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Abstract

This paper considers estimating a covariance matrix of p variables from n observations by
either banding the sample covariance matrix or estimating a banded version of the inverse of
the covariance. We show that these estimates are consistent in the operator norm as long as
(log p)2/n → 0, and obtain explicit rates. The results are uniform over some fairly natural
well-conditioned families of covariance matrices. We also introduce an analogue of the Gaussian
white noise model and show that if the population covariance is embeddable in that model and
well-conditioned then the banded approximations produce consistent estimates of the eigen-
values and associated eigenvectors of the covariance matrix. The results can be extended to
smooth versions of banding and to non-Gaussian distributions with sufficiently short tails. A
resampling approach is proposed for choosing the banding parameter in practice. This approach
is illustrated numerically on both simulated and real data.

Keywords: covariance estimation, regularization, banded estimators, Cholesky decomposition.

1 Introduction

Estimation of population covariance matrices from samples of multivariate data has always been
important for a number of reasons. Principal among these are: (1) estimation of principal compo-
nents and eigenvalues in order to get an interpretable low-dimensional data representation (principal
component analysis, or PCA); (2) construction of linear discriminant functions for classification of
Gaussian data (linear discriminant analysis, or LDA); (3) establishing independence and condi-
tional independence relations between components using exploratory data analysis and testing;
and (4) setting confidence intervals on linear functions of the means of the components. Note that
(1) requires estimation of the eigenstructure of the covariance matrix while (2) and (3) require
estimation of the inverse.

The theory of multivariate analysis for normal variables has been well worked out – see Anderson
(1958), the major monograph. However, it became apparent that exact expressions were cumber-
some, even for small dimensions and sample sizes, and that multivariate data were rarely Gaussian.
The remedy was asymptotic theory for large samples and fixed relatively small dimensions. In
recent years, datasets that do not fit into this framework have become very common – the data
are very high-dimensional and sample sizes can be very small relative to dimension. Examples
include gene expression arrays, fMRI data, spectroscopic imaging, numerical weather forecasting,
and many others.
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It has long been known that the empirical covariance matrix for samples of size n from a p-
variate Gaussian distribution, Np(µ,Σp) has unexpected features if both p and n are large. If
p/n → c ∈ (0, 1) and the covariance matrix Σp = I (the identity), then the empirical distribution
of the eigenvalues of the sample covariance matrix Σ̂p follows the Marĉenko-Pastur law (Marĉenko
and Pastur, 1967), which is supported on ((1 − √c)2, (1 +

√
c)2). Thus, the larger p/n, the more

spread out the eigenvalues, even asymptotically.

Further contributions to the theory of extremal eigenvalues of Σ̂p have been made by Wachter
(1978), Geman (1980) and Bai and Yin (1993), among others. In recent years, there have been great
developments by Johnstone and his students in the theory of the largest eigenvalues (Johnstone,
2001; Paul, 2004) and associated eigenvectors (Johnstone and Lu, 2006), following similar work in
mathematics on the spectra of random matrices by Tracy and Widom (1996). The implications of
these results for inference, other than indicating the weak points of the sample covariance matrix,
are not clear since the interest of statisticians is in the population covariance matrices.

Regularizing large empirical covariance matrices has already been proposed in some statistical
applications – for example, as original motivation for ridge regression (Hoerl and Kennard, 1970)
and in regularized discriminant analysis (Friedman, 1989). However, only recently has there been an
upsurge of both practical and theoretical analyses of such procedures – see Ledoit and Wolf (2003),
Wu and Pourahmadi (2003), Huang et al. (2006), and Furrer and Bengtsson (2006) among others.
These authors study different ways of regularization. Ledoit and Wolf consider Steinian shrinkage
toward the identity. Furrer and Bengtsson (2006) consider “tapering” the sample covariance matrix,
i.e., gradually shrinking the off-diagonal elements towards zero. Wu and Pourahmadi use the
Cholesky decomposition of the covariance matrix to perform what we shall call “banding the inverse
covariance matrix” below, and Huang et al. impose L1 penalties on the Cholesky factor to achieve
extra parsimony. Other uses of L1 penalty include applying it directly to the entries of the covariance
matrix (Banerjee et al., 2006) and applying it to loadings in the context of PCA to achieve sparse
representation (Zou et al., 2006). Johnstone and Lu (2006) consider a different regularization
of PCA, which involves moving to a sparse basis and thresholding. Implicitly these approaches
postulate different notions of sparsity. Wu and Pourahmadi’s interest focuses, as does ours, on
situations where we can expect that |i − j| large implies near independence or conditional (given
the intervening indexes) independence of Xi and Xj . At the very least our solutions are appropriate
for applications such as climatology and spectroscopy, where there is a natural metric on the index
set. The same is true for Huang et al.’s method of regularization, which is more flexible but also
depends on the order of variables. Johnstone and Lu’s method presupposes that the eigenvectors
corresponding to the leading principal value are sparse in some basis. We give more discussion of
these issues in Section 7.

Some of these papers derive expressions for their estimators Σ̂p which can be used to study the rate of
convergence to the population covariance Σp as n and p both tend to∞. The asymptotic frameworks
and convergence results, if at all considered, vary among these studies. Wu and Pourahmadi (2003)
consider convergence in the sense of single matrix element estimates being close to their population
values in probability, with pn → ∞ at a certain rate determined by the spline smoothers they
used. Ledoit and Wolf (2003) show convergence of their estimator in “normalized” Frobenius
norm ‖A‖2F /p if p/n is bounded, whereas Furrer and Bengtsson (2006) use the Frobenius norm
itself, ‖A‖2F = tr(AAT ), which we shall argue below is too big. Johnstone and Lu (2006) show
convergence of the first principal component of their estimator when p/n→ const.

We have previously studied (Bickel and Levina, 2004) the behavior of Fisher’s discriminant function
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for classification as opposed to the so-called “naive Bayes” procedure which is constructed under
the assumption of independence of the components. We showed that the latter rule continues to
give reasonable results for well-conditioned Σp as long as log p

n → 0 while Fisher’s rule becomes
worthless if p/n→∞. We also showed that using k-diagonal estimators of the covariance achieves
asymptotically optimal classification errors if Σp is Toeplitz and kn →∞ at a certain rate. However,
the performance of the banded estimators was only evaluated in the context of LDA.

In this paper we show how, by either banding the sample covariance matrix or estimating a banded
version of the inverse population covariance matrix we can obtain estimates which are consistent

at various rates in the operator norm as long as (log p)2

n → 0 and Σp ranges over some fairly natural
families. This implies that maximal and minimal eigenvalues of our estimates and Σp are close.
We do this in Section 2, in which we introduce our procedures, and Section 3 where we give main
results. In Section 4 we introduce an analogue of the Gaussian white noise model and show that if
our matrices are embeddable in that model and well-conditioned then our banded approximations
are such that the eigenstructures (individual eigenvalues and associated eigenvectors) of the estimate
and population covariance are close. Another approximation result not dependent on existence of
the limit model is presented as well. In Section 5 we discuss the choice of k. In Section 6 we give
some numerical results. Section 7 concludes with discussion, and Section A is a technical appendix.

2 The model and two types of regularized covariance estimates.

We assume throughout that we observe X1, . . . ,Xn, i.i.d. p-variate random variables with mean 0
and covariance matrix Σp, and write

Xi = (Xi1, . . . , Xip)
T .

In our treatment we will assume that the X i are multivariate normal. We shall argue separately
that if suffices for X2

1j to have sub-exponential tails for all j. That is,

P [X2
1j ≥ t] ≤ Ce−γt (1)

for all t > 0, some C, γ > 0. We want to study the behavior of estimates of Σp as both p and
n → ∞. The features of Σp that are often of greatest interest are eigenvalues and eigenvectors as
used for PCA, and Σ−1

p appearing naturally for instance in LDA and the Kalman filter. It is well
known that the usual MLE of Σp, the sample covariance matrix,

Σ̂p =
1

n

n∑

i=1

(
Xi − X̄

)(
Xi − X̄

)T
(2)

behaves optimally as one might expect if p is fixed, converging to Σp at rate n−1/2. However, as
discussed in the Introduction, if p → ∞, Σ̂p can behave very badly unless it is “regularized” in
some fashion. Here we propose to consider two methods of regularization and will comment on
others.

Method I: Banding the sample covariance matrix.

For any matrix M = [mij ]p×p, and any 0 ≤ k < p, define,

Bk(M) = [mij1(|i− j| ≤ k)]
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and estimate the covariance by Σ̂k,p ≡ Σ̂k = Bk(Σ̂p). (In the rest of the paper, we sometimes

suppress the dependence on p in Σ̂k,p for the sake of compactness.) This kind of regularization is
ideal in the situation where the indices have been arranged in such a way that in Σp = [σij ]

|i− j| > k ⇒ σij = 0.

This assumption holds, for example, if Σp is the covariance matrix of Y1, . . . , Yp, where Y1, Y2, . . .
is a finite inhomogeneous moving average process:

Yt =
k∑

j=1

at,t−jεj (3)

and εj are i.i.d. mean 0. Then the covariance matrix of (Y1, . . . , Yp)
T is k-banded. However,

banding an arbitrary covariance matrix does not guarantee positive definiteness. Take for example
σij = ρ+ (1−ρ)1(i = j), p = 3, k = 1, and ρ > 1√

2
. As we shall see, however, for k small compared

to n and p, Bk(Σ̂p) is positive definite with probability tending to 1 as p, n→∞.

We note that the lack of assured positive definiteness for this method can be eliminated alto-
gether. Furrer and Bengtsson (2006) have pointed out that positive definiteness can be preserved
by “tapering” the covariance matrix, that is, replacing Σ̂p with Σ̂p ∗ R, where ∗ denotes Schur
(coordinate-wise) matrix multiplication, and R = [rij ] is a positive definite symmetric matrix, since
the Schur product of positive definite matrices is also positive definite. Banding corresponds to
rij = 1(|i− j| ≤ k); we discuss other choices for R that guarantee positive definiteness below.

Method II: Banding the inverse.

This method is based on the Cholesky decomposition of the inverse which forms the basis of the
estimators proposed by Wu and Pourahmadi (2003) and Huang et al. (2006). Here is our way of
approaching this method. Suppose we have X = (X1, . . . , Xp)

T defined on a probability space,
with probability measure P , which is Np(0,Σp), Σp ≡ [σij ]. Let

X̂j =

j−1∑

t=1

ajtXt = ZT
j aj (4)

be the L2(P ) projection of Xj on the linear span of X1, . . . , Xj−1, with Zj = (X1, . . . , Xj−1)T the
vector of coordinates up to j − 1, and aj = (aj1, . . . , aj,j−1)T the coefficients. If j = 1, let X̂1 = 0.
Each vector aTj can be computed as

aj = (Var(Zj))
−1cov(Xj ,Zj). (5)

Note that we assumed mean 0 so here cov(U,V) ≡ EUVT , and we write Var(U) for cov(U,U).
Now, let

εj =
Xj − X̂j

dj
(6)

where

d2
j = VarXj −VarX̂j = σjj −

j−1∑

l,m=1

ajlajmσlm. (7)

4



The geometry of L2(P ) or standard regression theory show that ε1, . . . , εp are independent. Under
the normal assumption on the variables, they are also N (0, 1). Let the lower triangular matrix A

A =




0 0 0 · · · 0
a21 0 0 · · · 0
a31 a32 0 · · · 0
...

...
...

...
...

ap1 ap2 · · · ap,p−1 0




contain the coefficients of the regressions (4). Let I be the identity and D = diag(d2
j ) a diagonal

matrix with d2
j on the diagonal. Then (6) can be rewritten as

X = (I −A)−1D1/2ε (8)

which implies

Σp = (I −A)−1D[(I −A)−1]T ,

Σ−1
p = (I −A)TD−1(I −A), (9)

giving the modified Cholesky decompositions of Σp and Σ−1
p .

Suppose now that k < p. It is natural to define an approximation to Σp by restricting the variables

in regression (4) to Z
(k)
j = (Xmax(j−k,1), . . . , Xj−1), that is, regressing each Xj on its closest k

predecessors only. Note that for j < k, Z
(k)
j = Zj . We can now similarly define X̂

(k)
1 = 0, and for

j > 1,

X̂
(k)
j =

j−1∑

t=max(1,j−k)

a
(k)
jt Xt = (Z

(k)
j )Ta

(k)
j (10)

where ε1, . . . , εp are again i.i.d. N (0, 1). Replacing Zj by Z
(k)
j in (5) gives the new coefficients

a
(k)
j = (Var(Z

(k)
j ))−1cov(Xj ,Z

(k)
j ). (11)

Let Ak be the k-banded lower triangular matrix containing the new vectors of coefficients a
(k)
j

defined by (11), and let Dk = diag(d2
j,k) be the diagonal matrix containing the corresponding

residual variances
d2
j,k = VarXj −VarX̂

(k)
j . (12)

Now we define

Σk,p = (I −Ak)−1Dk[(I −Ak)−1]T ,

Σ−1
k,p = (I −Ak)D−1

k (I −Ak)T . (13)

Given a sample X1, . . . ,Xn, where X i = (Xi1, . . . , Xip)
T , the natural estimates of Ak and Dk, are

obtained by performing the operations needed under P̂ , the empirical distribution, i.e., plugging
in the ordinary least squares estimates of the coefficients in Ak and the corresponding residual
variances in Dk. This means plugging in sample versions of covariances into (11) and (12), e.g.,

V̂ar(Z
(k)
j ) =

1

n

n∑

i=1

(Xi,j−k, . . . , Xi,j−1)T (Xi,j−k, . . . , Xi,j−1).
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Finally, so far we have been assuming that X i have mean 0; in the general case, replace X i by
Xi − X̄ in the estimates of Ak and Dk, where X̄ = 1

n

∑n
i=1Xi. We will refer to these sample

estimates as Ãk = [ã
(k)
jt ], and D̃k = diag(d̃2

j,k). Thus we obtain our final estimates of Σ−1
p and Σp

via the Cholesky decomposition:

Σ̃−1
k,p ≡ Σ̃−1

k = (I − Ãk)T D̃−1
k (I − Ãk), (14)

Σ̃k,p ≡ Σ̃k = (I − Ãk)−1D̃k[(I − Ãk)−1]T .

Note that since Ãk is a k-banded lower triangular matrix, Σ̃−1
k is k-banded nonnegative definite.

Its inverse Σ̃k is in general not banded, and is different from Σ̂k. Similarly, Σ̃−1
k is not the same as

Bk(Σ̂
−1), which is in any case ill-defined when p > n.

3 Main Results

Our results can be made uniform on sets of covariance matrices which we now define. All our sets
will be subsets of the set which we shall refer to as well conditioned covariance matrices, Σp, such
that, for all p,

0 < ε ≤ λmin(Σp) ≤ λmax(Σp) ≤ 1/ε <∞.
Here, λmax(Σp), λmin(Σp) are the maximum and minimum eigenvalues of Σp, and ε is independent
of p.

As noted in Bickel and Levina (2004), examples of such matrices include covariance matrices of
(U1, . . . , Up)

T where {Ui, i ≤ 1} is a stationary ergodic process with spectral density f , 0 < ε ≤
f ≤ 1

ε and, more generally, of Xi = Ui + Vi, i = 1, . . . , where {Ui} is a stationary process as above
and {Vi} is a noise process independent of {Ui}. This model includes the “spike model” of Paul
(2004) since a matrix of bounded rank is Hilbert-Schmidt.

In what follows we will use several vector and matrix norms which we now define. For a vector
x = (x1, . . . , xp)

T , let

‖x‖ =
( p∑

j=1

x2
j

)1/2
, ‖x‖1 =

p∑

j=1

|xj |, ‖x‖∞ = max
j
|xj |.

For a matrix M = [mij ], the corresponding operator norms from l2 to l2, l1 to l1, and l∞ to l∞ are,
respectively,

‖M‖ ≡ sup {‖Mx‖ : ‖x‖ = 1} = λ1/2
max(MTM),

‖M‖(1,1) ≡ sup {‖Mx‖1 : ‖x‖1 = 1} = max
j

∑

i

|mij |,

‖M‖(∞,∞) ≡ sup {‖Mx‖∞ : ‖x‖∞ = 1} = max
i

∑

j

|mij |. (15)

We will also write ‖M‖∞ ≡ maxi,j |mij |.

As is well known, if M is symmetric,

‖M‖ = max{|λ1|, . . . , |λp|} (16)
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since all eigenvalues are real, and if M is invertible,

‖M−1‖ = [min{|λ1|, . . . , |λp|}]−1 . (17)

For symmetric matrices, ‖M‖(1,1) = ‖M‖(∞,∞). The l1 to l1 norm arises naturally through the
inequality (see e.g. Golub and Van Loan (1989))

‖M‖ ≤
[
‖M‖(1,1)‖M‖(∞,∞)

] 1
2 = ‖M‖(1,1) for M symmetric. (18)

We define classes of positive definite symmetric matrices Σ ≡ [σij ] as follows.

U(ε0, C, α) =
{

Σ : max
j

∑

i

{|σij | : |i− j| > k} ≤ Ck−α for all k ≥ 0,

and 0 < ε0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ 1/ε0

}
. (19)

Contained in U for suitable ε0, α, C is the class,

L(ε0,m,C) = {Σ : σij = σ(i− j) (Toeplitz)

with spectral density fΣ, 0 < ε0 ≤ ‖fΣ‖∞ ≤ ε−1
0 , ‖f (m)

Σ ‖∞ ≤ C} ,

where f (m) denotes the m-th derivative of f . By Grenander and Szegö (1984), if Σ is symmetric,
Toeplitz, Σ ≡ [σ(i−j)], with σ(−k) = σ(k), and Σ has an absolutely continuous spectral distribution
with Radon-Nikodym derivative, which is continuous on (−1, 1),

fΣ(u) ≡
∞∑

t=0

σ(t) cos(2πtu)

then,

‖Σ‖ = sup
u
|fΣ(u)|, (20)

‖Σ−1‖ = [inf
u
|fΣ(u)|]−1. (21)

Since ‖f (m)
Σ ‖∞ ≤ C implies that

|σ(t)| ≤ Ct−m (22)

which in turn implies
∑

t>k σ(t) ≤ C(m− 1)−1k−m+1, we conclude from (20), (21) and (22) that,

L(ε0,m,C) ⊂ U(ε0,m− 1, C) . (23)

A second uniformity class of nonstationary covariance matrices is defined by

K(m,C) =
{

Σ : σii ≤ Ci−m, all i
}
.

The bound C independent of dimension identifies any limit as being of “trace class” as operator
for m > 1.

Although K is not a well conditioned class,

T (ε0,m1,m2, C1, C2) ≡
{

Σ : Σ = L+K, L ∈ L(ε0,m1, C1), K ∈ K(m2, C2)
}
⊂ U(ε, α, C), (24)
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where α = min{m1 − 1,m2/2− 1}, C ≤ (C1/(m1 − 1) +C2/(m2/2− 1), ε−1 ≤ ε−1
0 +C2. To check

claim (24), note that

ε0 ≤ λmin(L) ≤ λmin(L+K) ≤ λmax(L+K) ≤ ‖L‖+ ‖K‖ ≤ ε−1
0 + C2,

and

max
j≥k

∑

i:|i−j|>k
|Kij | ≤ max

j≥k

∑

i:|i−j|>k
|Kii|1/2|Kjj |1/2 ≤ C2(m2/2− 1)−1k−m2/2+1

max
j<k

∑

i:|i−j|>k
|Kii|1/2|Kjj |1/2 ≤ C1/2

2

p∑

i=k+2

|Kii|1/2 ≤ C2(m2/2− 1)(k + 2)−m2/2+1

We will use the T and L classes for Σp and Σ−1
p for convenience.

Theorem 1. Suppose that X is Gaussian and U(ε0, α, C) is the class of covariance matrices defined

above. Then, if kn ³ (n−1/2 log p)−
1

α+1 ,

‖Σ̂kn,p − Σp‖ = OP

((
n−1/2 log p

) α
α+1

)
= ‖Σ̂−1

kn,p
− Σ−1

p ‖ (25)

uniformly on Σ ∈ U .

Immediately, we obtain,

Corollary 1. If α = min
{
m1 − 1, m2

2 − 1
}
, m1 > 1,m2 > 2, then (25) holds uniformly for

Σ ∈ T (ε0,m1,m2, C1, C2).

Proof of Theorem 1: It is easy to see that (18) and the difinitions (15) imply

‖Bk
(
Σ̂
)
−Bk

(
Σ
)
‖ = OP

(
k‖Bk

(
Σ̂
)
−Bk

(
Σ
)
‖∞
)
. (26)

Let Σ̂0 = 1
nΣn

i=1X
T
i Xi and w.l.o.g. EX1 = 0. By a simplification of Lemmas 3 and 4 of Bickel

and Levina (2004) (see Lemma 3 in the Appendix) and the union sum inequality,

P
[
‖Bk

(
Σ̂0
)
−Bk

(
Σ
)
‖∞ ≥ t

]
≤ (2k + 1)p C(ε0) exp{−nc(t, ε0)} (27)

where c(t, ε0) = min{a(ε0)t, b(ε0)t2} and a, b > 0. By choosing t = Mn−1/2 log(pk) for M arbitrary
we conclude that, uniformly on U ,

‖Bk
(
Σ̂0
)
−Bk

(
Σp

)
‖∞ = OP

(
n−1/2 log(pk)

)
= OP

(
n−1/2 log(p)

)
(28)

since k < p. On the other hand, by (19),

‖Bk
(
Σp

)
− Σp‖∞ ≤ Ck−α (29)

for Σp ∈ U(ε0, α, C).

Combining (28) and (29) the result follows for Bk
(
Σ̂0
)
. But, if X̄ = (X̄1, . . . , X̄p)

T ,

‖Bk
(
Σ̂0
)
−Bk

(
Σ̂
)
‖ ≤ ‖Bk

(
X̄

T
X̄
)
‖ ≤ (2k+1) max

1≤j≤p
|X̄j |2 = OP

(
k log p

n

)
= OP

((
n−1/2 log p

) α
α+1

)

Since ∥∥[Bkn
(
Σ̂
)]−1 − Σ−1

p

∥∥ = ΩP

(
‖Bkn

(
Σ̂
)
− Σp‖

)
,

uniformly on U , the result follows. ¤
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Extensions

I. The Gaussian assumption may be replaced by the following. Suppose X i = (Xi1, . . . , Xip)
T are

i.i.d., X1j ∼ Fj , where Fj is the c.d.f. of X1j , and Gj(t) = Fj
(√
t)− Fj

(
−
√
t) is the c.d.f. of X2

1j .
Then for Theorem 1 to hold it suffices to assume that

Ḡj(t) ≡ 1−Gj(t) ≤ Ce−γt (30)

for all t ≥ 0, 1 ≤ j ≤ p, γ > 0 and C fixed. This follows from

∫∞
0 exp(λt)dGj(t) = −

∫∞
0 exp(λt)dḠj(t)

= 1 + λ
∞∫
0

Ḡ(t) exp(λt)dt ≤ 1 + C λ
γ−λ . (31)

for λ < γ. Arguing as in Lemma 3 of Bickel and Levina (2004), (27) follows for t ≥ a(ε0)
b(ε0) .

II. If we only assume E|Xij |β ≤ C, β > 2, for all j, we can replace (27) by

P
[
‖Bk

(
Σ̂0
)
−Bk

(
Σp

)
‖∞ ≥ t

]
≤ Cn−β4 (2k + 1)pt−

β
2 . (32)

Then (26), (28) and (29) imply that if kn ³ (n−1/2p2/β)−γ(α) where γ(α) =
(
1 + α+ 2/β

)−1
, then,

‖Bkn
(
Σ̂0
)
− Σp‖ = OP

(
(n−1/2p2/β)αγ(α)

)
. (33)

Again, the passage from Σ̂0 to Σ̂ is straightforward.

Remarks

1) Theorem 1 implies that ‖Bkn
(
Σ̂
)
− Σp‖ P−→ 0 if (log p)2

n → 0, uniformly on U . It is not hard to
see that if Σp = S + K where S is Toeplitz, ε0 ≤ fS ≤ ε−1

0 and K is trace class in the sense of

Section 4, ΣiK(i, i) <∞, then, if (log p)2

n → 0, there exist kn ↑ ∞ such that, for the given {Σp}
∥∥Bkn

(
Σ̂
)
− Σp

∥∥+
∥∥[Bkn

(
Σ̂
)]−1 − Σ−1

p

∥∥ P−→ 0 . (34)

2) The same claim can be made under (30). On the other hand, under only the moment bound of

II with EeλX
2
ij =∞, λ > 0 we may only conclude that (34) holds if

p
4
β

n
→ 0 . (35)

Related results of Furrer and Bengtsson (2006) necessarily have rates of the type (35) not because
of tail conditions on the variables, but because they consider the Frobenius norm.

3) The rate (log p)2

n → 0 appears in these cases rather than the rate log p
n → 0 as in Bickel and Levina

(2004) because we are not assuming stationarity. In particular, our initial estimate of Σp is just Σ̂,
while in the stationary case we estimated S(k) by 1

p−kΣ
{
σ̂ij : j = i + k

}
which enabled us to use

the exp{−b(ε0)t2} part of the bound of Lemma 3 of Bickel and Levina (2004).
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There is an important generalization of Theorem 1. Let A be a countable set of labels of cardinality
|A|. We can think of a matrix as [mab]a∈A, b∈A.
Let ρ : A × A → R+, ρ(a, a) = 0 for all a, be a function we can think of as distance of the point
(a, b) from the diagonal. As an example think of a and b as identified with points in Rm and
ρ(a, b) = |a− b| where | · | is a norm on Rm. It is then clear how to generalize the notion of banding
by defining, if M = [mab]a,b∈A,

Bk(M) =
[
mab1(ρ(a, b) ≤ k)

]
.

We can even go further, following the example of Furrer and Bengtsson (2006), and use a smoother
method of regularization than banding.

Suppose R = [rab]a,b∈A is symmetric positive definite with rab = g
(
ρ(a, b)

)
, g : R+ → R+. Then, if

M is also symmetric nonnegative definite,

R ∗M ≡ [mabrab]a,b∈A

where ∗ denotes Schur multiplication, is positive definite (unless M = 0). Suppose further that
g(0) = 1 and g is decreasing to 0. Then R ∗M is a regularization of M . Note that g(t) = 1(t ≤ k),
ρ(i, j) = |i− j| gives banding. However,

[
g(|i− j|)

]
is not nonnegative definite.

In general, let Rσ = [rσ(a, b)], where

rσ(a, b) = g

(
ρ(a, b)

σ

)
, σ ≥ 0.

Assumption A. g is continuous, g(0) = 1, g is non-increasing, g(∞) = 0.

Examples of positive definite symmetric Rσ are,

rσ(i, j) =

(
1− |i− j|

σ

)

+

or
rσ(i, j) = e−

|i−j|
σ .

With this notation define,
Rσ(M) ≡

[
mabgσ

(
ρ(a, b)

)]

with R0(M) = M . Clearly, as σ →∞, Rσ(M)→M .

Our generalization is the following. Denote the range of gσ
(
ρ(a, b)

)
by {gσ(ρ1), . . . , gσ(ρL)} where

{0 < ρ1 < . . . < ρL} is the range of ρ(a, b), a ∈ A, b ∈ A. Note that L depends on |A| = p.

Theorem 2. Let ∆(σε) = ΣL
l=1gσ(ρl). Note that ∆ depends on |A| = p and the range of ρ. Suppose

Assumption A holds. Then if

∆ ³ (n−1/2 log p)−
1

α+1

the conclusion of Theorem 1 holds for Rσ(Σ̂).

The proof of Theorem 2 closely follows the proof of Theorem 1 with (26) replaced by Lemma 1 in
the Appendix. Both the result and the lemma are of independent interest.
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The remarks after Theorem 1 generalize equally. Note that Theorem 1 is a special case of Theorem
2 with A = {1, 2, . . . , p}, ρ(a, b) = |a− b| and g(u) = 1(u ≤ 1).

Theorems 1 and 2 give the scope of what can be accomplished by banding the sample covariance
matrix. ”Banding the inverse” yields similar results.

If Σ−1 = T (Σ)TD−1(Σ)T (Σ) with T (Σ) lower triangular, T (Σ) ≡ [tij(Σ)], let

U−1(ε0, C, α) =
{

Σ : 0 < ε0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ ε−1
0 ,

max
i

∑

j<i−k
|tij(Σ)| ≤ Ck−α for all k ≤ p− 1 }

Theorem 3. Uniformly for Σ ∈ U−1(ε0, C, α), if kn ³ (n−1/2 log p)−
1

α+1 and n−1/2 log p = oP (1),

‖Σ̃−1
kn,p
− Σ−1

p ‖ = OP

((
n−1/2 log p

) α
α+1

)
= ‖Σ̃kn,p − Σp‖ .

The proof is given in the Appendix. Note that the condition n−1/2 log p = oP (1) is needed solely
for the purpose of omitting a cumbersome and uninformative term from the rate (see Lemma 2 in
the Appendix for details).

It is a priori not clear what Σ ∈ U−1 means in terms of Σ. The following corollary to Theorem 3
gives a partial answer.

Corollary 2. For m ≥ 2, uniformly on L(ε0,m,C), if kn ³ (n−1/2 log p)−
1
m ,

‖Σ̃−1
kn,p
− Σ−1

p ‖ = OP

(
(n−1/2 log p)

m−1
m

)

= ‖Σ̃kn,p − Σ‖ .

Essentially, banding the inverse works just as well as banding for suitably ergodic stationary pro-
cesses. The proof of Corollary 2 is given in the Appendix. The reason that the argument of
Theorem 1 can not be invoked simply for Theorem 3 is that, as we noted before, Σ̃−1 is not the
same as Bk(Σ̂

−1), which is not well defined if p > n.

4 An analogue of the Gaussian white noise model and eigenstruc-
ture approximations

In estimation of the means µp of p-vectors of i.i.d. variables, the Gaussian white noise model
(Donoho et al., 1995) is the appropriate infinite dimensional model into which all objects of interest
are embedded. In estimation of matrices, a natural analogue is the space B(l2, l2), which we write
as B, of bounded linear operators from l2 to l2. These can be represented as matrices [mij ]i≥1,j≥1

such that, Σ
i
[Σ
j
mijxj ]

2 < ∞ for all x = (x1, x2, . . .) ∈ l2. It is well known, see Böttcher (1996) for

example, that if M is such an operator, then,

‖M‖2 = sup{(Mx,Mx) : |x| = 1} = supS(M ∗M)

where M∗M is a self adjoint member of B with nonnegative spectrum S. Recall that the spectrum
S(A) of a self adjoint operator is Rc(A) where, R(A) ≡ {λ ∈ R : A − λJ ∈ B} where J is the

11



identity. To familiarize ourselves with this space we cite some results from functional analysis and
some properties of Σ ∈ B where

Σ =
[
cov
(
X(i), X(j)

)]
i,j≥1

(36)

is the matrix of covariances of a Gaussian stochastic process {X(t) : t = 1, 2, . . .}.

Functional analytic properties of self adjoint T ∈ B

1. Properties (16) and (17) continue to hold, save that max and min eigenvalues are replaced by
supremum and infimum of S(T ).

2. The spectral theorem holds (Riesz and Sz-Nagy, 1955). If T is as above, there exists a unique
projection valued measure E(·) on S with E(S) = J , E(∅) = 0, and E(∪∞j=1Aj) =

∑
j E(Aj) if the

Aj are mutually disjoint, such that,

T =

∫

S(T )
λE(dλ) .

3. Suppose that T is a Toeplitz matrix

T = [ρ(i− j)]i≥1,j≥1

ρ(k) = ρ(−k) for all k. Then T ∈ B iff T has a spectral density,

fT (u) =
∞∑

k=−∞
ρ(k) exp{2π

√
−1ku}

which is bounded on [−1, 1] and then

‖T‖ = ess sup
u
|fT (u)| (37)

and T−1 ∈ B iff
ess inf |fT (u)| > 0

and then
‖T−1‖ = {ess inf |fT (u)|}−1

(Grenander and Szegö (1984) for example.)

Properties of covariance matrices of Gaussian processes X(·)

1. It is easy to see that the operators Σ for all ergodic AR processes, X(t) = ρX(t−1)+ε(t) where
ε(t) are i.i.d. N (0, 1) and |ρ| < 1 are in B, and Σ−1 ∈ B. This is, in fact, true of all ergodic ARMA
processes. On the other hand, X(t) ≡∑t

j=1 ε(j) has

Σ =




1 1 1 1 · · ·
1 2 2 2 · · ·
1 2 3 3 · · ·

· · ·



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which is evidently not a member of B.

2. The property Σ ∈ B, Σ−1 ∈ B which we shall refer to as being well conditioned, has strong
implications. By a theorem of Kolmogorov and Rozanov (see Ibragimov and Linnik (1971)), if Σ is
Toeplitz, this property holds iff the corresponding stationary Gaussian process is strongly mixing.

We now consider sequences of covariance matrices Σp such that Σp is the upper p × p matrix of
the operator Σ ∈ B. That is, Σ is the covariance matrix of {X(t) : t = 1, 2, . . .} and Σp that of(
X(1), . . . , X(p)

)
.

By Böttcher (1996) if Σ is well conditioned then,

Σp(x)→ Σ(x)

as p → ∞ for all x ∈ l2. We now combine Theorem 6.1 p. 120 and Theorem 5.1, p. 474 of Kato
(1966) to indicate in what ways the spectra and eigenstructures (spectral measures) of Bkn

(
Σ̂p

)

are close to those of Σp.

Suppose that the conditions of Remark 1) following Theorem 1 hold. That is, Σp corresponds to
Σ = S+K where S ∈ B is a Toeplitz operator with spectral density fS such that, 0 < ε0 ≤ fS ≤ ε−1

0

and K is trace class,
∑

uK(u, u) <∞ which implies K ∈ B.

LetM be a symmetric matrix andO be an open set containing S(M) ≡ {λ1, . . . , λp} where λ1(M) ≥
λ2(M) ≥ . . . ≥ λp(M) are the ordered eigenvalues of M and let E(M)(·) be the spectral measure
of M which assigns to each eigenvalue the projection operator corresponding to its eigenspace.
Abusing notation, let Ep ≡ E(Σp), Êp ≡ E

(
Σ̂k,p

)
, S ≡ S(Σp). Then, Ep(O) = Ep(S) = J , the

identity.

Theorem 4. Under the above conditions on Σp,

|Êp(θ)(x)− x| P→ 0 (38)

for all x ∈ l2. Further, if I is any interval whose endpoints do not belong to S then,

|Êp(I ∩ S)(x)− Ep(I)(x)| P→ 0 .

Similar remarks apply to Σ̃k,p. This result gives no information about rates. It can be refined
(Theorem 5.2, p.475 of Kato (1966)) but still yields very coarse information. One basic problem
is that Σ typically has at least in part continuous spectrum and another is that the errors involve
the irrelevant bias |(Σp − Σ)(x)|. Here is a more appropriate formulation whose consequences for
principal component analysis are clear. Let

G(ε, α, C,∆,m) = {Σp ∈ U(ε, α, C) : λj(Σp)− λj−1(Σp) ≥ ∆, 1 ≤ j ≤ m} (39)

Thus the top m eigenvalues are consecutively separated by at least ∆ and all eigenvalues λj with
j ≥ m + 1 are separated from the top m by at least ∆. Furthermore, the dimension of the sum
of the eigenspaces of the top m eigenvalues is bounded by l independent of n and p. We can then
state

Theorem 5. Uniformly on G as above, for k as in Theorem 1, X Gaussian,

|λj
(
Σ̂k,p

)
− λj(Σp)| = OP

([
n−1/2 log p

](
log n+

α

2
log p

))
= ‖Ej

(
Σ̂k,p

)
− Ej(Σp)‖ (40)

for 1 ≤ j ≤ m.

13



That is, the top m eigenvalues and principal components of Σp, if the eigenvalues are all simple,
are well approximated by those of Σ̂k,p. If we make an additional assumption on Σp,

∑p
j=m+1 λj(Σp)∑p
j=1 λj(Σp)

≤ δ , (41)

we can further conclude that the top m principal components of Σ̂k,p capture 100(1 − δ)% of the
variance of X. To verify (41) we need that,

tr
(
Σ̂p − Σp

)

tr(Σp)
= oP (1) (42)

This holds if, for instance, tr(Σp) = Ωp(p) which is certainly the case for all Σp ∈ T . Then,
Theorem 5 follows from Theorem 6.1, p.120 of Kato (1966), for instance. For simplicity, we give a
self-contained proof.

Proof of Theorem 5. We employ a famous formula of Kato (1949) and Sz.-Nagy (1946). If
R(λ,M) ≡ (M − λJ)−1 for λ ∈ Sc, the resolvent set of M and λ0 is an isolated eigenvalue,
|λ− λ0| ≥ ∆ for all λ ∈ S, λ 6= λ0, then (Formula (1.16), p.67, Kato (1966))

E0(x) =
1

2πi

∫

Γ
R(λ,M)dλ (43)

where E0 is the projection operator on the eigenspace corresponding to λ0 and Γ is a closed simple
contour in the complex plane about λ0 containing no other member of S. The formula is valid
not just for symmetric M but we only employ it there. We argue by induction on m. For m = 1,
|λ1(M) − λ1(N)| ≤ ‖M − N‖ for M , N symmetric by the Courant-Fischer Theorem. Thus, if
‖Σ̂k,p − Σp‖ ≤ ∆

2 (say) we can find Γ containing λ1

(
Σ̂k,p

)
and λ1(Σp) and no other eigenvalues

of either matrix with all points on Γ at distance at least ∆/4 from both λ1

(
Σ̂k,p

)
and λ1(Σp).

Applying (43) we conclude that,

‖Ê1 − E1‖ ≤ max
Γ

{
‖R(λ,Σp)‖‖R(λ, Σ̂k,p)‖−2

}
‖Σ̂k,p − Σ‖ .

By hypothesis, ‖R(λ,Σp)‖ ≤ |λ− λp(Σp)|−1 and similarly for ‖R(λ, Σ̂k,p)‖. Therefore,

‖Ê1 − E1‖ ≤ 16∆−2‖Σ̂k,p − Σ‖ . (44)

and the claims (40) and (41) are established for m = 1. We describe the induction step from m = 1
to m = 2 which is repeated with slightly more cumbersome notation for all m (omitted). Consider
a unit vector,

x =

p∑

j=2

Ejx ⊥ E1x

= (Ê1 − E1)x+ (J − Ê1)x . (45)

Then,

∣∣(x, Σ̂k,px)−
(
(J − Ê1)Σ̂k,p(J − Ê1)x, x

)∣∣
≤ ‖Σ̂k,p‖

(
2‖Ê1 − E1‖+ ‖Ê1 − E1‖2

)
(46)
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Therefore,

λ2(Σ̂k,p) = max
{(
x, (J − Ê1)Σ̂k,p(J − Ê1)x

)
: |x| = 1

}

≤ O(‖Ê1 − E1‖) + λ2(Σp) .

Inverting the roles of Σ̂k,p and Σp we obtain,

|λ2(Σ̂k,p)− λ2(Σp)| = Op(‖Σ̂k,p − Σp‖) .

Now repeating the argument we gave for (44) we obtain,

‖Ê2 − E2‖ = Op(‖Σ̂k,p − Σp‖) . (47)

The theorem follows from the induction and Theorem 1. ¤
Note that if we track the effect of ∆ and m, we in fact have,

‖Êj − Ej‖ = Op(j∆
−2‖Σ̂k,p − Σp‖), 1 ≤ j ≤ m.

Also note that the dimension of
∑m

j=1Ej is immaterial.

5 Choice of the banding parameter

The results in Section 3 give us the rate of k = kn that guarantees convergence of the banded
estimator Σ̂k, but they do not offer much practical guidance for selecting k for a given dataset. The
standard way to select a tuning parameter is to minimize the risk

R(k) = E‖Σ̂k − Σ‖(1,1), (48)

with the “oracle” k given by
k0 = arg min

k
R(k). (49)

The choice of matrix norm in (48) is somewhat arbitrary. In practice, we found the choice of k is
not sensitive to the choice of norm; the l1 to l1 matrix norm does just slightly better than others
in simulations, and is also faster to compute.

We propose a resampling scheme to estimate the risk and thus k0: divide the original sample into
two samples at random and use the sample covariance matrix of one sample as the “target” to
choose the best k for the other sample. Let n1, n2 = n−n1 be the two sample sizes for the random

split, and let Σ̂ν
1 , Σ̂

(ν)
2 be the two sample covariance matrices from the ν-th split, for ν = 1, . . . , N .

Alternatively, N random splits could be replaced by K-fold cross-validation. Then the risk (48)
can be estimated by

R̂(k) =
1

N

N∑

ν=1

‖Bk(Σ̂(ν)
1 )− Σ̂

(ν)
2 ‖(1,1) (50)

and k is selected as
k̂ = arg min

k
R̂(k). (51)

Generally we found little sensitivity to the choice of n1 and n2, and used n1 = n/3 throughout this
paper. If n is sufficiently large, another good choice (see, e.g., Bickel et al. (2006)) is n1 = logn.
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The oracle k0 provides the best choice in terms of expected loss, whereas k̂ tries to adapt to the
data at hand. Another, and more challenging, comparison is that of k̂ to the best band choice for
the sample in question:

k1 = arg min
k
‖Σ̂k − Σ‖(1,1). (52)

Here k1 is a random quantity, and its loss is always smaller than that of k0. The results in Section
6 show that k̂ generally agrees very well with both k0 and k1, which are quite close for normal data.
For heavier-tailed data, one would expect more variability; in that case, the agreement between k̂
and k1 is more important that that between k̂ and k0.

It may be surprising that using the sample covariance Σ̂2 as the target in (50) works at all, since
it is known to be a very noisy estimate of Σ. It is, however, an unbiased estimate, and we found
that even though (50) tends to overestimate the actual value of the risk, it gives very good results
for choosing k.

Criterion (50) can be used to select k for the Cholesky-based Σ̃k as well. An obvious modification –
replacing the covariance matrices with their inverses in (50) – avoids additional computational cost
and instability associated with computing inverses. One has to keep in mind, however, that while
Σ̂k is always well-defined, Σ̃k is only well-defined for k < n, since otherwise regressions become
singular. Hence, if p > n, k can only be chosen from the range 0, . . . , n− 1, not 0, . . . , p− 1.

6 Numerical results

In this section, we investigate the performance of the proposed banded estimator of the covariance
Σ̂k and the resampling scheme for the choice of k, by simulation and on a real dataset. The
Cholesky-based Σ̃k and its variants have been numerically investigated by extensive simulations
by Wu and Pourahmadi (2003) and Huang et al. (2006), and shown to outperform the sample
covariance matrix. Because of that, we omit Σ̃k from simulations, and only include it in the real
data example.

6.1 Simulations

We start from investigating the banded estimator by simulating data from N (0,Σp) with several
different covariance structures Σp. For all simulations, we report results for n = 100, and p = 10,
100, and 200. Qualitatively, these represent three different cases: p ¿ n, p ∼ n, and p > n. We
have also conducted selected simulations with p = 1000, n = 100, which qualitatively corresponds
to the case p À n; all the patterns observed with p > n remain the same, only more pronounced.
The number of random splits used in (50) was N = 50, and the number of replications was 100.

Example 1: Moving average covariance structure

We take Σp to be the covariance of the MA(1) process, with

σij = ρ|i−j| · 1{|i− j| ≤ 1}, 1 ≤ i, j ≤ p,
The true Σp is banded, and the oracle k0 = 1 for all p. For this example we take ρ = 0.5. Figure
1 shows plots of the true risk R(k) and the estimated risk R̂(k) from (50). While the risk values
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Figure 1: MA(1) covariance: True (averaged over 100 realizations) and estimated risk (single
realization) as a function of k, plotted for k ≤ 30. Both risks are increasing after k = 1 for all p.

Mean(SD) Loss

p k0 k1 k̂ k1 − k̂ Σ̂k̂ Σ̂k0 Σ̂k1 Σ̂

10 1 1(0) 1(0) 0(0) 0.5 0.5 0.5 1.2
100 1 1(0) 1(0) 0(0) 0.8 0.8 0.8 10.6
200 1 1(0) 1(0) 0(0) 0.9 0.9 0.9 20.6

Table 1: MA(1): Oracle and estimated k and the corresponding loss values.

themselves are overestimated by (50) due to the extra noise introduced by Σ̂2, the agreement of
the minima is very good, and that is all that matters for selecting k.

Table 1 shows the oracle values of k0 and k1, the estimated k̂, and the losses corresponding to
all these along with the loss of the sample covariance Σ̂. When the true model is banded, the
estimation procedure always picks the right banding parameter k = 1, and performs exactly as well
as the oracle. The covariance matrix, as expected, does worse.

Example 2: Autoregressive covariance structure

Let Σp be the covariance of an AR(1) process,

σij = ρ|i−j|, 1 ≤ i, j ≤ p.

For this simulation example, we take ρ = 0.1, 0.5, and 0.9. The covariance matrix is not sparse,
but the entries decay exponentially as one moves away from the diagonal. Results in Figure 2 and
Table 2 show that the smaller ρ is, the smaller the optimal k. Results in Table 2 also show the
variability in k̂ increases when the truth is far from banded (larger ρ), which can be expected from
the flat risk curves in Figure 2. Variability of k1 increases as well, and k1 − k̂ is not significantly
different from 0. In terms of the loss, the estimate again comes very close to the oracle.

Example 3: Long-range dependence.

This example is designed to challenge the banded estimator, since conditions (19) will not hold for
covariance matrix of a process exhibiting long-range dependence. Fractional Gaussian noise (FGN),
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Figure 2: AR(1) covariance: True (averaged over 100 realizations) and estimated risk (single real-
ization) as a function of k.
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Mean(SD) Loss

p ρ k0 k1 k̂ k1 − k̂ Σ̂k̂ Σ̂k0 Σ̂k1 Σ̂

10 0.1 1 0.5(0.5) 0.0(0.2) 0.5(0.6) 0.5 0.5 0.4 1.1
10 0.5 3 3.3(0.8) 2.0(0.6) 1.3(1.1) 1.1 1.0 1.0 1.3
10 0.9 9 8.6(0.7) 8.9(0.3) -0.4(0.7) 1.5 1.5 1.5 1.5

100 0.1 0 0.2(0.4) 0.1(0.3) 0.1(0.6) 0.6 0.6 0.6 10.2
100 0.5 3 2.7(0.7) 2.3(0.5) 0.4(1.0) 1.6 1.6 1.5 10.6
100 0.9 20 21.3(4.5) 15.9(2.6) 5.5(5.8) 9.2 8.8 8.5 13.5

200 0.1 1 0.2(0.4) 0.2(0.4) -0.0(0.6) 0.7 0.6 0.6 20.4
200 0.5 3 2.4(0.7) 2.7(0.5) -0.2(1.0) 1.8 1.7 1.7 20.8
200 0.9 20 20.2(4.5) 16.6(2.4) 3.6(5.6) 9.9 9.7 9.5 24.5

Table 2: AR(1): Oracle and estimated k and the corresponding loss values.

Mean(SD) L1 Loss

p H k0 k1 k̂ k1 − k̂ Σ̂k̂ Σ̂k0 Σ̂k1 Σ̂

10 0.5 0 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.3 0.3 0.3 1.1
10 0.7 5 5.0(1.8) 2.3(1.5) 2.7(2.5) 1.4 1.2 1.1 1.2
10 0.9 9 8.6(0.6) 9.0(0.1) -0.4(0.6) 1.5 1.5 1.5 1.5

100 0.5 0 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.4 0.4 0.4 10.2
100 0.7 4 4.9(2.2) 4.1(1.6) 0.8(2.9) 5.5 5.5 5.4 10.7
100 0.9 99 82.1(10.9) 85.1(15.5) -3.1(19.0) 17.6 16.6 16.6 16.6

200 0.5 0 0.0(0.0) 0.0(0.1) -0.0(0.1) 0.4 0.4 0.4 20.1
200 0.7 3 4.2(2.2) 4.9(2.1) -0.7(3.4) 7.9 7.7 7.7 20.9
200 0.9 199 164.0(22.7) 139.7(38.9) 24.3(47.4) 37.8 33.3 33.3 33.3

Table 3: FGN: Oracle and estimated k and the corresponding loss values.

the increment process of fractional Brownian motion, provides a classic example of such a process.
The covariance matrix is given by

σij =
1

2

[
(|i− j|+ 1)2H − 2|i− j|2H + (|i− j| − 1)2H

]
, 1 ≤ i, j ≤ p,

where H ∈ [0.5, 1] is the Hurst parameter. H = 0.5 corresponds to white noise, and the larger H,
the more long-range dependence in the process. Values of H up to 0.9 are common in practice, for
example, in modeling Internet network traffic. For simulating this process, we used the circulant
matrix embedding method (Bardet et al., 2002), which is numerically stable for large p.

Results in Table 3 show that the procedure based on the estimated risk correctly selects a large k
(k ≈ p) when the covariance matrix contains strong long-range dependence (H = 0.9). In this case
banding cannot help – but it does not hurt, either, since the selection procedure essentially chooses
to do no banding. For smaller H, the procedure adapts correctly and selects k = 1 for H = 0.5
(diagonal estimator for white noise), and a small k for H = 0.7.

Another interesting question is how the optimal choice of k depends on dimension p. Figure 3
shows the ratio of optimal k to p, for both oracle k0 and estimated k̂, for AR(1) and FGN (for
MA(1), the optimal k is always 1). The plots confirm the intuition that (a) the optimal amount
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Figure 3: The ratio of optimal k to dimension p for AR(1) (as a function of ρ) and FGN (as a
function of H).

of regularization is model dependent, and the faster the off-diagonal entries decay, the smaller the
optimal k; and (b) the same model requires relatively more regularization in higher dimensions.

6.2 Call center data

Here we apply the banded estimators Σ̂k and Σ̃k to the call center data used as an example of a
large covariance estimation problem by Huang et al. (2006), who also provide a detailed description
of the data. Briefly, the data consists of call records from a call center of a major U.S. financial
institution. Phone calls were recorded from 7:00am till midnight every day in 2002, and weekends,
holidays, and days when equipment was malfunctioning have been eliminated, leaving a total of
239 days. On each day, the 17-hour recording period was divided into 10-minute intervals, and
the number of calls in each period, Nij , was recorded for each of the days i = 1, . . . , 239 and time
periods j = 1, . . . , 102. A standard transformation xij = (Nij + 1/4)1/2 was applied to make the
data closer to normal.

The goal is to predict arrival counts in the second half of the day from counts in the first half of

the day. Let xi = (x
(1)
i ,x

(2)
i ), with x

(1)
i = (xi1, . . . , xi,51), and x

(2)
i = (xi,52, . . . , xi,102). The mean

and the variance of V x are partitioned accordingly,

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
. (53)

The best linear predictor of x
(2)
i from x

(1)
i is then given by

x̂
(2)
i = µ2 + Σ21Σ−1

11 (x
(1)
i − µ1). (54)

Different estimators of Σ in (53) can be plugged in to (54). To compare their performance, the
data were divided into a training set (January to October, 205 days) and a test set (November and
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Figure 4: Call center forecast error using the sample covariance Σ̂ and the best Cholesky-based
estimator Σ̃k, k = 19.

December, 34 days). For each time interval j, the performance is measured by the average absolute
forecast error

Ej =
1

34

239∑

i=206

|x̂ij − xij |.

The selection procedure for k described in Section 5 to both Σ̂k and Σ̃k. It turns out that the data
exhibits strong long-range dependence, and for Σ̂k the selection procedure picks k = p = 102, so
banding the covariance matrix is not beneficial here. For Σ̃k, the selected k = 19 produces a better
prediction for almost every time point than the sample covariance Σ̂ (see Figure 4).

This example suggests that a reasonable strategy for choosing between Σ̂k and Σ̃k in practice is to
estimate the optimal k for both and use the one that selects a smaller k. The two estimators are
meant to exploit different kinds of sparsity in the data, and a smaller k selected for one of them
indicates that that particular kind of sparsity is a better fit to the data.

7 Discussion

I. If σij = 0, |i− j| > k and ‖Σ−1‖ ≤ ε−1
0 , then X is a kth order auto regressive process and as we

might expect, Σ̃k,p is the right estimate. Now suppose σii ≤ ε−1
0 for all i and we only know that

σij = 0 for each i and p− (2k + 1) j’s. This condition may be interpreted as saying that, for each
i there is a set Si with |Si| ≤ k, i /∈ S0, such that, Xi is independent of {Xt, t /∈ Si, t 6= i} given
{Xj : j ∈ Si}. Although banding would not in general give us sparse estimates, the following seem
intuitively plausible.

1) Minimize a suitable objective function Ψ(P̂ ,Σ) ≥ 0 where P̂ is the empirical distribution of
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X1, . . . ,Xn and
Ψ(P,Σp) = 0

subject to ‖Σ‖(1,1) ≤ γn,p.

2) Let γn,p → 0 ”slowly”. This approach should yield estimates which consistently estimate
sparse covariance structure. Banerjee et al. (2006) and Huang et al. (2006) both use normal
or Wishart-based loglikelihoods for Ψ and a Lasso-type penalty in this context. We are
currently pursuing this approach more systematically.

II. The connections with graphical models are also apparent. If D is the dependency matrix of
Σ−1, with entries 0 and 1 then ‖D‖(1,1) is just the maximum degree of the graph vertices. See
Meinshausen and Buhlmann (2006) for a related approach in determining covariance structure in
this context.

III. A similar interpretation can be attached if we assume Σ is k0 banded after a permutation of
the rows. This is equivalent to assuming that there is a permutation of variables after which Xi is
independent of {Xj : |j − i| > k} for all i.

A Additional lemmas and proofs

The key to Theorem 2 is the following lemma which substitutes for (26). Consider symmetric
matrices M indexed by (a, b), a, b ∈ A, a finite index set. Suppose for each a ∈ A there exist
Na ≤ N sets Sa,j such that, the Sa,j form a partition of A − {a}. Define, for any 1 ≤ j ≤ N ,
M = [m(a, b)] as above

r(j) = max{|m(a, b)| : b ∈ Sa,j , a ∈ A}
and

µ = max
a
|m(a, a)| .

Lemma 1. Under assumption A,

‖M‖ ≤ µ+
N∑

j=1

r(j) . (A1)

Proof of Lemma 1. Apply (18) noting that

∑
{|m(a, b)| : b ∈ A} ≤

N∑

j=1

r(j) + µ

for all a ∈ A. ¤

Proof of Corollary 2. An examination of the proof of Theorem 1 will show that the bound
of ‖Σp − Bk(Σp)‖(1,1) was used solely to bound ‖Σp − Bk(Σp)‖. But in the case of Corollary 2 a
theorem of Kolmogorov (De Vore and Lorentz (1993), p. 334) has, after the identification (15),

‖Σp −Bk(Σp)‖ ≤
C ′ log k

km
(A2)
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where C ′ depends on C and m only, for all Σp ∈ L(ε0,m,C). The result follows. Note that
Corollary 1 would give the same results as the inferior bound C ′k−(m−1). ¤

To prove Theorem 3 we will need

Lemma 2. Under conditions of Theorem 3, uniformly on U ,

max{‖ã(k)
j − a

(k)
j ‖∞ : 1 ≤ j ≤ p} = OP

(
n−1/2 log p

)
, (A3)

max{|d̃2
j,k − d2

j,k| : 1 ≤ j ≤ p} = OP

((
n−1/2 log p

) α
α+1

)
, (A4)

and
‖Ak‖ = ‖D−1

k ‖ = O(1), (A5)

where ã
(k)
j =

(
ã

(k)
j1 , . . . , ã

(k)
j,j−1

)
are the empirical estimates of the vectors a

(k)
j = (a

(k)
j1 , . . . , a

(k)
j,j−1)

defined in (11), d̃2
j,k, 1 ≤ j ≤ p are the empirical estimates of the d2

j,k defined in (12), and Ak and
Dk are defined in (13).

To prove Lemma 2 we need an additional

Lemma 3. Let Zi be i.i.d. N (0,Σp) and 0 < λmin(Σp) ≤ λmax(Σp) ≤ ε−1
0 <∞. Then, if Σp = [σab],

P
[
|
n∑

i=1

(ZijZik − σjk)| ≥ nν
]
≤ C1 exp(−C2nν) (A6)

where C1, C2 depend on ε0 only.

Proof of Lemma 3. By hypothesis, |σab| < ε−1
0 for all a, b. If j = k, we can divide by σjj inside

the sum and the result is well known. In particular, it can be obtained by specializing to the case
p = 1 in Lemma 4 of Bickel and Levina (2004). If j = k, w.l.o.g. we take σjj ≡ 1 for all j. Then
write

Zik = σjk Zij + (1− σjk)1/2Z ′i,

where Z ′i is independent of Zij . Then

P
[
|
n∑

i=1

(ZijZik − σjk)| ≥ nν
]
≤ P

[
|
n∑

i=1

(Z2
ij − 1)| ≥ |σjk|−1nν

2

]
+ P

[
|
n∑

i=1

ZijZ
′
i| ≥

nν

2

]
(A7)

and the result (A6) follows from the case p = 1 in Lemma 4 of Bickel and Levina (2004). ¤

Proof of Lemma 2. Note first that,

‖VarX − V̂arX‖∞ = OP
(
n−1/2 log p

)
, (A8)

by Lemma 3. Hence,

max
j

∥∥V̂ar
−1

(Z
(k)
j )−Var−1(Z

(k)
j )
∥∥
∞ = OP (n−1/2 log p). (A9)

To see this, note that the entries of V̂arX − VarX can be bounded by n−1|∑n
i=1XiaXib − σab|+

n−2|∑n
i=1Xia| |

∑n
i=1Xib|, where w.l.o.g. we assume EX = 0. Lemma 3 ensures that

P
[

max
a,b
|n−1

n∑

i=1

(XiaXib − σab)| ≥ ν
]
≤ C1p

2 exp(−C2nν).
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The second term is similarly bounded.

Also,
‖Σ−1‖ = ‖(VarX)−1‖ ≤ ε−1

0 .

Claim (A3) and the first part of (A5) follow from (5), (A8), and (A9). Since

d̃2
jk = V̂arXj − V̂ar

( j−1∑

t=j−k
ã

(k)
jt Xt

)
,

d2
jk = VarXj −Var

( j−1∑

t=j−k
a

(k)
jt Xt

)

and the covariance operator is linear,

∣∣d̃2
jk − d2

jk

∣∣ ≤ |Var(Xj)− V̂arXj |+
∣∣V̂ar

j−1∑

t=j−k

(
ã

(k)
jt − a

(k)
jt

)
Xt

∣∣

+
∣∣V̂ar

j−1∑

t=j−k
a

(k)
jt Xt −Var

j−1∑

t=j−k
a

(k)
jt Xt

∣∣ . (A10)

The sum
∑j−1

t=j−k is understood to be
∑j−1

t=max(1,j−k). The maximum over j of the first term is

OP ( log p
n1/2 ) by Lemma 3. The second can be written as

∣∣∑{(
ã

(k)
js − a

(k)
js

)(
ã

(k)
jt − a

(k)
jt

)
ĉov(Xs, Xt) : j − k ≤ s, t ≤ j − 1

}∣∣

≤
( j−1∑

t=j−k

∣∣ã(k)
jt − a

(k)
jt

∣∣V̂ar
1
2 (Xt)

)2

≤ k2 max
t

(ã
(k)
jt − a

(k)
jt )2 max

t
V̂ar(Xt)

= OP (k2n−1(log p)2) = OP

((
n−1/2 log p

) 2α
α+1

)
= OP

((
n−1/2 log p

) α
α+1

)
(A11)

by (A3) and ‖Σp‖ ≤ ε−1
0 . The last equality is the only place where we use the assumption

n−1/2 log p = oP (1). The third term in (A10) is bounded similarly. Thus (A4) follows. Further, for
1 ≤ j ≤ p,

d2
jk = Var

(
Xj −

∑{
a

(k)
jt Xt : max(1, j − k) ≤ t ≤ j − 1

})

≥ ε0(1 +
∑

(a
(k)
jt )2) ≥ ε0 (A12)

and the lemma follows. ¤

Proof of Theorem 3. We parallel the proof of Theorem 1. We need only check that

∥∥Σ̃−1
k,p − Σ−1

k,p

∥∥
∞ = OP (n−1/2 log p) (A13)

and
‖Σ−1

k,p −Bk(Σ−1
p )‖ = O(k−α) . (A14)

24



We first prove (A13). By definition,

Σ̃−1
k,p − Σ−1

k,p = (I − Ãk)D̃−1
k (I − Ãk)T − (I −Ak)D−1

k (I −Ak)T (A15)

where Ãk, D̃k are the empirical versions of Ak and Dk. Apply the standard inequality

‖A(1)A(2)A(3) −B(1)B(2)B(3)‖ ≤
3∑

j=1

‖A(j) −B(j)‖Πk 6=j‖B(k)‖

+
3∑

j=1

‖B(j)‖ ‖Πk 6=j‖A(k) −B(k)‖+ Π3
j=1‖A(j) −B(j)‖ . (A16)

Take A(1) = [A(3)]T = I − Ãk, B(1) = [B(3)]T = I − Ak, A(2) = D̃−1
k , B(2) = D−1

k in (A16) and
(A13) follows from Lemma 2. For (A14), we need only note that for any matrix M ,

‖MMT −Bk(M)Bk(M
T )‖ ≤ 2‖M‖ ‖Bk(M)−M‖+ ‖Bk(M)−M‖2

and (A14) and the theorem follows from our definition of U−1. ¤

Lemma 4. Suppose Σ = [ρ(j − i)] is a Toeplitz covariance matrix; ρ(k) = ρ(−k) for all k,
Σ ∈ L(ε0,m,C). Then, if f is the spectral density of Σ,

(i) Σ−1 = [ρ̃(j − i)], ρ̃(k) = ρ̃(−k).

(ii) Σ−1 has spectral density 1
f .

(iii) Σ−1 ∈ L
(
ε0,m,C

′(m, ε0, C)
)
.

Proof of Lemma 4. That
∥∥( 1

f

)(m)∥∥
∞ ≤ C ′(m, ε0, C) and ε0 ≤

∥∥ 1
f

∥∥
∞ ≤ ε−1

0 is immediate. The

claims (i) and (ii) follow from the identity, 1
f =

∑∞
k=−∞ ρ̃(k)e2πiku in the L2 sense and

1 =
∞∑

k=−∞
δ0ke

2πiku = f(u)
1

f
(u) .

Proof of Corollary 2. Note that Σ ∈ L(ε0,m,C0) implies that

f
− 1

2
Σ (u) = a0 +

∞∑

j=1

ak cos(2πju) (A17)

is itself m times differentiable and

∥∥(f−
1
2

Σ

)(m)∥∥
∞ ≤ C

′(C0, ε0) . (A18)

But then,

fΣ−1(u) = b0 +
∞∑

j=1

bj cos(2πju)

=
(
a0 +

∞∑

j=1

aj cos 2πju
)2

(A19)
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where bi =
∑i

j=0 ajai−j . All formal operations are justified since
∑∞

j=0 |aj | < ∞ follows from
Zygmund (1959), p.138. But (A19) can be reinterpreted in view of Lemma 4 as,

Σ−1 = AAT

where A = [ai−j1(i ≥ j)] and aj are real and given by (A19). Then, if Ak ≡ Bk(A), Bk(A)BT
k (A)

has spectral density,

fΣ−1
k,p

(u) =
( k∑

j=0

aj cos 2πju
)2
. (A20)

Moreover, from (A19) and (A20)

∥∥fΣ−1
k,p
− fΣ−1

p

∥∥
∞ ≤

∥∥
∞∑

j=k+1

aj cos 2πju
∥∥
∞


∥∥f−

1
2

Σp

∥∥
∞ +

∥∥
∞∑

j=k+1

aj cos 2πju
∥∥
∞


 .

By (A18)
|aj | ≤ C ′j−m

hence finally, ∥∥Σ−1
k,p − Σ−1

p

∥∥ =
∥∥fΣ−1

k,p
− fΣ−1

∥∥
∞ ≤ Ck

−(m−1) . (A21)

Corollary 2 now follows from (A21) and (A3) and (A4) by minimizing

C1
k3 log pk

n1/2
+ C2k

−(m−1) .
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