
Boosting with the L2-Loss: Regression and Classi�cation

Peter B�uhlmann

ETH Z�urich

Bin Yu

University of California, Berkeley

August 2001

Abstract

This paper investigates a variant of boosting, L2Boost, which is constructed from
a functional gradient descent algorithm with the L2-loss function. Based on an ex-
plicit stagewise re�tting expression of L2Boost, the case of (symmetric) linear weak
learners is studied in detail in both regression and two-class classi�cation. In par-
ticular, with the boosting iteration m working as the smoothing or regularization
parameter, a new exponential bias-variance trade o� is found with the variance (com-
plexity) term bounded as m tends to in�nity. When the weak learner is a smoothing
spline, an optimal rate of convergence result holds for both regression and two-class
classi�cation. And this boosted smoothing spline adapts to higher order, unknown
smoothness. Moreover, a simple expansion of the 0-1 loss function is derived to reveal
the importance of the decision boundary, bias reduction, and impossibility of an addi-
tive bias-variance decomposition in classi�cation. Finally, simulation and real data set
results are obtained to demonstrate the attractiveness of L2Boost, particularly with
a novel component-wise cubic smoothing spline as an e�ective and practical weak
learner.

1 Introduction

Boosting is one of the most successful and practical methods that recently come from the
machine learning community. Since its inception in 1990 (Schapire, 1990; Freund, 1995;
Freund and Schapire, 1996), it has been tried on an amazing array of large data sets. The
improved performance of a weak learner through boosting has been impressive, and seems
to be associated with boosting's resistance to over�tting. The burning question is why.

The rationale behind boosting separates itself from the traditional statistical proce-
dures. It starts with a sensible estimator or classi�er, the weak learner, and seeks its
improvements iteratively based on its performance on the training data set. The possi-
bility of this boosting procedure comes with the availability of large data sets where one
can easily set aside part of it as the test set (or use cross validation based on random
splits). It seemingly bypasses the need to get a model for the data and the pursuit of the
optimal solution under this model as the common practice in traditional statistics. For
large data set problems, a good model for the problem is hard to come by, but a sensible
procedure is not. And this may explain the empirical success of boosting on large data
sets. After much work on bounding the generalization error of a boosted procedure, via
the VC dimensions and the distribution of margins (Schapire et al., 1998), some recent
developments on boosting have been on the gradient-descent (GD) view of boosting. They
are the results of e�orts of many researchers (Breiman, 1999; Mason et al., 1999; Friedman
et al., 2000; Collins et al., 2000). This GD view connects boosting to the more common

1

optimization view of statistical inference, and its most obvious consequence has been the
emergence of many variants of the original AdaBoost, under various loss or objective
functions (Mason et al., 1999; Friedman et al., 2000; Friedman, 2001). Even though a sat-
isfactory explanation on why boosting works does not follow directly from this GD view,
some of the new boosting variants are more easily accessible for analysis. In this paper,
we take advantage of this new analytic possibility on L2-boosting procedures to build our
case for understanding boosting both in regression and two-class classi�cation. It is worth
pointing out that L2Boost is studied here also as a procedure yielding competitive results
in regression and even two-class classi�cation, in addition to its analytical tractability.

After a brief overview of boosting from the GD point of view in Section 2, Section 3
deals with the case of (symmetric) weak learners in regression, building on the known fact
that L2Boost is a stagewise re�tting of the residuals (cf. Friedman, 2001). We derive two
main rigorous results:

(i) With the boosting iterationm working as the smoothing or regularization parameter,
a new exponential bias-variance trade o� is found. When the iteration m increases
by 1, one more term is added in the �tted procedure, but due to the dependence
of this new term on the previous terms, the \complexity" of the �tted procedure
is not increased by a constant amount as we got used to in linear regression, but
an exponentially diminishing amount as m gets large. At the iteration limit, the
complexity or variance term is bounded by the noise variance in the regression model.

(ii) When the weak learner is a smoothing spline, L2Boost achieves the optimal rate
of convergence for one-dimensional function estimation. Moreover, this boosted
smoothing spline adapts to higher order, unknown smoothness.

Item (i) partially explains the \over�tting-resistance" mystery of boosting. The phe-
nomenon is radically di�erent from the well-known algebraic bias-variance trade-o� in
nonparametric regression. Item (ii) shows an interesting result about boosting in adaptive
estimation: even when smoothness is unknown, L2Boost achieves the optimal (minimax)
rate of convergence.

Section 4 proposes L2Boost with a novel component-wise smoothing spline learner as
a very e�ective procedure to carry out boosting for high dimensional regression problems
with continuous predictors. It is shown to outperform L2Boost with stumps (tree with two
terminal nodes) and other more traditional competitors, particularly when the predictor
space is very high-dimensional.

Section 5 deals with the two-class classi�cation problem. The optimality in item (ii)
above also holds for classi�cation: L2Boost achieves the optimal (minimax) rate of conver-
gence to the Bayes risk over an appropriate smoothness function class, the risk of the best
among all classi�cation procedures. Furthermore, we approximate the 0-1 loss function
via a smoothed version to show that the generalization error of any procedure is approx-
imately, in addition to the Bayes risk, a sum of tapered moments. As a consequence of
this approximation, we get more insight into why bias plays a bigger role in 0-1 loss clas-
si�cation than in L2-regression, why there is even more \resistance against over�tting"
in classi�cation than regression and why previous attempts were not successful at decom-
posing the generalization error into additive bias and variance terms (cf. Geman et al.
1992; Breiman, 1998, and references therein).

We support the theory and explanations by simulated and real data sets which demon-
strate the attractiveness of L2Boost, particularly in the presence of very high-dimensional

2

predictors and with a novel component-wise cubic spline as an e�ective weak learner. Fi-
nally, Section 6 contains a discussion on the role of the weak learner and a summary of
the paper.

2 Boosting: stagewise functional gradient descent

The boosting algorithms can be seen as functional gradient descent techniques. The task
is to estimate the function F : Rd ! R, minimizing an expected cost

E[C(Y; F (X))]; C(�; �) : R� R! R
+ (1)

based on data (Yi;Xi) (i = 1; : : : n). We consider here both cases where the response
Y is continuous (regression problem) or discrete (classi�cation problem), since boosting
is potentially useful in both cases; X denotes here a d-dimensional covariable. The cost
function C(�; �) is assumed to be smooth and convex in the second argument to ensure
that the gradient method works well. The most prominent examples are:

C(y; f) = exp(yf) with y 2 f�1; 1g: AdaBoost cost function;

C(y; f) = log2(1 + exp(�2yf)) with y 2 f�1; 1g: LogitBoost cost function;

C(y; f) = (y � f)2=2 with y 2 R or 2 f�1; 1g: L2Boost cost function: (2)

The population minimizers of (1) are then

F (x) =
1

2
log(

P[Y = 1jX = x]

P[Y = �1jX = x]
) for AdaBoost and LogitBoost cost;

F (x) = E[Y jX = x] for L2Boost cost: (3)

Estimation of such an F (�) from data can be done by functional gradient descent which
is a constrained minimization of the empirical risk

n�1
nX
i=1

C(Yi; F (Xi)): (4)

This gradient descent view has been recognized and re�ned by various authors including
Breiman (1999), Mason et al. (1999), Friedman et al. (2000), Friedman (2001). In
summary, the minimizer of (4) is imposed to satisfy a \smoothness" (or \regularization")
constraint in terms of an additive expansion of weak (\simple") learners

h(x; �̂); x 2 Rd;

where �̂ is an estimated �nite or in�nite-dimensional parameter. For example, the weak
learner h(�; �̂) could be a decision tree where �̂ describes the axis to be split, the split
points and the location parameter in terminal nodes. How to �t h(x; �) from data is part
of the weak learner and can be done according to a base algorithm. For example, least
squares �tting yields

�̂U;X = argmin�

nX
i=1

(Ui � h(Xi; �))
2;

for some data (U;X) = fUi; Xi; i = 1; : : : ; ng. The general description of FGD is as follows
(cf. Friedman, 2001).

3

Generic functional gradient descent

Step 1 (initialization). Given data fYi;Xi; i = 1; : : : ; ng, �t an initial weak learner

F̂0(x) = h(x; �̂Y;X):

When using least squares, �̂Y;X = argmin�
Pn

i=1(Yi � h(Xi; �))
2. Set m = 0.

Step 2 (projecting gradient to weak learner). Compute the negative gradient vector

Ui = �
@C(Yi; F)

@F
jF=F̂m(Xi)

; i = 1; : : : ; n;

evaluated at the current F̂m(�). Then, �t the weak learner to the gradient vector

f̂m+1(x) = h(x; �̂U;X):

When using least squares, �̂U;X = argmin�
Pn

i=1(Ui � h(Xi; �))
2.

Step 3 (line search). Do one-dimensional numerical search for the best step-size

ŵm+1 = argminw

nX
i=1

C(Yi; F̂m(Xi) + wm+1f̂m+1(Xi)):

Update,

F̂m+1(�) = F̂m(�) + ŵm+1f̂m+1(�):

Step 4 (iteration). Increase m by one and repeat Steps 2 and 3.

We call F̂m(�) the AdaBoost-, LogitBoost- or L2Boost-estimate, according to the im-
plementing cost function in (2). Note that L2Boost has a simple structure: the negative
gradient in Step 2 is the classical residual vector Ui = Yi � F̂m(Xi) (i = 1; : : : ; n) and
the line search in Step 3 is trivial with ŵm+1 = 1. L2Boosting is thus nothing else than
repeated least squares �tting of residuals (cf. Friedman, 2001). With m = 1 (one boosting
step), it has already been proposed by Tukey (1977) under the name \twicing".

With a continuous Y 2 R; a regression estimate for E[Y jX = x] is directly given by
the L2Boost-estimate F̂m(�). For a two-class problem with Y 2 f�1; 1g, a classi�er under
equal misclassi�cation costs is given by

sign(F̂m(x)) (5)

since E[Y jX = x] = P[Y = 1jX = x] � P[Y = �1jX = x]. AdaBoost- and LogitBoost-
estimates aim to estimate

F (x) =
1

2
log

�
P[Y = 1jX = x]

P[Y = �1jX = x]

�
:

Hence, an appropriate classi�er is again given by (5).
Mason et al. (1999) and Collins et al. (2000) describe when boosting-type algorithms,

i.e. functional gradient descent, converge numerically. This tells us that, under certain
conditions, the test set or generalization error for boosting eventually stabilizes. But it
doesn't imply that the eventually stable solution is the best, or that over�tting could
happen long before reaching convergence. Indeed, we will show in Section 3 that L2Boost
with \contracting" linear learners converges to the fully saturated model, i.e. F̂1(Xi) = Yi
for all i = 1; : : : ; n, �tting the data perfectly.

4

3 Theory for L2Boosting with linear learners in regression

The nature of stagewise �tting is responsible to a large extent for boosting's resistance to
over�tting. The same view has been expressed in Buja's (2000) discussion of the Friedman
et al. (2000) paper. He made amply clear there that this stagewise �tting had gotten a
bad reputation among statisticians and didn't get the attention it deserved. The success of
boosting de�nitely serves as an eye-opener for us to take a fresh look at stagewise �tting.

Consider the regression model

Yi = f(xi) + "i; i = 1; : : : ; n;

"1; : : : ; "n i.i.d. with E["i] = 0; Var("i) = �2; (6)

where f(�) is a real-valued, typically nonlinear function, and the covariables xi 2 R
d

are deterministic (e.g. conditioning on the design). Represent a weak learner as an
operator S : Rn ! R

n, mapping the responses Y1; : : : ; Yn to some �tted values in Rn. The
covariables x1; : : : ; xn are absorbed in the operator notation S. In the sequel, we often
use the notation Y for the vector (Y1; : : : ; Yn)

T , Fj for the vector (Fj(x1); : : : ; Fj(xn))
T

and analogously for fj; it should always become clear from the context whether we mean
a single variable Y or function Fj(�), or the vectors as above.

Proposition 1. The L2Boost estimate in iteration m can be represented as:

F̂m =

mX
j=0

S(I � S)jY = (I � (I � S)m+1)Y:

A proof is given in the Appendix. We de�ne the boosting operator Bm : Rn ! R
n by

BmY = F̂m:

According to Proposition 1, there is a relatively direct link between the boosting operator
and the weak learner S. We exploit this in the sequel.

We focus here on linear weak learners S. Examples include least squares �tting in
linear models, more general projectors to a given class of basis functions such as regression
splines, or smoothing operators such as kernel and smoothing spline estimators.

Proposition 2. Consider a linear weak learner S with eigenvalues f�k; k = 1; : : : ; ng,
based on deterministic covariables x1; : : : ; xn. Then, the eigenvalues of the L2Boost oper-

ator Bm are f(1� (1� �k)
m+1; k = 1; : : : ; ng.

Proof: This is a direct consequence of Proposition 1. 2

Our analysis will become even more transparent when specializing to the case where S
is symmetric. An important example is the smoothing spline operator (see Wahba, 1990;
Hastie and Tibshirani, 1990) which is a more data-adaptive smoothing technique than say
kernel with global bandwidth. All eigenvalues of S are then real and S as well as Bm can
be diagonalized with an orthonormal transform,

Bm = UDmU
T ; Dm = diag(1� (1� �k)

m+1);

kth column-vector of U being the kth eigenvector of S to the eigenvalue �k: (7)

The matrix U is orthonormal, satisfying UUT = UTU = I.

5

We are now able to analyze a relevant generalization measure in this setting, the
(expected) mean squared error

MSE = n�1
nX
i=1

E[(F̂m(xi)� f(xi))
2]; (8)

which averages over the observed covariables. Note that if the design is stochastic with a
probability distribution, the MSE measure above is asymptotically equivalent, as n!1,
to the generalization error E[(F̂m(X)�f(X))2], whereX is a new test observation from the
design generating distribution but independent from the training set and the expectation
is over the training and test set. We show in Figure 1 the di�erence between the two
measures for a �nite sample case.

Theorem 1. Consider a linear, symmetric weak learner S with eigenvalues f�k; k =
1; : : : ; ng and eigenvectors building the columns of the orthonormal matrix U . Assume

data being generated from the model (6) and denote by f = (f(x1); : : : ; f(xn))
T the vector

of the true regression function f(�) evaluated at xi's. Then, the bias, variance and averaged

mean squared error for L2Boost are

bias(m;S; f) = n�1
nX
i=1

(E[F̂m(xi)]� f(xi))
2 = n�1fTUdiag((1� �k)

2m+2)UT f;

variance(m;S;�2) = n�1
nX
i=1

Var(F̂m(xi)) = �2n�1
nX

k=1

(1� (1� �k)
m+1)2;

MSE(m;S; f; �2) = bias(m;S; f) + variance(m;S;�2):

A proof is given in the Appendix. Theorem 1 describes an exact result for the MSE
in terms of the chosen L2Boost procedure. It is clear that the iteration index m acts as a
\smoothing parameter" to control the bias and variance trade-o�.

Given the underlying problem (i.e. f and �2) and given a learner S (implying U and
the set of eigenvalues), we analyze the bias-variance trade-o� as a function of boosting
iterations. For that purpose, we assume that all eigenvalues satisfy 0 < �k � 1. An
important example for such a linear weak learner are cubic smoothing splines which have
two eigenvalues equal to one and all others strictly between zero and one: this will be
treated even in more detail in Section 3.1.

Theorem 2. Under the assumptions in Theorem 1 with 0 < �k � 1; k = 1; : : : ; n,

(1) bias(m;S; f) decays exponentially fast with increasing m,

variance(m;S;�2) exhibits exponentially small increase with increasing m,

limm!1MSE(m;S; f; �2) = �2.

(2) Moreover, let � = UT f = (�1; :::; �n)
T be the function vector in the linear space

spanned by column vectors of U .
(i) If �2k=�

2 > 1=(1��k)
2�1 for all k with �k < 1, then boosting improves the MSE

over the linear learner S.
(ii) If �k < 1 for at least one k 2 f1; : : : ; ng (S is not the identity operator I), there
is an m, such that at the mth iteration, the boosting MSE is strictly lower than �2.

6

boosting

m

ge
ne

ra
liz

at
io

n
sq

ua
re

d
er

ro
r

0 50 100 150 200

0.
2

0.
4

0.
6

0.
8

varying df

degrees of freedom

ge
ne

ra
liz

at
io

n
sq

ua
re

d
er

ro
r

0 10 20 30 40

0.
2

0.
4

0.
6

0.
8

Figure 1: Generalization mean squared error E[(Y�f̂(X))2] (solid line) andMSE criterion
from (8) (dotted line) from 100 simulations of model (11) with design uniformly distributed
on [�1=2; 1=2], each with n = 100. Left: L2Boost with cubic smoothing spline having
df=3, as a function of boosting iterations m. Right: Cubic smoothing spline for various
degrees of freedom (various amount of smoothing).

Assertion (1) is a direct consequence of Theorem 1. A proof of assertion (2) is given
in the Appendix.

Theorem 2 comes as a surprise: it shows a very interesting bias-variance trade-o� that
hasn't been seen in the literature. As the boosting iteration (or smoothing parameter) m
varies, both the bias and variance (complexity) term change exponentially with the bias
decreasing exponentially fast and the variance increasing with exponentially diminishing
terms eventually. This contrasts the standard algebraic trade-o� commonly seen in non-
parametric estimation. Figure 1 illustrates the di�erence for a cubic smoothing spline
learner (for data from model (11) in Section 3.1.1). The exponential trade-o� not only
gets very close to the optimal of the MSE of that from the smoothing splines (by varying
the smoothing parameter), but also stays really
at afterwards, due to the exponential
increase and decrease in the bias and variance terms. Condition �2k=�

2 > 1=(1��k)
2�1 in

part 2(i) can be interpreted as that f is relatively complex compared to the linear learner
in the k-th component direction. For example, a large right-hand side implies �k close to
1, that is, the learner employs very little shrinkage or smoothing in the kth direction or the
learner is actually strong in the kth direction. Then for boosting to bring improvement,
�k has to be large relative to the noise level � or the function f has to be complex in that
direction. When the right hand side of the condition is small, that is, the learner does
much smoothing (shrinkage) or is weak, the condition is more easily satis�ed. Hence we
see improvements for boosting with weak learners most of the time. The assertion in 2(ii)
shows that boosting always beats the unbiased estimator Y as does James-Stein estimator
in the space spanned by U . In this space, the original linear estimator is a component-wise
shrinkage estimator, while the James-Stein estimator uses a uniform shrinkage.

The phenomenon in Theorem 2 generalizes qualitatively to higher order moments.

7

Theorem 3. Under the assumptions in Theorem 1 with 0 < �k � 1; k = 1; : : : ; n and

assuming Ej"1jp <1 for p 2 N,

n�1
nX
i=1

E[(F̂m(xi)� f(xi))
p] = E["p1] +O(exp(�Cm)) (m!1);

where C > 0 is a constant independent of m (but depending on n and p).

A proof is given in the Appendix. Theorem 3 will be used later to argue that the ex-
pected 0-1 loss in classi�cation also exhibits only exponentially small amount of over�tting
as boosting iterations m!1.

Boosting until theoretical convergence with m = 1 is typically not a good advice:
the MSE with m =1 is not smaller than the noise level �2. The reason is that boosting
in�nitely often yields the fully saturated model which �ts the data perfectly. Therefore,
one should monitor an estimate of MSE, for example by using a test set or cross-validation.

Finally, boosting sometimes doesn't change the procedure at all.

Corollary 1. Under the assumptions in Theorem 1 with �k 2 f0; 1g; k = 1; : : : ; n, or
equivalently, S is a linear projection operator, Bm � S for m = 1; 2; : : :.

3.1 Smoothing splines as weak learners

A special class of symmetric linear learners are the smoothing spline operators when the
predictors are one-dimensional. Denote the function class of the �th order smoothness,
de�ned on an interval [a; b], as

F (�) = ff :

Z b

a
[f (�)(x)]2dx <1g: (9)

Let SY = gr be the smoothing spline solution to the penalized least squares problem

gr = gr(�) = argminf2F(r)

1

n

X
i

[Yi � f(xi)]
2 + �

Z
[f (r)(x)]2dx (10)

Theorem 4. (Optimality of L2Boost for smoothing splines). Suppose S is a smoothing
spline learner gr(�0) of degree r corresponding to a �xed smoothing parameter �0. If

the true function f is in F (�) with � � r (�; r 2 N), then there is an m = m(n) =
O(n2r=(2�+1))!1 such that F̂m(n) achieves the optimal minimax rate n�2�=(2�+1) of the

smoother function class F (�) in terms of MSE.

A proof is given in the Appendix. This result states that �rst, boosting smoothing
splines is minimax optimal for a given smoothness class and second, boosting also adapts to
higher order smoothness. Gu (1987) analyzes twicing (m = 1) and shows that twicing can
adapt to a higher order smoothness � � 2r. With boosting we can adapt to an arbitrarily
higher order smoothness since we can re�t as many times as we want. For cubic smoothing
spline learners with r = 2, the optimal rate n�4=5 is achieved by m = O(n4=5). If the
underlying smoothness is say � = 3 > 2 = r, then the boosted cubic smoothing spline
can achieve the optimal rate n�6=7 for the smoother class with m = O(n4=7). In practice,
the optimal boosting iteration m is selected either through a �xed test set or, more often,
through cross validation based on many random splits of the original data set.

8

We note here that boosting also adapts to lower order smoothness � < r. But this is
also true for smoothing splines (without boosting). Hence, boosting is not o�ering more
for this case.

For a given smoothness �, both the ordinary smoothing spline (with r = �) and
boosting achieve the optimal rate, but they trade o� bias and variance along di�erent
regularization paths. The former is algebraic and the latter is exponential. The advan-
tage of the new exponential trade-o� is the
atter near-optimal region for the optimal
smoothing parameter (or boosting iteration) and bounded complexity (variance) for all
smoothing parameter values or boosting iterations. An example was shown in Figure 1
with the simulated data from the next Section.

3.1.1 Simulation results with cubic smoothing spline as weak learners

The relevance of the theoretical results above depends on the underlying problem and the
sample size. We consider a representative example for the model in (6),

f(x) = 0:8x+ sin(6x); x 2 R1; n = 100

"i � N (0; �2); �2 = 2: (11)

The weak learner S is chosen as a cubic smoothing spline which satis�es linearity, sym-
metry and the eigenvalue-conditions used in Theorems 1{3.

The complexity of S, or the strength of the weak leaner, is chosen here in terms of
the so-called degrees of freedom (df) which equals the trace of S (Hastie and Tibshirani,
1990). To study the interaction of the weak learner with the underlying problem, we �x
the model as in (11) and a cubic smoothing-spline learner with df=20. To decrease the
learner's complexity, we use shrinkage (Friedman, 2001) to replace S by

S� = �S; 0 < � � 1:

For S is a smoothing spline estimator, shrinkage with � small corresponds to a linear
operator S� whose eigenvalues f��kgk are closer to zero than f�kgk for the original S.
With small �, we thus get a weaker learner than the original S: shrinkage acts here
similarly as changing the degrees of freedom of the original S to a lower value. We will
see its e�ect in more complex examples in Sections 4.2 and 6. The boosting question
becomes whether even a very weak S� , with � very small, can be boosted with m large
to achieve almost optimal performance (de�ned through numerical search among all the
estimators rising from di�erent shrinkage factors and di�erent iterations of boosting).
Figure 2 displays MSE from speci�cation (11) with x1; : : : ; xn i.i.d. realizations from
N (0; 1), as a function of m and �. It shows that the boosting question from above has a
positive answer for this case. That is, we observe the following from this example:

(1) Boosting with a large number of iterations has the potential to make a very weak
learner (with � very small) almost optimal when compared with the best shrunken
learner �optS. This is consistent with the asymptotic result in Theorem 4.

(2) Provided that the learner is suÆciently weak, boosting always improves, as we show
in Theorem 2.

(3) The initial S with 20 degrees of freedom is too strong (too small amount of smooth-
ing) and boosting decreases performance due to over�tting.

9

shrinkage=0.02

m

M
SE

0 20 40 60 80 100

0.
3

0.
5

0.
7

0.
9

shrinkage=0.04

m

M
SE

0 20 40 60 80 100

0.
3

0.
5

0.
7

0.
9

shrinkage=0.3

m

M
SE

0 20 40 60 80 100

0.
3

0.
5

0.
7

0.
9

shrinkage=1.0

m

M
SE

0 20 40 60 80 100

0.
3

0.
5

0.
7

0.
9

Figure 2: Traces ofMSE as a function of boosting iterationsm, for four di�erent shrinkage
factors. Dotted line represents minimum, achieved with m = 0; � = 0:76. The data is
from model (11) with sample size n = 100.

(4) Boosting very weak learners is relatively safe, provided that the number of iterations
is large: the MSE with � very low is
at for large number of iterations m.

Statements (2){(4), numerically found for this example with a linear weak learner, have
also been shown to hold empirically for many data sets and with nonlinear learners in
AdaBoost and LogitBoost in classi�cation. Statement (1), dealing with optimality, is
asymptotically explained by our Theorem 4. Also the recent work of Jiang (2000) hints
at a consistency result for AdaBoost: he shows that in the asymptotic sense and for clas-
si�cation, AdaBoost visits nearly-optimal (nearly-Bayes) procedures during the evolution
of AdaBoost. However, this asymptotic consistency result doesn't explain optimality or
AdaBoost's good �nite-sample performance.

All these behaviors happen well before the asymptopia m =1 or the convergence of
the boosting algorithm. When having perfect knowledge of the MSE at every boosting
iteration as in our simulation example, a suitable stopping criterion would be the relative
di�erence of MSE between the current and previous iteration. When using the upper
bound, say 10�4 for this relative di�erence we would need m = 761, when using S� with
� = 1, and the resulting MSE at stopping is 1:088. For � = 0:02, we would need m = 1691
and the MSE at stopping is 1:146. This is still far from the stabilizing MSE (m = 1)
which is �2 = 2, see Theorem 2. The positive aspect is that we would stop before reaching
the extreme over�tting situation. This little illustration describes impressively how slow
convergence in boosting could be.

We also illustrate here the adaptivity of L2Boost with smoothing splines to higher
smoothness, see Theorem 4. We use simulated data from model (11) with x1; : : : ; xn i.i.d.
realizations from Uniform([�1=2; 1=2]), for sample sizes n = 10 up to 1000. Table 1 reports

10

sample size n optimal smoothing spline optimal L2Boost gain

10 7.787 �10�1 9.968 �10�1 -28.0%
25 3.338 �10�1 3.349 �10�1 -0.3%
50 1.657 �10�1 1.669 �10�1 -0.7%
100 9.332 �10�2 9.050 �10�2 0.9%
1000 1.285 �10�2 1.128 �10�2 12.2%

Table 1: Generalization mean squared error for simulated data from (11). Optimal cubic
smoothing spline (with best penalty parameter) and optimal L2Boost with smoothing
spline (with best number of boosting iterations). Positive gain, which measures the relative
improvement of mean squared error with L2Boost, indicates an advantage for boosting.

on the performance of the best cubic smoothing spline (with optimal penalty parameter)
in comparison to L2Boosting a cubic smoothing spline with \�xed" penalty � = c, a
constant (with optimal number of boosting iterations). We evaluate generalization error
E[(f(X)� f̂(X))2] by averaging over 100 simulations from the model (11). We observe in
Table 1 the following. For n = 10, the smoothing spline learner in L2Boost is too strong
and actually, the best performance is with m = 0 (no boosting). In the mid-range with
25 � n � 100, the di�erences between optimal smoothing spline and optimal L2Boost are
negligible. For the large sample size n = 1000, we see an advantage of L2Boost which is
consistent with the theory: the underlying regression function in (11) is in�nitely smooth
and L2Boost adapts to higher order smoothness.

4 L2Boosting for regression in high dimensions

When the dimension d of the predictor space is large, the learner S is typically nonlinear.
In very high dimensions, it becomes almost a necessity to use a learner which is doing
some sort of variable selection, and the most prominent examples are trees.

4.1 Component-wise smoothing spline as weak learner

As an alternative to tree learners with two terminal nodes (stumps), we propose here
component-wise smoothing splines. A component-wise smoothing spline is de�ned as a
smoothing spline with one selected explanatory variable x�̂ (�̂ 2 f1; : : : ; dg), where

�̂ = argmin�

nX
i=1

(Yi � ĝ(Xi;�))
2;

where ĝ is the smoothing spline as de�ned in (10). Thus, the component-wise smoothing
spline learner is given by the function

ĝ�̂ : x 7! ĝ(x�̂); x 2 R
d:

Boosting stumps and component-wise smoothing splines yields an additive model
whose terms are �tted in a stagewise fashion. The reason being that an additive com-
bination of a stump or a component-wise smoothing spline F̂0 +

PM
m=1 f̂m, with f̂m(x)

11

depending functionally only on x�̂ for some component �̂ 2 f1; : : : ; dg, can be re-expressed
as

dX
j=1

m̂j(xj); x 2 R
d:

The estimated functions m̂j(�) when using boosting are �tted in stagewise fashion and
di�erent from the back�tting estimates in additive models (cf. Hastie and Tibshirani,
1990). Boosting stumps or component-wise smoothing splines is particularly attractive
when aiming to �t an additive model in very high dimensions with d larger or of the
order of sample size n. Boosting has then much greater
exibility to add complexity, in
a stagewise fashion, to certain components j 2 f1; : : : ; dg and may even drop some of
the variables (components); we will show in Section 4.2 that when the dimension d is
large, boosting also outperforms the alternative classical additive modeling with variable
selection, using back�tting.

4.2 Numerical results

We �rst consider a real data set about ozone concentration in the Los Angeles basin which
has been analyzed in Breiman (1998). The dimension of the predictor space is d = 8 and
sample size is n = 330. We compare here L2Boosting with classical additive models using
back�tting and with MARS. L2Boost is used with stumps and with component-wise cubic
smoothing splines having 5 degrees of freedom (cf. Hastie and Tibshirani, 1990); additive
model-back�tting is with smoothing splines using the default in S-Plus; MARS is run
by using the default parameters as implemented in S-plus, library(mda). We estimate
generalization mean squared error error E[(Y � F̂ (X))2] with F̂ (x) = Ê[Y jX = x] by
randomly splitting the data in 297 training and 33 test observations and averaging 50 times
over such random partitions. Table 2 displays the results. We conclude that L2Boost with

method mean squared error

L2Boost with component-wise spline 17.50 (5)
L2Boost with stumps 20.96 (26)

additive model (back�tted) 17.41
MARS 18.09

Table 2: Test set mean squared errors for ozone data. L2Boost with optimal number of
boosting iterations, given in parentheses. The component-wise spline is a cubic smoothing
spline with df = 5.

component-wise splines is better than with trees and that it is among the best, together
with classical back�tting of additive models.

Next, we show a simulated example in very high dimensions relative to sample size,
where L2Boost as a stagewise method is better than back�tting for additive models with

12

variable selection. The simulation model is,

Y =

100X
j=1

�
1 + (�1)jAjXj +Bj sin(6Xj)

� 50X
j=1

(1 +Xj=50) + ";

A1; : : : ; A100 i.i.d. Unif([0:6; 1]) and

B1; : : : ; B100 i.i.d. Unif([0:8; 1:2]); independent from the Aj 's;

X � Unif([0; 1]100) where all components are i.i.d. � Unif([0; 1]);

" � N (0; 2): (12)

Samples of size n = 200 are generated by i.i.d. simulation of the pairs (Yi;Xi) from model
(12).

We use the same methods as above. However, we use classical additive modeling with
a forward variable selection (inclusion) strategy because d = 100 is very large compared
to n = 200. We evaluate E[(F̂ (X) � E[Y jX = x])2] at the true conditional expectation
which can be done in simulations; note that E[Y jX = x] is still random depending on
the realizations of the random coeÆcients Aj ; Bj . Already a stump appeared to be too
strong for L2Boost and we therefore used shrunken learners �S with � = 0:5 chosen
ad-hoc; we also allow the non-boosting procedures to be shrunken with � = 0:5. Table
4.2 shows the average performance over 10 simulations from model (12). L2Boost is the

method mean squared error

L2Boost with shrunken component-wise spline 10.69 (228)
L2Boost with shrunken stumps 12.54 (209)

additive model (back�tted and forward selection) 16.61 (1)
shrunken additive model (back�tted and forward selection) 14.44 (19)

MARS 25.19
shrunken MARS 15.05

Table 3: Generalization mean squared errors for simulated data from (12) with n = 200.
L2Boost with optimal number of boosting iterations, given in parentheses; additive model
with optimal number of selected variables, given in parentheses. The component-wise
spline is a cubic smoothing spline with df = 5; shrinkage factor is always � = 0:5.

winner over additive models and MARS, and the component-wise spline is a better learner
than stumps. It is mainly in such high-dimensional situations where boosting has a clear
advantage over other
exible nonparametric methods; and not so much in examples where
the dimension p is \mid-range" relative to sample size.

5 Boosting in two-class problem

For classi�cation, the evaluating performance criterion of the boosting procedure is often
its misclassi�cation rate. Consider a training sample

(Y1;X1); : : : ; (Yn;Xn) i.i.d.; Yi 2 f�1; 1g; Xi 2 R
d; (13)

and a new test observation (Y;X) 2 f�1; 1g � Rd, being independent from the training
sample but having the same distribution. Using classi�ers of the form (5), the misclassi-

13

�cation rate can be expressed in terms of the (estimated) margin Y F̂m,

P[Y F̂m(X) < 0] = E[1[Y F̂m(X)<0]]:

As usual, P and E are over all the random variables in the training set (13) and the testing
observation, unless speci�ed otherwise.

Insights about the expected zero-one loss function can be gained by approximating it,
for theoretical purposes, with a smoothed version

E[C
(Y F̂m(X))];

C
(z) = (1 �
exp(z=
)

2
)1[z<0] +

exp(�z=
)

2
1[z�0];
 > 0:

The parameter
 controls the quality of approximation.

Proposition 3. Assume that the joint distribution of Z = Y F̂m(X) has a density g(z)
which is bounded for z in an neighborhood around zero. Then,

jP[Y F̂m(X) < 0]� E[C
(Y F̂m(X))]j = O(
 log(
�1) (
 ! 0):

A proof is given in the Appendix. Proposition 3 shows that the misclassi�cation rate
can be approximated by an expected cost function which is in�nitely often di�erentiable.

5.1 Misclassi�cation rate via tapered moments of the margin

Proposition 3 motivates to study misclassi�cation rate through E[C
(Z)] with Z = Y F̂m(X).
Applying a Taylor series expansion of C
(�) around Z� = Y F (X), i.e. the margin with
the true F (�), we obtain

E[C
(Z)] = E[C
(Z
�)] +

1X
k=1

1

k!
E[C(k)

 (Z�)(Z � Z�)k]: (14)

The derivatives of C
(�) are

C(k)

 (z) =

1

k
exp(

�jzj

)(�1[z<0] + (�1)k1[z�0]): (15)

Using conditioning on the test observations (Y;X), the moments can be expressed as

E[C(k)

 (Z�)(Z � Z�)k] =

X
y2f�1;1g

Z
C(k)

 (yF (x))ykbk(x)P[Y = yjX = x]dPX(x);

bk(x) = E[(F̂m(x)� F (x))k]; where expectation is over the training set in (13): (16)

Thereby, PX(�) denotes the distribution of the covariables X.
From (14) and (16) we see that the generalization error of any procedure is approx-

imately, in addition to the approximate Bayes risk E[C
Z
�], the sum of moments bk(x),

tapered by C
(k)

 (yF (x))=k!. Given a small value of
 (to ensure good approximation in

Proposition 3), the tapering weights decay very quickly as yF (x) moves away from zero.
This exploits from a di�erent view the known fact that only the behavior of bk(x) in the
neighborhood of the classi�cation boundary fx; F (x) = 0g matters to the misclassi�ca-
tion rate. It may then be diÆcult to observe over�tting on test data, because most of the

14

test data would not have many explanatories x near the decision boundary and therefore,
the over�tting is hardly visible.

The �rst two terms in the approximation (14) are the tapered bias- and the tapered
L2-term, see (16). The higher order terms can be expanded as terms of interactions
between the centered moments and the bias term (all tapered),

bk(x) = E[(F̂m(x)� F (x))k] =

kX
j=0

�
k
j

�
b1(x)

k
E[(F̂m(x)� E[F̂m(x)])

k�j]: (17)

This seemingly trivial approximation has three important consequences. The �rst is that
bias (after tapering) as the �rst term in (14) and multiplicative terms in higher moments,
see (17), plays a bigger role in 0-1 loss classi�cation than in L2-regression. Second, in
the case of boosting, since all the (tapered) centered moment terms in (16) are bounded
by expressions with exponentially diminishing increments as boosting iterations m gets
large (see Section 3, particularly Theorem 3), driving the tapered bias to zero with many
boosting iterations (exponentially fast) has a very mild increasing e�ect on the other terms
in the summation (they are all exponentially small), and it is thus very worthwhile for
lowering the generalization error. The third consequence of the approximation in (14),
(16) and (17) is to explain why the previous attempts were not successful at decomposing
the generalization error into additive bias and variance terms (cf. Geman et al. 1992;
Breiman, 1998, and references therein). This, because except for the �rst two terms, all
other important terms include the bias-term also in a multiplicative fashion (see (17)) for
each term in the summation (14), instead of a pure additive way.

We conclude heuristically that the exponentially diminishing centered moment in-
crease with the number of boosting iterations (as stated in Theorem 3), together with
the tapering in the smoothed 0-1 loss yield the overall, often strong, over�tting-resistance
performance of boosting in classi�cation.

5.2 Acceleration of F and classi�cation noise

As seen in Section 5.1, resistance against over�tting is closely related to the behavior
of F (�) at the classi�cation boundary. If the true F (�) moves away quickly from the

classi�cation boundary fx;F (x) = 0g, the relevant tapering weights C
(k)

 (yF (x)) decay

very fast. This can be measured with grad(F (x))jx=0, the gradient of F at zero. F (�) is
said to have a large acceleration if its gradient is large (element-wise in absolute values, or
in Euclidean norm). Thus, a large acceleration of F (�) should result in strong resistance
against over�tting in boosting.

Noise negatively a�ects the acceleration of F (�). Noise in model (13), often called
\classi�cation noise", can be thought of in a constructive way. Consider a random variable
W 2 f�1; 1g, independent from (Y;X) with P[W = �1] = �; 0 � � � 1=2. The noisy
response variable is

~Y =WY; (18)

changing the sign of Y with probability �. Its conditional probability is easily seen to be,

P[~Y = 1jX = x] = P[Y = 1jX = x](1� 2�) + �; 0 � � � 1=2: (19)

Denote by ~F (�) the noisy version of F (�) with P[~Y = 1jX = x] replacing P[Y = 1jX = x],
either for F (�) being half of the log-odds ratio or the conditional expectation, see (3). A

15

no noise

m

te
st

 s
et

 M
C

R

0 50 100 150 200 250 300

0.
04

0.
06

0.
08

10%noise

m

te
st

 s
et

 M
C

R

0 50 100 150 200 250 3000.
15

5
0.

16
5

0.
17

5

25%noise

m

te
st

 s
et

 M
C

R

0 50 100 150 200 250 300

0.
26

0.
27

0.
28

0.
29

40%noise

m

te
st

 s
et

 M
C

R

0 50 100 150 200 250 300

0.
39

0
0.

40
0

0.
41

0
Figure 3: Test set misclassi�cation rates (MCR) for LogitBoost with stumps. Breast
cancer data with di�erent noise levels � (in %) as described in (18).

straightforward calculation then shows,

grad(~F (x))jx=0 & 0 as � % 1=2: (20)

The noisier the problem, the smaller the acceleration of ~F (�) and thus less resistance
against over�tting since the tapering weights in (15) are becoming larger in noisy prob-
lems. This adds deeper insight to the known empirical fact that boosting doesn't work
well in noisy problems; see Dietterich (1999). The reason is that over�tting kicks in
early and many learners are too strong in noisy problems. Using LogitBoost (Fried-
man et al., 2000), this e�ect is demonstrated in Figure 3 for the breast cancer data
(http://www.ics.uci.edu/~mlearn/MLRepository) which has been analyzed by many oth-
ers. We see there that already a stump becomes too strong for LogitBoost in the 25% or
40% noise added breast cancer data.

Of course, adding noise makes the classi�cation problem harder. The optimal Bayes
classi�er ~CBayes(�) in the noisy problem has misclassi�cation rate

P[~Y (X) 6= ~CBayes(X)] = � + (1� 2�)P[Y (X) 6= CBayes(X)]; 0 � � � 1=2;

relating it to the Bayes classi�er CBayes of the original non-noisy problem. This is easily
derived using (19). With high noise, the expression is largely dominated by the constant
term �, indicating that there isn't much to gain by using a clever classi�er (say close to
optimal Bayes) instead of a naive one. Even more so, the relative improvement, which is
often used to demonstrate the better performance of a powerful classi�er (over a bench-
mark), becomes less dramatic due to the high noise level causing a large misclassi�cation
benchmark rate.

16

5.3 L2Boost in classi�cation

The (true) margin is referred as

Y Flo(X); Y 2 f�1; 1g; Flo(x) =
1

2
log

�
p(x)

1� p(x)

�
; p(x) = P[Y = 1jX = x]:

We emphasize here the notation Flo(�) to denote half of the log-odds ratio. Many reason-
able loss functions for classi�cation are functions of the margin. For example, exp(�Y Flo(X))
(exponential loss for AdaBoost), log2(1 + exp(�2Y Flo(X))) (negative log-likelihood for
LogitBoost). The L2-loss is also a function of the margin since its minimizer E(Y jX = x)
can be written as a function of the margin Y Flo(X) as stated in the following proposition.

Proposition 4.

jY � E[Y jX = x]j2 = jY � (2p(x)� 1)j2 = 4=(1 + exp(2Y Flo(x))
2: (21)

A proof is given in the Appendix. This is what Friedman et al. (2000) called \squared
error (p)".

loss functions of the margin

yF
-4 -2 0 2 4

0
2

4
6

8
10

exponential
log-likelihood
L2
0-1

Figure 4: Various loss functions of Y Flo.

Figure 4 shows that the L2-loss is a competitive approximation to the 0-1 loss relative
to the negative log-likelihood or exponential loss: particularly when the margin takes large
negative values (strong misclassi�cations). Near the classi�cation boundary Y F (X) = 0,
for the (small) positive margins, the L2-loss is a tighter bound than exponential or log-
likelihood, but for the (small) negative margins, it is reversed. Therefore the L2-loss seems
at least as good as the exponential or log-likelihood loss to bound the 0-1 loss.

Moreover estimating E[Y jX = x] = 2p(x) � 1 in the classi�cation can be seen as
estimating the regression function in a heteroscedastic model,

Yi = 2p(xi)� 1 + �i (i = 1; : : : ; n);

where "i are independent, mean zero variables, but with variance 4p(xi)(1� p(xi)).
Because the variances are bounded by 1, the arguments in the regression case can be

modi�ed to give the optimal rates of convergence results for estimating p.

17

Theorem 5. (optimality of L2Boost for smoothing splines in classi�cation). Consider

the case with one-dimensional predictor x 2 R. Suppose p 2 F (�), see (9), and S is

a smoothing spline linear learner gr(�0) of degree r, corresponding to a �xed smoothing

parameter �0. If � � r, then there is an m = m(n) = O(n2r=(2�+1)) ! 1 such that

F̂m(n) achieves the optimal minimax rate n�2�=(2�+1) of the smoother function class F (�)

for estimating 2p(�)� 1 in terms of MSE.

It follows that if the underlying p belongs to one of the smooth function class F (�),
L2Boosting achieves the Bayes risk. In view of the results in Marron (1983), Theorem
5 also implies that L2Boost with smoothing splines gives the minimax optimal rates of
convergence for the classi�cation problem over the global smoothness class F (�), de�ned
by

minF̂nmaxp2F(�)fP[Y F̂n(X) < 0]�BayesRiskg

where F̂n is any classi�cation rule based on n i.i.d. observations (Yi;Xi). Mammen and
Tsybakov (1999) consider di�erent function classes which are locally constrained near
the decision boundary and show that faster than the parametric rate n�1 can even be
achieved. The local constrained classes are more natural in the classi�cation setting with
the 0-1 loss since, as seen from our smoothed 0-1 loss expansion in Section 5.1, the actions
happen near the decision boundary. These new rates are achieved by avoiding the plug-in
classi�cation rules via estimating p and going directly to empirical minimizations of the
0-1 loss function over regularized classes of decision regions. However, computationally
such a minimization could be very diÆcult. It remains open whether boosting can achieve
these new optimal convergence rates in Mammen and Tsybakov (1999).

5.4 Comparing L2Boost with LogitBoost on Real Data Sets

In addition to the L2Boost algorithm, we propose a version called \L2Boost with con-
straints" (L2WCBoost). It proceeds as L2Boost, except that F̂m(x) is constrained to be
in [�1; 1]: this is natural since the target is F (x) = E[Y jX = x] 2 [�1; 1].

L2WCBoost algorithm

Step 1. F̂0(x) = h(x; �̂Y;X). Set m = 0.

Step 2. Compute Ui = Yi�F̂m(Xi) (i = 1; : : : ; n). Then, �t the residuals (U1;X1) : : : ; (Un;Xn)

f̂m+1(x) = h(x; �̂U;X):

Update

~Fm+1(�) = F̂m(�) + f̂m+1(�);

F̂m+1(x) = sign(~Fm+1(x))min
�
1; j ~Fm+1(x)j

�
:

Note that if j ~Fm+1(x)j � 1, the updating step is as in the L2Boost algorithm.
Step 3. Increase m by one and go back to Step 2.

We compare L2Boost, our L2WCBoost and LogitBoost using tree learners and our
component-wise smoothing spline learner from Section 4.1. We consider �rst a variety of 2-
class problems from the UCI machine learning repository (http://www.ics.uci.edu/~mlearn/
MLRepository): Breast cancer, Ionosphere, Monk 1 (full data set with n = 432) and the

18

dataset n p learner L2Boost L2WCBoost LogitBoost

Breast cancer 699 9 stumps 0.037 (176) 0.040 (275) 0.039 (27)
comp. spline 0.036 (126) 0.043 (73) 0.038 (5)

Sonar 210 60 stumps 0.228 (62) 0.190 (335) 0.158 (228)
comp. spline 0.178 (51) 0.168 (47) 0.148 (122)

Ionosphere 351 34 stumps 0.088 (25) 0.079 (123) 0.070 (157)
Heart (without costs) 270 13 stumps 0.167 (4) 0.175 (3) 0.159 (3)
Australian credit 690 14 stumps 0.123 (22) 0.123 (19) 0.131 (16)

Monk 1 432 7 larger tree 0.002 (42) 0.004 (12) 0.000 (6)

Table 4: Test set misclassi�cation rates for L2Boost, L2WCBoost (with constraints) and
LogitBoost. Optimal number of boosts is given in parentheses; if the optimum is not
unique, the minimum is given. \Larger tree" denotes a tree learner such that the ancestor
nodes of the terminal leaves contain at most 10 observations.

Heart, Sonar and Australian credit data sets from the Statlog project. Monk 1 has Bayes
error equal to zero. The estimated test set misclassi�cation rates, using an average of
50 random divisions into training with 90% and test set with 10% of the data, are given
in Table 4. The comparison is made when using the optimal number of boosting for
every boosting algorithm; these numbers are given in parentheses. The component-wise
learner is used only for the breast cancer data with ordinal predictors and for the sonar
data with continuous predictors. For the latter, spline smoothing makes most sense and
we also found empirically that it is there where it improves upon the tree-based stumps.
L2WCBoost performs overall a bit better than L2Boost, although in half of the data sets
L2Boost was better. LogitBoost was better than L2Boost in 4 out of 6 and better than
L2WCBoost in 5 out of 6 data sets, but most often only by a small amount. The biggest
di�erence in performance is for the Sonar data which has the most extreme ratio of di-
mension d to sample size n. But also for this data set, the di�erence is far from being
signi�cant since sample size is much too small.

Therefore, we consider next simulated data to compare the L2WCBoost (the slightly
better of the L2procedures) with the LogitBoost algorithm. It allows a more accurate
comparison by choosing large test sets. We generate data with two classes from the model
in Friedman et al. (2000) with a non-additive decision boundary,

X � N10(0; I); Y jX = x � 2 Bernoulli(p(x))� 1;

log(p(x)=(1 � p(x))) = 10
10X
j=1

xj(1 +
6X

k=1

(�1)kxk): (22)

The (training) sample size is n = 2000. It is interesting to consider the performance on a
single training and test data which resembles the situation in practice. For that purpose
we choose a very large test set of size 100'000 so that variability of the test set error given
the training data is very small. Additionally, we consider an average performance over 10
independent realizations from the model: here, we choose test set size as 10'000 which is
still large compared to the training sample size n = 2000. The latter is the same set-up
as in Friedman et al. (2000).

Figure 5 displays the results on a single data set. L2WCBoost and LogitBoost perform
about equally well. There is a slight advantage for L2WCBoost with the larger tree
learner. It has been pointed out by Friedman et al. (2000) that stumps aren't good

19

stumps; single data set

m

te
st

 s
et

 M
C

R

0 200 400 600 800 1000

0.
34

0.
38

0.
42

L2WCBoost
LogitBoost

larger tree; single data set

m

te
st

 s
et

 M
C

R

0 500 1000 1500 2000 2500 3000

0.
18

0.
20

0.
22

0.
24 L2WCBoost

LogitBoost

Figure 5: Test set misclassi�cation rates (MCR) for a single realization from model (22).
Top: stumps as learner. Bottom: larger tree as learner.

larger tree; 10 simulations

m

te
st

 s
et

 M
C

R

0 500 1000 1500 2000

0.
18

0.
20

0.
22

0.
24

L2WCBoost
LogitBoost

Figure 6: Test set misclassi�cation rates (MCR) averaged over 10 realization from model
(22). Larger tree as learner.

20

learners because the true decision boundary is non-additive. With stumps as learners,
the optimally stopped LogitBoost has a tiny advantage over L2WCBoost (by about 0.13
estimated standard errors for the test set error estimate, given the training data). With
larger trees, L2Boost has a more substantial advantage over LogitBoost (by about 1.54
standard errors, given the data).

Figure 6 shows the averaged performance over 10 independent realizations with larger
trees as weak learner: it indicates a more substantial advantage than on the single data
represented by Figure 5. With 10 independent realizations, we test whether an optimally
stopped Boosting algorithm yields a signi�cantly better test set misclassi�cation rate. In 9
out of the 10 simulations, optimally stopped L2WCBoost was better than LogitBoost. The
p-values for testing the hypothesis of equal performance against the two-sided alternative
are given in Table 5.

test p-value

t 0.0015
Wilcoxon 0.0039
sign 0.0215

Table 5: Comparison of L2WCBoost and LogitBoost: two-sided testing for equal test set
performance. Low p-values are always in favor of L2WCBoost.

Thus, for the model (22) from Friedman et al. (2000), we �nd a signi�cant advantage
of L2WCBoost over LogitBoost.

6 Discussion and concluding remarks

As seen in Section 3 (see also Figure 2), L2Boosting is only successful if the learner is
weak. If the learning procedure is too strong, then even at the �rst boosting iteration
the MSE is not improved over the original. Also in the classi�cation case it is likely that
the generalization error will then increase with the number of boosting steps, stabilizing
eventually due to numerical convergence of the boosting algorithm to the fully saturated
model (at least for linear learners with eigenvalues bounded away from zero). Of course,
weakness of a learner depends also on the underlying problem, i.e. the data generating
distribution: see also assertion (2) in Theorem 2. It is often hard to decide a-priori whether
a learner is weak; a posteriori, we can estimate generalization error in boosting and hence
obtain information about strength of the learner. The degree of weakness of a learner can
be increased by additional shrinkage using S� = �S with shrinkage factor 0 < � < 1.

For L2Boost with one-dimensional predictors, we have presented asymptotic results
in Section 3.1, saying that boosting weak smoothing splines is as good or even better
than using an optimal smoothing spline (which is then a strong learner) since boosting
adapts to unknown smoothness. In high dimensions, we see most practical advantages of
boosting, particularly when the dimension of the predictor space is very large relative to
sample size: we have exempli�ed this in Section 4.2.

The fact that L2Boost depends critically on the strength of the learner is also (empiri-
cally) true for other versions of boosting. We show in Figure 7 some results for LogitBoost
with trees and projection pursuit learners with one ridge function (one term) for the breast
cancer data. All tree learners are suÆciently weak for the problem and a shrunken large
tree seems best. Interestingly, the projection pursuit learner is already strong and boost-

21

tree learners

m

te
st

 s
et

 M
C

R

0 50 100 150 200 250 300

0.
03

5
0.

04
5

0.
05

5

PPR learners

m

te
st

 s
et

 M
C

R

0 100 200 300 400 500

0.
03

5
0.

04
5

0.
05

5

Figure 7: Test set misclassi�cation rates (MCR) of LogitBoost for breast cancer data.
Top: decision tree learners, namely stumps (solid line), large unpruned tree (dotted line)
and shrunken large unpruned tree (dashed line) with shrinkage factor � = 0:01. Bottom:
projection pursuit (PPR) learners , namely one term PPR (solid line) and shrunken one
term PPR (dotted line) with shrinkage factor � = 0:01.

ing doesn't pay o�. This matches the intuition that projection pursuit is very
exible, and
hence strong. Boosting projection pursuit a second time (m = 2) reduces performance:
this estimate with m = 2 can then be improved by further boosting. Eventually the mis-
classi�cation curve shows over�tting and stabilizes at a relatively high value. Presumably,
the boosting estimate with m = 2 \overshoots" in the second functional gradient descent
step because the learner is too strong. Additional boosts correct again and increase the
performance (for a while). We observed a similar pattern with projection pursuit learners
in another simulated example which allows for very accurate estimation of the misclassi�-
cation rate. Such a phenomenon is typically not observed with tree learners, but it is not
inconsistent with our theoretical arguments.

Most of the empirical studies of boosting in the literature use a tree-structured learner.
The complexity is often low for tree procedures because they are �tted by a stagewise
selection of variables and split points, as in CART and other tree algorithms (while the
complexity would be much higher, or it would be a much stronger learner, if the tree were
�tted by a global search for split points { which is of course infeasible). This is another
example of a local greedy method leading to low increase in complexity, similarly as we
analyzed for L2Boosting. When the predictor space is high-dimensional, the substantial
amount of variable selection done with a tree procedure is particularly helpful in leading
to a low complexity (or weak) learner. And this feature may be very desirable.

In this paper, we mainly investigated L2Boost, taking advantage of its analytical
tractability, and demonstrated its practical e�ectiveness. In particular, we showed that

22

1. L2Boost is appropriate both for regression and classi�cation. It leads to competitive
performance, also in classi�cation relative to LogitBoost.

2. L2Boost is a stagewise �tting procedure with the iterationm acting as the smoothing
or regularization parameter (this is also true with other boosting algorithms). In
the linear weak learner case, m controls a new exponential bias-variance trade-o�.

3. L2Boost with smoothing splines results in optimal minimax rates of convergence,
both in regression and classi�cation. Moreover, the algorithm adapts to unknown
smoothness.

4. Weighting observations is not used for L2Boost: we doubt that the success of general
boosting algorithms is due to \giving large weights to heavily misclassi�ed instances"
as Freund and Schapire (1996) conjectured for AdaBoost. Weighting in AdaBoost
and LogitBoost comes as a consequence of the choice of the loss function, and is
likely not the reason for their successes. It is interesting to note here Breiman's
(2000) conjecture that even in the case of AdaBoost, weighting is not the reason for
success.

5. A simple expansion of the smoothed 0-1 loss reveals new insights into the classi�ca-
tion problem, particularly an additional resistance of boosting against over�tting.

6. Boosting learners which involve only one (selected) predictor variable yields an ad-
ditive model �t. We propose component-wise cubic smoothing splines, which are of
such type; they are most often better learners than tree-structured stumps, espe-
cially for continuous predictors.

Acknowledgements

We would like to thank Trevor Hastie and Leo Breiman for very helpful discussions.
Partial support to B. Yu is gratefully acknowledged from the National Science Foundation
(DMS-9803063 and FD01-12731) and the Army Research OÆce (DAAG55-98-1-0341 and
DAAD19-01-1-0643).

Appendix

Proof of Proposition 1.

For L2Boost with cost function C(y; u) = (y � u)2=2, the negative gradient in stage j is
the classical residual vector uj = Y �Fj�1 and Fj = Fj�1+ fj (there is no need for a line
search) with fj = Suj. Thus,

uj = Y � Fj�1 = uj�1 � Suj�1 = (I � S)uj�1; j = 1; 2; : : : ;m;

implying uj = (I �S)jY for j = 1; 2; : : : ;m. Since F0 = SY we obtain F̂m =
Pm

j=0 S(I �

S)jY . Using a telescope-sum argument, this equals (I � (I � S)m+1)Y . 2

Proof of Theorem 1.

The bias term is

bias(m;S; f) = (E[BmY]� f)T (E[BmY]� f) = ((Bm � I)f)T ((Bm � I)f):

23

According to (7), using orthonormality of U ,

Bm � I = U(Dm � I)UT = Udiag(�(1� �k)
m+1)UT :

Thus, again by orthonormality of U , the formula for the bias follows.
For the variance, consider

Cov(BmY) = BmCov(Y)B
T
m = �2BmB

T
m = �2Udiag((1 � (1� �k)

m+1)2)UT ;

using (7) and orthonormality of U . Then,

variance(m;S;�2) = tr[Cov(BmY)] = �2
nX

k=1

(1� (1� �k)
m+1)2;

again using orthonormality of U . 2

Proof of Theorem 2.

Assertion (1) is an immediate consequence of Theorem 1.
Without loss of generality, assume �k < 1 for all k. If not, restrict the summation to those
k's which satisfy �k < 1.

(i) Denote by � = UT f 2 Rn. For x � 0, let

g(x) = n�1
nX

k=1

�2k(1� �k)
2x+2 + �2n�1

nX
k=1

(1� (1� �k)
x+1)2:

Then

g(m) =MSE(m;S; f; �2) = bias(m;S; f) + variance(m;S;�2):

It is easy to derive

g0(x) = 2n�1
nX

k=1

[(�2k + �2)(1� �k)
x+1 � �2](1� �k)

x+1 log(1� �k):

It follows that

g0(0) = 2n�1
nX

k=1

[(�2k + �2)(1� �k)� �2](1� �k) log(1� �k);

g0(1) = 2n�1
nX

k=1

[(�2k + �2)(1� �k)
2 � �2)](1� �k)

2 log(1� �k)

which are both negative under the inequality condition in (i); also g0(x) < 0 for x 2 (0; 1)
under this condition. Hence g(1) < g(0) which means boosting improves.

(ii) Rewrite

g(x) = n�1
nX

k=1

[(�2k + �2)(1� �k)
x+1 � 2�2](1 � �k)

x+1 + �2:

Since for all k (with �k < 1), (�2k + �2)(1� �k)
x+1 � 2�2 ! �2�2 as x!1, there exists

an m such that (�2k + �2)(1� �k)
m+1 � 2�2 � ��2 for all k (with �k < 1). It follows that

g(m) � �n�1
nX

k=1

(1� �k)
m+1�2 + �2 < �2:

24

It is obvious that g(m)! �2 as m!1: 2

Proof of Theorem 3.

Write the summands with the higher order moment as

E[(F̂m(xi)� f(xi))
p] =

pX
j=0

�
p
j

�
bm(xi)

j
E[(F̂m(xi)� E[F̂m(xi)])

p�j]; (23)

where bm(xi) = E[F̂m(xi)� f(xi)] is the bias term. Thus, we have transformed the higher
order moment as a sum of higher order centered moments with the bias as a multiplier
which goes to zero as m!1. The centered moments can be written as

(F̂m(xi)� E[F̂m(xi)])
q = (BmY � E[BmY])

q
i

= (Bm")
q
i = ((I � (I � S)m+1)")qi = ("� (I � S)m+1")qi ;

where we used assertion 1 from Proposition 1. Since (I �S)m+1 is a map (matrix) taking
values exponentially close to zero as m!1, we obtain

E[(F̂m(xi)� E[F̂m(xi)])
q] = E["qi] +O(exp(�Cqm)) (m!1)

for some constant Cq > 0. From this last bound and using (23) together with the fact
that the bias bm(xi) = O(exp(�Cbm)) (m!1) for some constant Cb > 0 (see Theorem
2), we complete the proof. 2

Proof of Theorem 4.

Let S be the smoothing spline operator corresponding to smoothness r and with smoothing
parameter c = �0 (to avoid notational confusion with eigenvalues). It is well-known (cf.
Utreras, 1983; Wahba, 1990, p.61) that the eigenvalues of S take the form in decreasing
order

�1 = ::: = �r = 1; �k =
nqk;n

n�0 + nqk;n
for k = r + 1; :::; n:

Moreover, for n large, qk;n � Ak�2r := Aqk where A is universal and depends on the
asymptotic density of the design points xi. For the true function f 2 F (�),

1

n

nX
k=r+1

�2kk
2� �M <1:

Let c0 = c=A, then

�k �
qk

c0 + qk
for k = r + 1; :::; n:

Then the bias term can be bounded as follows.

bias(m;S; f) =
1

n

nX
k=r+1

(1� �k)
2m+2�2k

�
1

n

nX
k=r+1

(1� qk=(c0 + qk))
2m+2k�2��2kk

2�

� max
k=r+1;:::;n

(1� qk=(c0 + qk))
2m+2k�2� �

1

n

nX
k=r+1

�2kk
2� :

= max
k=r+1;:::;n

exp(h(k)) �
1

n

nX
k=r+1

�2kk
2� ;

25

where

h(x) = log[(1� x�2r=(c0 + x�2r))2m+2x�2�]

= (2m+ 2) log(1� 1=(c0x
2r + 1))� 2� log(x):

Taking derivative gives

h0(x) =
2r

x

1

c0x2r + 1
[(2m+ 2)�

�

r
(c0x

2r + 1)]:

Hence for any given positive integer n1, if x � n1 and m � �
2r (c0n

2r
1 + 1) � 1, h(x) is

increasing and so is exp(h(x)), and

exp(h(x)) � exp((h(n1)) = (1� 1=(c0n
2r
1 + 1))2m+2n�2�

1 :

On [n1 + 1; n],
exp(h(x)) � (1� 1=(c0n

2r + 1))2m+2n�2�
1 :

Putting them together we get for any given n1 and m � �
2r (c0n

2r
1 + 1)� 1,

bias(m;S; f) �Mn�2�
1 [2(1 � 1=(c0n

2r + 1))2m+2]

which is of the order O(n�2�
1) for n1 !1 and n1 � n.

Now let's deal with the variance term. For any n1 > r,

variance(m;S;�2) =
�2

n
fr +

nX
k=r+1

[1� (1 � �k)
m+1]2

�
�2n1
n

+
1

n

nX
k=n1+1

[1� (1� �k)
m+1]2 := I1 + I2:

Because (1� x)a � 1� ax for any x 2 [0; 1] and a � 1,

1� (1� �k)
m+1 � 1� [1� (m+ 1)�k] = (m+ 1)�k:

It follows that

I2 �
1

n

nX
k=n1+1

(m+ 1)2�2k �
(m+ 1)2

n

nX
k=n1+1

1

(c0k2r + 2)2

�
(m+ 1)2

n

nX
k=n1+1

1

(c0k2r)2
�

(m+ 1)2

n

Z 1

n1

1

(c0x2r)2
dx

=
(m+ 1)2

c20(4r � 1)n
n1=n

4r
1 � O(n1=n);

if we take m = m(n1) =
�
2r (c0n

2r
1 + 1)� 1 = O(n2r1). Hence for this choice of m(n1),

variance(m(n1);S;�
2) � O(n1=n):

Together with the bound for the bias we get

1

n
MSE � O(n1=n) +O(n�2�

1);

26

which is minimized by taking n1 = O(n1=(2�+1)) and for m(n) = m(n1) = O(n2r=(2�+1)).
The minimized MSE has the minimax optimal rate O(n�2�=(2�+1)) of the smoother func-
tion class F (�). 2

Proof of Proposition 3.

Denote by C(z) = 1[z<0]. We �rst show that

sup
jzj>
 log(
�1)

jC(z)� C
(z)j =
=2: (24)

By symmetry, it suÆces to consider z > 0,

sup
z>
 log(
�1)

jC(z)� C
(z)j = C
(
 log(

�1)) = exp(� log(
�1))=2 =
=2;

proving (24).
On the other hand,

Z
jzj�
 log(
�1)

jC(z)� C
(z)jg(z)dz � sup
z
jg(z)j
 log(
�1) = O(
 log(
�1)): (25)

Hence, by (24) and (25),

jE[C(Z)� C
(Z)]j

� (

Z
jzj>
 log(
�1)

+

Z
jzj�
 log(
�1)

)jC(z)� C
(z)jg(z)dz �
=2 +O(
 log(
�1))

= O(
 log(
�1)) (
 ! 0):

2

Proof of Proposition 4.

The minimizer of the L2-loss is �(x) = 2p(x)� 1 and the minimized L2-loss is

(Y � �(x))2 = 1� 2Y (2p(x) � 1) + (2p(x)� 1)2:

Let yF (x) = u. Then, for y = 1: F (x) = u and p(x) = exp(2u)=(1 + exp(2u)), which give

(Y � �(x))2 = 1� 2Y (2p(x)� 1) + (2p(x)� 1)2

= 1� 2(exp(2u)� 1)=(exp(2u) + 1) + (exp(2u) � 1)2=((exp(2u) + 1)2

= 4=(1 + exp(2u))2

For y = �1: F (x) = �u and p(x) = exp(�2u)=(1 + exp(�2u)), which give

(Y � �(x))2 = 1� 2(� exp(2u) + 1)=(exp(2u) + 1) + (exp(2u) � 1)2=((exp(2u) + 1)2

= 4=(1 + exp(2u))2

2

27

References

[1] Buja, A. (2000). Comment on \Additive logistic regression: a statistical view of
boosting". Ann. Statist. 28, 387{391.

[2] Breiman, L. (1998). Arcing classi�ers. Ann. Statist. 26, 801-824.

[3] Breiman, L. (1999). Prediction games & arcing algorithms. Neural Computation 11,
1493-1517.

[4] Breiman, L. (2000). Some in�nity theory for predictor ensembles. Tech. Report 579,
Dept. of Statist., Univ. of Calif., Berkeley.

[5] Collins, M., Schapire, R.E. and Singer, Y. (2000). Logistic regression, AdaBoost and
Bregman distances. Proc. Thirteenth Annual Conference Computational Learning
Theory.

[6] Dietterich, T.G. (1999). An experimental comparison of three methods for construct-
ing ensembles of decision trees: bagging, boosting, and randomization. Machine
Learning 40, 139{157.

[7] Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and
Computation 121, 256{285.

[8] Freund, Y. and Schapire, R.E. (1996). Experiments with a new boosting algorithm. In
Machine Learning: Proc. Thirteenth International Conference, pp. 148{156. Morgan
Kau�man, San Francisco.

[9] Friedman, J.H. (2001). Greedy function approximation: a gradient boosting machine.
To appear in the Annals of Statist.

[10] Friedman, J.H., Hastie, T. and Tibshirani, R. (2000). Additive logistic regression: a
statistical view of boosting. Annals of Statist. 28, 337{407 (with discussion).

[11] Geman, S., Bienenstock, E. and Doursat, R. (1992). Neural networks and the
bias/variance dilemma. Neural Computations 4, 1{58.

[12] Gu, C. (1987). What happens when bootstrapping the smoothing spline? Commun.
Statist. Part A - Theory Meth. 16, 3275{3284.

[13] Hastie, T.J. and Tibshirani, R.J. (1990). Generalized Additive Models. Chapman &
Hall.

[14] Jiang, W. (2000). Process consistency for AdaBoost. Tech. Report, Dept. of Statistics,
Northwestern University.

[15] Mammen, E. and Tsybakov, A.B. (1999). Smooth discriminant analysis. Ann. Statist.
27, 1808{1829.

[16] Marron, J.S. (1983). Optimal rates of convergence to Bayes risk in nonparametric
discrimination. Ann. Statist. 11, 1142{1155.

[17] Mason, L., Baxter, J. Bartlett, P. and Frean, M. (1999). Functional gradient tech-
niques for combining hypotheses. In Advances in Large Margin Classi�ers. MIT Press.

28

[18] Schapire, R.E. (1990). The strength of weak learnability. Machine Learning 5, 197{
227.

[19] Schapire, R.E., Freund, Y., Bartlett, P. and Lee, W.S. (1998). Boosting the margin: A
new explanation for the e�ectiveness of voting methods. Ann. Statist. 26, 1651{1686.

[20] Tukey, J.W. (1977). Exploratory data analysis. Addison-Wesley, Reading, MA.

[21] Utreras, F. (1983). Natural spline functions, their associated eigenvalue problem.
Numer. Math. 42, 107{117.

[22] Wahba, G. (1990). Spline Models for Observational Data. Soc. for Industrial and
Applied Mathematics.

29

