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Abstract

We consider the problem of decentralized detection under constraints on the number of bits that
can be transmitted by each sensor. In contrast to most previous work, in which the joint distribution
of sensor observations is assumed to be known, we address the problem when only a set of empirical
samples is available. We propose a novel algorithm using the framework of empirical risk minimization
and marginalized kernels, and analyze its computational and statistical properties both theoretically and
empirically. We provide an efficient implementation of the algorithm, and demonstrate its performance
on both simulated and real data sets.

1 Introduction

A decentralized detection system typically involves a set of sensors that receive observations from the envi-
ronment, but are permitted to transmit only a summary message (as opposed to the full observation) back to
a fusion center. On the basis of its received messages, this fusion center then chooses a final decision from
some number of alternative hypotheses about the environment. The problem of decentralized detection is to
design the local decision rules at each sensor, which determine the messages that are relayed to the fusion
center, as well a decision rule for the fusion center itself [28]. A key aspect of the problem is the presence
of communication constraints, meaning that the sizes of the messages sent by the sensors back to the fusion
center must be suitably “small” relative to the raw observations, whether measured in terms of either bits or
power. Thedecentralizednature of the system is to be contrasted with a centralized system, in which the
fusion center has access to the full collection of raw observations.

Such problems of decentralized decision-making have been the focus of considerable research in the past
two decades [e.g., 27, 28, 7, 8]. Indeed, decentralized systems arise in a variety of important applications,
ranging from sensor networks, in which each sensor operates under severe power or bandwidth constraints,
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to the modeling of human decision-making, in which high-level executive decisions are frequently based
on lower-level summaries. The large majority of the literature is based on the assumption that the proba-
bility distributions of the sensor observations lie within some known parametric family (e.g., Gaussian and
conditionally independent), and seek to characterize the structure of optimal decision rules. The probability
of error is the most common performance criterion, but there has also been a significant amount of work
devoted to other criteria, such as the Neyman-Pearson or minimax formulations. See Tsitsiklis [28] and
Blum et al. [7] for comprehensive surveys of the literature.

More concretely, letY ∈ {−1, +1} be a random variable, representing the two possible hypotheses
in a binary hypothesis-testing problem. Moreover, suppose that the system consists ofS sensors, each
of which observes a single component of theS-dimensional vectorX = {X1, . . . , XS}. One starting
point is to assume that the joint distributionP (X, Y ) falls within some parametric family. Of course, such
an assumption raises the modeling issue of how to determine an appropriate parametric family, and how to
estimate parameters. Both of these problems are very challenging in contexts such as sensor networks, given
highly inhomogeneous distributions and a large numberS of sensors. Our focus in this paper is on relaxing
this assumption, and developing a method in which no assumption about the joint distributionP (X, Y ) is
required. Instead, we posit that a number of empirical samples(xi, yi)n

i=1 are given.
In the context ofcentralizedsignal detection problems, there is an extensive line of research on non-

parametric techniques, in which no specific parametric form for the joint distributionP (X, Y ) is assumed
(see, e.g., Kassam [19] for a survey). In the decentralized setting, however, it is only relatively recently that
nonparametric methods for detection have been explored. Several authors have taken classical nonparamet-
ric methods from the centralized setting, and shown how they can also be applied in a decentralized system.
Such methods include schemes based on Wilcoxon signed-rank test statistic [33, 23], as well as the sign
detector and its extensions [13, 1, 15]. These methods have been shown to be quite effective for certain
types of joint distributions.

Our approach to decentralized detection in this paper is based on a combination of ideas fromreproducing-
kernel Hilbert spaces[2, 25], and the framework ofempirical risk minimizationfrom nonparametric statis-
tics. Methods based on reproducing-kernel Hilbert spaces (RKHSs) have figured prominently in the litera-
ture on centralized signal detection and estimation for several decades [e.g., 34, 17, 18]. More recent work
in statistical machine learning [e.g., 26] has demonstrated the power and versatility of kernel methods for
solving classification or regression problems on the basis of empirical data samples. Roughly speaking,
kernel-based algorithms in statistical machine learning involve choosing a function, which though linear
in the RKHS, induces a nonlinear function in the original space of observations. A key idea is to base
the choice of this function on the minimization of aregularized empirical riskfunctional. This functional
consists of the empirical expectation of a convex loss functionφ, which represents an upper bound on the
0-1 loss (the 0-1 loss corresponds to the probability of error criterion), combined with a regularization term
that restricts the optimization to a convex subset of the RKHS. It has been shown that suitable choices of
margin-based convex loss functions lead to algorithms that are robust both computationally [26], as well as
statistically [35, 3]. The use of kernels in such empirical loss functions greatly increases their flexibility, so
that they can adapt to a wide range of underlying joint distributions.

In this paper, we show how kernel-based methods and empirical risk minimization are naturally suited
to the decentralized detection problem. More specifically, a key component of the methodology that we
propose involves the notion of amarginalized kernel, where the marginalization is induced by the trans-
formation from the observationsX to the local decisionsZ. The decision rules at each sensor, which
can be either probabilistic or deterministic, are defined by conditional probability distributions of the form
Q(Z|X), while the decision at the fusion center is defined in terms ofQ(Z|X) and a linear function over
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the corresponding RKHS. We develop and analyze an algorithm for optimizing the design of these decision
rules. It is interesting to note that this algorithm is similar in spirit to a suite oflocally optimumdetectors
in the literature [e.g., 7], in the sense that one step consists of optimizing the decision rule at a given sensor
while fixing the decision rules of the rest, whereas another step involves optimizing the decision rule of the
fusion center while holding fixed the local decision rules at each sensor. Our development relies heavily on
the convexity of the loss functionφ, which allows us to leverage results from convex analysis [24] so as to
derive an efficient optimization procedure. In addition, we analyze the statistical properties of our algorithm,
and provide probabilistic bounds on its performance.

While the thrust of this paper is to explore the utility of recently-developed ideas from statistical ma-
chine learning for distributed decision-making, our results also have implications for machine learning. In
particular, it is worth noting that most of the machine learning literature on classification is abstracted away
from considerations of an underlying communication-theoretic infrastructure. Such limitations may prevent
an algorithm from aggregating all relevant data at a central site. Therefore, the general approach described
in this paper suggests interesting research directions for machine learning—specifically, in designing and
analyzing algorithms for communication-constrained environments.

The remainder of the paper is organized as follows. In Section 2, we provide a formal statement of the
decentralized decision-making problem, and show how it can be cast as a learning problem. In Section 3, we
present a kernel-based algorithm for solving the problem, and we also derive bounds on the performance of
this algorithm. Section 4 is devoted to the results of experiments using our algorithm, in application to both
simulated and real data. Finally, we conclude the paper with a discussion of future directions in Section 5.

2 Problem formulation and a simple strategy

In this section, we begin by providing a precise formulation of the decentralized detection problem to be
investigated in this paper, and show how it can be formulated in terms of statistical learning. We then
describe a simple strategy for designing local decision rules, based on an optimization problem involving
the empirical risk. This strategy, though naive, provides intuition for our subsequent development based on
kernel methods.

2.1 Formulation of the decentralized detection problem

SupposeY is a discrete-valued random variable, representing a hypothesis about the environment. Although
the methods that we describe are more generally applicable, the focus of this paper is the binary case, in
which the hypothesis variableY takes values inY := {−1, +1}. Our goal is to form an estimatêY
of the true hypothesis, based on observations collected from a set ofS sensors. More specifically, each
t = 1, . . . , S, letXt ∈ X represent the observation at sensort, whereX denotes the observation space. The
full set of observations corresponds to theS-dimensional random vectorX = (X1, . . . , XS) ∈ X S , drawn
from the conditional distributionP (X|Y ).

We assume that the global estimateŶ is to be formed by afusion center. In thecentralized setting, this
fusion center is permitted access to the full vectorX = (X1, . . . , XS) of observations. In this case, it is
well-known [31] that optimal decision rules, whether under the Bayes error or the Neyman-Pearson criteria,
can be formulated in terms of the likelihood ratioP (X|Y = 1)/P (X|Y = −1). In contrast, the defining
feature of thedecentralized settingis that the fusion center has access only to some form of summary of each
observationXt, t = 1, . . . S. More specifically, we suppose that each each sensort = 1 . . . , S is permitted

3



to transmit amessageZt, taking values in some spaceZ. The fusion center, in turn, applies some decision
ruleγ to compute an estimatêY = γ(Z1, . . . , ZS) of Y based on its received messages.

In this paper, we focus on the case of a discrete observation space—sayX = {1, 2, . . . , M}. The
key constraint, giving rise to the decentralized nature of the problem, is that the corresponding message
spaceZ = {1, . . . , L} is considerably smaller than the observation space (i.e.,L � M ). The problem is
to find, for each sensort = 1, . . . , S, a decision ruleγt : X t → Zt, as well as an overall decision rule
γ : ZS → {−1, +1} at the fusion center so as to minimize theBayes riskP (Y 6= γ(Z)). We assume that
the joint distributionP (X, Y ) is unknown, but that we are givenn independent and identically distributed
(i.i.d.) data points(xi, yi)n

i=1 sampled fromP (X, Y ).

. . .

. . .

. . .

Y

X1 X2 X3 XS

Z1 Z2 Z3 ZS

γ1 γ2 γ3 γS

γ(Z1, . . . , ZS)

X ∈ {1, . . . , M}S

Z ∈ {1, . . . , L}S

Figure 1. Decentralized detection system withS sensors, in whichY is the unknown hypothesis,
X = (X1, . . . , XS) is the vector of sensor observations; andZ = (Z1, . . . , ZS) are the quantized messages
transmitted from sensors to the fusion center.

Figure 1 provides a graphical representation of this decentralized detection problem. The single node at
the top of the figure represents the hypothesis variableY , and the outgoing arrows point to the collection of
observationsX = (X1, . . . , XS). The local decision rulesγt lie on the edges between sensor observations
Xt and messagesZt. Finally, the node at the bottom is the fusion center, which collects all the messages.

Although the Bayes-optimal risk can always be achieved by a deterministic decision rule [28], consid-
ering the larger space of stochastic decision rules confers some important advantages. First, such a space
can be compactly represented and parameterized, and prior knowledge can be incorporated. Second, the op-
timal deterministic rules are often very hard to compute, and a probabilistic rule may provide a reasonable
approximation in practice. Accordingly, we represent the rule for the sensorst = 1, . . . , S by a conditional
probability distributionQ(Z|X). The fusion center makes its decision by applying a deterministic function
γ(z) of z. The overall decision rule(Q, γ) consists of the individual sensor rules and the fusion center rule.

The decentralization requirement for our detection/classification system—i.e., that the decision rule for
sensort must be a function only of the observationxt—can be translated into the probabilistic statement
thatZ1, . . . , ZS be conditionally independent givenX:

Q(Z|X) =
S∏

t=1

Qt(Zt|Xt). (1)
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In fact, this constraint turns out to be advantageous from a computational perspective, as will be clarified
in the sequel. We useQ to denote the space of all factorized conditional distributionsQ(Z|X), andQ0 to
denote the subset of factorized conditional distributions that are also deterministic.

2.2 A simple strategy based on minimizing empirical risk

Suppose that we have as our training datan pairs(xi, yi) for i = 1, . . . , n. Note that eachxi, as a particular
realization of the random vectorX, is anS dimensional signal vectorxi = (x1

i , . . . , x
S
i ) ∈ X S . Let P

be the unknown underlying probability distribution for(X, Y ). The probabilistic set-up makes it simple to
estimate the Bayes risk, which is to be minimized.

Consider a collection of local decision rules made at the sensors, which we denote byQ(Z|X). For
each such set of rules, the associated Bayes risk is defined by:

Ropt :=
1
2
− 1

2
E

∣∣∣∣P (Y = 1|Z) − P (Y = −1|Z)
∣∣∣∣. (2)

Here the expectationE is with respect to the probability distributionP (X, Y, Z) := P (X, Y )Q(Z|X). It
is clear that no decision rule at the fusion center (i.e., having access only toz) has Bayes risk smaller than
Ropt. In addition, the Bayes riskRopt can be achieved by using the decision function

γopt(z) = sign(P (Y = 1|z) − P (Y = −1|z)).

It is key to observe that this optimal decision rulecannotbe computed, becauseP (X, Y ) is not known, and
Q(Z|X) is to be determined. Thus, our goal is to determine the ruleQ(Z|X) that minimizes an empirical
estimate of the Bayes risk based on the training data(xi, yi)n

i=1. In Lemma 1 we show that the following is
one such unbiased estimate of the Bayes risk:

Remp :=
1
2
− 1

2n

∑
z

∣∣ n∑
i=1

Q(z|xi)yi

∣∣. (3)

In addition,γopt(z) can be estimated by the decision functionγemp(z) = sign
(∑n

i=1 Q(z|xi)yi

)
. SinceZ

is a discrete random vector, the optimal Bayes risk can be estimated easily, regardless of whether the input
signalX is discrete or continuous.

Lemma 1. (a) Assume thatP (z) > 0 for all z. Define

κ(z) =
∑n

i=1 Q(z|xi)I(yi = 1)∑n
i=1 Q(z|xi)

.

Thenlimn→∞ κ(z) = P (Y = 1|z).
(b) Asn → ∞, Remp andγemp(z) tend toRopt andγopt(z), respectively.

Proof. See Appendix 1.

The significance of Lemma 1 is in motivating the goal of finding decision rulesQ(Z|X) to minimize
the empirical errorRemp. It is equivalent, using equation (3), to maximize

C(Q) =
∑

z

∣∣∣∣ n∑
i=1

Q(z|xi)yi

∣∣∣∣, (4)
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subject to the constraints that define a probability distribution:
Q(z|x) =

∏S
t=1 Qt(zt|xt) for all values ofz andx.∑

zt Qt(zt|xt) = 1 for t = 1, . . . , S,

Qt(zt|xt) ∈ [0, 1] for t = 1, . . . , S.

(5)

The major computational difficulty in the optimization problem defined by equations (4) and (5) lies in the
summation over allLS possible values ofz ∈ ZS . One way to avoid this obstacle is by maximizing instead
the following function:

C2(Q) :=
∑

z

( n∑
i=1

Q(z|xi)yi

)2

.

Expanding the square and using the conditional independence condition (1) leads to the following equivalent
form for C2:

C2(Q) =
∑
i,j

yiyj

S∏
t=1

L∑
zt=1

Qt(zt|xt
i)Q

t(zt|xt
j). (6)

Note that the conditional independence condition (1) onQ allow us to computeC2(Q) in O(SL) time, as
opposed toO(LS).

While this simple strategy is based directly on the empirical risk, it does not exploit any prior knowledge
about the class of discriminant functions forγ(z). As we discuss in the following section, such knowledge
can be incorporated into the classifier using kernel methods. Moreover, the kernel-based decentralized
detection algorithm that we develop turns out to have an interesting connection to the simple approach
based onC2(Q).

3 A kernel-based algorithm

In this section, we turn to methods for decentralized detection based on empirical risk minimization and
kernel methods [2, 25, 26]. We begin by introducing some background and definitions necessary for sub-
sequent development. We then motivate and describe a central component of our decentralized detection
system—namely, the notion of amarginalized kernel. Our method for designing decision rules is based on
an optimization problem, which we show how to solve efficiently. Finally, we derive theoretical bounds on
the performance of our decentralized detection system.

3.1 Empirical risk minimization and kernel methods

In this section, we provide some background on empirical risk minimization and kernel methods. The
exposition given here is necessarily very brief; we refer the reader to the books [26, 25, 34] for more details.
Our starting point is to consider estimatingY with a rule of the form̂y(x) = signf(x), wheref : X → R is
a discriminant functionthat lies within some function space to be specified. The ultimate goal is to choose
a discriminant functionf to minimize the Bayes errorP (Y 6= Ŷ ), or equivalently to minimize the expected
value of the following0-1 loss:

φ0(yf(x)) := I[y 6= sign(f(x))]. (7)
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This minimization is intractable, both because the functionφ0 is not well-behaved (i.e., non-convex and
non-differentiable), and because the joint distributionP is unknown. However, since we are given a set
of i.i.d. samples{(xi, yi)}n

i=1, it is natural to consider minimizing a loss function based on anempirical
expectation, as motivated by our development in Section 2.2. Moreover, it turns out to be fruitful, for both
computational and statistical reasons, to design loss functions based onconvex surrogatesto the 0-1 loss.

Indeed, a variety of classification algorithms in statistical machine learning have been shown to involve
loss functions that can be viewed as convex upper bounds on the 0-1 loss. For example, the support vector
machine (SVM) algorithm [9, 26] uses ahinge lossfunction:

φ1(yf(x)) := (1 − yf(x))+ ≡ max{1 − yf(x), 0}. (8)

On the other hand, the logistic regression algorithm [12] is based on thelogistic lossfunction:

φ2(yf(x)) := log
[
1 + exp−yf(x)

]−1
. (9)

Finally, the standard form of the boosting classification algorithm [11] uses aexponential lossfunction:

φ3(yf(x)) := exp(−yf(x)). (10)

Intuition suggests that a functionf with small φ-risk Eφ(Y f(X)) should also have a small Bayes risk
P (Y 6= sign(f(X))). In fact, it has been established rigorously that convex surrogates for the (non-convex)
0-1 loss function, such as the hinge (8) and logistic loss (9) functions, have favorable properties both com-
putationally (i.e., algorithmic efficiency), and in a statistical sense (i.e., bounds on estimation error) [35, 3].

We now turn to consideration of the function class from which the discriminant functionf is to be
chosen. Kernel-based methods for discrimination entail choosingf from within a function class defined by
a positive semidefinite kernel, defined as follows (see [25]):

Definition 2. A real-valued kernel function is a symmetric bilinear mappingKx : X × X → R. It is
positive semidefinite, which means that for any subset{x1, . . . , xn} drawn fromX , the Gram matrixKij =
Kx(xi, xj) is positive semidefinite.

Given any such kernel, we first define a vector space of functions mappingX to the real lineR through
all sums of the form

f(·) =
m∑

j=1

αjKx(·, xj), (11)

where{xj}m
j=1 are arbitrary points fromX , andαj ∈ R. We can equip this space with akernel-based inner

product by defining〈Kx(·, xi), Kx(·, xj)〉 := Kx(xi, xj), and then extending this definition to the full
space by bilinearity. Note that this inner product induces, for any function of the form (11), the kernel-based
norm‖f‖2

H =
∑m

i,j=1 αiαjKx(xi, xj).

Definition 3. The reproducing kernel Hilbert spaceH associated with a given kernelKx consists of the
kernel-based inner product, and the closure (in the kernel-based norm) of all functions of the form(11).

As an aside, the term “reproducing” stems from the fact for anyf ∈ H, we have〈f, Kx(·, xi)〉 = f(xi),
showing that the kernel acts as the representer of evaluation [25].
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In the framework of empirical risk minimization, the discriminant functionf ∈ H is chosen by mini-
mizing a cost function given by the sum of theempiricalφ-risk Êφ(Y f(X)) and a suitable regularization
term

min
f∈H

n∑
i=1

φ(yif(xi)) +
λ

2
‖f‖2

H, (12)

whereλ > 0 is a regularization parameter. The Representer Theorem (Thm. 4.2; [26]) guarantees that the
optimal solution to problem (12) can be written in the form̂f(x) =

∑n
i=1 αiyiKx(x, xi), for a particular

vectorα ∈ R
n. The key here is that sum rangesonlyover the observed data points{(xi, yi)}n

i=1.
For the sake of development in the sequel, it will be convenient to express functionsf ∈ H as linear

discriminants involving the thefeature mapΦ(x) := Kx(·, x). (Note that for eachx ∈ X , the quantity
Φ(x) ≡ Φ(x)(·) is a function fromX to the real lineR.) Any functionf in the Hilbert space can be written
as a linear discriminant of the form〈w, Φ(x)〉 for some functionw ∈ H. (In fact, by the reproducing
property, we havef(·) = w(·)). As a particular case, the Representer Theorem allows us to write the
optimal discriminant aŝf(x) = 〈ŵ, Φ(x)〉, whereŵ =

∑n
i=1 αiyiΦ(xi).

3.2 Fusion center and marginalized kernels

With this background, we first consider how to design the decision ruleγ at the fusion center for afixedset-
ting Q(Z|X) of the sensor decision rules. Since the fusion center rule can only depend onz = (z1, . . . , zS),
our starting point is a feature space{Φ′(z)} with associated kernelKz. Following the development in the
previous section, we consider fusion center rules defined by taking the sign of a linear discriminant of the
form γ(z) := 〈w, Φ′(z)〉. We then link the performance ofγ to another kernel-based discriminant func-
tion f that actsdirectly on x = (x1, . . . , xS), where the new kernelKQ associated withf is defined as a
marginalized kernelin terms ofQ(Z|X) andKz.

The relevant optimization problem is to minimize (as a function ofw) the following regularized form of
the empiricalφ-risk associated with the discriminantγ

min
w

{∑
z

n∑
i=1

φ(yiγ(z))Q(z|xi) +
λ

2
||w||2

}
, (13)

whereλ > 0 is a regularization parameter. In its current form, the objective function (13) is intractable to
compute (because it involves summing over allLS possible values ofz of a loss function that is generally
non-decomposable). However, exploiting the convexity ofφ allows us to perform the computation exactly
for deterministic rules inQ0, and also leads to a natural relaxation for an arbitrary decision ruleQ ∈ Q.
This idea is formalized in the following:

Proposition 4. Define the quantities

ΦQ(x) :=
∑

z

Q(z|x)Φ′(z), and f(x; Q) := 〈w, ΦQ(x)〉. (14)

For any convexφ, the optimal value of the following optimization problem is a lower bound on the optimal
value in problem(13):

min
w

∑
i

φ(yif(xi; Q)) +
λ

2
||w||2 (15)

Moreover, the relaxation is tight for any deterministic ruleQ(Z|X).
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Proof. Applying Jensen’s inequality to the functionφ yields φ(yif(xi; Q)) ≤ ∑
z φ(yiγ(z))Q(z|xi) for

eachi = 1, . . . n, from which the lower bound follows. Equality for deterministicQ ∈ Q0 is immediate.

A key point is that the modified optimization problem (15) involves an ordinary regularized empirical
φ-loss, but in terms of a linear discriminant functionf(x; Q) = 〈w, ΦQ(x)〉 in the transformedfeature
space{ΦQ(x)} defined in equation (14). Moreover, the correspondingmarginalized kernelfunction takes
the form:

KQ(x, x′) :=
∑
z,z′

Q(z|x)Q(z′|x′) Kz(z, z′), (16)

whereKz(z, z′) := 〈Φ′(z), Φ′(z′)〉 is the kernel in{Φ′(z)}-space. It is straightforward to see that the
positive semidefiniteness ofKz implies thatKQ is also a positive semidefinite function.

From a computational point of view, we have converted the marginalization over loss function values
to a marginalization over kernel functions. While the former is intractable, the latter marginalization can
be carried out in many cases by exploiting the structure of the conditional distributionsQ(Z|X). (In Sec-
tion 3.3, we provide several examples to illustrate.) From the modeling perspective, it is interesting to
note that marginalized kernels, like that of equation (16), underlie recent work that aims at combining the
advantages of graphical models and Mercer kernels [16, 29].

As a standard kernel-based formulation, the optimization problem (15) can be solved by the usual La-
grangian dual formulation [26], thereby yielding an optimal weight vectorw. This weight vector defines the
decision rule for the fusion center byγ(z) := 〈w, Φ′(z)〉. By the Representer Theorem [26], the optimal
solutionw to problem (15) has an expansion of the form

w =
n∑

i=1

αiyiΦQ(xi) =
n∑

i=1

∑
z′

αiyiQ(z′|xi)Φ′(z′),

whereα is an optimal dual solution, and the second equality follows from the definition ofΦQ(x) given in
equation (14). Substituting this decomposition ofw into the definition ofγ yields

γ(z) :=
∑
z′

n∑
i=1

αiyiQ(z′|xi)Kz(z, z′). (17)

Note that there is an intuitive connection between the discriminant functionsf andγ. In particular, using the
definitions off andKQ, it can be seen thatf(x) = E[γ(Z)|x], where the expectation is taken with respect
to Q(Z|X = x). The interpretation is quite natural: when conditioned on somex, the average behavior of
the discriminant functionγ(Z), which doesnot observex, is equivalent to the optimal discriminantf(x),
which does have access tox.

3.3 Design and computation of marginalized kernels

As seen in the previous section, the representation of discriminant functionsf andγ depends on the kernel
functionsKz(z, z′) andKQ(x, x′), andnot on the explicit representation of the underlying feature spaces
{Φ′(z)} and{ΦQ(x)}. It is also shown in the next section that our algorithm for solvingf andγ requires
only the knowledge of the kernel functionsKz andKQ. Indeed, the effectiveness of a kernel-based algorithm
typically hinges heavily on the design and computation of its kernel function(s).
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Accordingly, let us now consider the computational issues associated with marginalized kernelKQ,
assuming thatKz has already been chosen. In general, the computation ofKQ(x, x′) entails marginalizing
over the variableZ, which (at first glance) has computational complexity on the order ofO(LS). However,
this calculation fails to take advantage of any structure in the kernel functionKz. More specifically, it is
often the case that the kernel functionKz(z, z′) can be decomposed into local functions, in which case the
computational cost is considerably lower. Here we provide a few examples of computationally tractable
kernels.

Computationally tractable kernels:

(a) Perhaps the simplest example is thelinear kernelKz(z, z′) =
∑S

t=1 ztz′t, for which it is straightfor-
ward to deriveKQ(x, x′) =

∑S
t=l E[zt|xt] E[z′t|x′t].

(b) A second example, natural for applications in whichXt andZt are discrete random variables, is
the count kernel. Let us represent each discrete valueu ∈ {1, . . . , M} as aM -dimensional vec-
tor (0, . . . , 1, . . . , 0), whoseu-th coordinate takes value 1. If we define the first-order count kernel
Kz(z, z′) :=

∑S
t=1 I[zt = z′t], then the resulting marginalized kernel takes the form:

KQ(x, x′) =
∑
z,z′

Q(z|x)Q(z′|x′)
S∑

t=1

I[zt = z′t] =
S∑

t=1

Q(zt = z′t|xt, x′t). (18)

(c) A natural generalization is thesecond-order count kernelKz(z, z′) =
∑s

t,r=1 I[zt = z′t]I[zr =
z′r] that accounts for the pairwise interaction between coordinateszt andzr. For this example, the
associated marginalized kernelKQ(x, x′) takes the form:

2
∑

1≤t<r≤S

Q(zt = z′t|xt, x′t)Q(zr = z′r|xr, x′r). (19)

Remarks: First, note that even for a linear base kernelKz, the kernel functionKQ inherits additional
(nonlinear) structure from the marginalization overQ(Z|X). As a consequence, the associated discriminant
functions (i.e.,γ andf ) are certainly not linear. Second, our formulation allows any available prior knowl-
edge to be incorporated intoKQ in at least two possible ways: (i) The base kernel representing a similarity
measure in the quantized space ofz can reflect the structure of the sensor network, or (ii) More structured
decision rulesQ(Z|X) can be considered, such as chain or tree-structured decision rules.

3.4 Joint optimization

Our next task is to perform joint optimization of both the fusion center rule, defined byw (or equivalently
α, as in equation (17)), and the sensor rulesQ. Observe that the cost function (15) can be re-expressed as a
function of bothw andQ as follows:

G(w; Q) :=
1
λ

∑
i

φ

(
yi〈w,

∑
z

Q(z|xi)Φ′(z)〉
)

+
1
2
||w||2. (20)

Of interest is the joint minimization of the functionG in bothw andQ. It can be seen easily that

(a) G is convex inw with Q fixed; and
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(b) moreover,G is convex inQt, when bothw and all other{Qr, r 6= t} are fixed.

These observations motivate the use of blockwise coordinate gradient descent to perform the joint mini-
mization.

Optimization of w: As described in Section 3.2, whenQ is fixed, thenminw G(w; Q) can be computed
efficiently by a dual reformulation. Specifically, as we establish in the following result using ideas from
convex duality [24], a dual reformulation ofminw G(w; Q) is given by

max
α∈Rn

{
− 1

λ

n∑
i=1

φ∗(−λαi) − 1
2
αT
[
(yyT ) ◦ KQ

]
α

}
, (21)

whereφ∗(u) := supv∈R

{
u · v − φ(v)} is the conjugate dual ofφ, [KQ]ij := KQ(xi, xj) is the empirical

kernel matrix, and◦ denotes Hadamard product.

Proposition 5. For each fixedQ ∈ Q, the value of the primal probleminfw G(w; Q) is attained and equal to
its dual form(21). Furthermore, any optimal solutionα to problem(21)defines the optimal primal solution
w(Q) to minw G(w; Q) via w(Q) =

∑n
i=1 αiyiΦQ(xi).

Proof. It suffices for our current purposes to restrict to the case where the functionsw andΦQ(x) can be
viewed as vectors in some finite-dimensional space—sayR

m. However, it is possible to extend this approach
to the infinite-dimensional setting by using conjugacy in general normed spaces [21].

A remark on notation before proceeding: sinceQ is fixed, we dropQ from G for notational convenience
(i.e., we writeG(w) ≡ G(w; Q)). First, we observe thatG(w) is convex with respect tow and thatG → ∞
as||w|| → ∞. Consequently, the infimum defining the primal probleminfw∈Rm G(w) is attained. We now
re-write this primal problem as follows:

inf
w∈Rm

G(w) = inf
w∈Rm

{G(w) − 〈w, 0〉} = −G∗(0),

whereG∗ : R
m → R denotes the conjugate dual ofG.

Using the notationgi(w) := 1
λφ(〈w, yiΦQ(xi)〉) andΩ(w) := 1

2 ||w||2, we can decomposeG as the
sumG(w) =

∑n
i=1 gi(w) + Ω(w). This decomposition allows us to compute the conjugate dualG∗ via the

inf-convolution theorem (Thm. 16.4; Rockafellar [24]) as follows:

G∗(0) = inf
ui,i=1,...,n

{ n∑
i=1

g∗i (ui) + Ω∗(−
n∑

i=1

ui)
}

. (22)

Applying calculus rules for conjugacy operations (Thm. 16.3; [24]), we obtain:

g∗i (ui) =

{
1
λφ∗(−λαi) if ui = −αi(yiΦQ(xi)) for someαi ∈ R

+∞ otherwise.
(23)

A straightforward calculation yieldsΩ∗(v) = supw{〈v, w〉− 1
2 ||w||2} = 1

2 ||v||2. Substituting these expres-
sions into equation (22) leads to:

G∗(0) = inf
α∈Rn

n∑
i=1

1
λ

φ∗(−λiαi) +
1
2

∥∥∥∥ n∑
i

αiyiΦQ(xi)
∥∥∥∥2

,

11



from which it follows that

inf
w

G(w) = −G∗(0) = sup
α∈Rn

{
− 1

λ

n∑
i=1

φ∗(−λαi) − 1
2

∑
1≤i,j≤n

αiαjyiyjKx(xi, xj)
}

.

Thus, we have derived the dual form (21). See Appendix 5 for the remainder of the proof, in which we
derive the link betweenw(Q) and the dual variablesα.

This proposition is significant in that the dual problem involves only the kernel matrix(KQ(xi, xj))1≤i,j≤n.
Hence, one can solve for the optimal discriminant functionsy = f(x) or y = γ(z) without requiring explicit
knowledge of the underlying feature spaces{Φ′(z)} and{ΦQ(x)}. As a particular example, consider the
case of hinge loss function (8), as used in the SVM algorithm [26]. A straightforward calculation yields

φ∗(u) =

{
u if u ∈ [−1, 0]
+∞ otherwise.

Substituting this formula into (21) yields, as a special case, the familiar dual formulation for the SVM:

max
0≤α≤1/λ

{ n∑
i

αi − 1
2
αT
[
(yyT ) ◦ KQ

]
α

}
.

Optimization of Q: The second step is to minimizeG overQt, with w and all other{Qr, r 6= t} held
fixed. Our approach is to compute the derivative (or more generally, the subdifferential) with respect toQt,
and then apply a gradient-based method. A challenge to be confronted is thatG is defined in terms of feature
vectorsΦ′(z), which are typically high-dimensional quantities. Indeed, although it is intractable to evaluate
the gradient at an arbitraryw, the following result establishes that it can always be evaluated at the point
(w(Q), Q) for anyQ ∈ Q.

Lemma 6. Letw(Q) be the optimizing argument ofminw G(w; Q), and letα be an optimal solution to the
dual problem(21). Then the following element

−λ
∑

(i,j)(z,z′)

αiαjQ(z′|xj)
Q(z|xi)

Qt(zt|xt
i)

Kz(z, z′)I[xt
i = x̄t] I[zt = z̄t]

is an element of the subdifferential.1

Proof. See Appendix 5.

Observe that this representation of the (sub)gradient involves marginalization overQ of the kernel func-
tion Kz, and therefore can be computed efficiently in many cases, as described in Section 3.3. Overall, the
blockwise coordinate descent algorithm for optimizing the choice of local decision rules takes the following
form:

1Subgradientis a generalized counterpart of gradient for non-differentiable convex functions. Briefly, asubgradientof a convex
functionf : R

m → R atx is a vectors ∈ R
m satisfyingf(y) ≥ f(x) + 〈s, y − x〉 for all y ∈ R

m. Thesubdifferentialat a point
x is the set of all subgradients; hence, iff is differentiable atx, the subdifferential consists of the single vector{∇f(x)}. In our
cases,G is non-differentiable whenφ is the hinge loss (8), and differentiable whenφ is the logistic loss (9) or exponential loss (10).
∂Qt(z̄t|x̄t)G evaluated at(w(Q), Q). More details on convex analysis can be found in the books [24, 14].
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Kernel quantization (KQ) algorithm:

(a) WithQ fixed, compute the optimizingw(Q) by solving the dual problem (21).

(b) For some indext, fix w(Q) and {Qr, r 6= t} and take a gradient step inQt using
Lemma 6.

Upon convergence, we define a deterministic decision rule for each sensort via:

γt(xt) := argmaxzt∈ZQ(zt|xt). (24)

Remarks: A number of comments about this algorithm are in order. At a high level, the updates consist
of alternatively updating the decision rule for a sensor while fixing the decision rules for the remaining sen-
sors and the fusion center, and updating the decision rule for the fusion center while fixing the decision rules
for all other sensors. In this sense, our approach is similar in spirit to a suite of practical algorithms [e.g.,
28] for decentralized detection under particular assumptions on the joint distributionP (X, Y ).

Using standard results [5], it is straightforward to guarantee convergence of such coordinate-wise up-
dates when the loss functionφ is strictly convex and differentiable (e.g., logistic loss (9) or exponential
loss (10)). In contrast, the case of non-differentiableφ (e.g., hinge loss (8)) requires more care. We have,
however, obtained good results in practice even in the case of hinge loss.

Finally, it is interesting to note the connection between the KQ algorithm and the naive approach con-
sidered in Section 2.2. More precisely, suppose that we fixw such that allαi are equal to one, and let the
base kernelKz be constant (and thus entirely uninformative). Under these conditions, the optimization of
G with respect toQ reduces to exactly the naive approach.

3.5 Estimation error bounds

This section is devoted to analysis of the statistical properties of the KQ algorithm. In particular, our goal
is to derive bounds on the performance of our classifier(Q, γ) when applied to new data, as opposed to the
i.i.d. samples on which it was trained. It is key to distinguish between two forms ofφ-risk:

(a) theempiricalφ-risk Êφ(Y γ(Z)) is defined by an expectation overP̂ (X, Y )Q(Z|X), whereP̂ is the
empirical distribution given by the i.i.d. samples{(xi, yi)}n

i=1.

(b) thetrueφ-risk Eφ(Y γ(Z)) is defined by taking an expectation over the joint distributionP (X, Y )Q(Z|X).

In designing our classifier, we made use of the empiricalφ-risk as a proxy for the actual risk. On the
other hand, the appropriate metric for assessing performance of the designed classifier is the trueφ-risk
Eφ(Y γ(Z)). At a high level, our procedure for obtaining performance bounds can be decomposed into the
following steps:

1. First, we relate the trueφ-risk Eφ(Y γ(Z)) to the trueφ-risk Eφ(Y f(X) for the functionsf ∈ F
(andf ∈ F0) that are computed at intermediate stages of our algorithm. The latter quantities are
well-studied objects in statistical learning theory.

2. The second step to relate the empiricalφ-risk Ê(Y f(X)) to the trueφ-risk E(Y f(X)). In general,
the trueφ-risk for a functionf in some classF is bounded by the empiricalφ-risk plus a complexity
term that captures the “richness” of the function classF [35, 3]. In particular, we make use of the
Rademacher complexityas a measure of this richness.
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3. Third, we combine the first two steps so as to derive bounds on the trueφ-risk Eφ(Y γ(Z)) in terms
of the empiricalφ-risk of f and the Rademacher complexity.

4. Finally, we derive bounds on the Rademacher complexity in terms of the number of training samples
n, as well as the number of quantization levelsL andM .

Step 1:We begin by isolating the class of functions over which we optimize. Define, for a fixedQ ∈ Q,
the function spaceFQ as{

f : x 7→ 〈w, ΦQ(x)〉 =
∑

i

αiyiKQ(x, xi)
∣∣ s. t. ||w|| ≤ B

}
, (25)

whereB > 0 is a constant. Note thatFQ is simply the class of functions associated with the marginal-
ized kernelKQ. The function class over which our algorithm performs the optimization is defined by the
unionF := ∪Q∈QFQ, whereQ is the space of all factorized conditional distributionsQ(Z|X). Lastly, we
define the function classF0 := ∪Q∈Q0FQ, corresponding to the union of the function spaces defined by
marginalized kernels with deterministic distributionsQ.

Any discriminant functionf ∈ F (or F0), defined by a vectorα, induces an associated discriminant
function γf via equation (17). Relevant to the performance of the classifierγf is the expectedφ-loss
Eφ(Y γf (Z)), whereas the algorithm actually minimizes (the empirical version of)Eφ(Y f(X)). The rela-
tionship between these two quantities is expressed in the following proposition.

Proposition 7.
(a) We haveEφ(Y γf (Z)) ≥ Eφ(Y f(X)), with equality whenQ(Z|X) is deterministic.
(b) Moreover, there holds

inf
f∈F

Eφ(Y γf (Z)) ≤ inf
f∈F0

Eφ(Y f(X) (26a)

inf
f∈F

Eφ(Y γf (Z)) ≥ inf
f∈F

Eφ(Y f(X)). (26b)

The same statement also holds for empirical expectations.

Proof. Applying Jensen’s inequality to the convex functionφ yields

Eφ(Y γf (Z)) = EXY E[φ(Y γf (Z))|X, Y ] ≥ EXY φ(E[Y γf (Z)|X, Y ]) = Eφ(Y f(X)),

where we have used the conditional independence ofZ andY given X. This establishes part (a), and
the lower bound (26b) follows directly. Moreover, part (a) also implies thatinff∈F0 Eφ(Y γf (Z)) =
inff∈F0 Eφ(Y f(X)), and the upper bound (26a) follows sinceF0 ⊂ F .

Step 2: The next step is to relate the empiricalφ-risk for f (i.e., Ê(Y f(X))) to the trueφ-risk (i.e.,
E(Y f(X))). Recall that theRademacher complexityof the function classF is defined [30] as

Rn(F) = E sup
f∈F

2
n

n∑
i=1

σif(Xi),

where theRademacher variablesσ1, . . . , σn are independent and uniform on{−1, +1}, andX1, . . . , Xn

are i.i.d. samples selected according to distributionP . In the case thatφ is Lipschitz with constant̀, the
empirical and true risk can be related via the Rademacher complexity as follows [20]. With probability at
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least1 − δ with respect to training samples(Xi, Yi)n
i=1, drawn according to the empirical distributionPn,

there holds

sup
f∈F

|Êφ(Y f(X)) − Eφ(Y f(X))| ≤ 2`Rn(F) +

√
ln(2/δ)

2n
. (27)

Moreover, the same bound applies toF0.
Step 3: Combining the bound (27) with Proposition 7 leads to the following theorem, which provides

generalization error bounds for the optimalφ-risk of the decision function learned by our algorithm in terms
of the Rademacher complexitiesRn(F0) andRn(F):

Theorem 8. Givenn i.i.d. labeled data points(xi, yi)n
i=1, with probability at least1 − 2δ,

inf
f∈F

1
n

n∑
i=1

φ(yif(xi)) − 2`Rn(F) −
√

ln(2/δ)
2n

≤ inf
f∈F

Eφ(Y γf (Z)) ≤

inf
f∈F0

1
n

n∑
i=1

φ(yif(xi)) + 2`Rn(F0) +

√
ln(2/δ)

2n
.

Proof. Using bound (27), with probablity at least1 − δ, for anyf ∈ F ,

Eφ(Y f(X) ≥ 1
n

n∑
i=1

φ(yif(xi)) − 2`Rn(F) −
√

ln(2/δ)
2n

.

Combining with (26b), we have, with probability1 − δ,

inf
f∈F

Eφ(Y γf (Z)) ≥ inf
f∈F

Eφ(Y f(X))

≥ inf
f∈F

1
n

n∑
i=1

φ(yif(xi)) − 2`Rn(F) −
√

ln(2/δ)
2n

which proves the lower bound of the theorem with probability at least1 − δ. The upper bound is similarly
true with probability at least1− δ. Hence, both are true with probability at least1−2δ, by the union bound.

Step 4: So that Theorem 8 has practical meaning, we need to derive upper bounds on the Rademacher
complexity of the function classesF andF0. Of particular interest is the growth in the complexity ofF
andF0 with respect to the number of training samplesn, as well as the number of discrete signalsL and
M . The following proposition derives such bounds, exploiting the fact that the number of 0-1 conditional
probability distributionsQ(Z|X) is a finite number,(LMS).

Proposition 9.

Rn(F0) ≤ 2B

n

[
E sup

Q∈Q0

n∑
i=1

KQ(Xi, Xi) + 2(n − 1)
√

n/2 sup
z,z′

Kz(z, z′)
√

2MS log L

]1/2

. (28)

Proof. See Appendix 5.
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Although the rate given in equation (28) is not tight in terms of the number of data samplesn, the bound is
nontrivial and is relatively simple. (In particular, it depends directly on the kernel functionK, the number
of samplesn, quantization levelsL, number of sensorsS, and size of observation spaceM .)

We can also provide a more general and possibly tighter upper bound on the Rademacher complexity
based on the concept ofentropy number[30]. Indeed, an important property of the Rademacher com-
plexity is that it can be estimated reliably from a single sample(x1, . . . , xn). Specifically, if we define
R̂n(F) := E[ 2

n supf∈F
∑n

i=1 σif(xi)] (where the expectation is w.r.t. the Rademacher variables{σi} only),

then it can be shown using McDiarmid’s inequality thatR̂n(F) is tightly concentrated aroundRn(F) with
high probablity [4]. Concretely, for anyη > 0, there holds:

P

{
|Rn(F) − R̂n(F)| ≥ η

}
≤ 2e−η2n/8. (29)

Hence, the Rademacher complexity is closely related to its empirical versionR̂n(F), which can be related
to the concept of entropy number. In general, define the covering numberN(ε, S, ρ) for a setS to be the
minimum number of balls of diameterε that completely coverS (according to a metricρ). Theε-entropy
number ofS is then defined aslog N(ε, S, ρ). In our context, consider in particular theL2(Pn) metric
defined on an empirical sample(x1, . . . , xn) as:

‖f1 − f2‖L2(Pn) :=
[

1
n

n∑
i=1

(f1(xi) − f2(xi))2
]1/2

.

Then, it is well known [30] that for some absolute constantC, there holds:

R̂n(F) ≤ C

∫ ∞

0

√
log N(ε,F , L2(Pn))

n
dε. (30)

The following result relates the entropy number forF to the supremum of the entropy number taken over a
restricted function classFQ.

Proposition 10. The entropy numberlog N(ε,F , L2(Pn)) ofF is bounded above by

sup
Q∈Q

log N(ε/2,FQ, L2(Pn)) + (L − 1)MS log
2LS sup ||α||1 supz,z′ Kz(z, z′)

ε
. (31)

Moreover, the same bound holds forF0.

Proof. See Appendix 5.

This proposition guarantees that the increase in the entropy number in moving from someFQ to the

larger classF is onlyO((L−1)MS log(LS/ε)). Consequently, we incur at most anO([MS2(L − 1) log L/n]
1
2 )

increase in the upper bound (30) forRn(F) (as well asRn(F0)). Moreover, the Rademacher complexity
increases with the square root of the numberL log L of quantization levelsL.
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4 Experimental Results

We evaluated our algorithm using both data from simulated sensor networks and real-world data sets. We
consider three types of sensor network configurations:

Conditionally independent observations:In this example, the observationsX1, . . . , XS are indepen-
dent conditional onY , as illustrated in Figure 1. We consider networks with 10 sensors (S = 10), each of
which receive signals with 8 levels (M = 8). We applied the algorithm to compute decision rules forL = 2.
In all cases, we generaten = 200 training samples, and the same number for testing. We performed 20 trials
on each of 20 randomly generated modelsP (X, Y ).

Chain-structured dependency:A conditional independence assumption for the observations, though
widely employed in most work on decentralized detection, may be unrealistic in many settings. For instance,
consider the problem of detecting a random signal in noise [31], in whichY = 1 represents the hypothesis
that a certain random signal is present in the environment, whereasY = −1 represents the hypothesis that
only i.i.d. noise is present. Under these assumptionsX1, . . . , XS will be conditionally independent given
Y = −1, since all sensors receive i.i.d. noise. However, conditioned onY = +1 (i.e., in the presence of
the random signal), the observations at spatially adjacent sensors will be dependent, with the dependence
decaying with distance.

In a 1-D setting, these conditions can be modeled with a chain-structured dependency, and the use of a
count kernel to account for the interaction among sensors. More precisely, we consider a set-up in which
five sensors are located in a line such that only adjacent sensors interact with each other. More specifically,
the sensorsXt−1 andXt+1 are independent givenXt and Y , as illustrated in Figure 2. We implemented
the kernel-based quantization algorithm using either first- or second-order count kernels, and the hinge loss
function (8), as in the SVM algorithm. The second-order kernel is specified in equation (19) but with the
sum taken over onlyt, r such that|t − r| = 1.

Y

X1

X2

X3

X4

X5

X1 X2 X3

X4 X5 X6

X7 X8 X9

Y

(a) (b)

Figure 2. Examples of graphical modelsP (X,Y ) of our simulated sensor networks. (a) Chain-structured
dependency. (b) Fully connected (not all connections shown).

Spatially-dependent sensors:As a third example, we consider a 2-D layout in which, conditional on
the random target being present (Y = +1), all sensors interact but with the strength of interaction decaying
with distance. ThusP (X|Y = 1) is of the form:

P (X|Y = 1) ∝ exp
{∑

t

ht;uIu(Xt) +
∑

t6=r;uv

θtr;uvIu(Xt)Iv(Xr)
}
.
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Here the parameterh represents observations at individual sensors, whereasθ controls the dependence
among sensors. The distributionP (X|Y = −1) can be modeled in the same way with observationsh′,
and settingθ′ = 0 so that the sensors are conditionally independent. In simulations, we generateθtr;uv ∼
N(1/dtr, 0.1), wheredtr is the distance between sensort andr, and the observationsh andh′ are randomly
chosen in[0, 1]S . We consider a sensor network with 9 nodes (i.e.,S = 9), arrayed in the3 × 3 lattice
illustrated in Figure 2(b). Since computation of this density is intractable for moderate-sized networks, we
generated an empirical data set(xi, yi) by Gibbs sampling.
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Figure 3. Scatter plots of the test error of the LR versus KQ methods. (a) Conditionally independent network.
(b) Chain model with first-order kernel. (c), (d) Chain model with second-order kernel. (d) Fully connected
model.

We compare the results of our algorithm to an alternative decentralized classifier based on performing

a likelihood-ratio (LR) test at each sensor. Specifically, for each sensort, the estimatesP (Xt=u|Y =1)
P (Xt=u|Y =−1)

for u = 1, . . . , M of the likelihood ratio are sorted and grouped evenly intoL bins. Given the quantized
input signal and labelY , we then construct a naive Bayes classifier at the fusion center. This choice of
decision rule provides a reasonable comparison, since thresholded likelihood ratio tests are optimal in many
cases [28].

The KQ algorithm generally yields more accurate classification performance than the likelihood-ratio
based algorithm (LR). Figure 3 provides scatter plots of the test error of the KQ versus LQ methods for four
different set-ups, usingL = 2 levels of quantization. Panel (a) shows the naive Bayes setting and the KQ
method using the first-order count kernel. Note that the KQ test error is below the LR test error on the large
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majority of examples. Panels (b) and (c) show the case of chain-structured dependency, as illustrated in
Figure 2(a), using a first- and second-order count kernel respectively. Again, the performance of KQ in both
cases is superior to that of LR in most cases. Finally, panel (d) shows the fully-connected case of Figure 2(b)
with a first-order kernel. The performance of KQ is somewhat better than LR, although by a lesser amount
than the other cases.

UCI repository data sets:
We also applied our algorithm to several data sets from the machine learning data repository at the

University of California Irvine [6]. In contrast to the sensor network detection problem, in which communi-
cation constraints must be respected, the problem here can be viewed as that of finding a good quantization
scheme that retains information about the class label. Thus, the problem is similar in spirit to work on dis-
cretization schemes for classification [10]. The difference is that we assume that the data have already been
crudely quantized (we usem = 8 levels in our experiments), and that we retain no topological informa-
tion concerning the relative magnitudes of these values that could be used to drive classical discretization
algorithms. Overall, the problem can be viewed as hierarchical decision-making, in which a second-level
classification decision follows a first-level set of decisions concerning the features.

Data L = 2 4 6 NB CK
Pima 0.212 0.217 0.212 0.223 0.212
Iono 0.091 0.034 0.079 0.056 0.125
Bupa 0.368 0.322 0.345 0.322 0.345
Ecoli 0.082 0.176 0.176 0.235 0.188
Yeast 0.312 0.312 0.312 0.303 0.317
Wdbc 0.083 0.097 0.111 0.083 0.083

Table 1: Experimental results for the UCI data sets.

We used75% of the data set for training and the remainder for testing. The results for our algorithm with
L = 2, 4, and6 quantization levels are shown in Table 1. Note that in several cases the quantized algorithm
actually outperforms a naive Bayes algorithm (NB) with access to the real-valued features. This result may
be due in part to the fact that our quantizer is based on a discriminative classifier, but it is worth noting
that similar improvements over naive Bayes have been reported in earlier empirical work using classical
discretization algorithms [10].

5 Conclusions

We have presented a new approach to the problem of decentralized decision-making under constraints on
the number of bits that can be transmitted by each of a distributed set of sensors. In contrast to most
previous work in an extensive line of research on this problem, we assume that the joint distribution of
sensor observations is unknown, and that a set of data samples is available. We have proposed a novel
algorithm based on kernel methods, and shown that it is quite effective on both simulated and real-world
data sets.

This line of work described here can be extended in a number of directions. First, although we have
focused on discrete observationsX, it is natural to consider continuous signal observations. Doing so would
require considering parameterized distributionsQ(Z|X). Second, our kernel design so far makes use of
only rudimentary information from the sensor observation model, and could be improved by exploiting such
knowledge more thoroughly. Third, we have considered only the so-calledparallel configuration of the
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sensors, which amounts to the conditional independence ofQ(Z|X). One direction to explore is the use
of kernel-based methods for richer configurations, such as tree-structured andtandemconfigurations [28].
Finally, the work described here falls within the area offixed sample sizedetectors. An alternative type of
decentralized detection procedure is asequentialdetector, in which there is usually a large (possibly infinite)
number of observations that can be taken in sequence (e.g. [32]). It is also interesting to consider extensions
our method to this sequential setting.
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Proof of Lemma 1: (a) Sincex1, . . . , xn are independent realizations of the random vectorX, the quantities
Q(z|x1), . . . , Q(z|xn) are independent realizations of the random variableQ(z|X). (This statement holds
for each fixedz ∈ ZS .) By the strong law of large numbers, there holds

1
n

n∑
i=1

Q(z|xi)
a.s.−→ EQ(z|xi) = P (z)

asn → +∞. Similarly, we have1
n

∑n
i=1 Q(z|xi)I(yi = 1) a.s.−→ EQ(z|X)I(Y = 1). Therefore, asn → ∞,

κ(z) a.s.−→ EQ(z|X)I(Y = 1)
P (z)

=
∑

x

Q(z|X = x)P (X = x, Y = 1)
P (z)

= P (Y = 1|z),

where we have exploited the fact thatZ is independent ofY givenX.
(b) For eachz ∈ ZS , we have

sign
(∑n

i=1 Q(z|xi)I(yi = 1)∑n
i=1 Q(z|xi)

−
∑n

i=1 Q(z|xi)I(yi = −1)∑n
i=1 Q(z|xi)

)
= sign

(∑n
i=1 Q(z|xi)yi∑n
i=1 Q(z|xi)

)
= γemp(z).

Thus, part (a) impliesγemp(z) → γopt(z) for eachz. Similarly,Remp → Ropt.

Proof of Proposition 5 Here we complete the proof of Proposition 5. It remains to show that the optimum
w(Q) of the primal problem is related to the optimalα of the dual problem viaw(Q) =

∑n
i=1 αiyiΦQ(xi).

Indeed, sinceG(w) is a convex function with respect tow, w(Q) is an optimum solution forminw G(w; Q)
if and only if 0 ∈ ∂wG(w(Q)). By definition of the conjugate dual, this condition is equivalent tow(Q) ∈
∂G∗(0).

Recall thatG∗ is an inf-convolution ofn functionsg∗1, . . . , g∗n andΩ∗. Let α̂ := (α̂1, . . . , α̂n) be an
optimum solution to the dual problem, and̂u := (û1, . . . , ûn) be the corresponding value in which the
infimum operation in the definition ofG∗ is attained. Applying the subdifferential operation rule on a inf-
convolution function (Cor. 4.5.5, [14]):
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∂G∗(0) = ∂g∗1(û1) ∩ . . . ∩ ∂g∗n(ûn) ∩ ∂Ω∗(−
n∑

i=1

ûi).

But Ω∗(v) = 1
2‖v‖2, and so∂Ω∗(−∑n

i=1 ûi) reduces to a singleton−∑n
i=1 ûi =

∑n
i=1 α̂iyiΦQ(xi). This

implies thatw(Q) =
∑n

i=1 α̂iyiΦQ(xi) is the optimum solution to the primal problem.
To conclude, it will be useful for the proof of Lemma 6 to calculate∂g∗i (ûi), and derive several additional

properties relatingw(Q) and α̂. The expression forg∗i in equation (23) shows that it is the image of the
function 1

λφ∗ under the linear mappingαi 7→ 1
λαi(yiΦQ(xi). Consequently, by Theorem 4.5.1 of Urruty

and Lemarechal [14]), we have∂g∗i (ûi) = {w : 〈w, yiΦQ(xi)〉 ∈ ∂φ∗(−λα̂i)}, which implies thatbi :=
〈w(Q), yiΦQ(xi)〉 ∈ ∂φ∗(−λα̂i) for eachi = 1, . . . , n. By convex duality, this also implies that−λα̂i ∈
∂φ(bi) for i = 1, . . . , n.

Proof of Lemma 6: We shall show that the subdifferential∂Qt(z̄t|x̄t)G can be computed directly in terms of
the optimal solutionα of the dual optimization problem (21) and the kernel functionKz. Our approach is
to first derive a formula for∂Q(z̄|x̄)G, and then to compute∂Qt(z̄t|x̄t)G by applying the chain rule.

Definebi := 〈w(Q), yiΦQ(xi)〉. Using Theorem 23.8 of Rockafellar [24], the subdifferential∂Q(z̄|x̄)G
evaluated at(w(Q); Q) can be expressed as

∂Q(z̄|x̄)G =
n∑

i=1

∂Q(z̄|x̄)gi =
n∑

i=1

∂φ(bi)yi〈w, Φ′(z̄)〉I[xi = x̄].

Earlier we proved that−λαi ∈ ∂φ(bi) for eachi = 1, . . . , n, whereα is the optimal solution of (21).
Therefore,∂Q(z̄|x̄)G evaluated at(w(Q); Q) contains the following element:

n∑
i=1

−λαiyi〈w(Q), Φ′(z̄)〉I[xi = x̄]

=
n∑

i=1

−λαiyi〈
n∑

j=1

αjyjΦQ(xj), Φ′(z̄)〉I[xi = x̄]

=
∑
i,j

−λαiαjyiyjI[xi = x̄]
∑

z

K(z, z̄)Q(z|xj).

For eacht = 1, . . . , S, ∂Qt(z̄t|x̄t)G is related to∂Q(z̄|x̄)G by the chain rule. Note thatQ(z̄|x̄) =
∏S

t=1 Qt(z̄t|x̄t).

∂Qt(z̄t|x̄t)G =
∑
z,x

∂Qt(z̄t|x̄t)Q(z|x)∂Q(z|x)G

=
∑
z,x

Q(z|x)
Qt(z̄t|x̄t)

I[xt = x̄t]I[zt = z̄t]∂Q(z|x)G,

which contains the following element as one of its subgradients:∑
z,x

Q(z|x)
Qt(z̄t|x̄t)

I[xt = x̄t]I[zt = z̄t]
{∑

i,j

−λαiαjyiyjI[xi = x]
∑
z′

Kz(z′, z)Q(z′|xj)
}

=
∑

i,j,z,z′
−λαiαjyiyjI[xt

i = x̄t]I[zt = z̄t]
Q(z|xi)

Qt(z̄t|x̄t
i)

Q(z′|xj)Kz(z′, z)
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This completes the proof of the lemma.

Proof of Proposition 9: By definition of Rademacher complexity [30], we have

Rn(F0) = E sup
f∈F0

2
n

n∑
i=1

σif(Xi)

= E sup
‖w‖≤B;Q∈Q0

2
n

n∑
i=1

σi〈w, ΦQ(Xi)〉

=
2B

n
E sup

Q∈Q0

‖
n∑

i=1

σiΦQ(Xi)‖.

Applying the Cauchy-Schwarz inequality yields

Rn(F0) ≤ 2B

n

√√√√E sup
Q∈Q0

||
n∑

i=1

σiΦQ(Xi)||2

=
2B

n

E sup
Q∈Q0

n∑
i=1

KQ(Xi, Xi) + 2E sup
Q∈Q0

∑
1≤i<j≤n

σiσjKQ(Xi, Xj)

1/2

.

It remains to upper bound the second term inside the square root in the RHS. The trick is to partition the
n(n− 1)/2 pairs of(i, j) into n− 1 subsets each of which hasn/2 pairs of differenti andj (assumingn is
even for simplicity). The existence of such a partition can be shown by induction onn. Now, for eachi =
1, . . . , n−1, denote the subset indexed byi byn/2 pairs(πi(j), π′

i(j))
n/2
j=1, where all{πi(1), . . . , πi(n/2)}∩

{π′
i(1), . . . , π′

i(n/2)} = ∅. Therefore,

E sup
Q∈Q0

∑
1≤i<j≤n

σiσjKQ(Xi, Xj) = E sup
Q∈Q0

n−1∑
i=1

n/2∑
j=1

σπi(j)σπ′
i(j)

KQ(Xπi(j), Xπ′
i(j)

)

≤
n−1∑
i=1

E sup
Q∈Q0

n/2∑
j=1

σπi(j)σπ′
i(j)

KQ(Xπi(j), Xπ′
i(j)

).

Our final step is to bound the terms inside the summation overi by invoking Massart’s lemma [22] for
bounding Rademacher averages over a finite setA ⊂ R

d:

E sup
a∈A

d∑
i=1

σiai ≤ max ||a||2
√

2 log |A|. (32)

Now, for eachi and a realization ofX1, . . . , Xn, treatσπi(j)σπ′
i(j)

for j = 1, . . . , n/2 asn/2 Rademacher

variables, and then/2 dimensional vector(KQ(Xπi(j), Xπ′
i(j)

))n/2
j=1 takes on onlyLMS possible values

(since there areLMS possible choices forQ ∈ Q0). Then we have, for eachi = 1, . . . , n − 1:

E sup
Q∈Q0

n/2∑
j=1

σπi(j)σπ′
i(j)

KQ(Xπi(j), Xπ′
i(j)

) ≤
√

n/2 sup
z,z′

Kz(z, z′)
√

2 log(LMS),
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from which the lemma follows.

Proof of Proposition 10: We treat eachQ(Z|X) ∈ Q as a function over all possible values(z, x). Recall
thatX is anS-dimensional vectorX = (X1, . . . , XS). For each fixed realizationxt of Xt, for t = 1, . . . , S,
the set of all discrete conditional probability distributionsQ(Zt|xt) is a (L − 1) simplex∆L. Since each
Xt takes onM possible values, andX hasS dimensions, we have:

N(ε,Q, L∞) ≤ N(ε, ∆L, l∞)MS ≤ (1/ε)(L−1)MS .

Recall that eachf ∈ F can be written as:

f(x) =
n∑

i=1

αi

∑
z,zi

Q(z|x)Q(zi|xi)Kz(z, zi). (33)

We now defineε0 := ε [2LS sup ||α||1 supz,z′ Kz(z, z′)]−1. Given each fixed conditional distributionQ in
theε0-coveringG(ε0,Q, L∞) for Q, we can construct anε/2-covering inL2(Pn) for FQ. It is straightfor-
ward to verify that the union of all coverings forFQ indexed byQ ∈ G(ε0,Q, L∞) forms anε-covering
for F . Indeed, given any functionf ∈ F that is expressed in the form (33) with a correspondingQ ∈ Q,
there exists someQ∗ ∈ G(ε0,Q, L∞) such that‖Q − Q∗‖∞ ≤ ε0. Let f1 be a function inFQ∗ using the
same coefficientsα as those off . GivenQ∗ there exists somef2 ∈ FQ∗ such that‖f1 − f2‖L2(Pn) ≤ ε/2.
Applying the triangle inequality yields

‖f − f2‖L2(Pn) ≤ ‖f − f1‖L2(Pn) + ‖f1 − f2‖L2(Pn)

≤ ‖f − f1‖∞ + ε/2
≤ LS sup ||α||1 sup

z,z′
Kz(z, z′)‖Q − Q∗‖∞ + ε/2,

which is bounded above byε. In summary, we have constructed anε-covering inL2(Pn) for F whose
number of coverings is no more thanN(ε0,Q, L∞) supQ N(ε/2,FQ, L2(Pn)). This implies that

log N(ε,F , L2(Pn)) ≤ log
{

N(ε0,Q, L∞) sup
Q

N(ε/2,FQ, L2(Pn))
}

≤ log
{(

2LS sup ||α||1 supz,z′ Kz(z, z′)
ε

)(L−1)MS

sup
Q

N(ε/2,FQ, L2(Pn))
}

= sup
Q∈Q

log N(ε/2,FQ, L2(Pn)) + (L − 1)MS log
2LS sup ||α||1 supz,z′ Kz(z, z′)

ε
,

which completes the proof.
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