. But in the second estimate, the global peak of the cross covariance function
occurs at ~v = 52 seconds, which is incorrect. Although the proper peak in the cross covariance
estimate at ~v = 25 seconds is not a global maximum, one can easily see that it is still a local
one. Therefore the restriction of the search window to a neighborhood of this maximum will
usually allow us to locate it.

Although we do not pursue it here, it is interesting to note that the spurious global
maxima that overshadow our \true" maxima are usually very skinny. Whereas the \true"
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Figure 11: Travel time for single link for cross
correlation method and static search window,
� = 1 second. Solid line shows double-trap
estimates.

Figure 12: Travel time for multiple links for
cross correlation method and adaptive search
window, � = 1 second. Solid line shows
double-trap estimates.

peaks that we are looking for usually have a lot of mass associated with them. This can be
seen in Figure 13 as well as in Figure 3. This would lead one to believe that �ltering the cross
covariance function with a simple low pass �lter before searching for the global maximum
would enhance our results by 
attening any spurious, skinny peaks. This can be seen to be
equivalent to smoothing both the upstream and downstream counts, xt; yt, prior to performing
the cross correlation.

4.4 Multiple Freeway Links

An important question to investigate is whether this method will work for an extended section
of the freeway that is covered by many single-trap loop detectors. The northbound direction
of I-880 has 17 working single-trap loop detectors spread over 5.8 miles. The distance between
them ranges from 1000 feet to 3400 feet. To estimate the travel time down this entire section
of freeway we estimated the travel time on each link (where a link is from loop detector to
loop detector) and summed them up. The day that we picked to demonstrate this method,
the afternoon rush hour of 3/5/93, had an unusually high amount of congestion. There were
multiple stalled vehicles on the side of the road that needed assistance|all of which were
located close to a major o�-ramp. This caused a two hour period of stop-and-go tra�c that
stretched for approximately 2 miles. The results of our estimate for all 17 loops is given in
Figure 14. The dotted line is our estimate of the travel time and the solid line is the double-
trap loop detector measurement of travel time. Note that out estimates did not use corrections
for entrances and exits such as we indicated could be made via equation (13).

It is clear that the double-trap travel time estimates are noisy for high travel time
estimates. Since the period from 4:00 p.m. until 5:30 p.m. corresponds to very slow moving
tra�c these travel time estimates are very sensitive to small 
uctuations in the speed. Indeed,
a 
uctuation from 5 to 10 mph would double the travel time. Since we are estimating the
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Figure 13: Three consecutive slices of the cross covariance, �XY (v). The middle estimate at
5:24 a.m. has a global maximum at v = 52 seconds.

double loop travel time by assuming a constant speed on the freeway link, it is clear that when
the tra�c 
ow and speed are not homogeneous then this estimate will be incorrect. Therefore,
in this regime of high congestion, a much more reliable source of travel time information is
the probe vehicles. The travel times reported by the probe vehicles for the same section of
freeway are also placed on Figure 14 as asterisks. During the highly congested period the
probe vehicle travel times consistently match up with our regression-based estimates.

It should be noted that the probe vehicle travel times reported in Figure 14 could
possibly have some bias. For this calculation both the double and single loop travel time
estimates are for the third lane of the freeway. The probe vehicles on the other hand, were
not restricted to drive in only the third lane and it is possible that they switched between
lanes 2, 3 and 4 (they couldn't drive in lane 1, the HOV lane). The correspondence between
the probe vehicles and our regression estimate is quite remarkable, especially considering the
distances involved.
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Figure 14: Travel time down entire length of freeway. Solid line is the double-trap estimate.

4.5 Reliance of Methods on Fit Window

We have mentioned that the �t window, [a; b], is crucial to the success of both the regression
and cross correlation methods. In both methods the �t window is centered on the estimate of
travel time based on the speed obtained from equation (1). At this point the most intriguing
question to ask is to what extent the regression and cross correlation methods rely on the
accuracy of the �t window. If the value used for g is inaccurate what e�ect does this have
on the two methods? This really gets to the issue of the whether these method are working
or not. For example, it's not quite clear from Figure 4 that our estimate of the mode of f̂s
isn't really the center of the �t window in the �rst place. Hence, would the center of the �t
window be a good estimate for the travel time?

In order to investigate this we perform our regression method down the entire length
of the freeway and then compare this to the travel time estimated from the center of the �t
window. In equation (1) 1=g = average e�ective vehicle length in feet, provided that the
other quantities have correct units. A typical value for the average e�ective vehicle length is
around 22 feet. This value is obviously a function of the types of vehicles in each lane. Hence
the value will be smaller in the left-most lanes, where small passenger cars typically travel,
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and larger in the right-most lanes where trucks tend to drive. Since the density of trucks
varies from freeway to freeway, the value of g would need to be calibrated to re
ect the local
conditions. Despite these de�ciencies in using equation (1) we will try to determine if the
center of the �t window provides a good estimate for travel time and what e�ect the accuracy
of the parameter g has on our method.

We do this computation with two di�erent values of g. The �rst is with 1=g = 24
feet and the second is with 1=g = 20:5 feet. The width of the �t window is b� a = 20 seconds
in both cases. The day that we chose for this experiment is 3/8/93. There was moderate
congestion on this day caused by various breakdowns along the right-hand side of the road.
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Figure 15: Travel time for adaptive �t win-
dow based on 1=g = 24 ft. Solid line shows
double-trap estimates, dashed line shows re-
gression estimate, and light line shows center
of �t window.

Figure 16: Travel time for adaptive window
based on 1=g = 20:5 ft. Solid line shows
double-trap estimates, dashed line shows re-
gression estimate, and light line shows center
of �t window.

Figures 15 and 16 show the results of our two experiments. In each �gure the true
travel time is represented by the dark solid line and the regression based estimate, which is
the dashed line, is right on top of it. The third line in each �gure is the center of the �t
window [a; b]. In Figure 15 the center of the �t window is almost always below the true travel
time. Yet the regression based method can still accurately track the double loop based travel
time. We have analogous results in Figure 16 where the center of the �t window is consistently
above the true travel time.

The important thing to note is that the regression based estimate of the travel time
is basically the same in both �gures. The L1 distance between the regression based travel
time and the double loop based travel time is L1 = 6:8 seconds in Figure 15 and L1 = 8:8
seconds in Figure 16, whereas the L1 distance between the center of the �t window and the
loop based travel time is L1 = 27 seconds in Figure 15 and L1 = 36 seconds in Figure 16.

Hence, the reliance of our regression method on the actual value of car length, 1=g
is indeed small. This suggests that as long as the value of g is relatively close to the correct
value then our method can pick out the true peak in the travel time distribution. On the other
hand, travel time estimates based on equation (1) are certainly not robust to slight variations
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in g.

5 Conclusion

This paper has presented a method for using high-resolution 
ow and occupancy data from
single-trap loop detectors to obtain accurate estimates of travel time. The model upon which
our method is based assumes that a homogeneous (with respect to tra�c) time interval,
[TB; TF ], exists, and that within this interval the travel times are exchangeable given the
upstream arrival times. This leads to a simple estimation procedure which is given by equa-
tions (8) and (9). One would like to keep jTB � TF j as large as possible to increase precision.
However, as jTB�TF j gets larger the estimation procedure loses its ability to track the travel
time through di�erent regimes. Therefore a balance must be made between the opposing
goals.

We noted that using an adaptive �t window [a; b] to specify a reduced support for
the travel time distribution is essential for satisfactory results in both the regression and cross
correlation methods. The adaptive window that we have chosen is centered on the commonly
used relation for speed from single-trap loop detectors given in equation (1). Although the
methods depend on equation (1) and hence on the value of g, it was shown in Section 4.5 that
the dependence is not too great. The methods can work when the value of g is incorrect and
give signi�cantly better estimates than using equation (1) alone.

As noted in Section 3.1 our regression method can easily be extended to incorporate
multiple lanes of the freeway. Properly modeling entrances and exits is the subject of future
work. Section 4.2 notes that it is desirable to aggregate the data if the true travel time down
the link is a multiple of the level of aggregation. Otherwise, any aggregation can lead to a
bias possibly as large as the level of aggregation itself. So, while the computational gains from
aggregation are signi�cant, the resulting loss of accuracy is almost always unavoidable.

We have demonstrated that this methodology can estimate the travel time down an
extended section of the freeway even during extremely congested conditions. The accuracy of
our estimates is con�rmed by the probe vehicle data. The implications of having a method to
accurately estimate travel times on freeways using single-trap loop detectors are signi�cant.
From the freeway management perspective this will mean cost savings. In many freeways the
single-trap loop detectors are the only source of measurement information about the tra�c
conditions. If it is possible to obtain a �ne enough resolution from these existing detectors
then our methodology will allow reliable estimates of travel times to be made. This is a
substantially cheaper alternative than installing new measuring devices on the freeway (i.e.
new loop detectors, video cameras). From the ATIS application end it will mean a reliable
source of travel time information. Most tra�c management and control algorithms and all
routing algorithms are based on knowing the link travel time so that they can assign a cost
to each link. Hence the need for accurate travel times is very important.

Travel time is also a good indication of congestion. In this vein, the possibility of
using this methodology for detecting a rapid change of regime that accompanies an incident
is certainly intriguing. Whether an incident can be detected by the distribution f̂s becoming
bimodal is the subject of future work.
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