EMBEDDING A MARKOV CHAIN INTO A RANDOM WALK
ON A PERMUTATION GROUP

STEVEN N. EVANS

ABSTRACT. Using representation theory, we obtain a necessary and sufficient
condition for a discrete-time Markov chain on a finite state space E to be
representable as U, W,,_1--- Wiz, n > 0, for any z € F, where the ¥; are in-
dependent, identically distributed random permutations taking values in some
given transitive group of permutations on E. The condition is particularly sim-
ple when the group is 2-transitive on E. We also work out the explicit form of
our condition for the dihedral group of symmetries of a regular polygon.

1. INTRODUCTION

Consider a discrete—time (left) random walk ® on a transitive group I" of permu-
tations of a finite set E. That is, ® = (®,, Q%) is a Markov chain with state-space
I" such that for ¢ € T’

QP =¢p} =1
and
Q‘P{(I)n+1 = | Do, P4, ..., (I)n} = Q('L/)(I):Ll)
for some probability distribution @ on I'. Equivalently, ®; @al, <I>2<I)1_1, ... areii.d.
under each measure Q¥ with common distribution Q.
For any z € E we have

Q¢{¢)n+lz =Y | (I)O; .. ’(I)n} = P((I)nzay)v

where

(1.1) P(zy)= Y Q)

Yelpr=y
Thus (®,,2)n>0 is a Markov chain with transition matrix P that doesn’t depend on
z.

We are interested in the extent to which this “projection” of a random walk
on I' onto a Markov chain on F can be reversed. That is, given a Markov chain
X = (X,,,P?) on E with transition matrix P, when can we “lift” X to find a random
walk on I' with increment distribution @ such that (1.1) holds? The existence
of such a lifting allows one to employ the extremely powerful tools, particularly
representation theory, that have been used to analyse random walks on groups.
A typical and impressive example is [DS87], where the Bernoulli-Laplace diffusion
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model is lifted to a walk on the symmetric group that is bi-invariant under a certain
subgroup and the theory of Gelfand pairs is then used to analyse how fast the
diffusion model converges to stationarity (see also [Dia88]).

The question of when a lifting exists has a simple answer when I' is the symmetric
group on F (that is, the group of all permutations of E). Firstly, note that if (1.1)
holds, then 3, . p P(2,y) = >y er Q) = 1 for each y € E, and hence P is doubly
stochastic (this observation holds for an arbitrary group I'). On the other hand, if
P is doubly stochastic, then, by a celebrated result of G. Birkhoff [Bird6, HJ90],
P is in the convex hull of the permutation matrices, which is just another way of
saying that (1.1) holds.

Even for the symmetric group, the choice of @ is not unique. For example, if
E = {1,2,3} and P(z,y) = % for all z,y, then one possible choices for @ is the
probability measure that assigns mass % to each possible permutation, and another
is the measure that assigns mass % to the even permutations and mass 0 to the
odd permutations (in the usual cycle notation, the even permutations are (1)(2)(3),
(1,2,3), and (1, 3,2), while the odd permutations are the transpositions (1,2)(3),
(1,3)(2), and (1)(2,3)).

In order to describe our results we need to recall a little notation from repre-
sentation theory. A convenient reference for the facts we need is [Ker99]. Let T’
denote the collection of irreducible (unitary) representations of I'. Given p € f‘,
write x, for the character of p and d, for the dimension of p. The action of I" on
F has an associated representation: each element of I' is associated with the corre-
sponding |F| x |F| {0, 1}-valued permutation matrix. This so-called permutation
representation decomposes into a direct sum of irreducible representations. Write
f+ for the collection of irreducible representations p € I that appear with positive
multiplicity v, > 0 in the decomposition of the permutation representation, and
write [y for the collection of irreducible representations that do not appear. The
character of the permutation representation is N(¢) = |[{z : vz = z}| (that is, the
number of fixed points of the permutation ¢ € T"). Thus,

vy = 157 2 NO()

el

1
:mz Z Xo (),

zeE el pr=x

with v, = 0 when p does not appear in the decomposition of the permutation
representation.

Theorem 1.1. Let P(z,y), z,y € E, be a transition matriz on E. There ezists a
probability vector @Q on T' such that (1.1) holds if and only if

2
12 Pey=%3Y % ZﬁiTprxp(W‘l)P(zawzx

p€f+ z€E pelpx=y el
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for all x,y € E, and, for some choice of h € RT,

d2
Ru(p):= > > > ﬁxp(w”)P(z,w)

pel, 2€E el

d _
T2 D et HhW)
pely vel
>0,
for all p € T. Moreover, if (1.2) and (1.3) hold for some h € RY, then the class of

probability vectors Q satisfying (1.1) coincides with the class of Ry satisfying (1.3)
for some h' € RY (in particular, all such Ry are automatically probability vectors).

(1.3)

Remark 1.2. If P is such that (1.1) holds for a particular probability vector @,
then it follows from the observations made in the proof of Theorem 1.1 that taking
h=@Q in (1.3) gives R, = Q.

Remark 1.3. Finding a probability distribution @ that satisfies equation (1.1) in-
volves solving |E| x |E| equalities and |T'| inequalities in |T'| unknowns, whereas
applying Theorem 1.1 involves solving only |I'| inequalties in |I'| unknowns. Al-
though the characters x, can certainly be complex-valued, it is apparent from the
proof of Theorem 1.1 that (1.3) is a system of inequalities of the form Az 4+ b > 0,
with A a real |T'| x |T'| matrix and b a real vector of length |T'|. Linear programming
methods such as the simplex algorithm can be used to solve such inequalities or
to ascertain that they are insoluble (see Chapter 6 of [Pad95]). We also remark
that there is a Farkas-type “theorem of the alternative” which gives an equivalent
condition for (1.3) to hold: namely (1.3) will hold for some h if and only if there is
no k € RY such that both

S dﬁxp(wl)k(@) 0

pef‘o pel’
for all ¥ € T and
d2
i —1

DI [y, Xe(Ve NP v2)k(e) <0

@€l pef, 2€E yel P
(see Exercise 6.5(i) of [Pad95]).
Example 1.4. Suppose that I' = F and I acts on E via the left regular represen-
tation. Of course, in this case it is obvious that a lifting exists if and only if P(p, )
is of the form Q(v¢~1), and this @ is the unique lifted increment distribution. It

is easy to check that this conclusion follows from Theorem 1.1. In this case v, = d,
(see Corollary 11.5.4 of [Ker99]) and so

d2
2 fppy, 2o MY =y = ve b (e
P 2

ppel’
d _ C1h—
= 3 e )
p
B {%7 if y’(;v/)_l Zy//(CL'H)_l,

0, otherwise.
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Thus conditions (1.2) of Theorem 1.1 holds if and only if P(z,y) only depends on

yx~'. We know that there is a lifting in this case. Because I'y is empty, this lifting
is unique by Theorem 1.1.

Representation theory is at its most useful for analysing the lifted random walk
when the walk has some extra structure. For example, if K is a subgroup of I" such
that (', K) form a Gelfand pair, then the analysis of random walks on I" that are
K-bi-invariant (that is, Q(K'¢k"”) = Q(y) for ¢ € T and k', k" € K) is particularly
simple (see [DS87, Dia88]). A necessary and sufficient condition for a Markov chain
on the quotient £ = I'/K with transition matrix P to posess a K-bi-invariant
lifting is that

(1.4) P(z,y) = P(px,py) for all z,y € E and ¢ € T

(see Lemma 1 of [DS87], where this result is attributed to Philippe Bougerol).

Another situation in which the representation theoretic analysis of random walks
is particularly simple is when the increment distribution is a class function (that is,
is constant on conjugacy classes) because the matrix (¢,%) — Q(¢p~!) can then
be explicitly diagonalised using the characters of I' — see Chapter 3 of [Dia88]. The
following result is clear from Theorem 1.1 and Remark 1.2.

Corollary 1.5. Let P(x,y), x,y € E, be a transition matriz on E. There exists
a probability vector @ on T' such that (1.1) holds and @Q is a class function if and
only if condition (1.2) holds, condition (1.3) holds with h a class function, and

d2
(1.5) >y §j§:1ﬂ§;waw*HP@a¢w

pef*Jr zeEyel

is a class function. Moreover, if these conditions hold for some class function h,
then the class of probability vectors Q satisfying (1.1) that are class functions coin-
cides with the class of Ry satisfying (1.3) for some class function h' (in particular,
all such Ry, are automatically probability vectors).

Remark 1.6. Condition (1.5) is implied by condition (1.4).

Theorem 1.1 takes a considerably simpler form if the group I' is 2-transitive on
E; that is, if for any two pairs (u,v), (z,y) € E with u # v and x # y there exists
a ¢ €T with (u,v) = (¢z,¢y). The group I' is 2-transitive on F if and only if

ﬁ S N(@)(N(p) - 1) =1
pel’
T V() =2

(see Corollaries 8.1.2 and 8.1.6 of [Ker99]). For example, the symmetric group of
all permutations of E is certainly 2-transitive.

or, equivalently,

Corollary 1.7. Suppose that ' is 2-transitive on E. Let P(z,y), z,y € E, be a
transition matriz on E. There exists a probability vector Q on T' such that (1.1)
holds if and only if

(1.6) > Pla,y) =1,

z€E
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for all y € E, and, for some choice of h € R,

Rh«o)::' (B~ 1) Ple,px) — |E| + 2| + hip)
xzeEFR
7 LS (1B - )N (o) - |E| +2] h(v)
P>
>0

)

for all ¢ € T. Moreover, if (1.6) and (1.7) hold for some h € R, then the class of
probability vectors Q satisfying (1.1) coincides with the class of Ry satisfying (1.7)
for some h' € RY (in particular, all such Ry are automatically probability vectors).

We leave the formulation of an analogue of Corollary 1.5 for 2-transitive groups
to the reader.

Example 1.8. Taking h to be a constant in Corollary 1.7, we see that a sufficient
condition for equation (1.1) to hold is that equation (1.6) holds and

S |Bl=2
P
27 \EI -1
z€E

for all ¢ € T (for example, P(z,y) > (|E| — 2)/(|E|(|E| — 1)) for all z,y € E
certainly suffices). One can then take

Qo) = — (1= 1) Pla,pw) — |B| +2|

|F| z€E

The outline of the rest of the paper is the following. Section 2 briefly recalls
some facts about the singular value decomposition of a matrix and its connection
to solving linear equations. Section 3 contains a proof of Theorem 1.1 and Section
4 contains a derivation of Corollary 1.7 from Theorem 1.1 as well as an indication
of an alternative proof that avoids the use of representation theory. In Section 5
we work out explicitly the objects appearing in Theorem 1.1 for the case where I'
is the group of symmetries of a regular n-gon and FE is the corresponding set of
vertices.

2. THE SINGULAR VALUE DECOMPOSITION AND MOORE—PENROSE INVERSE

For the sake of completeness and to establish some notation, we recall some facts
from linear algebra (see, for example, [Meh77, HJ90]). Let A be an n x k matrix
with rank r (which is also the rank of A*A and AA*). The matrix A has the
singular value decomposition

A=ULV*
where:

e [ = diag ()\1/2 .. ,)\i/2), with Aq,..., A, the non-zero eigenvalues of A*A;

e V is the k x r matrix with columns consisting of the corresponding or-
thonormalized eigenvectors (so that V*V = I);

e U is the n x r matrix given by AVL~! (so that U*U = I and the columns
of U are the orthonormalized eigenvectors of AA*).
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The Moore—Penrose generalized inverse of A is the k x n matrix
AT =VL'U".

The linear equation Az = b has a solution if and only if AATH = b. Moreover, if
Az = b has a solution, then any solution is of the form

x=Ab+ (I - ATA)z
for an arbitrary k-vector z. Note that
ATA=VV*
and
AAY =UU,
and so Az = b will have a solution if and only if UU*b = b, in which case a general
solution is
r=Ab+ (I -VV*)z

for an arbitrary z. The matrix UU* is the orthogonal projection onto the range of
A and the matrix I — VV™ is the orthogonal projection onto the kernel of A.

3. PROOF OF THEOREM 1.1

We can write the equation (1.1) in the form
AQ = P,

where P is the transition matrix written out as a column vector indexed by E x E
and A is the matrix with rows indexed by F x E and columns indexed by I" that
is given by

1, ify=uz,
0, otherwise.

A((z, ), ¥) = {

(Of course, we are seeking solutions ) that have nonnegative entries that sum to
1.)

Now

A Alpw) = 3 Uy = pa)l{y = va)

x,y
Hx : oz =z}
= N@ o).

Here, as in the Introduction, N is the character of the permutation representation
of I" that counts the number of fixed points of a permutation. In particular, N is a
class function (that is, depends only on the conjugacy class of a permutation).
We now apply a standard procedure to find diagonalize A*A (see, for example,
p48 of [Dia88] for a similar argument).
Consider an irreducible representation p of I' with
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dimension d, and character x,. Because NN is a class function, the Fourier
transform of IV at p is

N(p)

> N(p)p(e)

el

di > ON(exo(e) | I
p el

= A,
say (see Lemma 11.5.5 of [Ker99]). Note that
Tl
Ap = —V,,
P dp P
where, as in the Introduction,

v = \ri| > N (@)x(9)
pel’

is the multiplicity of the representation p in the decomposition of the permutation
representation into irreducible components.
Let (pij)i<i,j<a, be a unitary matrix realization of p. We have

S AT A(e )psi() = Y N@ @)y
pel’ Yel

= Y N@)pi(ve )

Per

dp
= DY N@W)Y pin(®)ori ()
k=1

Per
dp

= Z N(p)irpjr(p)
k=1

= Appji(e).
Thus

1/2
s = (22 pi1<ij<d
0,7 — |F‘ Pjis >8] > A,

are df) orthonormalized eigenvectors associated with the eigenvalue ),. Because
>0 d2 = || (see Corollary 11.5.4 of [Ker99]), we have found all the eigenvalues of
the || x |T'| matrix A*A.
The elements appearing in the singular value decomposition of A are thus the
following.
e The matrix V' has a column v,;; for each p € f+ (that is, for each p
appearing in the permutation representation) and each pair 1 <4, < d,,.
e The diagonal matrix L has

1/2
AL/2 — v, /
P d,

appearing d2 times on the diagonal.
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e The matrix U has columns given by

Upi (2, y) = 1/2(Avp”)(x )
1/2 1/2 )
= 1/2 Z Wy =vz}pji().
|F| Pper

The Moore—Penrose inverse of A is thus given by

Al @y) = Z(%)l/2pﬁ<«p>(|lfl|;p)w o X 1= vl

XN Pel
= Z |F|2 Z l{y = 1/)$} Zpﬂ pzj P 1)
pely P yper ,J
= > |I‘|21/ Z Hy = vatx, (Ve ).
pely pel

Also,
AAT((xlvy/)’ (x//’y//)) — UU*(( !/ /),(x//,y//))

= Z |F\2 Z Wy = o2} 1{y" = 2" }pji(p)pji(¥)

[ P paper
- Y \FI2 > WY = (e ") Ixo (e )
pef‘Jr p,pel
and
ATA(p, ) = VV*(so )
- Z ‘1—‘|sz pjz )
pyisg
= LX),
Z s
pel’y
Thus
pely
because
Zd |F|7 77 = 63
pXo( 0, otherwise,

pEF
(see Corollary 11.5.4 of [Ker99]).
Theorem 1.1 will now follow if we can show that } - Rn(yp) = 1 forany h € RT.
This, however, follows from the two observations:
® > er Xp (=) is |T| if p is the trivial one-dimensional representation with
character 1 and is 0 for any other p € I (see Theorem 11.5.3 of [Ker99]);
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e the trivial representation appears with multiplicity 1 in the permutation
representation (see Lemma 2.1.1 and Theorem 11.5.3 of [Ker99]).

O

4. PROOF OF COROLLARY 1.7

The corollary follows directly from Theorem 1.1 and a little algebra once we
observe that the permutation representation associated with I acting on E decom-
poses into two irreducible representations. The trivial representation with dimen-
sion 1 and character the constant 1 appears with multiplicity 1, and the represen-
tation with dimension |E|— 1 and character N(-) — 1 also appears with multiplicity
1 (see Exercise 11.5.7 of [Ker99]).

Alternatively, it is interesting to note that it is also possible to prove Corollary
1.7 directly without recourse to the representation theory of I'. The argument goes
as follows.

Let A be as in Section 3. Rather than work with A*A to find a Moore—Penrose
inverse, as we did in Section 3, we will work with AA*.

By the 2-transitivity of I' we have

AA (2 y), (2", y") = Yy = @),y =(")}

Pper
T N /N R
Ev r =T,y =Y,
/ "o
N £y =y,
- A/ "
0, ="y #y,

T
EiEE @ Y Ay

Thus, by a suitable indexing of rows and columns, AA* has the block form

s T ... T
T T s ... T
EI(EI=1) (& & -
T T S
where S = (|E| — 1)]|g| and
0 1 1
1 0 1
T:
1 0

Identify E with the cyclic group C of order |E| by any bijective correspondence.
Then AA*((z',y), (2",y")) = F((«",y")— (2',y')), where the function F' : C xC —
R is given by

1Tl

[’ x=0,y=0,
_ |
F(z,y) = EE=n: 7 0y #0,
0, otherwise.

Because AA* is a convolution matrix, we can find the eigenvalues and eigenvectors
of AA* using Fourier analysis on C x C in the following manner.
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There is an isomorphism between C and its dual group. Write {6, : a € C} for
the dual group. The characters of C x C are then of the form

(z,y) = 0a(2)0s(y), a,b€C.

Then
D AA((@ ), (2", y"))ba(z")6b(y")
(I,/,y,/)
= F((«",y") = (2',y")0a(x")0(y")
(z/lﬁy//)

=" F(a,y)0a(z+2")0(y + )
(z,y)

= ZF(m,y)Ha(x)Gb(y) 0a(2")0s(y').-

(z,y)

A set of orthonormalized eigenvectors of AA* is thus (z,y) — ﬁ@a(x)(%(y) a,be
C x C (these are all the

eigenvectors because they are linearly independent and there are |E|? of them),
and the corresponding eigenvalues are 3, . F'(2,y)0a(2)0,(y). (This is, of course,
is analogous to what we did in in the typically non-commutative setting of Section
3 and is a standard argument: see, for example, [Dav79].)

Observe that

D a@b(y) = D 0a(@)0(y) =D O(y) — Y balx) + 1

2#0,y70
= [[E[{a=0} —1[E[1{b =0} - 1]
so that
IT'|, a=b=0,
> P, y)0a(@)0s(y) = { g, a#0,b#0,
(z,y) 0, otherwise.

Thus there is a non-zero eigenvalue of AA* corresponding to each point of

{(0,0)y U (C\{0}) x (C\{0}) = €.
The ingredients in the singular value decomposition of A are the following.
e The matrix U has a column for each point of £, with the column for (a,b)
given by

1
U(a,b) (x,y) = Eea(x)eb(y)v T,y € C.

e The diagonal matrix L has diagonal entries )\zé 21;)7 (a,b) € &, where
A0,0) = T
and

Moty = g (@) € E\(0.0)).



EMBEDDING A MARKOV CHAIN 11
e The matrix V = A*UL~! has columns V(a,p), (a,D) € &, with

1 _
Vo) () = Zl{y:wx}@em)ob(yn(;l{f

x’y
1 -
= E Z Ha(Z)Gb(W)A(al,lff

It is now a straightforward to compute the matrices AT, AAT and AT A and check
that one obtains the same objects that one gets using the method of Section 3.

5. AN EXAMPLE: THE DIHEDRAL GROUP

In this section we compute the objects appearing in the statement of Theorem
1.1 in the case where E is the set of vertices of a regular n-gon and T is the group
of symmetries of the n-gon (that is, " is the dihedral group of order |I'| = 2n). For
simplicity, we will consider the case where n is odd. The case where n is even is
similar but a little messier.

A good account of the representation theory of I' may be found in [Sim96].
The group I is the semidirect product of Z,,, the group of integers modulo n, and
Zs, the group of integers modulo 2. It will simplify matters if we think of Z,, as
{0,1,...,n — 1} and write the group operation as addition, but think of Z, as
{+1,—1} and write the group operation as multiplication. We take +1 € Zs to act
on Z,, as the identity and take —1 € Zs to act on Z,, via negation (that is, inversion).
The group operation is given by (a,o)(b,7) := (a+0b,o7) for (a,0), (b,7) € I with
a,b € Z, and 0,7 € Zs.

The irreducible representations of I" consist of:

e the (one-dimensional) trivial representation with character the constant
function 1,

e the one-dimensional representation arising from the non-trivial representa-
tion of Zy with character given by (a,o) +— o (where we identify +1 € Z,

with +1 € R),
) "T_l two-dimensional representations indexed by ¢ = 1,2,..., % with
characters
(a,+1) — 2cos (27“16)
n
(a,—1) — 0.

The group I" acts on the set E = Z,, by (a,0)x := a + ox. Hence, the identity
element (0,+1) has n fixed points, each element of the form (a,—1) has 1 fixed
point, and the remaining group elements are without fixed points. Thus the triv-
ial representation and each of the two-dimensional representations appear in the
decomposition of the permutation representation into irreducibles (that is, these
representations form the set I'; ) and the corresponding multiplicities (that is, the
numbers v,) are all 1.

It follows that

n—1

d? 2 2ral
£ =14+1{c =+1
> e = 1+ 1o =+1)s Y cos (220
pel’ L =1

=1+441{c = +1}[n1l{a =0} —1].
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Note that for fixed z,y € E, the equation (a, )z = y has two solutions (a,0) =
(y — x,+1) and (a,0) = (y + z,—1). In particular, if (a,o) solves this equation
and (b, 7) solves the equation (b,7)u = v for fixed u,v € E, then the possible
values of (b, 7)(a,o)~! are of the form (v —7'u — 7'y + o'7'x, 0'7") where ¢’ and 7/
both range over Z,. It follows from some straightforward manipulations that the
quantity appearing on the right-hand of condition (1.2) is

n—1n—1

1
WZZ[(P(w’_ﬂf+y+w+k)+P(w,—x—y—w+k)
w=0 k=0

+Plwx—y—w+k)+Plwz+y+w+k)

. (nn—2 1)

n—1

D l(P(w, =z +y +w) + P(w, —z — y — w))]

w=0

n—1n—1

1
_EgE:E:UWm—x+y+w+%ﬂ+P&¢—x_y_w+kﬂ
w=0 k=1

n—1
1 1
ZEE [P(w,—x+y+w)+P(w,—x—y—w)]—E.

w=0

Similarly, the first term in the quantity on the right-hand side of condition (1.3) is,
writing ¢ = (a,0),

n—1 n—1n—1
1 -1 1
%+nn2 ZP(w,Ua-i-Uw)_ﬁE E P(w,0a + ow + k)
w=0 w=0 k=1
n—1
1 1
=— E P(w,oa+ ow) — —.
n o 2n

Lastly, the second term in the quantity on the right-hand side of condition (1.3) is,
again writing ¢ = (a,0),

n—1
o
2, 2 (K, +1)) = h((k, =1))].
n
k=0
A consequence of this last observation is that if Q' and Q" are two liftings of
the same transition matrix P, then there exists a constant ¢ such that Q’((b, 7)) =

Q"((b,7)) + 7c for all (b,7) €T

Acknowledgment: The author thanks Persi Diaconis, Vaughan Jones, and an
anonymous referee for helpful comments.
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