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Abstract

We consider the problem of decentralized detection under constraints on the number of bits that
can be transmitted by each sensor. In contrast to most previous work, in which the joint distribution
of sensor observations is assumed to be known, we address the problem when only a set of empirical
samples is available. We propose a novel algorithm using the framework of empirical risk minimization
and marginalized kernels, and analyze its computational and statistical properties both theoretically and
empirically. We provide an efficient implementation of the algorithm, and demonstrate its performance
on both simulated and real data sets.

1 Introduction

A decentralized detection system typically involves a set of sensors that receive observations from the envi-
ronment, but are permitted to transmit only a summary message (as opposed to the full observation) back to
a fusion center. On the basis of its received messages, this fusion center then chooses a final decision from
some number of alternative hypotheses about the environment. The problem of decentralized detection is to
design the local decision rules at each sensor, which determine the messages that are relayed to the fusion
center, as well a decision rule for the fusion center itself [28]. A key aspect of the problem is the presence
of communication constraintgneaning that the sizes of the messages sent by the sensors back to the fusion
center must be suitably “small” relative to the raw observations, whether measured in terms of either bits or
power. Thedecentralizechature of the system is to be contrasted with a centralized system, in which the
fusion center has access to the full collection of raw observations.

Such problems of decentralized decision-making have been the focus of considerable research in the past
two decades [e.g., 27, 28, 7, 8]. Indeed, decentralized systems arise in a variety of important applications,
ranging from sensor networks, in which each sensor operates under severe power or bandwidth constraints,



to the modeling of human decision-making, in which high-level executive decisions are frequently based
on lower-level summaries. The large majority of the literature is based on the assumption that the proba-
bility distributions of the sensor observations lie within some known parametric family (e.g., Gaussian and
conditionally independent), and seek to characterize the structure of optimal decision rules. The probability
of error is the most common performance criterion, but there has also been a significant amount of work
devoted to other criteria, such as the Neyman-Pearson or minimax formulations. See Tsitsiklis [28] and
Blum et al. [7] for comprehensive surveys of the literature.

More concretely, le” € {—1,+1} be a random variable, representing the two possible hypotheses
in a binary hypothesis-testing problem. Moreover, suppose that the system consisten$ors, each
of which observes a single component of thelimensional vectotX = {X!,..., X°}. One starting
point is to assume that the joint distributiét{ X, Y") falls within some parametric family. Of course, such
an assumption raises the modeling issue of how to determine an appropriate parametric family, and how to
estimate parameters. Both of these problems are very challenging in contexts such as sensor networks, given
highly inhomogeneous distributions and a large nuntbef sensors. Our focus in this paper is on relaxing
this assumption, and developing a method in which no assumption about the joint distriBuion”) is
required. Instead, we posit that a number of empirical sanipleg;);" , are given.

In the context ofcentralizedsignal detection problems, there is an extensive line of research on non-
parametric techniques, in which no specific parametric form for the joint distrib#t{on, V') is assumed
(see, e.g., Kassam [19] for a survey). In the decentralized setting, however, it is only relatively recently that
nonparametric methods for detection have been explored. Several authors have taken classical nonparamet-
ric methods from the centralized setting, and shown how they can also be applied in a decentralized system.
Such methods include schemes based on Wilcoxon signed-rank test statistic [33, 23], as well as the sign
detector and its extensions [13, 1, 15]. These methods have been shown to be quite effective for certain
types of joint distributions.

Our approach to decentralized detection in this paper is based on a combination of ideapfoniucing-
kernel Hilbert spacef2, 25], and the framework admpirical risk minimizatiorirom nonparametric statis-
tics. Methods based on reproducing-kernel Hilbert spaces (RKHSs) have figured prominently in the litera-
ture on centralized signal detection and estimation for several decades [e.g., 34, 17, 18]. More recent work
in statistical machine learning [e.g., 26] has demonstrated the power and versatility of kernel methods for
solving classification or regression problems on the basis of empirical data samples. Roughly speaking,
kernel-based algorithms in statistical machine learning involve choosing a function, which though linear
in the RKHS, induces a nonlinear function in the original space of observations. A key idea is to base
the choice of this function on the minimization ofegularized empirical riskunctional. This functional
consists of the empirical expectation of a convex loss funatiowhich represents an upper bound on the
0-1 loss (the 0-1 loss corresponds to the probability of error criterion), combined with a regularization term
that restricts the optimization to a convex subset of the RKHS. It has been shown that suitable choices of
margin-based convex loss functions lead to algorithms that are robust both computationally [26], as well as
statistically [35, 3]. The use of kernels in such empirical loss functions greatly increases their flexibility, so
that they can adapt to a wide range of underlying joint distributions.

In this paper, we show how kernel-based methods and empirical risk minimization are naturally suited
to the decentralized detection problem. More specifically, a key component of the methodology that we
propose involves the notion ofraarginalized kernelwhere the marginalization is induced by the trans-
formation from the observation¥ to the local decisionsf. The decision rules at each sensor, which
can be either probabilistic or deterministic, are defined by conditional probability distributions of the form
Q(Z]X), while the decision at the fusion center is defined in term@©f|X) and a linear function over



the corresponding RKHS. We develop and analyze an algorithm for optimizing the design of these decision
rules. It is interesting to note that this algorithm is similar in spirit to a suite@dlly optimumdetectors

in the literature [e.g., 7], in the sense that one step consists of optimizing the decision rule at a given sensor
while fixing the decision rules of the rest, whereas another step involves optimizing the decision rule of the
fusion center while holding fixed the local decision rules at each sensor. Our development relies heavily on
the convexity of the loss function, which allows us to leverage results from convex analysis [24] so as to
derive an efficient optimization procedure. In addition, we analyze the statistical properties of our algorithm,
and provide probabilistic bounds on its performance.

While the thrust of this paper is to explore the utility of recently-developed ideas from statistical ma-
chine learning for distributed decision-making, our results also have implications for machine learning. In
particular, it is worth noting that most of the machine learning literature on classification is abstracted away
from considerations of an underlying communication-theoretic infrastructure. Such limitations may prevent
an algorithm from aggregating all relevant data at a central site. Therefore, the general approach described
in this paper suggests interesting research directions for machine learning—specifically, in designing and
analyzing algorithms for communication-constrained environments.

The remainder of the paper is organized as follows. In Section 2, we provide a formal statement of the
decentralized decision-making problem, and show how it can be cast as a learning problem. In Section 3, we
present a kernel-based algorithm for solving the problem, and we also derive bounds on the performance of
this algorithm. Section 4 is devoted to the results of experiments using our algorithm, in application to both
simulated and real data. Finally, we conclude the paper with a discussion of future directions in Section 5.

2 Problem formulation and a simple strategy

In this section, we begin by providing a precise formulation of the decentralized detection problem to be
investigated in this paper, and show how it can be formulated in terms of statistical learning. We then
describe a simple strategy for designing local decision rules, based on an optimization problem involving
the empirical risk. This strategy, though naive, provides intuition for our subsequent development based on
kernel methods.

2.1 Formulation of the decentralized detection problem

Suppos€’ is a discrete-valued random variable, representing a hypothesis about the environment. Although
the methods that we describe are more generally applicable, the focus of this paper is the binary case, in
which the hypothesis variabl€ takes values iy := {—1,+1}. Our goal is to form an estimate
of the true hypothesis, based on observations collected from a sesehsors. More specifically, each
t=1,...,9, let X! ¢ X represent the observation at sensavhereX denotes the observation space. The
full set of observations corresponds to #@imensional random vectdt = (X!,..., X°) € X°, drawn
from the conditional distributio® (X |Y).

We assume that the global estimatés to be formed by dusion centerIn thecentralized settingthis
fusion center is permitted access to the full vector= (X',..., X*) of observations. In this case, it is
well-known [31] that optimal decision rules, whether under the Bayes error or the Neyman-Pearson criteria,
can be formulated in terms of the likelihood raf§ X |Y = 1)/P(X|Y = —1). In contrast, the defining
feature of thelecentralized settinig that the fusion center has access only to some form of summary of each
observationX?,¢t = 1,...S. More specifically, we suppose that each each sensot ..., S is permitted



to transmit anessageZ?, taking values in some spaég The fusion center, in turn, applies some decision
ruley to compute an estimaté = v(ZY, ..., Z%) of Y based on its received messages.

In this paper, we focus on the case of a discrete observation space¥-say{1,2,...,M}. The
key constraint, giving rise to the decentralized nature of the problem, is that the corresponding message
spaceZ = {1,..., L} is considerably smaller than the observation space (i.eg M). The problem is
to find, for each sensar= 1,..., S, a decision ruley! : X! — 2!, as well as an overall decision rule
v : 29 — {—1,+1} at the fusion center so as to minimize Bayes riskP(Y # v(Z)). We assume that
the joint distributionP (X, Y") is unknown, but that we are givenindependent and identically distributed
(i.i.d.) data pointgz;, y;);_, sampled fromP(X,Y).
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Figure 1. Decentralized detection system with sensors, in whichY” is the unknown hypothesis,
X = (X',..., X%) is the vector of sensor observations; @d- (Z',..., Z°) are the quantized messages
transmitted from sensors to the fusion center.

Figure 1 provides a graphical representation of this decentralized detection problem. The single node at
the top of the figure represents the hypothesis varighland the outgoing arrows point to the collection of
observationsy = (X!, ..., X*). The local decision rules' lie on the edges between sensor observations
X' and messageg!. Finally, the node at the bottom is the fusion center, which collects all the messages.

Although the Bayes-optimal risk can always be achieved by a deterministic decision rule [28], consid-
ering the larger space of stochastic decision rules confers some important advantages. First, such a space
can be compactly represented and parameterized, and prior knowledge can be incorporated. Second, the op-
timal deterministic rules are often very hard to compute, and a probabilistic rule may provide a reasonable
approximation in practice. Accordingly, we represent the rule for the sensors . .., S by a conditional
probability distribution@(Z| X). The fusion center makes its decision by applying a deterministic function
~(z) of z. The overall decision rulé?, ) consists of the individual sensor rules and the fusion center rule.

The decentralization requirement for our detection/classification system—i.e., that the decision rule for
sensort must be a function only of the observatish—can be translated into the probabilistic statement
thatZ', ..., Z% be conditionally independent givex:

S
Q(Z|X) H QH(Zt|XH). 1)
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In fact, this constraint turns out to be advantageous from a computational perspective, as will be clarified
in the sequel. We us@ to denote the space of all factorized conditional distributiQi&|X ), andQ to
denote the subset of factorized conditional distributions that are also deterministic.

2.2 A simple strategy based on minimizing empirical risk

Suppose that we have as our training datairs(z;, y;) fori = 1,...,n. Note that each;, as a particular
realization of the random vectox, is anS dimensional signal vector; = (z},...,z7) € X°. Let P
be the unknown underlying probability distribution foX, Y'). The probabilistic set-up makes it simple to
estimate the Bayes risk, which is to be minimized.

Consider a collection of local decision rules made at the sensors, which we den@QieZh¥ ). For

each such set of rules, the associated Bayes risk is defined by:

E|P(Y =1|Z) — P(Y = —1|2)|. )

DO | =
N | —

Ropt =

Here the expectatioR is with respect to the probability distributiaR(X, Y, Z) := P(X,Y)Q(Z|X). It
is clear that no decision rule at the fusion center (i.e., having access of)yn&s Bayes risk smaller than
R,y In addition, the Bayes risk,,; can be achieved by using the decision function

Yopt(2) = sign(P(Y = 1|z) — P(Y = —1]z)).

It is key to observe that this optimal decision raennotbe computed, becaugg X, Y) is not known, and
Q(Z|X) is to be determined. Thus, our goal is to determine the @{l&| X') that minimizes an empirical
estimate of the Bayes risk based on the training datay;)" ;. In Lemma 1 we show that the following is
one such unbiased estimate of the Bayes risk:

Remp = % - % Z ‘ ZQ(z\xl)yl} (3)
1

In addition,y.,:(2) can be estimated by the decision function,,(z) = sign( .7 ; Q(z|zi)y;). SinceZ
is a discrete random vector, the optimal Bayes risk can be estimated easily, regardless of whether the input
signal X is discrete or continuous.

Lemma 1. (a) Assume thaP(z) > 0 for all z. Define

S QUelm)i(y = 1)
S Q)

K(z)
Thenlim,, . k(z) = P(Y = 1|2).
(b) Asn — 00, Remp andyemp(2) tend toR,,: and~y,,:(z), respectively.
Proof. See Appendix 1. O

The significance of Lemma 1 is in motivating the goal of finding decision rQle5| X ) to minimize
the empirical errol.,,,,,. It is equivalent, using equation (3), to maximize

c@=>

z

) 4)

> Q)Y
=1
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subject to the constraints that define a probability distribution:

Q(zlz) = [T, Q'(z'|2') for all values ofz andzz.
Y Q Rt =1 fort=1,...,5, (5)
Q'(Z'|2") € [0, 1] fort=1,...,5.

The major computational difficulty in the optimization problem defined by equations (4) and (5) lies in the
summation over alL.® possible values of € Z°. One way to avoid this obstacle is by maximizing instead
the following function:

GQ) = Z(éc;(zrwi)y@-f.

z

Expanding the square and using the conditional independence condition (1) leads to the following equivalent
form for Cs:

S L
C(Q) = D wwi [] D Q)R ). (6)
ij

t=1 zt—=1

Note that the conditional independence condition (1)oallow us to comput&’s(Q) in O(SL) time, as
opposed ta)(L).

While this simple strategy is based directly on the empirical risk, it does not exploit any prior knowledge
about the class of discriminant functions farz). As we discuss in the following section, such knowledge
can be incorporated into the classifier using kernel methods. Moreover, the kernel-based decentralized
detection algorithm that we develop turns out to have an interesting connection to the simple approach
based orC(Q).

3 Akernel-based algorithm

In this section, we turn to methods for decentralized detection based on empirical risk minimization and
kernel methods [2, 25, 26]. We begin by introducing some background and definitions necessary for sub-
sequent development. We then motivate and describe a central component of our decentralized detection
system—namely, the notion ofraarginalized kernelOur method for designing decision rules is based on

an optimization problem, which we show how to solve efficiently. Finally, we derive theoretical bounds on
the performance of our decentralized detection system.

3.1 Empirical risk minimization and kernel methods

In this section, we provide some background on empirical risk minimization and kernel methods. The
exposition given here is necessarily very brief; we refer the reader to the books [26, 25, 34] for more details.
Our starting point is to consider estimatiligwith a rule of the forny(z) = signf(z), wheref : X — Ris
adiscriminant functiorthat lies within some function space to be specified. The ultimate goal is to choose
a discriminant functiorf to minimize the Bayes errd?P (Y # 17), or equivalently to minimize the expected
value of the following0-1 loss

¢o(yf(x)) = Iy # sign(f(z))]. (7)
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This minimization is intractable, both because the functigris not well-behaved (i.e., non-convex and
non-differentiable), and because the joint distributi®ris unknown. However, since we are given a set
of i.i.d. samples{(z;,y;)}~,, it is natural to consider minimizing a loss function based orempirical
expectationas motivated by our development in Section 2.2. Moreover, it turns out to be fruitful, for both
computational and statistical reasons, to design loss functions basedw#x surrogateto the 0-1 loss.

Indeed, a variety of classification algorithms in statistical machine learning have been shown to involve
loss functions that can be viewed as convex upper bounds on the 0-1 loss. For example, the support vector
machine (SVM) algorithm [9, 26] useshéinge losgunction:

n(yf(z)) = (1—-yf(x))y = max{l-yf(z),0}. (8)

On the other hand, the logistic regression algorithm [12] is based dodfstic lossfunction:

Go(yf(x)) = log[l+exp /@] )

Finally, the standard form of the boosting classification algorithm [11] usapanential lossunction:

¢3(yf(x)) = exp(=yf(z)). (10)

Intuition suggests that a functiofi with small ¢-risk E¢(Y f(X)) should also have a small Bayes risk

P(Y #sign(f(X))). Infact, it has been established rigorously that convex surrogates for the (non-convex)

0-1 loss function, such as the hinge (8) and logistic loss (9) functions, have favorable properties both com-

putationally (i.e., algorithmic efficiency), and in a statistical sense (i.e., bounds on estimation error) [35, 3].
We now turn to consideration of the function class from which the discriminant fungtimnto be

chosen. Kernel-based methods for discrimination entail chogsingm within a function class defined by

a positive semidefinite kernel, defined as follows (see [25]):

Definition 2. A real-valued kernel function is a symmetric bilinear mappidg : X x X — R. Itis
positive semidefinite, which means that for any subset. . ., ,, } drawn fromX’, the Gram matrix<;; =
K, (z;, x;) is positive semidefinite.

Given any such kernel, we first define a vector space of functions magptoghe real lineR through
all sums of the form

O =" Ka(,xj), (11)
j=1

Where{:lnj};?";1 are arbitrary points frot’, anda; € R. We can equip this space wittkarnel-based inner
productby defining (K, (-, z;), K;(-,z;)) = K(x;, z;), and then extending this definition to the full
space by bilinearity. Note that this inner product induces, for any function of the form (11), the kernel-based
norm || f[[3, = 327% 2y iy K@i, ).

Definition 3. Thereproducing kernel Hilbert spad¢ associated with a given kerné{, consists of the
kernel-based inner product, and the closure (in the kernel-based norm) of all functions of thd.1grm

As an aside, the term “reproducing” stems from the fact for Ary H, we have(f, K,(-,z;)) = f(x;),
showing that the kernel acts as the representer of evaluation [25].



In the framework of empirical risk minimization, the discriminant functipre H is chosen by mini-
mizing a cost function given by the sum of thepirical ¢-risk E¢(Y f(X)) and a suitable regularization
term

n

. A2
?élggdyzf(wz)) + 5 11l (12)
where) > 0 is a regularization parameter. The Representer Theorem (Thm. 4.2; [26]) guarantees that the
optimal solution to problem (12) can be written in the fofmn) = Y0 iy Ky (x, z;), for a particular
vectora € R™. The key here is that sum rangasly over the observed data pointSe;, y;)}7 ;.

For the sake of development in the sequel, it will be convenient to express fungtians as linear
discriminants involving the thé&ature map®(x) := K,(-,x). (Note that for eaclr € X, the quantity
®(z) = ®(x)(+) is a function fromx’ to the real lineR.) Any function f in the Hilbert space can be written
as a linear discriminant of the forfw, ®(z)) for some functionw € H. (In fact, by the reproducing
property, we havef(-) = w(-)). As a particular case, the Representer Theorem allows us to write the
optimal discriminant a§‘(a:) = (w, ®(x)), wherew = 7" | iy ®(z;).

3.2 Fusion center and marginalized kernels

With this background, we first consider how to design the decisiomrakgthe fusion center for fixedset-
ting Q(Z|X) of the sensor decision rules. Since the fusion center rule can only depend ¢a', . . ., 2°),
our starting point is a feature spaf®’(z)} with associated kerndk,. Following the development in the
previous section, we consider fusion center rules defined by taking the sign of a linear discriminant of the
form v(z) := (w, ®’'(2)). We then link the performance afto another kernel-based discriminant func-
tion f that actsdirectlyon z = (1, ...,2°), where the new kernek, associated wittf is defined as a
marginalized kerneih terms ofQ(Z|X) and K.

The relevant optimization problem is to minimize (as a functionpthe following regularized form of
the empiricalp-risk associated with the discriminamnt

min {33 6w (2)Q) + M), a3)
w : 2

where) > 0 is a regularization parameter. In its current form, the objective function (13) is intractable to
compute (because it involves summing overlail possible values of of a loss function that is generally
non-decomposable). However, exploiting the convexity afllows us to perform the computation exactly
for deterministic rules irQy, and also leads to a natural relaxation for an arbitrary decisionQuée Q.

This idea is formalized in the following:

Proposition 4. Define the quantities
Dq(x) = D Q([x)®(2), and f(x;Q) := (w, Po(x)). (14)

For any convexp, the optimal value of the following optimization problem is a lower bound on the optimal
value in problen{13):

: A
min > olyif(2;Q)) + §|]w||2 (15)
Moreover, the relaxation is tight for any deterministic r@g~z|X).
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Proof. Applying Jensen’s inequality to the functienyields ¢(y; f(x:; Q) < >, é(viv(2))Q(2]x;) for
eachi = 1,...n, from which the lower bound follows. Equality for determinis@icc Q, is immediate.
O

A key point is that the modified optimization problem (15) involves an ordinary regularized empirical
¢-loss, but in terms of a linear discriminant functigiw; Q) = (w, ®¢(z)) in the transformedfeature
space{®(z)} defined in equation (14). Moreover, the correspondiragginalized kernefunction takes

the form:
=" Q(22)Q('|a") K.(z,7), (16)

where K, (z,2') := (®'(z), ®'(2')) is the kernel in{®'(z)}-space. It is straightforward to see that the
positive semidefiniteness &f, implies thatK, is also a positive semidefinite function.

From a computational point of view, we have converted the marginalization over loss function values
to a marginalization over kernel functions. While the former is intractable, the latter marginalization can
be carried out in many cases by exploiting the structure of the conditional distrib@igfisX). (In Sec-
tion 3.3, we provide several examples to illustrate.) From the modeling perspective, it is interesting to
note that marginalized kernels, like that of equation (16), underlie recent work that aims at combining the
advantages of graphical models and Mercer kernels [16, 29].

As a standard kernel-based formulation, the optimization problem (15) can be solved by the usual La-
grangian dual formulation [26], thereby yielding an optimal weight veetor his weight vector defines the
decision rule for the fusion center by(z) := (w, ®'(z)). By the Representer Theorem [26], the optimal
solutionw to problem (15) has an expansion of the form

w = Zazyz(I)Q xz Z Zazyz |‘T1 ( )7

=1 =1 2z

wherea is an optimal dual solution, and the second equality follows from the definitidnygk) given in
equation (14). Substituting this decompositionuointo the definition ofy yields

Z Z ;i Q |xz (Z7 Z,)' (17)

z' i=1

Note that there is an intuitive connection between the discriminant functiansly. In particular, using the
definitions of f and Ky, it can be seen that(x) = E[y(Z)|x], where the expectation is taken with respect
to Q(Z|X = z). The interpretation is quite natural: when conditioned on senthe average behavior of
the discriminant function/(Z), which doesot observer, is equivalent to the optimal discriminayifx),
which does have access:ito

3.3 Design and computation of marginalized kernels

As seen in the previous section, the representation of discriminant fungtiand~y depends on the kernel
functions K, (z, 2') and Kg(z, «’), andnot on the explicit representation of the underlying feature spaces
{®'(2)} and{®q(z)}. Itis also shown in the next section that our algorithm for solvirand~ requires
only the knowledge of the kernel functiohS andK(,. Indeed, the effectiveness of a kernel-based algorithm
typically hinges heavily on the design and computation of its kernel function(s).



Accordingly, let us now consider the computational issues associated with marginalized Keynel
assuming thak’, has already been chosen. In general, the computatidiydf:, ') entails marginalizing
over the variableZ, which (at first glance) has computational complexity on the ordér(d@f°). However,
this calculation fails to take advantage of any structure in the kernel funéfionMore specifically, it is
often the case that the kernel functié (z, z’) can be decomposed into local functions, in which case the
computational cost is considerably lower. Here we provide a few examples of computationally tractable
kernels.

Computationally tractable kernels:

(a) Perhaps the simplest example islihear kernelK,(z, 2') = Zle 2t2't, for which it is straightfor-
ward to derivek g (z, ') = S5, E[2!|z!] E[2"|"].

(b) A second example, natural for applications in whi€h and Z* are discrete random variables, is
the count kernel Let us represent each discrete values {1,..., M} as aM-dimensional vec-
tor (0,...,1,...,0), whoseu-th coordinate takes value 1. If we define the first-order count kernel
K.(z,7) := 37 [zt = 2], then the resulting marginalized kernel takes the form:

S
Koz, o) = Y Q@2)Q(2) Y 1" =2" = Y Q' =2"ja',2").  (18)
z,2! t=1

t=1

(c) A natural generalization is theecond-order count kernét.(z,2') = Y7 _ I[z" = 2"][[z" =
2'"] that accounts for the pairwise interaction between coordindtasd >". For this example, the
associated marginalized kerr€l) (z, z’) takes the form:

2 Z Q' = "2t 2)Q (2" = 2 |a", 2'T). (19)

1<t<r<S

Remarks: First, note that even for a linear base kerfgl, the kernel function(¢ inherits additional
(nonlinear) structure from the marginalization o¢gZ| X ). As a consequence, the associated discriminant
functions (i.e.;y and f) are certainly not linear. Second, our formulation allows any available prior knowl-
edge to be incorporated infg in at least two possible ways: (i) The base kernel representing a similarity
measure in the quantized spacezafan reflect the structure of the sensor network, or (ii) More structured
decision rules)(Z|X ) can be considered, such as chain or tree-structured decision rules.

3.4 Joint optimization

Our next task is to perform joint optimization of both the fusion center rule, defined @y equivalently
«, as in equation (17)), and the sensor rilesObserve that the cost function (15) can be re-expressed as a
function of bothw and( as follows:

G(w; Q) = %Zqﬁ(yl(w, ZQ(Z|5L'1)‘I>,(Z)>) + %HwH? (20)

Of interest is the joint minimization of the functia@r in bothw and@. It can be seen easily that

(a) G is convex inw with @ fixed; and
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(b) moreover( is convex inQ?, when bothw and all othe{ Q", r # t} are fixed.

These observations motivate the use of blockwise coordinate gradient descent to perform the joint mini-
mization.

Optimization of w: As described in Section 3.2, whéhis fixed, thenmin,, G(w; Q) can be computed
efficiently by a dual reformulation. Specifically, as we establish in the following result using ideas from
convex duality [24], a dual reformulation afin,, G(w; Q) is given by

max{ - —Zqﬁ —\a;) — —a Ty yT)oKQ]a}, (21)

acR”™

where¢*(u) := sup,cg {u - v — ¢(v)} is the conjugate dual af, [Kq)i; := Kg(;, ;) is the empirical
kernel matrix, an@ denotes Hadamard product.

Proposition 5. For each fixed) € Q, the value of the primal probleinf,, G(w; @) is attained and equal to
its dual form(21). Furthermore, any optimal solutiom to problem(21) defines the optimal primal solution

w(Q) tomin,, G(w; Q) viaw(Q) = i | oy P ().

Proof. It suffices for our current purposes to restrict to the case where the funatians ®(x) can be
viewed as vectors in some finite-dimensional space-R§ayHowever, it is possible to extend this approach
to the infinite-dimensional setting by using conjugacy in general normed spaces [21].

A remark on notation before proceeding: sirdgés fixed, we drop from G for notational convenience
(i.e., we writeG(w) = G(w; Q)). First, we observe thaf(w) is convex with respect te and thatG — oo
as||w|| — oo. Consequently, the infimum defining the primal problem), g~ G(w) is attained. We now
re-write this primal problem as follows:

Jnf Gw) = inf {G(w) —{w, 0)} = ~G"(0),
whereG* : R — R denotes the conjugate dual Gf

Using the notatiory; (w) = $¢((w, y;®o(z;))) andQ(w) := 1||w|[?>, we can decompos€ as the
sumG(w) = >, gi(w) + Q(w). This decomposition allows us to compute the conjugate @tialia the
inf-convolution theorem (Thm. 16.4; Rockafellar [24]) as follows:

G (0) _inf {Zgl u;) + Q0 ( Zui)}. (22)
4=l i=1

Applying calculus rules for conjugacy operations (Thm. 16.3; [24]), we obtain:
1 % H
« To*(— Aoy if u; = —ay ¥ Po(x; for somea; € R

+00 otherwise

A straightforward calculation yield®* (v) = sup,, {(v, w) — 3||w[|*} = 3||v||?. Substituting these expres-
sions into equation (22) leads to:

Do)

G0 = it Y jeha+

a€ER" 4
1=
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from which it follows that

i{luf Gw) = —G*(0) = sup { - — Zgb —Aa;) — % Z oziozjyiyij(:vi,xj)}.

a€R™ 1<ij<n

Thus, we have derived the dual form (21). See Appendix 5 for the remainder of the proof, in which we
derive the link between(Q) and the dual variables. O

This proposition is significant in that the dual problem involves only the kernel m@t@xx;, z;))1<i j<n-
Hence, one can solve for the optimal discriminant functigas f (z) ory = ~(z) without requiring explicit
knowledge of the underlying feature spadds(z)} and{®(z)}. As a particular example, consider the
case of hinge loss function (8), as used in the SVM algorithm [26]. A straightforward calculation yields

o (u) = {u if ue [.—1,0]

+oo otherwise

Substituting this formula into (21) yields, as a special case, the familiar dual formulation for the SVM:

n

1
ogg?fﬁ{ EZ: g Lo Kl a}'

Optimization of @Q: The second step is to minimiz& over Q*, with w and all othe{ Q", r # t} held
fixed. Our approach is to compute the derivative (or more generally, the subdifferential) with respéct to
and then apply a gradient-based method. A challenge to be confronteddsithééfined in terms of feature
vectors®’(z), which are typically high-dimensional quantities. Indeed, although it is intractable to evaluate
the gradient at an arbitrary, the following result establishes that it can always be evaluated at the point

(w(@),Q) forany@ € Q.

Lemma 6. Letw(Q) be the optimizing argument afin,, G(w; @), and leta. be an optimal solution to the
dual problem(21). Then the following element

Y Z ;o Q7| J)QtEleZB)K (2, I[at = 2] I[2* = 2]
(1:3)(2,2')

is an element of the subdifferential.
Proof. See Appendix 5. O

Observe that this representation of the (sub)gradient involves marginalizatio @fehe kernel func-
tion K, and therefore can be computed efficiently in many cases, as described in Section 3.3. Overall, the
blockwise coordinate descent algorithm for optimizing the choice of local decision rules takes the following
form:

!Subgradients a generalized counterpart of gradient for non-differentiable convex functions. Bristlggaadienof a convex
function f : R™ — R atx is a vectors € R™ satisfyingf(y) > f(z) + (s, y — z) for ally € R™. Thesubdifferentiakt a point
z is the set of all subgradients; hencefifs differentiable atz, the subdifferential consists of the single vec{& f(z)}. In our
cases(7 is non-differentiable when is the hinge loss (8), and differentiable whers the logistic loss (9) or exponential loss (10).
Dot (st|zt)G evaluated afw(Q), Q). More details on convex analysis can be found in the books [24, 14].
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Kernel quantization (KQ) algorithm:
(a) With @ fixed, compute the optimizing () by solving the dual problem (21).

(b) For some index, fix w(Q) and {Q",r # t} and take a gradient step i@ using
Lemma 6.

Upon convergence, we define a deterministic decision rule for each genaor

Fi(z') = argmax,iczQ(2'x"). (24)

Remarks: A number of comments about this algorithm are in order. At a high level, the updates consist
of alternatively updating the decision rule for a sensor while fixing the decision rules for the remaining sen-
sors and the fusion center, and updating the decision rule for the fusion center while fixing the decision rules
for all other sensors. In this sense, our approach is similar in spirit to a suite of practical algorithms [e.g.,
28] for decentralized detection under particular assumptions on the joint distritR¢®ny”).

Using standard results [5], it is straightforward to guarantee convergence of such coordinate-wise up-
dates when the loss functiahis strictly convex and differentiable (e.g., logistic loss (9) or exponential
loss (10)). In contrast, the case of non-differentiabl@.g., hinge loss (8)) requires more care. We have,
however, obtained good results in practice even in the case of hinge loss.

Finally, it is interesting to note the connection between the KQ algorithm and the naive approach con-
sidered in Section 2.2. More precisely, suppose that we fixich that alky; are equal to one, and let the
base kernek, be constant (and thus entirely uninformative). Under these conditions, the optimization of
G with respect ta) reduces to exactly the naive approach.

3.5 Estimation error bounds

This section is devoted to analysis of the statistical properties of the KQ algorithm. In particular, our goal
is to derive bounds on the performance of our classffigry) when applied to new data, as opposed to the
i.i.d. samples on which it was trained. It is key to distinguish between two formsrisk:

(a) theempirical ¢-risk E¢(Yy(Z)) is defined by an expectation ovB( X, Y)Q(Z|X), whereP is the
empirical distribution given by the i.i.d. samplé&e;, v;)}7 ;.

(b) thetruep-risk Ep(Y~(Z2)) is defined by taking an expectation over the joint distribufitfiX’, Y)Q(Z| X).

In designing our classifier, we made use of the empirigailsk as a proxy for the actual risk. On the
other hand, the appropriate metric for assessing performance of the designed classifier is dhidsktue
Eop(Y~(Z)). At a high level, our procedure for obtaining performance bounds can be decomposed into the
following steps:

1. First, we relate the trug-risk E¢(Y (7)) to the trueg-risk E¢(Y f(X) for the functionsf € F
(and f € Fy) that are computed at intermediate stages of our algorithm. The latter quantities are
well-studied objects in statistical learning theory.

2. The second step to relate the empirigaisk E(Y f(X)) to the trueg-risk E(Y f(X)). In general,
the trueg-risk for a functionf in some classF is bounded by the empiricakrisk plus a complexity
term that captures the “richness” of the function cl&s§35, 3]. In particular, we make use of the
Rademacher complexias a measure of this richness.
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3. Third, we combine the first two steps so as to derive bounds on the-rigk E¢(Y~(Z2)) in terms
of the empiricakp-risk of f and the Rademacher complexity.

4. Finally, we derive bounds on the Rademacher complexity in terms of the number of training samples
n, as well as the number of quantization levEland M.

Step 1: We begin by isolating the class of functions over which we optimize. Define, for adixed,
the function spacé as

{f:2— (w, gz ZazyzKQ z,z) | s.t. ||w|| < B}, (25)

7

whereB > 0 is a constant. Note thaky is simply the class of functions associated with the marginal-
ized kernelK . The function class over which our algorithm performs the optimization is defined by the
unionF := UgeoFg, WhereQ is the space of all factorized conditional distributiap&Z| X ). Lastly, we
define the function clas$y := Ugeg,Fq. corresponding to the union of the function spaces defined by
marginalized kernels with deterministic distributio@s

Any discriminant functionf € F (or F), defined by a vectos, induces an associated discriminant
function v, via equation (17). Relevant to the performance of the classjfieis the expected-loss
E¢(Y~¢(Z)), whereas the algorithm actually minimizes (the empirical versiofgf)y” f(X)). The rela-
tionship between these two quantities is expressed in the following proposition.

Proposition 7.
(@) We haveEg(Y~4(2)) > E¢(Y £(X)), with equality wher®(Z|X) is deterministic.
(b) Moreover, there holds

inf E6(Y77(2)) < jnf Eo(Yf(X) (26a)
inf E6(Y77(2)) > inf Eg(Y /(X)) (26b)

The same statement also holds for empirical expectations.
Proof. Applying Jensen’s inequality to the convex functigields
E¢(Yvp(Z)) = ExvE[p(Y(2)X,Y] > Exyd(E[Yy,(2)|X,Y]) = E¢(Y f(X)),

where we have used the conditional independencg& ahdY given X. This establishes part (a), and
the lower bound (26b) follows directly. Moreover, part (a) also implies théfcr Eo(Yv,(Z)) =
inf re 7, E¢(Y f(X)), and the upper bound (26a) follows singg C F. O

Step 2: The next step is to relate the empirigakisk for f (i.e., IE(Yf(X))) to the trueg-risk (i.e.,
E(Y f(X))). Recall that thd&Rademacher complexitf the function class is defined [30] as

R, (F)=Esup — Zsz

fermn

where theRademacher variables,, . .., o, are independent and uniform da-1, +1}, and Xy,..., X,
are i.i.d. samples selected according to distributibnin the case thap is Lipschitz with constani, the
empirical and true risk can be related via the Rademacher complexity as follows [20]. With probability at
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leastl — ¢ with respect to training samplés(;, Y;)"_,, drawn according to the empirical distributidt’,

there holds
;gg!M(Yf(X)) CEH(Y F(X))] < 20Ru(F) + % o

Moreover, the same bound applies#p.

Step 3: Combining the bound (27) with Proposition 7 leads to the following theorem, which provides
generalization error bounds for the optingatisk of the decision function learned by our algorithm in terms
of the Rademacher complexitiés, (Fy) andR,,(F):

Theorem 8. Givenn i.i.d. labeled data point$z;, y;)7_;, with probability at least — 24,

g Y (4 () — 20R(F) [Pt

< inf Eo(Y4(2)) <

In(2/0)

1 n
inf - ; (Y f (i) + 20R(Fo) + o

Proof. Using bound (27), with probablity at leakt- ¢, forany f € F,

In(2/9)

EO(YF(X) 2 © 3 6lyif () — 20Ra(F) — 2.
=1

Combining with (26b), we have, with probability— 4,
inf E¢(Yvr(Z)) > inf Eo(Y f(X
it Bo(Yyy(2)) = inf Eo(Y f(X))

- ‘ In(2/6)

V
5
ety
|
<
—~~
&
~
—~
8
=
|
[\
~
o
3
3
|

which proves the lower bound of the theorem with probability at I@éasts. The upper bound is similarly
true with probability at least — 6. Hence, both are true with probability at least 24, by the union bound.
Il

Step 4: So that Theorem 8 has practical meaning, we need to derive upper bounds on the Rademacher
complexity of the function classes and Fy. Of particular interest is the growth in the complexity Bf
and F; with respect to the number of training samplgsas well as the number of discrete signalsnd
M. The following proposition derives such bounds, exploiting the fact that the number of 0-1 conditional
probability distributions)(Z|X) is a finite number(LM5).

Proposition 9.

2B " 1/2
R, (Fo) < 7[[@1 sup ZKQ(Xi,Xi) + 2(n — 1)\/n/2sup K.(z,2")\/2M SlogL| . (28)
QeQo ;4 2,7
Proof. See Appendix 5. O
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Although the rate given in equation (28) is not tight in terms of the number of data samplesbound is
nontrivial and is relatively simple. (In particular, it depends directly on the kernel funéfiothe number
of samples:, quantization leveld.,, number of sensorS, and size of observation spagé.)

We can also provide a more general and possibly tighter upper bound on the Rademacher complexity
based on the concept ehtropy numbef30]. Indeed, an important property of the Rademacher com-
plexity is that it can be estimated reliably from a single saniple ..., z,). Specifically, if we define
Rn(F) = E[2 supser Yoy 0if (xi)] (Where the expectation is w.r.t. the Rademacher varighbigsonly),
then it can be shown using McDiarmid’s inequality tlﬂ?a;(f) is tightly concentrated around,, () with
high probablity [4]. Concretely, for any > 0, there holds:

P{mn(f)—ﬁn(f)\ > n}§2e’72”/8. (29)

Hence, the Rademacher complexity is closely related to its empirical veﬁ?@i()ﬁ), which can be related
to the concept of entropy number. In general, define the covering nuvigers, p) for a setS to be the
minimum number of balls of diameterthat completely covef (according to a metrip). Thee-entropy
number ofS is then defined a®g N (¢, S, p). In our context, consider in particular the (P,,) metric
defined on an empirical sample, ..., z,) as:

n 1/2

Y (ful) = fal@:)?

=1

1
n

I~ llacr =]
Then, it is well known [30] that for some absolute const@nthere holds:

Ru(F) < C/OOO \/IOgN(e’i’ La(Pn)) g (30)

The following result relates the entropy number foto the supremum of the entropy number taken over a
restricted function clasgy,.

Proposition 10. The entropy numbédbg N (e, F, Lo (P,,)) of F is bounded above by

2L sup ||al1 sup, . K.(z, %)

sup log N(e/2, Fg, La(Py)) + (L — 1)M Slog ; (31)
QeQ

Moreover, the same bound holds 65.

Proof. See Appendix 5. O

This proposition guarantees that the increase in the entropy number in moving from73ptoethe
larger classF is only O((L—1)M Slog(L® /¢)). Consequently, we incur at most@x[M S%(L — 1) log L/nﬁ)
increase in the upper bound (30) &y, (F) (as well asR,,(Fy)). Moreover, the Rademacher complexity
increases with the square root of the numbésg L of quantization leveld..
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4 Experimental Results

We evaluated our algorithm using both data from simulated sensor networks and real-world data sets. We
consider three types of sensor network configurations:

Conditionally independent observations:In this example, the observatioi8', ..., X are indepen-
dent conditional orY’, as illustrated in Figure 1. We consider networks with 10 sengbes (10), each of
which receive signals with 8 leveld{ = 8). We applied the algorithm to compute decision rulesifos 2.

In all cases, we generate= 200 training samples, and the same number for testing. We performed 20 trials
on each of 20 randomly generated mode(sY,Y).

Chain-structured dependency: A conditional independence assumption for the observations, though
widely employed in most work on decentralized detection, may be unrealistic in many settings. For instance,
consider the problem of detecting a random signal in noise [31], in whieh 1 represents the hypothesis
that a certain random signal is present in the environment, wh&reas-1 represents the hypothesis that
only i.i.d. noise is present. Under these assumptighs. .., X will be conditionally independent given
Y = —1, since all sensors receive i.i.d. noise. However, conditioned ea +1 (i.e., in the presence of
the random signal), the observations at spatially adjacent sensors will be dependent, with the dependence
decaying with distance.

In a 1-D setting, these conditions can be modeled with a chain-structured dependency, and the use of a
count kernel to account for the interaction among sensors. More precisely, we consider a set-up in which
five sensors are located in a line such that only adjacent sensors interact with each other. More specifically,
the sensors(;_; and X, are independent giveR; and Y, as illustrated in Figure 2. We implemented
the kernel-based quantization algorithm using either first- or second-order count kernels, and the hinge loss
function (8), as in the SVM algorithm. The second-order kernel is specified in equation (19) but with the
sum taken over only, » such thatt — r| = 1.

Xl
X2
X3

X4

X5
(@) (b)

Figure 2. Examples of graphical modeB(X,Y") of our simulated sensor networks. (a) Chain-structured
dependency. (b) Fully connected (not all connections shown).

Spatially-dependent sensorsAs a third example, we consider a 2-D layout in which, conditional on
the random target being presetit & +1), all sensors interact but with the strength of interaction decaying
with distance. Thu®(X|Y = 1) is of the form:

PX|Y = 1) ocexp { Y huulu (X)) + D Brranolu (XL (X7}

t#r;uv
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Here the parametéi represents observations at individual sensors, wheteamtrols the dependence
among sensors. The distributidn(X|Y" = —1) can be modeled in the same way with observatiohs

and setting’ = 0 so that the sensors are conditionally independent. In simulations, we gefigrate-
N(1/ds,0.1), whered,, is the distance between seng@andr, and the observatiorisandh’ are randomly
chosen in[0,1]°. We consider a sensor network with 9 nodes (i%+= 9), arrayed in the3 x 3 lattice
illustrated in Figure 2(b). Since computation of this density is intractable for moderate-sized networks, we
generated an empirical data $et, ;) by Gibbs sampling.

Naive Bayes sensor network Chain-structured sensor network
R 0.55¢
0.25 0.5¢
5 o 50.45 ¢
5] 5 °
7 0.2 ° ° 7 0.4r
2 2
2 . 20.35¢ °
[ g °
L1015 5 o3
0257
1st CK 1st CK
0'&.1 0.15 0.2 0.25 0'8.2 0.3 0.4 0.5
KO test error KO test error
(a) (b)
Chain-structured sensor network Fully connected sensor network
0.55 0.5;
0.5 ° . o
50.45 5047
@ ° @ o 00%
g o s Bos sl
20.35 2
[ i °
I [l
- 03 ) —0.2 )
0251 2nd CK
0. . ‘ ‘ ‘ ,
6.2 0.3 0.4 0.5 0 6.1 0.2 0.3 0.4 0.5
KQ test error KO test error
() (d)

Figure 3. Scatter plots of the test error of the LR versus KQ methods. (a) Conditionally independent network.
(b) Chain model with first-order kernel. (c), (d) Chain model with second-order kernel. (d) Fully connected
model.

We compare the results of our algorithm to an alternative decentralized classifier based on performing

a likelihood-ratio (LR) test at each sensor. Specifically, for each sensbe estimate%
foru = 1,..., M of the likelihood ratio are sorted and grouped evenly ihtbins. Given the quantized

input signal and labeY’, we then construct a naive Bayes classifier at the fusion center. This choice of
decision rule provides a reasonable comparison, since thresholded likelihood ratio tests are optimal in many
cases [28].

The KQ algorithm generally yields more accurate classification performance than the likelihood-ratio
based algorithm (LR). Figure 3 provides scatter plots of the test error of the KQ versus LQ methods for four
different set-ups, using = 2 levels of quantization. Panel (a) shows the naive Bayes setting and the KQ
method using the first-order count kernel. Note that the KQ test error is below the LR test error on the large
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majority of examples. Panels (b) and (c) show the case of chain-structured dependency, as illustrated in
Figure 2(a), using a first- and second-order count kernel respectively. Again, the performance of KQ in both

cases is superior to that of LR in most cases. Finally, panel (d) shows the fully-connected case of Figure 2(b)
with a first-order kernel. The performance of KQ is somewhat better than LR, although by a lesser amount

than the other cases.

UCI repository data sets:

We also applied our algorithm to several data sets from the machine learning data repository at the
University of California Irvine [6]. In contrast to the sensor network detection problem, in which communi-
cation constraints must be respected, the problem here can be viewed as that of finding a good quantization
scheme that retains information about the class label. Thus, the problem is similar in spirit to work on dis-
cretization schemes for classification [10]. The difference is that we assume that the data have already been
crudely quantized (we us@ = 8 levels in our experiments), and that we retain no topological informa-
tion concerning the relative magnitudes of these values that could be used to drive classical discretization
algorithms. Overall, the problem can be viewed as hierarchical decision-making, in which a second-level
classification decision follows a first-level set of decisions concerning the features.

Data|| L =2 4 6 NB CK
Pima| 0.212| 0.217| 0.212| 0.223]| 0.212
lono || 0.091| 0.034| 0.079| 0.056| 0.125
Bupa || 0.368| 0.322| 0.345| 0.322| 0.345
Ecoli | 0.082| 0.176| 0.176| 0.235| 0.188
Yeast|| 0.312| 0.312| 0.312| 0.303 | 0.317
Wdbc || 0.083| 0.097| 0.111| 0.083| 0.083

Table 1: Experimental results for the UCI data sets.

We used’5% of the data set for training and the remainder for testing. The results for our algorithm with
L = 2,4, and6 quantization levels are shown in Table 1. Note that in several cases the quantized algorithm
actually outperforms a naive Bayes algorithm (NB) with access to the real-valued features. This result may
be due in part to the fact that our quantizer is based on a discriminative classifier, but it is worth noting
that similar improvements over naive Bayes have been reported in earlier empirical work using classical
discretization algorithms [10].

5 Conclusions

We have presented a new approach to the problem of decentralized decision-making under constraints on
the number of bits that can be transmitted by each of a distributed set of sensors. In contrast to most
previous work in an extensive line of research on this problem, we assume that the joint distribution of
sensor observations is unknown, and that a set of data samples is available. We have proposed a novel
algorithm based on kernel methods, and shown that it is quite effective on both simulated and real-world
data sets.

This line of work described here can be extended in a number of directions. First, although we have
focused on discrete observatiaKsit is natural to consider continuous signal observations. Doing so would
require considering parameterized distributigpeZ|X ). Second, our kernel design so far makes use of
only rudimentary information from the sensor observation model, and could be improved by exploiting such
knowledge more thoroughly. Third, we have considered only the so-cadlesllel configuration of the
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sensors, which amounts to the conditional independencg(&f.X). One direction to explore is the use

of kernel-based methods for richer configurations, such as tree-structuréanalednconfigurations [28].

Finally, the work described here falls within the aredinéd sample sizdetectors. An alternative type of
decentralized detection procedure seguentialletector, in which there is usually a large (possibly infinite)
number of observations that can be taken in sequence (e.g. [32]). Itis also interesting to consider extensions
our method to this sequential setting.
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Proof of Lemma 1: (a) Sincery, . . ., x,, are independent realizations of the random ve&tpthe quantities

Q(z|x1),...,Q(z|zy,) are independent realizations of the random varighle| X ). (This statement holds
for each fixedz € Z°.) By the strong law of large numbers, there holds

1
- > Qzlz:) <5 EQ(z|z:) = P(2)
=1
asn — +oo. Similarly, we havel 37 | Q(z|z;)I(y; = 1) == EQ(2|X)L(Y = 1). Therefore, as — oo,

ey e BRI S 5 QX = )P 1)

where we have exploited the fact thais independent oY given X.
(b) For each: € 2%, we have

Sign <ZZ IQ( |.IZ) ( Yi = 1) _ Zz—l Q( |xl) ( Y = _1)>
izt Qi) S Q)
vion [ it Ql)y:
g <Z?:1Q<z\xi> )

= Yemp(2)-

Thus, part (a) implieSemy(2) — Yopt(2) for eachz. Similarly, Re,,p, — Ropt.

Proof of Proposition 5 Here we complete the proof of Proposition 5. It remains to show that the optimum
w(Q) of the primal problem is related to the optimabf the dual problem via(Q) = >"7" | oy P (x;).
Indeed, sincé&(w) is a convex function with respect to, w(Q) is an optimum solution fomin,, G(w; Q)

if and only if 0 € 9,,G(w(Q)). By definition of the conjugate dual, this condition is equivalenitd))
0G*(0).

Recall thatG* is an inf-convolution ofn functionsgy,. .., g: andQ*. Leta := (aq,...,a,) be an
optimum solution to the dual problem, afad:= (uy,...,u,) be the corresponding value in which the
infimum operation in the definition af* is attained. Applying the subdifferential operation rule on a inf-
convolution function (Cor. 4.5.5, [14]):
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n

OG*(0) = dg; (1) M ... N dgyy(wn) NOL (=D ).
i=1
But Q*(v) = 3|v[|?, and s09Q*(— Y"1, G;) reduces to a singleton Y~ | @; = S| @y Po(w;). This
implies thatw(Q) = > | &;y;®o(z;) is the optimum solution to the primal problem.

To conclude, it will be useful for the proof of Lemma 6 to calculdig(u; ), and derive several additional
properties relatingu(@) anda. The expression fog! in equation (23) shows that it is the image of the
function %gﬁ* under the linear mapping; — %ai(yiQ)Q(xi). Consequently, by Theorem 4.5.1 of Urruty
and Lemarechal [14]), we havgy; (u;) = {w : (w, y:Pg(x;)) € 0¢*(—Aa;)}, which implies thab; :=
(w(Q), yi®g(x;)) € d9*(—Aay;) for eachi = 1,...,n. By convex duality, this also implies that\a; €
op(b;)fori=1,....n
Proof of Lemma 6: We shall show that the subdifferenti@y: ;)G can be computed directly in terms of
the optimal solutiony of the dual optimization problem (21) and the kernel function Our approach is
to first derive a formula fof ;) G, and then to computéy: |+ G by applying the chain rule.

Defineb; := (w(Q), y:®q(x:)). Using Theorem 23.8 of Rockafellar [24], the subdifferentig|;|z) G
evaluated atw(Q); @) can be expressed as

> g1 9i Z&b Yys (w, ¥ (2)[z; = 2.
=1

Earlier we proved that-Aa; € 0¢(b;) for eachi = 1,...,n, wherea is the optimal solution of (21).
Therefore 0y ;)G evaluated atw(Q); Q) contains the following element:

> Aaiyi(w(@), () = ]
i=1

= Z —Mz‘yi(z ajyi g (z;5), ' (2))[z; = 7|
= Z )\aza]yzyj T, =T ZK (z,2)Q(z|x;j).

Foreacht = 1,...,5, dgi(stz1)G is related tdg z )G by the chain rule. Note th&}(z|z) = [T, Q'(z)z").

8Qt(2t‘jt)G = 28@ Zt‘ji)Q( |JJ)8Q(Z‘$)G

Z Q( Zt|xt jtmzt = zt]aQ(ZII)G’

which contains the following element as one of its subgradients:

ZQt jijt = {Z Aaiajyiylle; = ZK 2 z) \x])}

= Z —Ajajyyilat = 2" = Zﬂ%}%@(zﬂxj)l(z(z', 2)

7:7‘7.72’2/
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This completes the proof of the lemma.

Proof of Proposition 9: By definition of Rademacher complexity [30], we have

2 n
R, (Fy) = Esup — oi f(X;
(B = Bowp o3 ()
2 n
= E sup —Zm(w, Do (X5))
lwl|<B;Q€Qo n i=1

2B -
= —Esup || Y 0:Pq(Xi)|.
. QeQo ; ' ’

Applying the Cauchy-Schwarz inequality yields

2B =
Ro(Fo) < —,|E sup ||y 0i®o(X)[?
n QEeQo i=1
1/2
2B a
= — (Esup > Ko(Xi,X;)+2E sup > 0i0;Kq(Xy, X;)
n Qe i3 QEQ0 1<icj<n

It remains to upper bound the second term inside the square root in the RHS. The trick is to partition the
n(n — 1)/2 pairs of(i, j) inton — 1 subsets each of which hag2 pairs of different and; (assuming: is

even for simplicity). The existence of such a partition can be shown by inductian blow, for eachi =
1,...,n—1, denote the subset indexeddyy n /2 pairs(m;(j), ng(j));?ﬁ, where al{7;(1),...,m(n/2)}N
{ml(1),...,7l(n/2)} = 0. Therefore,

n—1n/2
Esup Y 0i0jKo(Xi,X;) = Esup Y > 0r)0w (1 Ko(Xn, () Xar()
QEQ0 1<ici<n Q€Q0 =1 j=1

n/2

n—1
< ZIE sup Zam(]‘)awg(j)KQ(Xm(j)’Xﬂé(j))'
i=1 Qe j=1

Our final step is to bound the terms inside the summation olgrinvoking Massart’s lemma [22] for
bounding Rademacher averages over a finitelset R%:

d
EsupZaiai < max||a||2y/21log | A]. (32)

a€A
Now, for eachi and a realization oKX, ..., X,,, treato, ;)0 () forj =1,...,n/2 asn/2 Rademacher
variables, and the /2 dimensional vecto(KQ(Xm(j),Xwg(j)));fl takes on onlyL** possible values
(since there aré* possible choices faf) € Qp). Then we have, for each=1,...,n — 1
n/2
B sup ;%(jww;(j)KQ(Xm(j)a Xup) < Vn/2 sup K (2, #')y/21log(LM5),
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from which the lemma follows.

Proof of Proposition 10: We treat eaclf)(Z|X) € Q as a function over all possible valuges z). Recall
thatX is anS-dimensional vectoX = (X!, ..., X®). For each fixed realizatiarf of X*,fort = 1,..., 5,
the set of all discrete conditional probability distributio$2?|z?) is a(L — 1) simplexA . Since each
X! takes onM possible values, and hasS dimensions, we have:

N(e, Q, L) < N(ﬁ,AL,lOO>]V[S < (1/6)(L_1)M5_

Recall that eaclf € F can be written as:

fl@) =3 ai) Q10)Q(zilr:) K. (z, z). (33)
i=1

Z,2;

We now defines := € [2L sup ||ov||1 sup, . K.(z,2)]!. Given each fixed conditional distributia in
the ep-coveringG e, Q, L) for Q, we can construct aty2-covering inLy(P,,) for Fq. Itis straightfor-
ward to verify that the union of all coverings fdf, indexed byQ € G(e, Q, L) forms ane-covering
for F. Indeed, given any functiofi € F that is expressed in the form (33) with a correspondihg Q,
there exists som@* € G(ep, Q, L) such that|@Q — Q*||.c < €. Let f; be a function inF- using the
same coefficienta as those off. GivenQ* there exists somé, € Fg+ such that| f1 — fal/1,(p,) < €/2.
Applying the triangle inequality yields

If = felleapy < If = filloocpyy + I1f1 = follLocpy)
< f = fillo +€/2
< L%sup||ol; SUI}Kz(ZaZ/)HQ—Q*Hoo+€/2,

which is bounded above by In summary, we have constructed acovering inLq(P,) for F whose
number of coverings is no more tha(co, Q, L) supg N (€/2, Fq, L2(Fy)). This implies that

IOgN(Ea‘/TvLQ(Pn)) < log{N(€07Q7LOO) SupN(€/27anL2(Pn))}
Q

IN

~1)MS
| {<2L5sup|a|rlsupzz/ Kz<z,z'>>(L .
og ’

€

SupN(€/2,JTQ,L2(Pn))}
Q

2L5 sup |||y sup. .. K. 2,2
= sup log N(e/2, Fq, La(Py)) + (L — 1) M Slog p [lallx sup, . K-( )’
QeQ €

which completes the proof.
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