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Abstract

Partition-valued and measure-valued coalescent Markov processes are con-
structed whose state describes the decomposition of a �nite total mass m into
a �nite or countably in�nite number of masses with sum m, and whose evolution
is determined by the following intuitive prescription: each pair of masses of magni-
tudes x and y runs the risk of a binary collision to form a single mass of magnitude
x+y at rate �(x; y), for some non-negative, symmetric collision rate kernel �(x; y).
Such processes with �nitely many masses have been used to model polymerization,
coagulation, condensation, and the evolution of galactic clusters by gravitational
attraction. With a suitable choice of state space, and under appropriate restric-
tions on � and the initial distribution of mass, it is shown that such processes can
be constructed as Feller or Feller-like processes. A number of further results are
obtained for the additive coalescent with collision kernel �(x; y) = x + y. This
process, which arises from the evolution of tree components in a random graph
process, has asymptotic properties related to the stable subordinator of index 1=2.
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R�esum�e

Cet article propose une construction des processus markoviens de coales-
cence dont l'espace d'�etat - un espace de mesures ou une partition ensem-
bliste - d�ecrit la d�ecomposition d'une masse totale �nie m en un ensemble
�ni ou d�enombrable de masses dont la somme reste constante et �egale �a
m, et dont l'�evolution est d�etermin�ee par la r�egle suivante: chaque paire
de masses de magnitudes x et y court le risque d'une collision binaire pour
former une masse unique de magnitude x + y avec un taux �(x; y) o�u �
est un noyau positif et sym�etrique d�ecrivant le taux de collisions. De tels
processus impliquant un nombre �ni de masses ont servi de mod�ele �a des
ph�enom�enes de polym�erisation, de coagulation, de condensation ou encore
pour d�ecrire l'�evolution d'amas galactiques sous l'in
uence du champ gravi-
tationnel. Avec un espace d'�etat convenablement choisi, et sous r�eserve des
restrictions ad�equates sur � et la distribution initiale de masse, on d�emontre
que ces processus peuvent être construits comme des processus de Feller (ou
similaires �a ces processus). On obtient plusieurs autres r�esultats pour le
processus de coalescence additive, dont le noyau est �(x; y) = x + y. Ce
processus, qui �emerge de l'�evolution des arbres au sein d'un processus de
graphe al�eatoire, a des propri�et�es asymptotiques li�ees au subordinateur sta-
ble d'indice 1=2.
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1 Introduction

Markovian coalescent models for the evolution of a system of masses by a random process

of binary collisions were introduced by Marcus [29] and Lushnikov [27]. Such models have

been applied to chemical processes of polymerization [20], and other physical processes of

coagulation and condensation such as the evolution of galactic clusters by gravitational
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attraction [40]. See Aldous [6] for a recent survey of the literature of these models and

their relation to Smoluchowski's mean-�eld theory of coagulation phenomena.

While our interest in these models is mathematical, we use cosmological terms, and

imagine a stochastic mechanism in which smaller galaxies merge through collisions to

form larger galaxies. We suppose that at any given time, each pair of galaxies of masses

say x and y runs the risk of a binary collision to form a single galaxy of mass x + y at

rate �(x; y), where � is some non-negative, symmetric function. We write this intuitive

prescription symbolically as

fx; yg ! x+ y at rate �(x; y) (1)

Assuming that the universe consists of a �nite number of galaxies, each containing a �nite

number of particles of equal mass, the state of the universe is commonly represented as a

partition of n, that is an unordered collection of positive integers with sum n, where n is

the total number of particles in the universe. Transition rates between various partitions

of n implied by (1) then determine the distribution of the state of the universe at time

t > 0 given some initial state at t = 0 via the Kolmogorov forward equations for the

�nite-state Markov chain [29, 27, 20].

It is of interest in many settings to study limiting models in which n ! 1. One

limiting regime which has been extensively studied [20, 46, 45, 6] is the thermodynamic

limit, in which the n particles are supposed to occupy some volume V , the collision rate

is understood as a rate per unit time per unit volume, and n and V are allowed to

tend to in�nity in such a way that in the limit there is at each time t a deterministic

density per unit volume of galaxies containing i particles, say ci(t) for i = 1; 2; 3; : : : .

These densities then satisfy a system of di�erential equations known as Smoluchowski's

coagulation equations [47]. In this limit, the resulting process is essentially deterministic

rather than stochastic. Normal approximations to 
uctuations of the concentrations in

large �nite volumes relative to means determined by the Smoluchowski equations have

also been obtained [45, 16].

Our concern here is with a di�erent limiting scheme, in which the number of inter-

acting galaxies tends to in�nity, but a �xed total mass m is maintained. After passage

to the limit, the state at time t is a random decomposition of the total mass m into
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a countable number of masses with sum m. The problem is to construct a Markovian

evolution of masses subject to the intuitive prescription of rates (1), allowing the inter-

action of a countably in�nite number of masses instead of just a �nite number. With

appropriate assumptions on � and the initial distribution of masses, we establish the

existence of such a process, which we call a �-coalescent, as a limit in distribution of a

�nite-state chain de�ned by a �nite number of masses evolving with the same collision

rate kernel �. We assume throughout that our system has a �nite total mass m. By

scaling, we can assume m = 1. But see also Aldous [1], who obtains interesting results

for the multiplicative coalescent with collision rate �(x; y) = xy in a system with in�nite

total mass.

Informally, we regard a �-coalescent as an evolving family of agglomerating galaxies

with total mass 1. The only distinguishing feature of a galaxy is its mass. However,

to rigorize this notion it is convenient to label the galaxies present by elements of the

set N := f1; 2; : : : g, and to think of the �-coalescent as taking values in the set S of

probability measures on N. Di�erent labeling conventions then lead to di�erent \codings"

of essentially the same object as an S-valued processes. This point of view is introduced

in Section 2, where we formulate a general de�nition of an S-valued coalescent process,

and relate this de�nition to the Marcus-Lushnikov model.

Section 3 presents another formalization of coalescents as partition{valued processes.

This perspective encompasses Kingman's coalescent [24]. Each block of the partition at

time t represents a collection of initially present galaxies that have succesively merged

by some sequence of binary coalescences into a single galaxy. Section 3.2 records some

explicit formulae for the semigroup of the additive coalescent (that is, the �{coalescent

with �(x; y) = x+ y) viewed as a partition{valued Markov chain.

Partition{valued coalescent processes with in�nitely many galaxies are constructed

in Section 4. Various codings of measure{valued coalescent processes with in�nitely

many galaxies are then constructed in Section 5 as deterministic transformations of

corresponding partition{valued processes.

Section 6.1 presents asymptotics as n ! 1 for the additive coalescent when the

initial state is n galaxies of mass 1=n. These asymptotics provide one motivation for
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the rigorous construction of such an additive coalescent with an arbitrary initial state

consisting a countable number of masses. Both multiplicative and additive coalescents

arise combinatorially from the study of random graphs [1, 33], and this limiting regime

arises naturally in that work.

Section 6.2 investigates a particularly interesting feature of two of the codings of the

additive coalescent as a measure{valued process described in Section 5. For a large class

of initial mass distributions we show that the asymptotic ratio between a remote tail

of the mass distribution at some later time t and the corresponding tail at time 0 is

e�
t for a suitable constant 
. Consequently, the value of the time parameter can be

reconstructed from the current and initial states of the process.

Section 7 records some connections between our approach to coalescent processes

and Kingman's theory of exchangeable random partitions. We conclude in Section 8 by

mentioning some open problems. See [18] for a treatment of in�nitely{many{species ana-

logues of the classical Lotka{Volterra equations which appear as hydrodynamic limits of

the kinds of coalesent processes studied here, and [19, 36] for other recent developments.

Measure-valued Markov processes have recently been the subject of considerable

study, particularly those that arise in population genetics (see, for instance [17, 14]).

These processes have arisen as high-density limits of the empirical measure for a parti-

cle system in which there is some sort of Markovian motion of the individual particles

combined with between-particle interactions involving a small number of particles. But

in these models, even when the values of the limiting process are discrete measures, it is

usually the case that mass moves between atoms in a continuous manner. By contrast,

in the processes we study here, mass transfers occur by a purely discontinuous process.

2 Measure-valued coalescents

The term coalescent has been applied to various mathematical models for a system of

masses evolving over time in such a way that smaller masses collide to form larger

masses, with conservation of mass [29, 1, 6]. Kingman [24] developed a coalescent model

in mathematical genetics to describe lines of descent in a large population. This section
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o�ers a general framework for coalescent processes which is adequate for the construction

of Markovian coalescent processes with collision rate � for a variety of kernels �.

2.1 Partial orderings of measures on N

We will describe the state of the system of coalescing galaxies at a given time by a

sequence of non-negative components

x := (x1; x2; : : : ) (2)

We interpret xi as the mass of the ith galaxy in some inventory of galaxies. If xi = 0

it is understood that there is no galaxy labeled i in this inventory. Set N := f1; 2; : : : g.
We regard x a measure on N by de�ning

xI :=
X
i2I

xi (3)

for subsets I of N. So xI is the total mass of all galaxies with labels in the set I. We

assume further that the total mass xN is �nite, and reduce by scaling to the case xN= 1.

Thus the state space of our coalescent processes will be identi�ed as the set S of all

probability measures on N, or some suitable subset of S.
Given two states x;y 2 S , say x is �ner than y, or y is coarser than x, and write

x
<� y, if there is a map 	 from N to N such that 	(x) = y. Here 	(x) denotes the

push-forward of x by 	, de�ned by

(	(x))j =
X
i

xi1(	(i) = j) (4)

We call
<� the relation of re�nement on S. Recall that a binary relation � de�ned on a

set S is called a partial ordering of S if � is re
exive (x � x), antisymmetric (x � y and

y � x implies x = y) and transitive (x � y and y � z implies x � z). The relation of

re�nement on S is re
exive and transitive, but not antisymmetric. Write x � y and say

x is a rearrangement of y if x
<� y and y

<� x. Then � is an equivalence relation on S.
It is easily seen that x � y i� there exists a bijection � : fi : xi > 0g ! fj : xj > 0g such
that xi = y�(i) for all i with xi > 0. Each � equivalence class has a unique representative
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y which is ranked, meaning that y1 � y2 � : : : � 0. Let S# denote the subset of S
comprising all ranked states, and de�ne RANK : S ! S# by RANK(x) = x# where x# is

the unique ranked state that is a rearrangement of x. The restriction of
<� to S# de�nes

a partial ordering of S#. Let sto� denote the stochastic ordering on S, that is the partial
ordering of S de�ned by

x
sto� y i�

Pn
i=1 xi �

Pn
i=1 yi for all n 2 N. (5)

It can be shown that x
<� y implies y#

sto� x# but the converse is false. For example,

(2=3; 1=3; 0; : : : ) is stochastically smaller than, but not coarser than (1=2; 1=2; 0; : : : ).

Note also that if x
<� y where y = 	(x) with 	(k) � k for all k 2 N (we call such a

map leftward), then y
sto� x.

2.2 Coalescent evolutions and processes

Let the time parameter set I� R be a possibly in�nite interval which may be open or

closed at either end. Consider a map (x(t); t 2 I) from Iinto some subset S 0 of S. Write

x(t) = (x1(t); x2(t); : : : ). Interpret xi(t) as the mass of the galaxy labeled i at time t.

Given a topology on S 0, say that (x(t); t 2 I) is an S 0-coalescent evolution if it is

c�adl�ag and for some family of tracking functions 	s;t : N! N, s; t 2 I, s < t, satisfying

the composition rule

	s;u = 	t;u �	s;t for s; t; u 2 Iwith s < t < u (6)

there is conservation of mass:

x(t) = 	s;t(x(s)) for s; t 2 Iwith s < t : (7)

In other words, for each pair of times s; t 2 Iwith s < t, the mass xi(s) of each galaxy

in existence at time s is identi�ed as part of the mass xj(t) of some unique galaxy in

existence at the subsequent time t, where j = 	s;t(i). The value of 	s;t(i) is of no

signi�cance if xi(s) = 0. As a consequence of (7),

x(s) is �ner than x(t) whenever s < t. (8)
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Call an S 0-coalescent evolution leftward if it admits a system of leftward tracking

functions. It is not hard to show that if the topology on S 0 is at least as strong as

the topology of weak convergence, and (x(t); t 2 I) is a c�adl�ag S 0-valued function such

that (8) holds, then there is a leftward S 0-coalescent evolution (y(t); t 2 I) such that

x(t) � y(t) for all t 2 I.
The notion of a family of tracking functions satisfying the composition rule captures

mathematically the intuitive idea of a merger history tree, developed less formally in [26,

39, 40] in the cosmological setting. Loosely speaking, a leftward S 0-coalescent evolution
describes the evolution of a universe using a labeling scheme such that when galaxies

coalesce the label of the resulting galaxy is no greater than the labels of any of the

participants in the coalescence.

For x 2 S and 1 � i < j <1 de�ne xi j 2 S by

xi j = y where yi = xi + xj; yj = 0 and yk = xk for k =2 fi; jg (9)

Thinking of x as a sequence of masses placed on the positive integers, xi j is derived

from x by removing mass xj from place j and adding it to the mass xi at place i. Call

an S 0-coalescent evolution (x(t); t 2 I) basic if it is leftward and for all t 2 I with

x(t�) 6= x(t) there exist i < j (depending on t) such that x(t) = x(t�)i j. Call an

S 0-coalescent evolution (x(t); t 2 I) binary if there exists a basic S 0-coalescent evolution
(y(t); t 2 I) such that x(t) � y(t) for all t 2 I. Intuitively, a binary S 0-coalescent
evolution describes the evolution of a universe in which galaxies only coalesce in pairs.

Moreover, in the basic case the galaxies are labeled so that each new galaxy formed by

a binary collision is given the smaller of the labels of the two colliding galaxies while the

labels of all other galaxies remain unchanged.

It is clear that if (x(t); t 2 I) is a basic S 0-coalescent evolution, RANK maps S 0 into
S 00 and both S 0 and S 00 are equipped with topologies that make RANK continuous, then

(RANK�x(t); t 2 I) is a binary S 00-coalescent evolution. A similar comment holds with the

map RANK replaced by the map SHUNT, where SHUNT : S ! S is the map that \squeezes

out" 0 masses; for example, for a; b; c; d > 0 with a+ b+ c+ d = 1

SHUNT(0; a; 0; b; c; 0; d; 0; : : : ) = (a; b; c; d; 0; : : : ): (10)

9



In this case the resulting S 00-coalescent evolution is leftward as well as binary.

Proposition 1 Suppose that (x(t); t 2 I) is an S 0-coalescent evolution for a topology on

S 0 � S which is at least as strong as the topology of weak convergence, and that either

x(t) 2 S# for each t 2 I, or that (x(t); t 2 I) is leftward. Then for all k 2 N, the function
t 7! P1

`=k x`(t) is non-increasing, and the function t 7! xk(t) is of bounded variation,

with total variation at most 2. Moreover, these functions have no continuous component

(that is, they are pure jump functions).

Proof. The following argument shows that the function t 7! P1
`=k x`(t) is non-increasing

with no continuous component, assuming that (x(t); t 2 I) is a leftward S 0-coalescent.
The rest is left to the reader. Without loss of generality, it can be supposed that I=

R+. Consider the sub-probability measure valued function x(n)(t) de�ned by x(n)(t) :=

	0;t(x(n)(0)) where 	0;t is the tracking function such that x(t) = 	0;t(x(0)) and x
(n)
i (0) =

xi(0)1(i � n). For k 2 N, n 2 N and t � 0 let

ak;n(t) :=
k�1X
`=1

x
(n)
` (t) (11)

Then t 7! ak;n(t) is an non-decreasing pure jump function and so is t 7! ak;n+1(t)�ak;n(t)
for each n 2 N. Since

lim
n!1

ak;n(t) =
k�1X
`=1

x`(t) = 1�
1X
`=k

x`(t) (12)

this function too is non-decreasing with no continuous component.

�

Given an S 0-valued stochastic process (X(t; !); t 2 I; ! 2 
) de�ned on some proba-

bility space (
;F ; P ), call the process an S 0-coalescent if for all ! 2 
 the sample path

t 7!X(t; !) is an S 0-coalescent evolution, and the associated tracking functions 	!
s;t from

N to N can be chosen such that ! 7! 	!
s;t(i) is F -measurable for all s; t 2 Iand i 2 N.

The measurability assumption means that for each pair of times s and t, and each pair

of labels i and j, the event f	s;t(i) = jg, that the galaxy labeled i at time s is contained

in the galaxy labeled j at time t, has a well de�ned probability Pf	s;t(i) = jg.
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2.3 Markovian S-coalescents

For x 2 S let #x be the number of non-zero components of x. We interpret #x as

the number of galaxies present when the universe is in state x = (x1; x2; : : : ). Let

SK := fx 2 S : #x < 1g be the set of �nitely supported probability measures. Note

that if (x(t); t 2 I) is an SK-coalescent evolution, then the function t 7! x(t) has only

�nitely many jumps on each compact sub-interval of I.

Let �(x; y) be a non-negative measurable symmetric function of x; y 2 ]0; 1[. Call such
a function � a collision kernel. Call a process X := (X(t); t 2 I) an (SK; �)-coalescent if

X is a time-homogeneous Markov SK-coalescent process of jump-hold type, with state

space SK \ S 0 for some appropriate subset S 0 of S, and transition rates of the form

rate�(x! y) =
X
i<j

1(xi > 0; xj > 0;xij = y)�(xi; xj) (13)

where xij is some rearrangement of xi j .

Three di�erent (SK; �)-coalescents, which we describe as basic, shunted and ranked

are de�ned by the following choices of xij and S 0:
xij S 0

basic xi j S1 := fx 2 S : x1 > 0g
shunted SHUNTxi j S� := SHUNT(S)
ranked RANKxi j S# := RANK(S)

(14)

It is easily shown that if X is any (SK; �)-coalescent then RANK � X is a ranked

(SK; �)-coalescent. So the various (SK; �)-coalescents di�er only in the way that galax-

ies are relabeled after collisions. Note also that if X is a basic (SK; �)-coalescent, then

the sample paths of X are basic SK-coalescent evolutions, and SHUNT �X is a shunted

(SK; �)-coalescent whose sample paths are binary, leftward SK -coalescent evolutions.

For n 2 N let S#n denote the set of elements of S# each of whose coordinates is a multiple

of 1=n. A ranked (SK; �)-coalescent with time parameter set I= R+ and initial state in

S#n takes all of its values in S#n, so we may call it an (S#n; �)-coalescent. By multiplica-

tion by n, the non-zero terms of an element of S#n identify a non-increasing sequence of

positive integers with sum n, that is a partition of n. With S#n so identi�ed with the set
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of all partitions of n, what we call here an (S#n; �)-coalescent is identical to the stochas-

tic coalescent model of Marcus [29] and Lushnikov [27], with collision rate �(i=n; j=n)

between each pair of galaxies of i and j particles.

Our aim now is to construct Markov processes which are appropriately continuous

extensions of the basic, shunted and ranked coalescents, under suitable assumptions on

the collision kernel �. Ideally, we would like to extend the state space of the basic

coalescent to all of S1, and that of the shunted and ranked coalescents to S� and S#
respectively. We achieve this in the important special case of the additive kernel �(x; y) =

K(x+ y) for some constant K > 0. See also Example 7 regarding the case �(x; y) = K,

which is much more elementary. We consider also the case of a Lipschitz kernel, that is

a � subject to the conditions

�(x; y) = �(y; x); �(0; 0) = 0 and

j�(a; b)� �(c; d)j � K(ja� cj+ jb� dj) (15)

for some constant K, where it is supposed that �(x; y) is de�ned if either x or y is equal

to 0, though �(x; y) is not then interpreted as a jump rate. For a Lipschitz kernel, we

are only able to extend the three coalescents to the state spaces S1
1 , S�1 and S#1 , where

for � � 0 and S 0 � S we set S 0� := S 0 \ S� with S� the set of probability measures x on

N such that
P

k2Nk
�xk <1. For treatment of shunted and ranked coalescents we equip

S� with the metric

��(x;y) :=
X
k2N

k�jxk � ykj (16)

Note that �0 is the restriction to S of the `1 metric, and the topology induced on S by

�0 is the topology of weak convergence. For the basic coalescent we work with

��(x;y) := ��(x;y) + sup
k2N

2�kf1(xk = 0; yk 6= 0) + 1(xk 6= 0; yk = 0)g:

Note that (S�; ��) is a complete, separable, metric space for each � � 0, and that the

topology induced by �� is strictly stronger than that induced by ��. The space S� with

the topology induced by �� is homeomorphic to

f(x; ") 2 S � f0; 1gN : xi = 0 if and only if "i = 0g
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when this set is equipped with the relative topology inherited from the product of the ��

topology on S� and the product topology on f0; 1gN. In particular, (S�;��) is a Lusin

space. Given a metric space (E; �), let D(R+; E) or D(R+; E; �) denote the space of

c�adl�ag functions from R+ into E equipped with the Skorohod topology.

De�ne kernels ��, ��� and �#� on S1, S� and S# respectively, by setting ��(x; fyg),
���(x; fyg), and �#�(x; fyg) equal to rate�(x! y) as in (13) for the appropriate choice

of xij as in (14). The following theorem is proved in Section 5:

Theorem 2 Suppose either that � = 0 and �(a; b) = K(a + b) for some constant

K � 0, or that � = 1 and � is subject to the Lipschitz condition (15). There exist

Hunt processes X, X�, and X#, with state-spaces (S1
�;��), (S��; ��), and (S#�; ��), laws

(Qx; x 2 S1
�), (Q

x

� ; x 2 S��), and (Qx

# ; x 2 S#�), and transition semigroups (Qt)t�0,

(Q�t )t�0, and (Q#t )t�0, such that the following hold.

(i) Almost surely, the sample paths of X (resp. X�, X#) are basic S�-coalescent evo-
lutions (resp. binary leftward S�-coalescent evolutions, binary S�-coalescent evolu-
tions).

(ii) If x 2 S1
� \ SK (resp. x 2 S�� \ SK, x 2 S#� \ SK), then X (resp. X�, X#) under

Qx (resp. Qx

� , Q
x

# ) is a basic (resp. shunted, ranked) (SK; �)-coalescent process.

(iii) The kernel �� (resp. ���, �
#
�) is a jump kernel for X (resp. X�, X#).

(iv) The maps x 7! Qt(x; �), t � 0, from (S1
�;��) into the space of probability measures

on (S1
�;��) equipped with the topology of weak convergence, and the map x 7! Qx

from (S1
�;��) to the space of probability measures on D(R+;S1

�;��) equipped with

the topology of weak convergence, are continuous. Analogous continuity results hold

with (S1
�;��; Qt;Q

x) replaced by (S��; ��; Q�t ;Qx

� ) or (S#�; ��; Q#t ;Qx

# ).

To spell out the meaning of (iii), the kernel called the jump kernel, together with the

time parameter as a deterministic additive functional, form a L�evy system for the process
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in question [9]. For instance, for the basic coalescent, this means that the identity

Qx

2
4 X
0�s�t

f(X(s�);X(s))1(X(s�) 6=X(s))

3
5

= Qx

�Z t

0

Z
f(X(s�);y)��(X(s�); dx) ds

� (17)

holds for all x 2 S1
� and all non-negative measurable f .

The two properties (ii) and (iv) of the theorem uniquely specify each collection of

laws (Qx;x 2 S1), (Qx

� ; x 2 S�), and (Qx

# ; x 2 S#). Further path regularity properties

of X , X�, and X# can be read from Proposition 1. It would be interesting to have a

more direct characterization of the laws of these processes via a generator or a martingale

problem, but we do not pursue that here.

3 Partition-valued coalescents

Let (x(t); t 2 I) be an S-coalescent evolution with associated tracking functions (	s;t).

Note from the conservation of mass property (7) that if s 2 I, then x(t) for each t � s

can be recovered from x(s) and the sub-collection of pre-images 	�1s;t (fjg), j 2 N, that
consists of the non-empty sets. Observe that the non-empty pre-images form a partition

of the set N. (Recall that partition of a set K is a collection fK�g of non-empty subsets

of K such that K� \ K� = ; for � 6= � and
S
�K� = K; the subsets K� are called

the components or blocks of the partition.) To construct various S-coalescents, we �rst
construct their associated processes of partitions of N.

Every partition v of of a set K gives rise to an equivalence relation �v on K by

declaring that a �v b if a and b belong to the same component. All equivalence relations

on K arise this way. Given two partitions v and w of a set K, say that v is a re�nement

of w, or that w is a coarsening of v, and write v � w, if every component of w is the

union of one or more components of v; that is, a �v b implies a �w b. If v is a partition

of a set K and J is a subset of K, the restriction of v to J is the partition of J associated

with the restriction to J of the equivalence relation associated with v.

For f : K ! K, the collection of subsets ff�1(fkg) : k 2 K; f�1(fkg) 6= ;g is a

partition of K that we call the partition induced by f . Note that for g : K ! K the

14



partition induced by g � f is a coarsening of the partition induced by f . For example, if

(x(t); t 2 I) is a S-coalescent evolution with associated tracking functions (	s;t), then

the composition rule implies that for s; t; u 2 Iwith s < t < u, the partition of N induced

by 	s;u is a coarsening of the partition induced by 	s;t.

3.1 P
n
-coalescents

Let Pn denote the set of partitions of Nn := f1; : : : ; ng. Say that a Pn-valued function

(w(t); t 2 I) is c�adl�ag if it is right continuous with left limits in the discrete topology

on Pn. Say that (w(t); t 2 I) is a Pn-coalescent evolution if it is c�adl�ag and w(s) �
w(t) for s; t 2 I, s < t. Finally, say that a Pn-coalescent evolution (w(t); t 2 I) is

binary if whenever w(t�) 6= w(t) the partition w(t) is obtained by coalescing two of the

components of of w(t�).
Call a Pn-valued stochastic process (Wt; t 2 I) a Pn-coalescent (resp. a binary Pn-

coalescent) if the sample paths are almost surely Pn-coalescent evolutions (resp. binary

Pn-coalescent evolutions).

Let p := (p1; : : : ; pn) be a sequence of strictly positive numbers. For I � Nn set

pI =
P

i2I pi. De�ne a binary Pn-coalescent Markov process (Wt; t � 0) by specifying

that two components I; J coalesce into a single component at rate �(pI ; pJ) for some

symmetric non-negative collision kernel �. Regard pi as the mass of an ith proto-galaxy,

and interpret the components of Wt as the galaxies present at time t. Thus (Wt; t � 0)

describes a process in which pairs of galaxies coalesce at a rate depending on their masses.

Call the Pn-valued Markov process (Wt; t � 0) the (Pn; �)-coalescent with proto-galaxy

mass distribution p, or the (Pn; �;p)-coalescent for short. Note that � and p determine

only the transition rates of the (Pn; �;p)-coalescent. The initial state W0 can have any

probability distribution over Pn.

Suppose now that (Wt; t � 0) is a (Pn; �;p)-coalescent for a p with p1+ � � �+pn = 1.

De�ne an SK-valued process X := (X(t); t � 0) by setting Xi(t) = pJ if Wt contains a

component J whose least element is i, and Xi(t) = 0 otherwise. In particular, Xi(t) = 0

for i > n. It is easily checked that X is a basic (SK; �)-coalescent, as de�ned in Section

2.3. Similarly, de�ne another SK-valued process X� := (X�(t); t � 0) by setting X�1 (t)
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equal to the mass of the galaxy at time t containing the proto-galaxy labeled 1, and X�2 (t)

equal to the mass of the galaxy at time t containing the least numbered proto-galaxy not

in the galaxy containing the proto-galaxy labeled 1, and so on. ThenX� = SHUNT�X is

a shunted (SK ; �)-coalescent. Of course X# := RANK �X is a ranked (SK; �)-coalescent.

3.2 The �nite additive coalescent.

Call a (S 0; �)-coalescent with S 0 � SK and �(x; y) = x + y an (S 0;+)-coalescent. Sim-

ilarly, call a (Pn; �;p)-coalescent with �(x; y) = x + y a (Pn;+;p)-coalescent. Refer to

both such processes as additive coalescents. The additive S#n-coalescent has been studied

by a number of authors [20, 27, 42, 43] as a particular case of the Marcus-Lushnikov

model for which it is possible to make explicit calculations.

As observed by Hendriks et al. [20], the (S#n; �)-coalescent process with collision

kernel �(x; y) = a+ b(x+ y) for constants a and b has the following property. For each

k 2 N and all states x with #x = k, the total rate of transitions out of state x and into

the set of states fy : #y = k � 1g has the same value �a;b(k) :=
�
k
2

�
a+ (k � 1) b: It is

easily seen that this property is shared by any (SK; �)-coalescent with � of this form.

Consequently, if (X(t); t � 0) is such a coalescent, given #X(0) = n for some �xed

n, the process (#X(t); t � 0) is a Markovian death process with death rates �a;b(k).

Moreover, this death process is independent of the discrete-time jumping chain de�ned

by the sequence of n distinct states through which X(t) passes as #X(t) decreases by

steps of 1 from n to 1.

In particular, if (X(t); t � 0) is an (SK;+)-coalescent, the death rate when there are

k galaxies is �0;1(k) = k�1. It follows [44, x6.2.1] that given #X(0) = x for any x with

#x = m there is the identity in distribution

(#X(t)� 1; t � 0)
d
=

 
m�1X
i=1

1("i > t); t � 0

!
(18)

where the "i are independent exponential variables with rate 1. Consequently [27, 20],

the conditional distribution of #X(t) � 1 given X(0) = x with #x = m is binomial

with parameters m� 1 and e�t.
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Consider now a (Pn;+;p)-coalescent W = (W (t); t � 0) constructed from the proto-

galaxy masses p1; � � � ; pn as in Section 3.1, assuming
P

i pi = 1. For W there is the

following straightfoward extension of the results of the previous paragraph. Let #w

denote the number of components of a partition w. Given #W (0) = m the process

(#W (t)� 1; t � 0) has the same distribution as the process displayed in (18), and this

process is independent of the sequence of distinct partitions embedded in the process

(W (t); t � 0). The sequence of distinct partitions is a discrete time Pn-valued Markov

chain whose one step transition probabilities are as follows: given that the current state

is the partition w = fB1; : : : ; Bkg of Nn, the next distinct partition is derived from w by

merging the components Bi and Bj with probability (pBi
+ pBj

)=(k� 1). Such a Markov

chain, call it a discrete-time (Pn;+;p)-coalescent, will now be constructed following the

method of [33].

For a �nite or countable set S, call a subset g of S �S a directed graph labeled by S.

Say (s; t) is an edge of g directed from s to t if (s; t) 2 g. Call g a rooted forest if each

connected component of g is a rooted tree, with the convention that edges of a tree are

directed away from its root.

Construction 3 Let X1; : : : ;Xn�1 be independent random variables with distribution

p on Nn. De�ne a sequence of random rooted forests (Fk; 1 � k � n) in reverse order

as follows. Let Fn be the rooted forest with vertex set Nn with no edges, and n trivial

tree components. For 1 � k � n� 1, given that Fn; : : : ;Fk+1 have been de�ned so that

Fk+1 is a rooted forest of k + 1 trees labeled by S, de�ne Fk by addition to Fk+1 of a

single directed edge from Xk to Rk, where given Fk+1 and Xk the vertex Rk is picked

uniformly at random from the set of k roots of the k trees in Fk+1 other than the tree

containing Xk. For 1 � k � n let �k be the partition of Nn whose components are the

connected components of Fk.

It is obvious by construction that the sequence (�n;�n�1; : : : ;�1) is a discrete-time

(Pn;+;p)-coalescent started at the partition of Nn into singletons. As shown by an
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induction in [33], for each 1 � k � n the forest Fk has the distribution

PfFk = fg =
 
n� 1

k � 1

!�1 nY
s=1

pCsfs (f 2 Fkn) (19)

where Csf is the number of children or out-degree of vertex s in the rooted forest f

and Fkn is the set of all forests of k rooted trees labeled by Nn. Moreover, for each

1 � k � n� 1, conditionally given (Fj; 1 � j � k) the forest Fk+1 is derived from Fk by

deletion of (Xk; Rk), which is an edge picked uniformly at random from the set of n� k

edges of Fk.

For k = 1 the fact that probabilities in the distribution (19) sum to 1 amounts to

Cayley's multinomial expansion over trees [13, 38, 41, 33, 35]:

X
t2Tn

nY
s=1

pCsts =

 
nX
s=1

ps

!n�1
(20)

where Tn := F1n is the set of nn�1 rooted trees labeled by Nn, and the formula holds as

an identity of polynomials in n commuting variables ps; 1 � s � n.

The probability of the event f�k = fS1; : : : ; Skgg is obtained by summing the ex-

pression (19) over all forests f whose tree components are S1; : : : ; Sk. Write the product

over Nn in (19) as the product over 1 � i � k of products over Si. The sum of products

is then a product of sums, where the ith sum is a sum over all trees labeled by Si. Each

of these sums can be evaluated by Cayley's expansion (20) to obtain

Pf�k = fS1; : : : ; Skgg =
 
n� 1

k � 1

!�1 kY
i=1

p
jSij�1
Si

(21)

where pA :=
P

s2A ps is the p-mass of A and jAj is the number of elements of A. We

note as a consequence of this formula the following identity of polynomials in commuting

variables xs; 1 � s � n: for each 1 � k � n

X
fS1;::: ;Skg

kY
`=1

x
jS`j�1
S`

=

 
n� 1

k � 1

!
(x1 + � � �+ xn)

n�k (22)

where the sum on the left side is over all unordered partitions of Nn into k components

fS1; : : : ; Skg, and xS =
P

s2S xs. See [35] for a review of related identities and their

probabilistic and combinatorial interpretations.
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The following proposition combines the above results to give an explicit description

of the semigroup of the (Pn;+;p)-coalescent:

Proposition 4 Let (W (t); t � 0) be a (Pn;+;p)-coalescent for a probability distribution

p. Then for each partition w = fR1; : : : ; Rjg of Nn, and each partition fS1; : : : ; Skg of

Nn that is a coarsening of w,

PfW (t) = fS1; : : : ; Skg jW (0) = wg = e�(k�1)t(1 � e�t)j�k
kY
i=1

p
#fh:Rh�Sig�1
Si

Proof. Consider �rst the special case when w is the partition of Nn into n singletons.

Write ~�k for the state ofW (t) when #W (t) = k. The result follows from the observations

that #W (t)�1 has a binomial distribution with parameters n�1 and e�t, the distribution
of ~�k is identical to that of �k displayed in (21), and #W (t) is independent of (~�k; 1 �
k � n). For a general initial partition w, the only possible states of W (t) are coarsenings

of w. Every such coarsening is identi�ed in an obvious way by a partition of Nj . With

this identi�cation the (Nn;+;p) coalescent with initial partition w is identi�ed with

the (Nj ;+;p0) coalescent with initial state the partitition of Nj into singletons, and

p0i = pRi
; i 2 Nj . The general case then follows from the special case.

�

The following variation of Construction 3 will be used in Section 4.

Construction 5 Let p = (p�; � 2 �) be a �nite measure on a �nite or countable set

�, with p� > 0 for all � 2 �. Let (Yj)1j=0 and ("�)�2� be independent random variables,

with each Yj distributed according to p, and each "� an exponential variable with rate

1. Let T ((Yj)1j=0) be the random rooted tree with vertex set � and set of directed edges

f(Yj�1; Yj) : Yj =2 fY0; : : : ; Yj�1g; j � 1g:
For t � 0 let F(t; (Yj)1j=0; ("�)�2�), be the random forest with vertex set � and directed

edge set

f(Yj�1; Yj) : Yj =2 fY0; : : : ; Yj�1g and "Yj � t; j � 1g:
Let �(t; (Yj)1j=0; ("�)�2�) be the random partition of � whose components are the tree

components of F(t; (Yj)1j=0; ("�)�2�).
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Proposition 6 Suppose � = Nn. Then (�(t; (Yj)1j=0; ("�)�2�); t � 0) is a (Pn;+;p){

coalescent starting from the partition that consists of all singletons.

Proof. By application of the Markov chain tree theorem [12] [28, x6.1] to the Markov

chain formed by a sequence of independent random variables with identical distribution

p, for each rooted tree t labeled by Nn

PfT ((Yj)1j=0) = tg = c
nY

s=1

pCsts

for some constant c. Cayley's multinomial expansion (20) implies that c = 1, so the

distribution of T ((Yj)1j=0) is identical to the distribution of F1 displayed in (19). The

conclusion now follows from the description of the process (Fk; 1 � k � n) given below

(19), and the independence of the jump times and the discrete skeleton of a (Pn;+;p){

coalescent.

�

3.3 P1-coalescents

Recall that Pn is the set of partitions of Nn = f1; : : : ; ng. Let P1 denote the set of

partitions of N. For m 2 N and v 2 P1, or v 2 Pn with m � n, write �mv for the

restriction of v to Nm. Topologize each Pn with the discrete topology and equip P1 with

the topology generated by the maps f�ngn2N (that is, the weakest topology with respect

to which all of the maps �n are continuous). Thus a P1-valued function (w(t); t 2 I) is
c�adl�ag if and only if for all n 2 N the Pn-valued function (�n �w(t); t 2 I) is c�adl�ag. Say
that (w(t); t 2 I) is a P1-coalescent evolution (resp. a binary P1-coalescent evolution)
if for all n 2 N the Pn-valued function (�n � w(t); t 2 I) is a Pn-coalescent evolution

(resp. a binary Pn-coalescent evolution). Of course, (w(t); t 2 I) is a binary P1-
coalescent evolution if and only if whenever w(t�) 6= w(t) the partition w(t) is obtained

by coalescing two of the components of w(t�). We call a P1-valued stochastic process

with such sample paths a P1-coalescent or a binary P1-coalescent, as the case may be.

Example 7 Kingman's P1-coalescent. Kingman [24, 25] proved the existence of an

essentially unique P1-coalescent (Wt; t � 0) starting at the partition of N into singletons
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such that for each n the process (�n�Wt; t � 0) is a Markovian (Pn; �;p)-coalescent with

collision kernel �(x; y) � 1 and arbitrary weights p. At each time t > 0, the partitionWt

of N has an almost surely �nite number of components Dt, where (Dt; t > 0) is a pure

death process with state space N coming down from D0+ =1 with an exponential hold

at each k � 2 with mean
�
k
2

��1
before jumping down to k� 1. Kingman [24, Theorem 3

and x5], showed that for arbitrary t > 0 and k 2 N, conditionally given Dt = k, each of

the k components of Wt has an asymptotic frequency; moreover if these frequencies are

listed in ranked order as say (X#1 (t);X
#
2 (t); : : :X

#
k (t)) then the conditional distribution of

this random vector given (Ds; s � 0) with Dt = k is identical to the distribution of the

ranked lengths of k subintervals obtained by cutting the unit interval ]0; 1[ at k�1 points

picked independently and uniformly at random from ]0; 1[. Let (X#(t); t > 0) denote the

S-valued random process de�ned by

X#(t) = (X#1 (t);X
#
2(t); : : :X

#
k (t); 0; 0; : : : ) if Dt = k (23)

It follows easily from these results of Kingman that (X#(t); t > 0) is a ranked (SK; �)-

coalescent process with �(x; y) = 1. See Section 7 for a generalization of this construction.

Another modi�cation of this construction allows the de�nition of basic, shunted and

ranked (SK; �)-coalescents for this � with time parameter t > 0, with entrance laws

derived from an arbitrary distribution of mass at time t = 0+. See [36] for details in the

ranked case.

In principle, the distribution of a P1-coalescent (Wt; t 2 I) is determined by the col-

lection of �nite-dimensional distributions of each of the �nite state space Pn-coalescents

(�n �Wt; t 2 I). The analysis of (Wt; t 2 I) is greatly simpli�ed if each of these Pn-

coalescents is Markovian, as is the case for Kingman's coalescent and the more general

class of coalescents considered in the next example. But this method does not extend

easily to the kinds of P1-valued coalescents which are subject of this paper. So in the

following sections we use other methods to construct these P1-coalescents and their

associated S-coalescents.

Example 8 The �-coalescent. It is shown in [36] that a large class of P1-valued Feller

processes (Wt; t � 0) is obtained by supposing that for each n the process (�n�Wt; t � 0)
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is Markovian with transition rates of the following form: when the partition of Nn has

b components, each k-tuple of components is merging to form a single component at

rate �b;k for some array of rates (�b;k). This prescription turns out to be consistent if

and only if �b;k =
R 1
0 x

k�2(1 � x)b�k�(dx) for all 2 � k � b for some �nite measure

� on [0; 1]. Kingman's coalescent is obtained for � = �0, a unit mass at 0, while the

coalescent recently derived by Bolthausen and Sznitman [11] from Ruelle's probability

cascades, in the context of the Sherrington-Kirkpatrick spin glass model in mathematical

physics, is obtained for � uniform on [0; 1]. The �-coalescent has binary collisions only

in Kingman's case � = �0.

The following lemma collects together some simple facts about P1.

Lemma 9 (i) The metric d on P1 de�ned by

d(v;w) := sup
n2N

2�n1(�nv 6= �nw)

induces the topology on P1.

(ii) The space P1 is compact and totally disconnected.

(iii) A sequence fvkgk2N in P1 converges to v if and only if for each n 2 N, �nvk = �nv

for all k su�ciently large.

(iv) The algebra of functions ff � �m : f 2 C(Pm); m 2 Ng is dense in C(P1).

4 Construction of in�nite partition-valued coales-

cents

Our aim in this section is to construct for suitable probability distributions p 2 S+ :=

fx 2 S : xi > 0; 8i 2 Ng and a suitable kernel � a binary P1-coalescent Markov

process W p

� such that two components I; J coalesce into the single component I [ J at

rate �(pI ; pJ ), where pI :=
P

i2I pi. We usually regard � as �xed, so the dependence
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of various objects on � will be largely supressed in the notation. So we will write for

instanceW p instead ofW p

� . As in section 3.1 we think of the components of the partition

W p(t) as the galaxies present at time t. The elements of a component are the labels of

the proto-galaxies that have been merged together to form the galaxy. De�ne a kernel

�p� (w; dv) on P1 by declaring that �p� (w; �) is the measure that, for each unordered

pair I; J of components of w, places mass �(pI ; pJ ) on the coarsening of w obtained by

coalescing I and J . Our aim then is to construct, for given �, a Markovian coalescent

process with jump kernel �p� for as many p 2 S+ as possible.

Theorem 10 Suppose either that �(a; b) = K(a + b) for some constant K � 0 and

� = 0, or that � is subject to the Lipschitz condition (15) and � = 1. For each p 2
S+
� := fp 2 S+ :

P
k k

�pk < 1g there is a unique P1-valued Feller process W p with

laws (Pw
p
; w 2 P1) such that the following hold.

(i) If w 2 P1 is such that n �w n + 1 �w n + 2 �w : : : for some n 2 N, then �nW p

under Pw
p
is a (Pn; �;p

[n])-coalescent started at �nw, where p[n]1 := p1; : : : ; p
[n]
n�1 :=

pn�1; p
[n]
n :=

P1
k=n pk.

(ii) Almost surely, the sample paths of W p are binary P1-coalescent evolutions.

(iii) The kernel �p� is a jump kernel for W p.

De�nition 11 Call the process described in Theorem 10 the (P1; �;p)-coalescent.
Note that for given � and p the laws (Pw

p
; w 2 P1) are uniquely speci�ed by � and

p through part (i) of the theorem and the Feller property. As with Theorem 2, it would

be interesting to have a more direct generator or martingale problem characterization of

W p.

Theorem 10 is a consequence of coupling arguments carried out in Lemmas 14, 16

and 17. Central to these arguments is the following set{up.

De�nition 12 A coupled family of coalescents is the following collection of ingredients:

� a collision kernel � : [0; 1]2 ! R+;
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� a subset S 0 of S+;

� for each p 2 S 0 and n 2 N an associated sub-probability measure p(n) on Nn;

� some �xed, complete probability space (
;F ;P);

� for each n 2 N, w 2 P1, and p 2 S 0, a (Pn; �;p
(n))-coalescent W n;p;w :=

(W n;p;w(t); t � 0) de�ned on (
;F ;P) with W n;p;w(0) = �nw.

For m 2 N, w 2 P1, p 2 S 0, and t � 0 set

N(m;w;p; t) := inffN � m : �mW n;p;w(s) = �mWN;p;w(s); 8s 2 [0; t]; 8n � Ng:

De�nition 13 For v 2 Pn let �nv 2 P1 denote the unique partition of N that has

fn+ 1; n + 2; : : : g as a component and satis�es �n�nv = v. In other words,

i ��nv j , either (i; j 2 Nn and i �v j) or (i; j 2 NnNn):

Lemma 14 Consider a coupled family of coalescents. Suppose that the following condi-

tions hold.

(a) The collision kernel � is symmetric and continuous on [0; 1]2.

(b) For n;m 2 N, p 2 S 0, and t � 0 there is a constant �(n;m;p; t) such that

PfN(m;w;p; t) > ng � �(n;m;p; t) for all w 2 P1 and limn!1 �(n;m;p; t) = 0

for all �xed m;p; t.

(c) For all p 2 S 0, limn!1
Pn

k=1 jpk � p
(n)
k j = 0.

Then the following conclusions hold.

(i) For each w 2 P1 and p 2 S 0 there is a c�adl�ag P1{valued process (W p;w(t); t � 0)

on (
;F ;P) such that

lim
n!1

sup
0�s�t

d(�nW n;p;w(s);W p;w(s)) = 0 a:s: (24)
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(ii) Let Pw
p
be the law of W p;w. For each p 2 S 0 the collection of laws (Pw

p
; w 2 P1)

is that of a P1-valued Feller process W p such that conclusions (i)-(iii) of Theorem

10 hold.

Proof. By hypothesis (b), for each w 2 P1 and p 2 S 0 there exists a set 
�(w;p) � 


with P(
�(w;p)) = 1 such that if ! 2 
�(w;p) then N(!;m;w;p; t) <1 for all m 2 N
and all t � 0. De�ne a c�adl�ag P1{valued process (W p;w(t); t � 0) by declaring that

�mW p;w(!; t) = �mWN(!;m;w;p;s);p;w(!; t); m 2 N; for ! 2 
�(w;p)

and W p;w(!; t) = w for ! =2 
�(w;p). It is immediate that part (i) of the lemma holds,

and for N � m we have the bound

Pfsup
n�N

sup
0�s�t

d(�nW n;p;w(s);W p;w(s)) > 2�(m+1)g

= Pf9n� N; 90 � s � t : �m�nW n;p;w(s) 6= �mW p;w(s)g
= Pf9n� N; 90 � s � t : �mW n;p;w(s) 6= �mW p;w(s)g
� PfN(m;w;p; t) > Ng � �(N;m;p; t):

(25)

let (P n;p
t )t�0 denote the semigroup of the (Pn; �;p

(n))-coalescent. For f 2 C(P1) set
P p

t f(w) := P[f(W p;w(t))]. We claim that P p

t f 2 C(P1) and the function (P n;p
t (f ��n))�

�n converges in C(P1) to P p

t f as n ! 1. From Lemma 9 it su�ces to take f of the

form g � �m for some m 2 N and g 2 C(Pm). Observe that in this case f � �n = g � �m
for n � m. We know from the above that the uniformly bounded sequence of functions

(P n;p
t (g��m)��n)n�m converges pointwise as n!1, and so it will su�ce, by the Arzela-

Ascoli theorem, to show that this sequence is equicontinuous. Suppose that w; v 2 P1
are such that d(w; v) � 2�(N+1) for some N � m so that �Nw = �Nv. Of course,

PN;p
t (g � �m)(�Nw) = PN;p

t (g � �m)(�Nv):

We have for n � N

jP n;p
t (g � �m)(�nw)� PN;p

t (g � �m)(�Nw)j � 2kgkC(Pm)PfN(m;w;p; t) > Ng
� 2kgkC(Pm)�(N;m;p; t);
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and the same bound holds with w replaced by v. Therefore,

jP n;p
t (g � �m)(�nw)� P n;p

t (g � �m)(�nv)j � 4kgkC(Pm)�(N;m;p; t);

which establishes the required equicontinuity.

For f1; f2 2 C(P1) and 0 � t1 � t2, we have from the uniform convergence estab-

lished above that

P[f1(W
p;w(t1)� f2(W

p;w(t2))]

= lim
n!1

P[f1(�
nW n;p;w(t1))� f2(�

nW n;p;w(t2))]

= lim
n!1

P n;p
t1 ((f1 � �n)� P n;p

t2�t1(f2 � �n))(�nw)
= lim

n!1
P n;p
t1 ((f1 � (P n;p

t2�t1(f2 � �n) � �n)) � �n)(�nw)
= P p

t1(f1 � P p

t2�t1f2)(w)

Similar expressions hold for the higher order �nite dimensional distributions of

(W p;w(t); t � 0), and hence this process is time-homogeneous Markov with semigroup

(P p

t )t�0. In order to complete the proof that this process is Feller, it su�ces to show that

limt#0 P
p

t f = f pointwise for all f 2 C(P1) (see [10, Remark after Theorem I.9.4]). This,

however, is immediate from the right{continuity of the sample paths of (W p;w(t); t � 0).

We now move on to the proof that parts (i)-(iii) of Theorem 10 hold. Let w

be as in the statement of part (i) of Theorem 10. For n0 � n it is easily ver-

i�ed that �nW n0;p;w is a (Pn; �;p
[n;n0])-coalescent started at �nw, where p

[n;n0]
1 :=

p
(n0)
1 ; : : : ; p

[n;n0]
n�1 := p

(n0)
n�1; p

[n;n0]
n :=

Pn0

k=n p
(n0)
k . We know from part (i) of the lemma that

�nW p;w = limn0!1 �
n�n

0

W n0;p;w = limn0!1 �
nW n0;p;w in D(R+;Pn). On the other hand,

for a given starting state, the law of a Markov chain on a �nite state space is weakly

continuous with respect to its transition rates, and so part (i) of Theorem 10 follows

from hypotheses (a) and (c).

To establish part (iii) of Theorem 10, it must be shown that for each p 2 S 0 and
w 2 P1 the process W (s) := W p;w(s), s � 0, is such that for every non-negative Borel

function f ,

P

2
4 X
0�s�t

f(W (s�);W (s)) 1(W (s�) 6= W (s))

3
5 = P

�Z t

0

Z
f(W (s�); v) �p� (W (s�); dv) ds

�
:
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Note for M 2 N that

X
0�s�t

1(d(W (s�);W (s)) > 2�M ) �M

and

�p� (v; fv0 2 P1 : d(v; v0) > 2�Mg) �
 
M

2

!
supf�(a; b) : 0 � a; b � 1g

for all v 2 P1.
Similar bounds hold for W n;p;w instead of W . By a passage to the limit as n ! 1

from the corresponding identity for W n;p;w, the identity for W holds for f of the form

f(v; v0) = g(�mv; �mv0) 1(d(v; v0) > 2�M ) with g 2 C(Pm � Pm) for some m 2 N. The

identity for f(v; v0) = h(v; v0)1(d(v; v0) > 2�M ) for bounded non-negative Borel h is

then obtained by a monotone class argument. The identity for general non-negative

Borel f follows by monotone convergence as M !1. Finally, it is immediate from the

construction that we have built a process whose paths are P1{coalescent evolutions. It
follows easily from property (iii) of Theorem 10 that all coalescences are binary, and so

property (ii) of Theorem 10 also holds.

�

The next lemma is a re�nement of the previous one. While not required for the proof

of Theorem 10, this lemma will be used in the proof of Theorem 2.

Lemma 15 Suppose the conditions of Lemma 14 hold for S 0 = S+
� for some � � 0, and

suppose further that the following conditions hold.

(a) For n;m; t �xed, the function p 7! �(n;m;p; t) from S+
� into R+ is continuous in

the �� metric.

(b) For each �xed n 2 N, p 2 S+
� , and w 2 P1

lim
��(p;q)#0

Pf90� s � t : W n;p;w(s) 6= W n;p;w(s)g = 0;

with the limit taken over q 2 S+
� .
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Then for all � > 0, p 2 S+
� , and w 2 P1

lim
��(p;q)#0; d(w;v)#0

Pf sup
0�s�t

d(W p;w(s);W q;v(s)) > �g = 0;

with the limit taken over q 2 S+
� and v 2 P1.

Proof. Fix m 2 N. We have from (25) that if d(w; v) � 2�n, so that �nw = �nv, then

Pf sup
0�s�t

d(W p;w(s);W q;v(s)) > 2�(m+1)g

= Pf90� s � t : �mW p;w(s) 6= �mW q;v(s)g
� Pf90� s � t : �mW n;p;w(s) 6= �mW p;w(s)g

+Pf90� s � t : �mW n;q;v(s) 6= �mW q;v(s)g
+Pf90� s � t : �mW n;p;w(s) 6= �mW n;q;v(s)g

� 2�(n;m;p; t) + j�(n;m;q; t)� �(n;m;p; t)j
+Pf90� s � t : �mW n;p;w(s) 6= �mW n;q;v(s)g

Choosing n su�ciently large makes �(n;m;p; t) arbitrarily small. Once n is �xed, taking

��(p;q) su�ciently small makes both j�(n;m;q; t) � �(n;m;p; t)j and the last term

arbitrarily small.

�

The proof of Theorem 10 is completed by the next two lemmas.

Lemma 16 Suppose that �(a; b) = K(a + b) for some constant K > 0. Then it is

possible to construct a coupled family of coalescents satisfying the conditions (a){(c) of

Lemma 14 for S 0 = S+ and conditions (a) and (b) of Lemma 15 for � = 0.

Proof. We need only consider the case K = 1, as the general case reduces to this case

by rescaling time.

The collection of processesW n;p;w, n 2 N, w 2 P1 will be constructed simultaneously

for all p 2 S+ by an adaptation of Construction 5. On some complete probability

space (
;F ;P) let fHig1i=1 be a a sequence of independent Poisson random measures

on R+ � [0; 1], each with intensity dt 
 du, and let "k, k = 1; 2; : : : , be a sequence
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of standard exponential variables independent of the Hi. For p 2 S+ de�ne Poisson

random measures fBp

i g1i=1 on R+ by Bp

i (E) = Hi(E� [0; pi]) for E � R+, so that B
p

i has

intensity pi dt. Let S
n;p
0 < Sn;p

1 < : : : to be the successive atoms of
Pn

i=1B
p

i . Let �
n;w
k ,

1 � k � #(n;w), denote the components of �nw listed in increasing order of their least

elements. De�ne a sequence of N#(n;w){valued random variables (Y n;p;w
j )1j=0 by setting

Y n;p;w
j = k if the atom of

Pn
i=1B

p

i at time Sn;p
j is an atom of Bp

i for some i 2 �n;wk . Thus

the sequence (Y n;p;w
j )1j=0 is i.i.d. with

PfY n;p;w
j = kg = p(�n;wk )=p(Nn)

where p(A) :=
P

i2A pi. Let ~p(n) be the probability measure on N#(n;w) with mass

~p(n)k := p(�n;wk )=p(Nn) at k 2 N#(n;w). According to Proposition 6, the process

(�(t; (Y n;p;w
j )1j=0; ("k)

#(n;w)
k=1 ); t � 0) is a (P#(n;w);+; ~p

(n)){coalescent with starting point

the partition of N#(n;w) into singletons. De�ne a random partition W n;p;w(t) of Nn

by declaring that i and j belong to the same component of W n;p;w(t)) if i and j be-

long to respective components �n;wk and �n;w` of w such that k and ` belong to the

same component of �(t; (Y n;p;w
j )1j=0; ("k)

#(n;w)
k=1 ). It is clear that (W n;p;w(t); t � 0) is a

(Pn;+;p
(n)){coalescent with starting state �nw, where p(n) is p conditioned on Nn.

Let V n;p;w
m be the subset of N consisting of the vertices of the subtree of

T ((Y n;p;w
j ))1j=0) that spans N#(m;w). Thus v 2 V n;p;w

m if and only if v lies on the unique

path from a to b in the tree T ((Y n;p;w
j ))1j=0) for some a; b 2 Nm, where edge directions in

the tree are ignored in constructing the paths. If V n;p;w
m = V N;p;w

m , then by construction

the restrictions to Nm of (�(t; (Y n;p;w
j )1j=0; ("k)

#(n;w)
k=1 ) and (�(t; (Y N;p;w

j )1j=0; ("k)
#(N;w)
k=1 )

are identical for all t � 0, hence so are the restrictions to Nm of W n;p;w(t) and WN;p;w(t).

For 1 � k � #(n;w) let Rn;p
k be the time of the �rst atom of Bp

i for some i 2 �n;wk . For

1 � m � n let

T n;w;p
m :=

#(m;w)_
k=1

Rn;p
k and T p

m :=
m_
i=1

infft � 0 : Bp

i ([0; t] > 0g:

By construction, T n;w;p
m is decreasing as n increases, and T n;w;p

m � T p

m which is a.s. �nite

for every m and p 2 S+. Now for n � N � m

V n;p;w
m � fY n;p;w

j : Sn;pj � T n;p;w
m g � fY n;p;w

j : Sn;p
j � TN;p;w

m g:

29



Therefore,

PfN(m;w;p; t) > Ng � Pf9n > N : V n;p;w
m 6= V N;p;w

m g
� P[Pf9i > N : Hi([0; T

N;p;w
m ]� [0; pi]) > 0 j TN;p;w

m g]
= 1 �P

h
exp

�
�TN;p;w

m �pN+1

�i
where �pN+1 :=

1X
i=N+1

pi

� 1 �P [exp(�T p

m �pN+1)] =: �(N;m; t;p)

It is clear that � has property (b) of Lemma 14 and property (a) of Lemma 15 for � = 0.

It is also clear that � satis�es condition (a) of Lemma 14 and that hypothesis (c) of

Lemma 14 holds for this choice of p(n). Finally, observe for w 2 P1 and p;q 2 S+ that

Pf90 � s � t : W n;p;w(s) 6= W n;q;w(s)g
� Pf91� i � n : Bp

i (� \ [0; T p

n _ T q

n ]) 6= Bq

i (� \ [0; T p

n _ T q

n ])g

and it follows that property (b) of Lemma 15 holds for � = 0.

�

Lemma 17 Suppose that � satis�es the Lipschitz condition (15). Then it is possible to

construct a coupled family of coalescents satisfying conditions (a){(c) of Lemma 14 for

S 0 = S+
1 and conditions (a) and (b) of Lemma 15 with � = 1.

Proof. Once again we will treat the case K = 1 and observe that the general case can be

reduced to this by rescaling time. On some complete probability space (
;F ;P) construct
a collection fDijgi;j2N of independent Poisson random measures on R+ � [0; 1] � [0; 1],

each having intensity Lebesgue measure on R+ � [0; 1] � [0; 1]. For p 2 S+ de�ne a

Poisson random measure Ap

ij on R+ � [0; 1] by setting Ap

ij(E) = Dij(E � [0; pi]) for

E � R+� [0; 1], so that Ap

ij has intensity pi dt
 du.

For I; J � Nn set Cp

IJ =
P

i2I A
p

i;minJ . Note that if I1; : : : ; Ih � N are pairwise

disjoint, then fCp

IkI`
g1�k 6=`�h is a collection of independent Poisson random measures on

R+� [0; 1], with Cp

IkI`
having intensity pIk dt
 du.

For n 2 N, w 2 P1 and p 2 S+, de�ne a c�adl�ag Pn-valued process (W n;p;w(t); t � 0)

and stopping times 0 = T n;p;w
0 < T n;p;w

1 < T n;p;w
2 < : : : as follows, where we abbreviate

30



W n(t) :=W n;p;w(t) and T n
k := T n;p;w

k . Let W n(0) = �nw,

T n
k+1 = inf

(
t > T n

k : 9Ink+1; Jnk+1 2 W n(Tk); I
n
k+1 6= Jnk+1;

Cp

In
k+1J

n
k+1

�
]T n

k ; t]�
h
0;
�(pIn

k+1
; pJn

k+1
)

pIn
k+1

+ pJn
k+1

i�
> 0

)
;

W n(t) =W n(Tk); for t 2]T n
k ; T

n
k+1[;

W n(T n
k+1) = the coarsening of W n(Tk) obtained by aggregating Ink+1 and J

n
k+1:

As a transition of W n involving the aggregation of I and J may occur either due to a

point of CIJ or due to a point of CJI , it is easily veri�ed that that for each p 2 S+

and w 2 P1 the process W n = W n;p;w is a (Pn; �;p
(n))-coalescent started at �nw for

p(n) the restriction of p to Nn. It is also easily seen that for each n 2 N, the process

(W n;p;w;W n+1;p;w) with state space Pn � Pn+1 is a time{homogeneous Markov chain

whose transition rates depend only on p and not on w.

We will now derive an upper bound on

Pf90� s � t : �nW n+1;p;w(s) 6= W n;p;w(s)g:

Consider �rst the case that fn + 1g is not a component of �n+1w. Write I for the

component of �nw that is the intersection with Nn of the component of w that contains

fn+ 1g. Observe that if J is another component of w, then

Cp

J;I[fn+1g = Cp

JI

Cp

I[fn+1g;J = Cp

IJ +Ap

n+1;minJ
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Now, using the notation A4B for the symmetric di�erence of two sets A and B,

lim
t#0

t�1Pf90� s � t : �nW n+1(s) 6= W n(s)g

= lim
t#0

t�1P

(
9J 2 w; J 6= I :

(Cp

IJ + Cp

JI)
��

[0; t]�
h
0;
�(pI + pn+1; pJ)

pI + pn+1 + pJ

i�
4
�
[0; t]�

h
0;
�(pI ; pJ )

pI + pJ

i��
> 0

or Ap

n+1;minJ([0; t]� [0; 1]) > 0

)

= lim
t#0

t�1

0
@1� Y

J 6=I

0
@1� exp

 
�t
�����(pI + pn+1; pJ )

pI + pn+1 + pJ
� �(pI ; pJ )

pI + pJ

����(pI + pJ )

!1A

� Y
J 6=I

�
1� exp(�tpn+1)

�1A
� 3npn+1;

where we have used the fact that the number of components of w is at most n and the

inequality

������(a+ c; b)

a+ c+ b
� �(a; b)

a+ b

����� �
����(a+ c; b)� �(a; b)

���(a+ b) + c�(a; b)

(a+ c+ b)(a+ b)

� 2c(a+ b)

(a+ c+ b)(a+ b)

=
2c

a+ c+ b

� 2c

a+ b

for a; b; c > 0. It follows from the Markov property of (W n(�);W n+1(�)) that for all

p 2 S+ and w 2 P1
Pf90� s � t : �nW n+1(s) 6= W n(s)g � 1� exp(�3npn+1t)

� 3(n+ 1)pn+1t;
(26)

Moreover, by the strong Markov property of (W n(�);W n+1(�)), this inequality holds a

fortiori if fn + 1g is a component of �n+1w. For N � m we have from (26) that for
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w 2 P1 and p 2 S+

PfN(m;w;p; t) > Ng �
1X

n=N

Pf90 � s � t : �nW n+1;p;w(s) 6=W n;p;w(s)g

� 3t
1X

i=N+1

ipi =: �(N;m;p; t):

It is clear that � has property (b) of Lemma 14 and property (a) of Lemma 15 for � = 1.

It is also clear that � satis�es condition (a) of Lemma 14 and that hypothesis (c) of

Lemma 14 holds for this choice of p(n). Finally, observe for w 2 P1 and p;q 2 S+ that

Pf90� s � t : W n;p;w(s) 6= W n;q;w(s)g
� Pf91 � i; j � n : Ap

ij(� \ [0; t]� [0; 1]) 6= Aq

ij(� \ [0; t]� [0; 1])g
and it follows that hypothesis (b) of Lemma 15 holds.

�

5 Construction of in�nite measure-valued coales-

cents

In this section we prove Theorem 2 by a development of the results of the previous

section. De�ne a map CLUMP : N �P1! N by setting

CLUMP(k;w) = inff` 2 N : ` �w kg:

Recall that a map f : N ! N leftward if f(k) � k, k 2 N. Note that the map

k 7! CLUMP(k;w) is leftward for every w 2 P1. Recall from around (16) the de�nition

of the subspace S� of S for � � 0 and the de�nition of the metrics �� and �� on S�.
Recall that S+ := fx 2 S : xk > 0; k 2 Ng, S1 := fx 2 S : x1 > 0g, S+

� = S� \ S+, and

S1
� = S� \S1. Note that S1

� is a closed subset of (S�;��). De�ne WEIGH : P1�S+ ! S1

by letting WEIGH(w;p) be the push-forward of p by CLUMP(�; w). Thus, WEIGH(w;p)

assigns the p-mass of each component of w to the smallest element of the component.

Lemma 18 For each � � 0 the map WEIGH from (P1; d) � (S+
� ; ��) into (S1

�;��) is

continuous.
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Proof. For p0;p00 2 S+, w0; w00 2 P1 we have

��(WEIGH(w
0;p0); WEIGH(w00;p00))

� ��(WEIGH(w
0;p0); WEIGH(w00;p0)) + ��(WEIGH(w

00;p0); WEIGH(w00;p00)):

Observe that if d(w0; w00) � 2�(n+1) so that �nw0 = �nw00, then

��(WEIGH(w
0;p0); WEIGH(w00;p0)) � 2�(n+1) + 2

1X
k=n+1

k�p0k:

Moreover,

��(WEIGH(w
00;p0); WEIGH(w00;p00)) � ��(p

0;p00):

�

Suppose that p 2 S+ and (w(t); t 2 I) is a P1-coalescent evolution. De�ne an

S1-valued function (x(t); t 2 I) by setting

x(t) = WEIGH(w(t);p): (27)

It is clear that (x(t); t 2 I) is a leftward S1-coalescent evolution. We can take 	s;t :=

CLUMP( � ; w(t)), s; t 2 I, s < t, as the associated tracking maps. We call (x(t); t 2 I) the
S1-coalescent evolution derived from the proto-galaxy mass distribution p via the P1-
coalescent evolution (w(t); t 2 I). Note that if (w(t); t 2 I) is binary, then (x(t); t 2 I)
is basic. This method of construction of an S1-coalescent evolution from a P1-coalescent
evolution generalizes the construction in Section 3.1 of a basic (SK; �)-coalescent from a

(Pn; �;p)-coalescent for a �nite vector p of proto-galaxy masses.

A continuous one-sided inverse for the map WEIGH can be de�ned as follows. Given

x 2 S1, write f�k(x)g1k=1 for the ordered list of the elements of N that are assigned

positive mass by x. That is,

�1(x) = 1; �k+1(x) = inffi > �k(x) : xi > 0g: (28)
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De�ne  (x) 2 S+ as follows:

 i(x) =

8<
:

2�(i��k (x)+1)

1�2�(�k+1(x)��k (x))
x�k(x); if �k(x) � i < �k+1(x) <1 for some k 2 N,

2�(i��k(x)+1)x�k(x); if �k(x) � i < �k+1(x) =1 for some k 2 N,

where the second case occurs only if x has �nite support. De�ne �(x) 2 P1 by declaring

that i ��(x) j if and only if supfk : �k(x) � ig = supfk : �k(x) � jg. Note that

WEIGH(�(x);  (x)) = x. The following result is elementary.

Lemma 19 For each � � 0 the map x 7! ( (x); �(x)) from (S1
�;��) into (S+

� ; ��) �
(P1; d) is continuous.

We turn now to the proof of the basic case of Theorem 2. Let (W p;w(t); t � 0);

w 2 P1, p 2 S+
� , be the collection of processes whose existence is guaranteed by either

Lemma 16 or Lemma 17. We now write W (t;p; w) instead of W p;w(t) for typographical

convenience. Given x 2 S1
�, de�ne a c�adl�ag (S1

�;��){valued process (X(t;x); t � 0) by

setting

X(t;x) := WEIGH(W (t; (x); �(x));  (x)):

Note that X(t;x) takes values in the set fWEIGH(w; (x)) : w � �(x)g. Write Qx for the

law of (X(t;x); t � 0).

For n 2 N let Pn
1 be the �nite set of partitions w with the property that n �w

n+1 �w n+2 �w � � � . Note that if x 2 S1
� \SK, then �(x) 2 Pn

1 for some n. It is clear

that for such an x the process (X(t;x); t � 0) is a basic (SK; �){coalescent. It follows

by Lemmas 18, 19, 14, 15 and the compactness of P1 that for x 2 S1
�, t � 0 and � > 0,

lim
��(x;y)#0

Pf sup
0�s�t

��(X(s;x);X(s;y)) > �g = 0: (29)

Note for each p 2 S+
� that fWEIGH(w;p) : w 2 P1g is a compact subset of (S1

�;��). As

the set
S
n2NfWEIGH(w;p) : w 2 Pn

1g is dense in fWEIGH(w;p) : w 2 P1g, it follows from
(29) that (Qx; x 2 fWEIGH(w;p) : w 2 P1g) is the family of laws of a Feller process on

(fWEIGH(w;p) : w 2 P1g;��). Finally, as S1
� =

S
p2S+

�
fWEIGH(w;p) : w 2 P1g, we have

that (Qx; x 2 S1
�) is the family of laws of a Hunt process on (S1

�;��). We have already
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established (ii). Claim (iv) is immediate from (29). Claims (i) and (iii) follow from parts

(iii) and (iv) of Theorem 10.

The proof of Theorem 2 in the shunted and ranked cases is similar. Just change the

de�nition of X(t;x) to

SHUNT(WEIGH(W (t; (x); �(x));  (x)))

and

RANK(WEIGH(W (t; (x); �(x));  (x)));

respectively, and use the fact that SHUNT is continuous from (S1
�;��) to (S��; ��), and

RANK is continuous from (S1
�;��) to (S#�; ��).

�

6 The In�nite Additive Coalescent.

We present in this section a number of results for in�nite additive coalescent processes.

We record �rst the following explicit construction of these processes, which follows easily

from Proposition 6, Theorem 2, and Theorem 10.

Corollary 20 In the notation of Construction 5, suppose that p is a probability distribu-

tion on N with pi > 0 for all i 2 N. Let �(t) := �(t; (Yj)1j=0; ("�)�2N). Then (�(t); t � 0)

is a (P1;+;p){coalescent starting from the partition that consists of all singletons. The

process (WEIGH(�(t);p); t � 0) is a basic additive coalescent with initial state p, and the

processes (SHUNT(WEIGH(�(t);p)); t � 0) and (RANK(WEIGH(�(t);p)); t � 0) are shunted

and ranked additive coalescents with starting states p and RANK(p) respectively.

6.1 Asymptotics for uniform initial condition

Consider now a shunted (SK;+)-coalescent (X�(t); t � 0) started with the uniform or

monodisperse initial condition un de�ned by n equal masses of size 1=n labeled by Nn.

Given #X�(t) = k let ~X1(t); : : : ; ~Xk(t) denote the sizes of the k non-zero components
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of X�(t) presented in an exchangeable random order. It is known [33], and follows from

Proposition 4, that there is the equality of joint distributions

( ~Xi(t); 1 � i � k jX�(0) = un;#X
�(t) = k)

d
=

 
Yi
n
; 1 � i � k

�����
kX
i=1

Yi = n

!
(30)

where the random variables Yi are independent and identically distributed with the

Borel (1) distribution

PfYi = mg = e�mmm�1=m! (m = 1; 2; : : : ) (31)

We may suppose that the process (X�(t); t � 0) has been constructed in the manner

of Section 3.1 from an additive Pn-coalescent process (Wt; t � 0) with proto-galaxy

masses p1 = � � � = pn = 1=n. Due to exchangeability of Wt, the components of X�(t)

are in size-biased random order [15, 34]. It follows from the representation (30), and [2,

Lemmas 11 and 12] that for each t > 0 and s � 0, as n!1 and k varies with n in such

a way that n=k2 ! s

(X�i (t); i � 1 jX�(0) = un;#X
�(t) = k)

d!
 
Hi

�
; i � 1

����� � = s

!
(32)

where
d! denotes convergence in distribution of (S�; �0)-valued random elements and

on the right-hand side (Hi; i � 1) is a size-biased random permutation of the points of

a Poisson point process on ]0;1[ with intensity measure x�3=2dx=
p
2� and � :=

P
iHi.

Note that � has a stable(1=2) density. Let �(s) denote the probability distribution

on S appearing as the limit distribution in (32). A formula for the joint density of

the �rst n components of a random sequence (V1(s); V2(s); : : : ) with distribution �(s)

can be read from [31, Theorem 2.1]. Let V m(s) :=
P1

i=m Vi(s), so V 1(s) = 1 and

Vm(s) = V m(s)� V m+1(s) for m � 1. As shown in [8], a sequence (Vm(s);m � 1) with

distribution �(s) is generated by the formula

V m(s) =

 
1 + s

m�1X
i=1

Z2
i

!�1
(33)

where Z1; Z2; : : : is a sequence of independent standard normal variables. Here Z2
i has

the same distribution as 1=�. Let �#(s) denote the push-forward of �(s) by the ranking
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map from S� to S#. Because the ranking map is continuous [15], the convergence in

distribution (32) implies a corresponding result for a ranked additive SK-coalescentX#(t)

instead of X�(t), with limit �#(s). The �nite dimensional distributions of �#(s) can be

described explicitly [30, 37], but they are much more complicated than those of �(s).

Proposition 21 Let (X�(t); t � 0) be a shunted additive SK-coalescent with initial state

X�(0) = un. Let hn :=
1
2
log n. For each r 2 R, as n!1 the distribution ofX�(hn+r)

on (S; �0) converges to �(e2r), and the distribution of X#(hn + r) converges to �#(e2r).

Proof. From the binomial (n � 1; e�t) distribution of #X�(t) � 1 given X�(0) = un,

we know that for each real number r,

E(#X�(hn + r) jX�(0) = un) = 1 + (n� 1) exp(�1
2
log(n)� r) � p

ne�r

(34)

and the variance of #X�(hn + r) given X�(0) = un is of the same order of magnitude.

It follows that for each �xed r, as n!1 the random variable #X�(hn + r)=
p
n given

X�(0) = un converges in probability to the constant e�r, and hence n=(#X�(hn + r))2

given X�(0) = un converges in probability to the constant e2r. The proposition now

follows from (32) and continuity of the ranking map.

�

Suppose now that

Xn = (Xn(r); �hn � r <1) (35)

is a shunted additive SK -coalescent started at time �hn with Xn(�hn) = un. Proposi-

tion 21 combined with Theorem 2 shows that as n ! 1, the �nite dimensional distri-

butions of Xn converge to those of a limiting S�-coalescent process

X1 = (X1(r);�1 < r <1) (36)

such that for each real r the distribution of X1(r) on S� is �(e2r). Thus X1 actually

takes values in S+. Moreover, there is weak convergence on the appropriate Skorohod

path space, and the limiting process is a strong-Markov process with the shunted additive
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coalescent semigroup (Q�t ; t � 0) of transition operators. See [8] for another construction

of X1 based on the combinatorial representation of the additive Pn-coalescent in terms

of random trees [33], and Aldous's continuum random tree [5]. That approach yields

various distributional properties of the limit process, but not the regularity properties

of X1 such as the strong-Markov property obtained here. The family of probability

measures �(e2r) de�ne an entrance law for the semigroup (Q�t ), that is

�(e2r)Q�t = �(e2(r+t)) (r 2 R; t � 0) (37)

There are corresponding results for the ranked rather than shunted additive coalescent.

See also [19] for some recent developments.

6.2 Tail thinning

Let (X�(t); t � 0) be a shunted additive S-coalescent. Let �X�n(t) =
P1

i=nX
�
i (t). Sup-

pose that X�(0) has distribution �(c�1) on S for some c > 0, for �(s) as in Proposition

21. From the representation (33) of a random element with distribution �(s), the conse-

quence of the law of large numbers that
Pn�1

i=1 Z
2
i � n almost surely, and the consequence

of (37) thatX�(t) has distribution �(c�1e2t) on S� for each t > 0, we have for each t � 0

that

�X�n(t) � c e�2t n�1 almost surely as n!1 (38)

where an � bn means that an=bn ! 1. Let �X#n(t) =
P1

i=nX
#
i (t) where (X

#(t); t � 0) is a

ranked additive S-coalescent. ForX#(0) with distribution �#(c�1) on S#, the distribution
of X#(t) is �#(c�1e2t). It follows [22, (68)] that

�X#n(t) � (2=�) c e�2t n�1 almost surely as n!1 (39)

We conjecture that if the initial state of a shunted additve S-coalescent (X�(t); t � 0)

(resp. a ranked additive S-coalescent (X#(t); t � 0)) is such that (38) (resp. (39)) holds

for t = 0, then (38) (resp. (39)) holds for each t > 0. As a step towards understanding

how tails of a mass distribution are a�ected by an additive coalescent process, this
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section presents some results related to (38) and (39) for the basic and shunted additive

S-coalescents.
The following simple lemma is no doubt present in the di�erential equations literature,

but we have been unable to �nd a reference.

Lemma 22 Suppose that ffngn2N is a sequence of Borel functions mapping R+ into R+

that is uniformly bounded on compacts and satis�es

fn(t) = b+ c
Z t

0
fn(s) ds + dn(t);

where dn(t) converges to 0 uniformly on compacts as n ! 0. Then fn(t) converges to

bect uniformly on compacts as n!1.

Proof. Observe for m;n 2 N that

jfm(t)� fn(t)j � jcj
Z t

0
jfm(s)� fn(s)j ds+ jdm(t)� dn(t)j;

By Gronwall's lemma,

jfm(t)� fn(t)j � sup
0�s�t

jdm(s)� dn(s)jejcjt;

and so there exists a function f such that fn converges to f uniformly on compacts as

n!1. Clearly,

f(t) = b+ c
Z t

0
f(s) ds;

and hence f(t) = bect.

�

Recall that Qx governs the basic additive coalescent with initial state x, as con-

structed in Theorem 2.

Lemma 23 For x 2 S1, k 2 N and t � 0,

Qx

2
4 1X
j=k

X2
j (t)

3
5 � e4t

1X
j=k

x2j :
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Proof. It su�ces by part (iv) of Theorem 2 to consider the case when x 2 S1 \ SK.

Put H = f(i; j) 2 N � N : i < jg and let fNijg(i;j)2H be a collection of independent

Poisson random measures on [0; 1]�R+ with intensity Lebesgue measure on [0; 1]�R+.

De�ne Gk : S �H � [0; 1]! R, k 2 N, by

Gk(x; (i; j); u) =

8>><
>>:
xj; if k = i, 0 � u � (xi + xj)1(xi 6= 0; xj 6= 0),

�xj; if k = j, 0 � u � (xi + xj)1(xi 6= 0; xj 6= 0),

0; otherwise.

It is elementary to construct a c�adl�ag S1 \ SK -valued solution �X to the family of

SDEs

�Xk(t) = xk +
X
i<j

Z
[0;1]�[0;t]

Gk( �X(s�); (i; j); u)Nij(du; ds); (40)

and �X will have law Qx. We may therefore suppose that X has been constructed as a

solution to (40).

Applying the \Itô formula" for stochastic integrals against an (uncompensated) Pois-

son random measure (see, for example, [21, Theorem II.5.1]) and taking expectations,

we have that

Qx

2
4 1X
j=k

X2
j (t)

3
5 = 1X

j=k

x2j �Qx

2
4Z t

0

k�1X
i=1

1X
j=k

X2
j (s)fXi(s) +Xj(s)g1(Xi(s) 6= 0;Xj(s) 6= 0) ds

3
5

+ 2Qx

2
4Z t

0

1X
i=k

1X
j=i+1

Xi(s)Xj(s)fXi(s) +Xj(s)g1(Xi(s) 6= 0;Xj(s) 6= 0) ds

3
5 : (41)

Observe that

2
1X
i=k

1X
j=i+1

Xi(s)Xj(s)fXi(s) +Xj(s)g1(Xi(s) 6= 0;Xj(s) 6= 0) � 4
1X
j=k

X2
j (s);

and the result follows from Gronwall's lemma.

�

For x 2 S and k 2 N let �xk :=
P1

i=k xi.

Theorem 24 Suppose that x 2 S1 satis�es each of the following three conditions:
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(a) �xk > 0 for all k 2 N,

(b) limk!1
P1

j=k x
2
j=(�xk)

2 = 0,

(c) limk!1 k
P1

j=k x
2
j=�xk = 0.

Then, for all T � 0 and � > 0,

lim
k!1

Qx

(
sup
0�t�T

j �Xk(t)=�xk � e�tj > �

)
= 0:

Remark 25 The above conditions on x = (xk) are satis�ed if (xk) is regularly varying

of order �� for some � > 1.

Proof. We claim that under Qy for any y 2 S1, the process �Xk has the semimartingale

decomposition

�Xk(t) = �Xk(0) +Mk(t)�
Z t

0

k�1X
i=1

1X
j=k

Xj(s)fXi(s) +Xj(s)g1(Xi(s) 6= 0; Xj(s) 6= 0) ds;
(42)

where Mk is a martingale. As in the proof of Lemma 23, when y has �nite support it

is elementary to construct a solution to (40) with starting point y and the solution has

law Qy. It is then immediate that (42) holds when y is �nitely supported. The general

case follows from part (iv) of Theorem 2.

Observe that under Qx, for s � 0 and ` � k,

k�1X
i=1

1X
j=k

Xj(s)fXi(s) +Xj(s)g1(Xi(s) 6= 0; Xj(s) 6= 0)

�
k�1X
i=1

1X
j=k

Xj(s)fXi(s) +Xj(s)g

= �Xk(s) + (k � 1)
1X
j=k

X2
j (s):

(43)

On the other hand, as

X`(s) � �X`(s) � �X`(0) � �Xk(0) = �xk;
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it follows that

k�1X
i=1

1X
j=k

Xj(s)fXi(s) +Xj(s)g1(Xi(s) 6= 0; Xj(s) 6= 0)

�
k�1X
i=1

1X
j=k

Xj(s)Xi(s)1(Xi(s) 6= 0)1(Xj(s) 6= 0)

= �Xk(s)f1 � �Xk(s)g
� �Xk(s)f1� �xkg:

(44)

In order to prove the theorem it su�ces, by Lemma 22, Lemma 23, (43), (44), and

assumption (c), to show that for all T � 0 and � > 0

lim
k!1

Qxf sup
0�t�T

jMk(t)=�xkj > �g = 0: (45)

By standard facts about the \angle-brackets" of stochastic integrals against com-

pensated Poisson random measures (see, for example, [21, xII.3] we have for �nitely

supported y that

Qy[M2
k (t)] = Qy

2
4k�1X
i=1

1X
j=k

Z t

0
X2

j fXi(s) +Xj(s)g1(Xi(s) 6= 0; Xj(s) 6= 0) ds

3
5

(46)

It follows from part (iv) of Theorem 2 that (46) holds for all y. Thus,

k�1X
i=1

1X
j=k

X2
j fXi(s) +Xj(s)g1(Xi(s) 6= 0; Xj(s) 6= 0)

�
1X
j=k

X2
j (s) + (k � 1)

1X
j=k

X3
j (s)

�
1X
j=k

X2
j (s)f1 + (k � 1)�xkg:

Hence, by Lemma 23 and assumptions (b) and (c),

lim
k!1

Qx[fMk(t)=�xkg2] = 0;

and (45) holds by the L2 maximal inequality.

�
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Set

Lk(t) = #f1 � i � k : Xi(t) 6= 0g;

�k(t) = �k(X(t)) = inff` 2 N : L`(t) = kg:

Proposition 26 Suppose that x 2 S1 is such that

lim
k!1

#f1 � i � k : xi 6= 0g=k = �:

Then, for all T � 0 and � > 0,

lim
k!1

Qxf sup
0�t�T

jLk(t)=k � �e�tj > �g = 0

and

lim
k!1

Qxf sup
0�t�T

j�k(t)=k � ��1etj > �g = 0:

Proof. The claim for L clearly implies the claim for �, so it su�ces to prove the former.

Arguing as in the proof of Theorem 24, we have the semimartingale decomposition

Lk(t) = Lk(0) +Mk(t)�
Z t

0

X
1�i<j�k

(Xi(s) +Xj(s))1fXi(s) 6= 0;Xj(s) 6= 0g ds;

where Mk is a martingale. Observe thatX
1�i<j�k

(Xi(s) +Xj(s))1fXi(s) 6= 0;Xj(s) 6= 0g

=
1

2

2
4 X
1�i;j�k

(Xi(s) +Xj(s))1fXi(s) 6= 0;Xj(s) 6= 0g � 2
X

1�`�k

X`(s)1fX`(s) 6= 0g
3
5

= [Lk(s)� 1]
X

1�`�k

X`(s):

The result will therefore follow from Lemma 22 if we can show that for all T � 0 and

� > 0,

lim
k!1

Qx

(
sup
0�t�T

jMk(t)=kj > �

)
= 0:
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However, an \angle brackets" calculation similar to the one in the proof of Theorem

24 gives that

Qx[Mk(t)
2] = Qx

2
4Z t

0

X
1�i<j�k

(Xi(s) +Xj(s))1fXi(s) 6= 0;Xj(s) 6= 0g ds
3
5 � (k � 1)t;

and an application of the L2 maximal inequality completes the proof.

�

Corollary 27 Suppose that x 2 S1 satis�es the conditions of Theorem 24, the sequence

f�xkgk2N is regularly varying of order �
, 
 > 0, and

lim
k!1

#f1 � i � k : xi 6= 0g=k = �:

Then, for all T � 0 and � > 0,

lim
k!1

Qx

(
sup
0�t�T

j(SHUNT �X)k(t)=�xk � �
e�(1+
)tj > �

)
= 0:

Thus, if x� = SHUNT(x),

lim
k!1

Qx
�

�

(
sup
0�t�T

jX�k(t)=�x�k � e�(1+
)tj > �

)
= 0;

Proof. Note that

(SHUNT �X)k(t) = X�k(t)(t); k 2 N;
by de�nition, and so

(SHUNT �X)k(t) = �X�k(t)(t); k 2 N:
The result now follows immediately from Theorem 24, Proposition 26, and the properties

of regularly varying sequences.

�

Remark 28 In view of Remark 25, if the sequence (xk) is regularly varying of order

��, � > 1, then for all T � 0 and � > 0,

lim
k!1

Qx

�

(
sup
0�t�T

jX�k(t)=�xk � e��tj > �

)
= 0:
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7 Exchangeable P1-coalescents

Call a P1-valued process (Wt; t 2 I) exchangeable, if the distribution of each of the

processes (�n � Wt; t 2 I) is invariant under the action of permutations of Nn on the

space Pn of partitions of Nn. An example is provided by Kingman's P1-coalescent
(Wt; t � 0) described in Example 7. If (Wt; t 2 I) is an exchangeable P1-valued process

then each of the random partitions Wt is an exchangeable random partition of N, as

studied in [23, 24, 4, 32]. Let 2N denote the set of all subsets of N. De�ne a map

GAL : N � P1 ! 2N as follows. If i is the least element of some component of v, let

GAL(i; v) be that component; otherwise let GAL(i; v) be the empty set. Thinking of the

components of v as representing galaxies, call GAL(i; v) the galaxy labeled i in the partition

v. Say that a partition v 2 P1 has frequencies if the asymptotic frequency

FREQ(i; v) = lim
n!1

jGAL(i; v) \ Nnj=n (47)

exists for all i. And say that v has proper frequencies if also

1X
i=1

FREQ(i; v) = 1 (48)

The following lemma is elementary:

Lemma 29 Suppose that v has proper frequencies and that w is a coarsening of v. Then

w has proper frequencies given by the formula

FREQ(j; w) =
X
i

FREQ(i; v)1fGAL(i; v) � GAL(j; w)g (49)

Kingman [23, 24] showed that ifW is an exchangeable random partition of N, thenW

has frequencies. Combined with the above lemma this implies the following proposition:

Proposition 30 Suppose that (Wt; t 2 I) is an exchangeable P1-coalescent process such
that Wt has proper frequencies almost surely for each t 2 I. Then Wt has proper frequen-

cies for all t 2 Ialmost surely. Let

X(t) = (FREQ(i;Wt); i � 1) (50)
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Then the process (X(t); t 2 I) is a leftward S-coalescent process with tracking functions

	s;t de�ned by 	s;t(i) = j if FREQ(i;Ws) > 0 and GAL(i;Ws) � GAL(j;Wt).

The transformation (50) is an analog of the transformation (27) applied in Section

5, with masses de�ned by asymptotic frequencies instead of an arbitrary distribution

p. Proposition 30 shows how to transform an exchangeable P1-coalescent with proper

frequencies into an S-coalescent. The following proposition shows that modulo labeling

every S-coalescent has the same distribution as one that has been constructed by this

transformation.

Proposition 31 Given an S-coalescent process (X(t); t 2 I), there exists an exchange-

able P1-coalescent process (Wt; t 2 I) such that

(RANK(X(t)); t 2 I) d
= (RANK(FREQ(i;Wt); i � 1); t 2 I) (51)

where
d
= denotes equality of �nite-dimensional distributions.

Proof. Since the distribution of a P1-coalescent is determined its sequence of restric-

tions to Pn, by application of the Kolmogorov extension theorem it su�ces to prove

the existence for each s 2 I of an exchangeable P1-coalescent (Wt; t 2 I; t � s) such

that (51) holds with t restricted to t 2 I with t � s. Such a P1-coalescent can be

constructed as follows. First enlarge the probability space on which (X(t); t 2 I) is

de�ned to construct a sequence I0; I1; : : : of N -valued random variables which condi-

tionally given (X(t); t 2 I) are independent with identical distribution X(s). For

t 2 I with t � s let Wt be the partition of N generated by the random equivalence

relation m � n i� 	s;t(Im) = 	s;t(In) where 	s;t is the tracking function associated

with X. Then, by construction of Wt and the law of large numbers for the sequence

I0; I1; : : : , the process (Wt; t 2 I; t � s) is an exchangeable P1-coalescent such that

RANK(X(t)) = RANK(FREQ(i;Wt); i � 1) almost surely for each t 2 Iwith t � s.

�

Let ISBP denote the set of distributions of S-valued random elements which are

invariant under the operation of size-biased random permutation. A number of charac-

terizations of ISBP are known [34], one of which is that � 2 ISBP if and only if � is the
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distribution of SHUNT(FREQ(i;W ); i � 1) for some exchangeable random partition W of

N with proper frequencies. As an application of the above ideas, there is the following

proposition, which generalizes some of the observations regarding the shunted additive

coalescent that were made in Section 6.1.

Proposition 32 Let (Q�t )t�0 denote the semigroup of a shunted additive (S��; �)-
coalescent as in Theorem 2. Let � be a probability distribution on S��. If � 2 ISBP

then �Q�t 2 ISBP for each t > 0.

See also [36] where the ideas of this section are applied to characterize the entrance

boundary of the S#-coalescent derived from the P1-valued �-coalescent mentioned in

Example 8.

8 Open Problems

For each of the shunted and ranked S-coalescent semigroups discussed in this paper,

there is the problem of characterizing the possible entrance laws for a Markov process

with the given semigroup and time parameter set I=] �1;1[. See Aldous and Limic

[7] and Aldous [6] for a treatment of this problem for the multiplicative coalescent, and

related questions. From Section 6.1 we have existence of a non-trivial entrance law for

a shunted or ranked additive coalescent with I=]�1;1[. It can be shown [8, 3] that

there are other non-trivial extreme entrance laws in this case which are not just shifts of

this entrance law, and an explicit description of all extreme entrance laws can be given.

For an adequate discussion of the entrance boundary problem for more general collision

kernel � that satisfy the Lipschitz condition (15) it would seem necessary to �rst enlarge

the statespaces of the shunted and ranked processes to all of S� and S#, rather than the

statespaces S�1 and S#1 required in Theorem 2. Much remains to be understood about

how the evolution and asymptotic behavior of a coalescent process are a�ected by initial

conditions.
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