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ABSTRACT

Today’s Internet is a massive, distributed network which continues to explode in size as e-
commerce and related activities grow. The heterogeneous and largely unregulated structure of
the Internet renders tasks such as dynamic routing, optimized service provision, service level
verification, and detection of anamolous/malicious behavior increasingly challenging tasks. The
problem is compounded by the fact that one cannot rely on the cooperation of individual servers
and routers to aid in the collection of network traffic measurements vital for these tasks. In many
ways, network monitoring and inference problems bear a strong resemblance to other “inverse
problems” in which key aspects of a system are not directly observable. Familiar signal processing
problems such as tomographic image reconstruction, pattern recognition, system identification,
and array processing all have interesting interpretations in the networking context. This article
introduces the new field of large-scale network inference, a field which we believe will benefit
greatly from the wealth of signal processing research and algorithms.

1 Introduction

The Internet has evolved from a small tightly controlled network serving only a few users in
the late 1970’s to the immense decentralized multi-layered collection of heterogeneous termi-
nals, routers and other platforms that we encounter today when surfing the web. Unlike, for
example, the US telephone network which evolved in a slower and more controlled manner, the
Internet has evolved very rapidly in a largely unregulated and open environment. The lack of
centralized control has allowed Internet service providers (ISP)’s to develop a rich variety of
user-services at different quality-of-service (QoS) levels. However, in such a decentralized envi-
ronment quantitative assessment of network performance is difficult. One cannot depend on the
cooperation of individual servers and routers to freely transmit vital network statistics such as
traffic rates, link delays, and dropped packet rates. Indeed, an ISP may regard such informa-
tion as highly confidential. On the other hand, sophisticated methods of active probing and/or
passive monitoring can be used to extract useful statistical quantities that can reveal hidden
network structure and detect and isolate congestion, routing faults, and anomalous traffic. The
problem of extracting such hidden information from active or passive traffic measurements falls
in the realm of statistical inverse problems; an area which has long been of interest to signal



and image processing researchers. In particular, it is likely that the solution of such network
inverse problems will benefit from signal processing know-how acquired in areas such as image
reconstruction, pattern recognition, system identification, and sensor array signal processing.

This article deals with large scale network monitoring and inference for wired networks
such as the Internet. Researchers in this area have taken an approach which is different from
previous approaches relying on detailed queueing and traffic models or approaches relying on
closely cooperating nodes. The problems involve estimating a potentially very large number
of simple spatially distributed parameters, e.g., single link loss rates, delay distributions, con-
nectivity, and traffic low. To tackle such large tasks, researchers adopt the simplest possible
models for network traffic and ignore many intricacies of packet transport such as feedback
and latency. Focus is shifted from detailed mathematical modeling of network dynamics to
careful handling of measurement and probing strategies, large scale computations, and model
validation. Measurement methodologies require: software tools for monitoring traffic flow and
generating probe traffic; statistical modeling of the measurement process; sampling strategies
for online data collection. The underlying computation science involves: complexity reducing
hierarchical statistical models; moment-based estimation; EM algorithms; Monte-Carlo Markov
Chain algorithms; and other iterative optimization methods. Model validation includes: study
of parameter identifiability conditions; feasibility analysis via Cramér-Rao bounds and other
bounding techniques; implementation of network simulation software such as ns; and applica-
tion to real network trace data. However, it need be emphasized that while simpler models
may enable inference of gross-level performance characteristics, they may not be sufficient for
fine-grain analysis of individual queueing mechanisms and network traffic behavior.

Many in the network community have long been interested in measuring internal network pa-
rameters and in mathematical and statistical characterization of network behavior. Researchers
in the fields of computer science, network measurement and network protocols have developed
software for measuring link delays, detecting intruders and rogue nodes, and isolating routing
table inconsistencies and other faults. Researchers from the fields of networking, signal process-
ing, automatic control, statistics, and applied mathematics have been interested in modeling the
statistical behavior of network traffic and using these models to infer data transport parameters
of the network. Previous work can be divided into three areas: 1) development of software tools
to monitor/probe the network; 2) probabilistic modeling of networks of queues; and 3) inference
from measurements of single stream or multiple streams of traffic.

Computer scientists and network engineers have developed many tools for active and passive
measurement of the network. These tools usually require special cooperation (in addition to
the basic cooperation required for routine packet transmission) amongst the nodes of the net-
work. For example, in sessions running under RTCP (Real Time Control Protocol), summary
sender /receiver reports on packet jitter and packet losses are distributed to all session partici-
pants [1|. Active probing tools such as ping, pathchar (pchar), clink, and tracerout measure
and report packet transport attributes of the route along which a probe makes a round trip
from source to destination and back to source. A survey of these and other Internet measure-
ment software tools can be found on the CAIDA (Cooperative Association for Internet Data
Analysis) web site http://www.caida.org/Tools/. Trajectory sampling measurement packets
[2] is another example of an active probing software tool. These methods depend on accurate



reporting by all nodes along the route and many require special assumptions, e.g. symmetric
forward /reverse links, existence of store-and-forward routers, non-existence of fire-walls. As
the Internet evolves towards decentralized, uncooperative, heterogeneous administration and
edge-based control these tools will be limited in their capability. In the future, large-scale infer-
ence and tomography methods such as those discussed in this article will become of increasing
importance due to their ability to deal with uncooperative networks.

Queueing networks offer a rich mathematical framework which can be useful for analyzing
small scale networks with a few interconnected servers. See the recent edited books by Kelly
and others for a comprehensive overview of this area [3, 4]. The limitations of queueing network
models for analyzing real large scale networks can be compared to the limited utility of classi-
cal Newtonian mechanics in complex large scale interacting particle systems: the macroscopic
behavior of an aggregate of many atoms appears qualititatively different from what is observed
at a microscopic scale with a few isolated atomic nuclei. Furthermore, detailed information
on queueing dynamics in the network is probably unnecessary when, by making a few simple
approximations, one can obtain reasonably accurate estimates of average link delays, dropped
packet probabilities, and average traffic rates directly from external measurements. The much
more computationally demanding queueing network analysis becomes necessary when addressing
a different set of problems that can be solved offline. Such problems include calculating accurate
estimates of fine grain network behavior, e.g. the dynamics of node traffic rates, service times,
and buffer states.

The area of statistical modeling of network traffic is a mature and active field [5, 6, 7, 8, 9].
Sophisticated fractal and multifractal models of single traffic streams can account for long range
dependency, heavy tailed distributions, and other peculiar behaviors. Such self similar behavior
of traffic rates has been validated for heavily loaded wired networks [10]. For a detailed overview
of these and other statistical traffic models we refer the reader to the companion article(s) in
this special issue. To date these models are overly complicated to be incorporated into the
large scale network inference problems discussed in this article. Simplifying assumptions such
as spatial and temporal independence are often made in order to devise practical and scalable
inference algorithms. By making these assumptions, a fundamental linear observation model
can be used to solve the inverse problem arising in each of these applications. In many cases,
algorithms requiring moderate computation can obtain accurate tomographic reconstructions
of internal network parameters despite ignoring effects such as long range dependency. While
some progress has been made on incorporating simple first order spatio-temporal dependency
models into large scale network inference problems much work remains to be done.

The article is organized as follows. First we briefly review the area of large scale network
inference and tomography. We then discuss link-level inference from path measurements and
focus on two examples; loss rate and delay distribution estimation. We then turn to origin-
destination traffic matrix inference from link measurements in the context of both stationary
and non-stationary traffic.



2 Network Tomography

Large scale network inference problems can be classified according to the type of data acquisition
and the performance parameters of interest. To discuss these distinctions, we require some basic
definitions. Consider the network depicted in Figure 1. Each node represents a computer ter-
minal, router or subnetwork (consisting of multiple computers/routers). A connection between
two nodes is called a path. Each path consists of one or more links — direct connections with
no intermediate nodes. The links may be unidirectional or bidirectional, depending on the level
of abstraction and the problem context. Messages are transmitted by sending packets of bits
from a source node to a destination node along a path which generally passes through several
other nodes (i.e., routers).
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Figure 1: An arbitrary network topology. Each node represents a computer or a cluster of computers or
a router. Each edge in the graph represents a direct link between two nodes. The topology here depicts
“clusters” corresponding to local area networks or other subnetworks connected together via the network
“backbone”.

—

Broadly speaking, large scale network inference involves estimating network performance
parameters based on traffic measurements at a limited subset of the nodes. Y. Vardi was one of
the first to rigorously study this sort of problem and coined the term network tomography [11]
due to the similarity between network inference and medical tomography. Two forms of network
tomography have been addressed in the recent literature: (i) link-level parameter estimation
based on end-to-end, path-level traffic measurements [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]
and (ii) sender-receiver path-level traffic intensity estimation based on link-level traffic measure-
ments |22, 11, 23, 24, 25|.

In link-level parameter estimation, the traffic measurements typically consist of counts of
packets transmitted and/or received between nodes or time delays between packet transmissions
and receptions. The time delays are due to both propagation delays and router processing delays
along the path. The measured path delay is the sum of the delays on the links comprising the
path; the link delay comprises both the propagation delay on that link and the queueing delay
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at the link’s source node. A packet is dropped at a link if it does not successfully reach the input
buffer of the destination node. Link delays and occurrences of dropped packets are inherently
random. Random link delays can be caused by router output buffer delays, router packet
servicing delays, and propagation delay variability. Dropped packets on a link are usually due
to overload of the finite output buffer at the link’s source node, but may also be caused by
equipment downtime due to maintenance or power failures. Random link delays and packet
losses become particularly significant when there is a large amount of cross-traffic competing for
service by routers along a path.

In path-level traffic intensity estimation, the measurements consist of counts of packets
that pass through nodes in the network. In privately owned networks, the collection of such
measurements is relatively straightforward. Based on these measurements, the goal is to estimate
how much traffic originated from a specified node and was destined for a specified receiver.
The combination of the traffic intensities of all these origin-destination pairs forms the origin-
destination traffic matrix. In this problem not only are the node-level measurements inherently
random, but the parameter to be estimated (the origin-destination traffic matrix) must itself be
treated not as a fixed parameter but as a random vector. Randomness arises from the traffic
generation itself moreso than perturbations or measurement noise.

The inherent randomness in both link-level and path-level measurements motivates the adop-
tion of statistical methodologies for large scale network inference and tomography. Many net-
work tomography problems can be roughly approximated by the (not necessarily Gaussian)
linear model

y = AO + e, (1)

where: y is a vector of measurements, e.g. packet counts or end-to-end delays, taken at a num-
ber of different measurement sites; A is a routing matriz; 6 is a vector of packet parameters,
e.g. mean delays, logarithms of packet transmission probabilities over a link, or the random
origin-destination traffic vector. € is a noise term which can result from random perturbations
of @ about its mean value and possibly also additive noise in the measured data y; in the origin-
destination traffic matrix estimation problem it is generally assumed to be zero. Typically, but
not always, A is a binary matrix (the ,j-th element is equal to ‘1’ or ‘0’) that captures the
topology of the network. The problem of large scale network inference refers to the problem
of estimating the network parameters @ given y and either a set of assumptions on the sta-
tistical distribution of the noise € or the introduction of some form of regularization to induce
identifiability. Specific examples are discussed below.

What sets the large scale network inference problem (1) apart from other network inference
problems is the potentially very large dimension of A which can range from a half a dozen
rows and columns for a few packet parameters and a few measurement sites in a small local
area network, to thousands or tens of thousands of rows and columns for a moderate number of
parameters and measurements sites in the Internet. The associated high dimensional problems
of estimating @ are specific examples of inverse problems. Inverse problems have a very extensive
literature both in signal processing [26], statistics [27], and in applied mathematics [28]. Solution
methods for such inverse problems depend on the nature of the noise € and the A matrix and
typically require iterative algorithms since they cannot be solved directly. In general, A is not
of full-rank, so that identifiability concerns arise. Either one must be content to resolve linear
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combinations of the parameters or one must employ statistical means to introduce regularization
and induce identifiability. Both tactics are utilized in the examples in later sections of the
paper. In most of the large scale Internet inference and tomography problems studied to date,
the components of the noise vector € are assumed to be approximately independent Gaussian,
Poisson, binomial or multinomial distributed. When the noise is Gaussian distributed with
covariance independent of A6 methods such as recursive linear least squares can be implemented
using conjugate gradient, Gauss-Seidel, and other iterative equation solvers. When the noise is
modeled as Poisson, binomial, or multinomial distributed more sophisticated statistical methods
such as reweighted non-linear least squares, maximum likelihood via expectation-maximization
(EM), and maximum a posteriori (MAP) via Monte Carlo Markov Chain (MCMC) algorithms
can be used. These approaches will be illustrated in Sections 3 and 4.

2.1 Examples of Network Tomography

Let us consider three concrete examples of the linear model (1). First, consider the problem of
estimating the packet success probability on each link given end-to-end, source-to-destination
(SD) counts of packet losses'. Let 6 denote the collection of log success probabilities for each
link. The SD log success probability is simply A 6. Assuming a known number of packets sent
from each source to destination, a binomial measurement model can be adopted [14]. When the
number of packets sent and received are large, then the binomial model can be approximated with
a Gaussian likelihood, leading to the classical linear model above (1). Second, suppose that end-
to-end, SR delays are measured and the goal is estimation of the delay probability distributions
along each link. In this case, let 8 be a vector composed of the cumulant generating functions
of the delay densities on each link. Then, with appropriate approximation arguments [20], y
is again related to @ according to the linear model (1). Third, in the origin-destimation (OD)
traffic matrix estimation case, y are link-level packet count measurements and 6 are the OD
traffic intensities. Gaussian assumptions are made on the origin-destination traffic with a mean-
variance relationship in high count situations in [17] leading to the linear equation (1) without
the error term €. In each of these cases, the noise € may be correlated and have a covariance
structure depending on A and/or 6, leading to less than trivial inference problems. Moreover,
in many cases the limited amount of data makes Gaussian approximations inappropriate and
discrete observation models (e.g., binomial) may be more accurate descriptions of the discrete,
packetized nature of the data. These discrete observation models necessitate more advanced
inference tools such as the Expectation-Maximization algorithm and Monte Carlo simulation
schemes (more on this in Section 3).

Let us consider two further embellishments of the basic network inference problem described
by the linear model (1). First, all quantities may, in general, be time-varying. For example, we
may write

Y = At Ot + €, (2)

where ¢ denotes time. The estimation problems now involve tracking time varying parameters.
In fact, the time-varying scenario probably more accurately reflects the dynamical nature of
the true networks. There have been several efforts aimed at tracking nonstationary network

!The loss probabilities or “loss rates” are simply one minus the probability of successful transmission.
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behavior which involve analogs of classical Kalman-filtering methods |23, 15|. Another variation
on the basic problem (1) is obtained by assuming that the routing matrix A is not known
precisely. This leads to the so-called “topology discovery” problem [19, 29|, and is somewhat
akin to blind deconvolution or system identification problems.

3 Link-Level Network Inference

Link-level network tomography is the estimation of link-level network parameters (loss rates,
delay distributions) from path-level measurements. Link-level parameters can be estimated from
direct measurements when all nodes in a network are cooperative. Many promising tools such
as pathchar (pchar), traceroute, clink, pipechar use Internet Control Message Protocol
(ICMP) packets (control packets that request information from routers) in order to estimate link-
level loss, latencies and bandwidths. However, many routers do not respond to ICMP packets or
treat them with very low priority, motivating the development of large-scale link-level network
inference methods that do not rely on cooperation (or minimize cooperation requirements).

In this article we discuss methods which require cooperation between a subset of the nodes in
the network, most commonly the edge nodes (hosts or ingress/egress routers). Research to date
has focused on the parameters of delay distributions, loss rates and bandwidths, but the general
problem extends to the reconstruction of other parameters such as available bandwidths and
service disciplines. The Multicast-based Inference of Network-internal Characteristics (MINC)
Project at the University of Massachusetts [12] pioneered the use of multicast probing for network
tomography, and stimulated much of the current work in this area [12, 13, 14, 30, 15, 16, 18,
19, 20, 31, 21].

We now outline a general framework for the link-level tomography problems considered in
this section. Consider the scenario where packets are sent from a set of sources to a number
of destinations. The end-to-end (path-level) behavior can be measured via a coordinated mea-
surement scheme between the sender and the receivers. The sender can record whether a packet
successfully reached its destination or was lost along the way and determine the transmission
delay by way of some form of acknowledgement from the receiver to the sender upon successful
packet reception. It is assumed that the senders cannot directly determine the specific link on
which the packet was dropped nor measure delays or bandwidths on individual links within
paths.

A network can be logically represented by a graph consisting of r nodes connected by m
links, labeled 5 = 1,...,m. Potentially, a logical link connecting two nodes represents many
routers and the physical links between them. Let there be n distinct measurement paths (from a
sender to a receiver) through the network, labeled ¢ = 1,...,n. Define a;; to be the probability
that the i-th measurement path contains the j-th link. In most cases a;; will take values (0,1)
but it is useful to maintain a level of generality which can handle random routing. A is the
routing matrix having ¢j-th element a;;.

Figure 2 illustrates a simple network consisting of a single sender (node 0), two receivers
(the leaves of the tree, nodes 2 and 3) and an internal node representing a router at which the



Figure 2: Tree-structured topology.

two communication paths diverge (node 1). Only end-to-end measurements are possible, i.e.,
the paths are (0,2), and (0,3), where (s,t) denotes the path between nodes s and t. There are
3 links, and the matrix A has the form:

110
A:<101> (3)

Note that in this example, A is not full rank. We discuss the ramifications in later sections.

A number of key assumptions underpin current link-level network tomography techniques,
determining measurement frameworks and mathematical models. The routing matrix is usually
assumed to be known and constant throughout the measurement period. Although the rout-
ing tables in the Internet are periodically updated, these changes occur at intervals of several
minutes. However, the dynamics of the routing matrix may restrict the amount of data that can
be collected and used for inference. Most current methodologies usually assume that that per-
formance characteristics on each link are statistically independent of all other links, however this
assumption is clearly violated due to common cross-traffic flowing through the links. Assump-
tions of temporal stationarity are also made in many cases. In link-level delay tomography, it is
generally assumed that synchronised clocks are available at all senders and receivers. Although
many of the simplifying assumptions do not strictly hold, such “first-order” approximations have
been shown to be reasonable enough for the large-scale inference problems of interest here.

There are two modes of communication in networks: multicast and unicast. In unicast
communication, each packet is sent to one and only one receiver. In multicast communication,
the sender effectively sends each packet to a group of receivers. At internal routers where
branching occurs, e.g., node 1 in Figure 2, each multicast packet is duplicated and sent along each
branching path. We now overview the different approaches to link-level network tomography
that are enabled by the two modes of communication. Subsequently, we provide two detailed
examples of link-level network tomography applications.

3.1 Multicast Network Tomography

Network tomography based on multicast probing was one of the first approaches to the problem
[13]. Consider loss rate tomography for the network depicted in Figure 2. If a multicast packet
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is sent by the sender and received by node 2 but not by node 3, then it can be immediately
determined that loss occurred on link 3 (successful reception at node 2 implies that the multicast
packet reached the internal node 1). By performing such measurements repeatedly, the rate of
loss on the two links 2 and 3 can be estimated; these estimates and the measurements enable
the computation an estimate for the loss rate on link 1. To illustrate further, let 67, 62, and 63
denote the log success probabilities of the three links in the network, where the subscript denotes
the lower node attached to the link. Let py3 denote the ratio of the number of multicast packet
probes simultaneously received at both nodes 2 and 3 relative to the total number received at
node 3. This ratio provides a simple estimate of 0. Define p3; in a similar fashion and also
let p;, i = 2,3, denote the ratio of the total number of packets received at node ¢ over the total
number of multicast probes sent to node i. We can then write

log P 110 0

log P3 Ll tot 91 n
log Pz 010 92

log D32 00 1

A least squares estimate of {6;} is easily computed for this overdetermined system of equations.
Sophisticated and effective algorithms have been derived for large-scale network tomography
in [13, 32].

Similar procedures can be conducted in the case of delay distribution tomography. There
is a certain minimum propagation delay along each link, which is assumed known. Multicast a
packet from node 0 to nodes 2 and 3, and measure the delay to each receiver. The delay on the
first link from 0 to 1 is the identical for both receivers, and any discrepancy in the two end-to-
end delay measurements is solely due to a difference in the delay on link 1 to 2 and the delay
link 1 to 3. This observation allows us to estimate the delay distributions on each individual
link. For example, if the measured end-to-end delay to node 2 is equal to the known minimum
propagation delay, then any extra delay to node 3 is incurred on link 1 to 3. Collecting delay
measurements from repeated experiments in which the end-to-end delay to node 2 is minimal
allows construction of a histogram estimate of the delay distribution on link 1 to 3. In larger
and more general trees, the estimation becomes more complicated. Advanced algorithms have
been developed for multicast-based delay distribution tomography on arbitrary tree-structured
networks [18, 32].

3.2 Unicast Network Tomography

Alternatively, one can tackle loss rate and delay distribution tomography using unicast mea-
surements. Unicast measurements are more difficult to work with than multicast, but since
many networks do not support multicast, unicast-based tomography is of considerable practical
interest. The difficulty of unicast-based tomography is that although single unicast packet mea-
surements allow one to estimate end-to-end path loss rates and delay distributions, there is not
a unique mapping of these path-level parameters to the corresponding individual link-by-link
parameters. For example, referring again to Figure 2, if packets are sent from node 0 to nodes
2 and 3 and nj; and my denote the numbers of packets sent to and received by receiver node k,
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k= 2,3, then

. 0
log P2 ~ 1 10 91 (5)
log Ps 101 ez
—_———
A

where p, = my/ny and 6;, j = 1,2,3 denotes the log success probability associated with each
link. Clearly, a unique solution for {#;} does not exist since A is not full rank.

To address this challenge in unicast loss tomography, the authors of [14] and [17] indepen-
dently proposed methodologies based on measurements made using unicast, back-to-back packet
pairs. These measurements provide an opportunity to collect more informative statistics that
can help to resolve the link-level loss rates and delay distributions. A packet pair describes two
packets that are sent one after the other by the sender, possibly destined for different receivers,
but sharing a common set of links in their paths. In networks whose queues obey a droptail pol-
icy?, if two back-to-back packets are sent across a common link and one of the pair is sucessfully
transmitted across the link, then it is highly probable that the other packet is also successful.
Similarly, the two packets in each pair will experience roughly the same delay through shared
links. These observations has been verified experimentally in real networks [34, 16]. If one
assumes that the probability of success for one packet conditional on the success of the other
is approximately unity, then the same methodology developed for multicast-based tomography
(as described above) can be employed with unicast, packet-pair measurements [16].

In the case of bandwidth tomography, the authors of [35] addressed the challenge of non-
uniqueness through clever use of the header fields of unicast packets. The time-to-live (TTL)
field in each packet header indicates how many hops the packet should traverse. At each router
the packet encounters, the TTL counter is decremented by one; when the counter reaches zero,
the next router discards the packet. The nettimer program described in [35] uses “tailgating”
to collect measurements: many packet-pairs are sent from the source, each consisting of a large
packet followed by a small packet. The TTL field of the large packet is varied during the
measurement period so that it is propagated through only a portion of the path. The end-
to-end delay measured by the small packet (in a relatively uncongested network) is primarily
comprised of the propagation delay experienced by the large packet, enabling inference of the
bandwidth of the subpath traversed by the large packet. Referring to the simple triad network
in Figure 2 for illustration, nettimer might send packet-pairs form node 0 along path 0-1-2. If
the TTL of the large packet is set to one, the tailgating smaller packet measures the propagation
delay on link 0-1.

Unicast measurement can be conducted either actively or passively. In the case of active
measurement, probe packets are sent by the senders specifically for the purpose of estimation.
In passive monitoring, the sender extracts data from existing communications (e.g., records
of TCP sessions). Loss rate and delay distribution tomography methods have been developed
specifically for unicast packet pairs in [14, 17, 36, 37]. Unicast packet stripes (triples, quadruples,
etc.) have also been investigated for loss rate tomography [16].

2A droptail queueing policy means that a packet is dropped by a queue only if it reaches the queue and
there is insufficient space in the buffer. In active queueing strategies, such as random-early-detection (RED) [33],
packets can be dropped even if they have already entered the queue

10



3.3 Example: Unicast Inference of Link Loss Rates

Link loss rates can be inferred from end-to-end, path-level unicast packet measurements using
the approximate linear model given in equations (1) when the numbers packet counts are large;
refer to Section 3.2. However, as stated earlier the discrete process of counting the number of
sent and received packets suggests the use of a discrete probability distribution in our modeling
and analysis. We give a brief introduction and example of this approach here, and for more
details the interested reader is referred to related papers [14, 15].

The successful traversal of a single packets across a link can be reasonably modeled as a
sequence of Bernoulli events. Associate with the j-th link in the network a single parameter
governing the Bernoulli model. This parameter is the probability (rate) of successful transmis-
sion on the link a;. The complete set a;, j € 1,...,m form the success rates that network loss
tomography strives to identify.

Measurements are collected by sending ny single packets along the path to receiver k£ and
recording how many successfully reached the destination, denoted as my. Determination of the
success of a given packet is handled by an acknowledgement sent from the receiver back to the
sender. For example, such acknowledgements are a built-in feature of TCP. The likelihood of
my given ny is binomial (since Bernoulli losses are assumed) and is given by

n my, ng—m
(g | ng,pr) = (ﬂi)m’”(l—pk)’” k (6)

where py = HjeP(O,k) a; and P(0, k) denotes the sequence of nodes in the path from the sender
0 to receiver k.

If the routing matrix A is full rank, then unique maximum likelihood estimates of the loss
rates can be formed by solving a set of linear equations. If A is not full rank, then there is
no unique mapping of the path success probabilities to the success probabilities on individual
links (between routers) in the path. To overcome this difficulty, measurements are made using
back-to-back packet pairs or sequences of packets as discussed above [14, 17, 16].

If two, back-to-back packets are sent to node j from its parent node p(j), then define the
conditional success probability as

Bi = Pr(lst packet p(j) — j | 2nd packet p(j) — 7 ),

where p(j) — j is shorthand notation denoting the successful transmission of a packet from
p(7) to j. That is, given that the second packet of the pair is received, then the first packet is
received with probability 3; and dropped with probability 1 — ;. It is anticipated that 3; ~ 1
for each j, since knowledge that the second packet was successfully received suggests that the
queue for link 7 was not full when the first packet arrived. Evidence for such behavior has been
provided by observations of the Internet [38, 34].

Suppose that each sender sends a large number of back-to-back packet pairs in which the
first packet is destined for one of its receivers k and the second for another of its receivers [. The
time between pairs of packets must be considerably larger than the time between two packets
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in each pair. Let n;; denote the number of pairs for which the second packet is successfully
received at node [, and let my; denote the number of pairs for which both the first and second
packets are received at their destinations. With this notation, the likelihood of my; given ny
is binomial and is given by

N1 B
l(mk’;l | nk:,lapk:,l) = (mk:l> p;:;“’l (]_ _ pk,l)nk’l mk,l’

where py, ; is a product whose factors are 3 elements on the shared links and « elements on the
unshared links. The overall likelihood function is given by

l(mln,p) = [ 1(mulne. pe) x J]Hmwglns peg) (7)
k: kol

The goal is to determine the vectors o and [ that maximize (7). Maximizing the likeli-
hood function is not a simple task because the individual likelihood functions I(my | ng, pk)
or [(mp | nk, pr,) involve products of the B and/or a probabilities. Consequently, numerical
optimization strategies are required. The Expectation-Maximization (EM) algorithm is an espe-
cially attractive option that offers a stable, scalable procedure whose complexity grows linearly
with network dimension [14].

The link-level loss inference framework is evaluated in [37] using the ns-2 network simu-
lation environment [39]. Measurements were collected by passively monitoring existing TCP
connections®. The experiments involved simulation of the 12-node network topology shown in
Figure 1. This topology reflects the nature of many networks — a slower entry link from the
sender, a fast internal backbone, and then slower exit links to the receivers.

In the simulations, numerous short-lived TCP connections were established between the
source (node 0) and the receivers (nodes 5-11). In addition, there is cross-traffic on internal links,
such that in total there are approximately thirty TCP connections and thirty User Datagram
Protocol (UDP)* connections operating within the network at any one time. The average
utilisation of the network is in all cases relatively high; otherwise, few packet drops occur and
loss estimation is of little interest. All the TCP connections flowing from the sender to the
receivers are used when collecting packet and packet-pair measurements (see [37] for details on
the data collection process). Measurements were collected over a 300 second interval.

The experiments were designed to ascertain whether the unicast link-level loss tomography
framework is capable of discerning where significant losses are occurring within the network.
They assess its ability to determine how extensive the heavy losses are and to provide accurate
estimates of loss rates on the better performing links. Three traffic scenarios were explored.
In Scenario 1, links 1-2 and 2-5 experience substantial losses, thereby testing the framework’s
ability to separate cascaded losses. In Scenario 2, links 1-2 and 4-8 experience substantial loss,

8Data transmission in the Internet is primarily handled by the Transmission Control Protocol (TCP) and
Internet Protocol (IP). TCP/IP were developed by a Department of Defense to allow cooperating computers
to share resources across a network. IP is responsible for moving packets of data from node to node and TCP
coordinates the delivery between the sender and receiver (server and client).

YUDP is a simpler protocol than TCP. UDP simply sends packets and does not receive an acknowledgement
from the receiver.
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(testing the ability to resolve distributed losses in different branches of the network). In Scenario
3, many more on-off UDP and on-off TCP connections were introduced throughout the topology.
Figure 3 displays the simulation results for each of the different traffic scenarios.

3.4 Example: Unicast Inference of Link Delay Distributions

When the link delays along a path are statistically independent the end-to-end delay densities
are related to the link delay densities through a convolution. Several methods for unraveling this
convolution from the end-to-end densities are: 1) transformation of the convolution into a more
tractable matrix operator via discretization of the delays [18, 15, 20]; estimation of low order
moments such as link delay variance [32] from end-to-end delay variances which are additive over
the probe paths; 3) estimation of the link delay cumulant generating functions (CGF) |20, 31]
from the end-to-end delay CGF’s which are also additive over the probe paths. Here we discuss
the CGF estimation method from which any set of delay moments can be recovered.

Let Y; denote the total end-to-end delay of a probe sent along the ¢-th probe path. Then
Yi=an X+ + aimXim, r=1,...n (8)

where X;; is the delay of the i-th probe along the j-th link in the path and a;; € {0,1} are
elements of the routing matrix A. Here {X;;}/", are assumed to be i.i.d. realizations of a
random variable X; associated with the delay of the j-th link.

The CGF of a random variable Y is defined as Ky (t) = log E[e®Y] where t is a variable
which can be real or complex depending on the application. When Y is a sum of a set {X;}7,
of statistically independent random variables the CGF satisfies the additive property Ky (t) =
>0ty Kx;(t). Therefore, in view of the end-to-end delay representation (8), and assuming
independent X1, ..., X, (spatial independence), the vector of CGFs of the end-to-end probe
delays {Y;}, of the i-th probe satisfies the linear system of equations

Ky (1) = A-Kx(1), (9)

where Ky (t) = [Ky;(t),..., Ky, (t)]" and Kx(t) = [Kx,(t),...,Kx,, (t)]7 are n-element and
m-~element vector functions of ¢, respectively.

The linear equation (9) raises two issues of interest: 1) conditions on A for identifiability
of Kx(t) from Ky(t); and 2) good methods of estimation of Kx(¢) from end-to-end delay
measurements Y;, ¢t =1,...,n.

When A is not full rank, only linear combinations of those link CGFs lying outside of the
null space of A can be determined from (9). We call such a linear combination an identifiable
subspace of CGFs. Depending on the routing matrix A, identifiable subspaces can correspond
to weighted averages of CGFs Z;V:l a; K, (t) over a region of the network. This motivates a
multi-resolution successive refinement algorithm for detecting and isolating bottlenecks, faults,
or other spatially localized anomalies. In such an algorithm large partially overlapping regions of
the network are probed with a small number of probes just sufficient for each of the CGF linear
combinations to be sensitive to anomalous behavior of the aggregate regional delay distributions.
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Figure 3: Performance of the link-level loss tomography framework examined through ns-2
simulation of the network in (a). Panels (b)-(d) show true and estimated link-level success rates
of TCP flows from the source to receivers for several traffic scenarios, as labeled above. In
(b)-(d), the two panels display for each link 1-11 (horizontal axis): (top) an example of true and
estimated success rates and (bottom) mean absolute error between estimated and true success
rates over 10 trials.
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If one of the regions was identified as a potential site of anomalous behavior a similar probing
process is repeated on subregions of the suspected region. This process continues down to the
single link level within a small region and requires substantially fewer probe paths than would
be needed to identify the set of all link delay CGF’s.

Estimation of the CGF vector Kx(¢) from an ii.d. sequence of end-to-end probe delay
experiments can be formulated as solving a least squares problem in a linear model analogous
to (1):

Ky (t) = A-Kx(t) + €(t). (10)

where Ky is an empirical estimate of the end-to-end CGF vector and € is a residual error.
Different methods of solving for Kx result by assuming different models for the statistical
distribution of the error residual. One model, discussed in [20], is obtained by using a method-
of-moments (MOM) estimator for Ky and invoking the property that MOM estimators are
asymptotically Gaussian distributed as the number of experiments gets large. The bias and
covariance of Ky can then be approximated via bootstrap techniques and an approximate
maximum likelihood estimate of Ky is generated by solving (10) using iteratively reweighted
least squares (LS). Using other types of estimators of Ky, e.g. kernel based density estimation
or mixture models with known or approximatable bias and covariance, would lead to different
LS solutions for Kx.

The ns-2 network simulator was used to perform a simulation of the 4 link network shown
in Figure 4. All four links had ns-2 bandwidth set equal to 4Mb/sec and latency set equal

Probe5 Link2

O

Probel
Probe2
Probe3

Probe4

Figure 4: Unicast delay estimation probe routing used in ns-2 simulation. Tailgating can be used to
emulate the internal probes 3,4,5.

to 50ms. Each link was modeled as a Drop-Tail queue (FIFO queue with finite buffer) with
queue buffer size of 50 packets. Probes were generated as 40 byte UDP packets at each sender
node according to a Poisson process with mean interarrival time being 16ms and rate 20Kb /sec.
The background traffic consisted of both Exponential on-off UDP traffic and FTP traffic. The
background traffic on link 3 was approximatly 10 times higher than the background traffic on
the other links to simulate a “bottleneck” link.

Table 1 shows the integrated mean squared error [;*|Kx,(t) — I%Xj (t)|?dt based on LS
estimators with bootstrap bias correction (first row) and no bias correction (row 2).
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Table 1: MSE of K x; (bias correction) and K’}(j (no bias correction) for estimated link CGF’s.
Link 1 2 3 4
MSE of IA(Xj 0.00033 | 0.00013 | 0.00045 | 0.00013
MSE of I%kj 0.00031 | 0.00015 | 0.00132 | 0.00017

We next illustrate the application of the CGF technique to bottleneck detection. Define
a bottleneck as the event that a link delay exceeds a specified delay threshold. The Chernoff
bound specifies an upper bound on the probability of bottleneck in the j-th link in terms of the
CGF
P(X; > §) < min (e ). (11)
In Table 2, we show the Chernoff bound P; on the bottleneck probability P(X; > ¢ = 0.02s)
(s denotes “seconds") which were estimated by plugging bias corrected CGF estimates into the
right hand side of (11). Also shown are the “true” link exceedance probabilities which were
empirically estimated from directly measured single-link loss statistics from an independent
ns-2 simulation. Note that while the Chernoff bounds are sometimes greater than one, the
amplitude of the bound follows the trend of the true bottleneck probabilities. In particular if
we set as our criterion for detection of a bottleneck as: “the probability that X; exceeds 0.02s
is at least 0.95", we see that the estimated Chernoff bound correctly identifies link 3 as the
bottleneck link.

Table 2: Chernoff bound P; and empirical estimate of P(X; > 0.02). A bottleneck at link 3 is
correctly identified if one selects a 95 percentile bottleneck detection level (P; > 0.95).
Link 1 2 3 4
P; 0.9424 | 0.9295 | 1.0025 | 0.9329
P(X; >6) | 0.0014 | 0.0002 | 0.9932 | 0.0003

4 Origin-Destination Tomography

Origin-destination tomography is essentially the antithesis of link-level network tomography: the
goal is the estimation of path-level network parameters from measurements made on individual
links. By far the most intensively studied origin-destination network tomography problem is
the estimation of origin-destination (OD) traffic from measurable traffic at router interfaces. In
privately-owned networks, the collection of link traffic statistics at routers within the network
is often a far simpler task than performing direct measurement of OD traffic. The OD traffic
matrix, which indicates the intensity of traffic between all origin-destination pairs in a network,
is a key input to any routing algorithm, since the link weights of the Open Shortest Path First?

®0Open Shortest Path First (OSPF) is a routing protocol developed for IP networks. OSPF is a link-state
routing protocol that calls for the sending of link-state advertisements to all other routers in the same hierarchical
area. A link state takes the form of a weight, effectively the cost of routing via that link.
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(OSPF) routing protocol are related to the traffic on the paths. Ideally, a data-driven OD
matrix should be central to the routing optimization program.

There are currently two ways to obtain OD traffic counts. Indirect methods are considered
in [11, 22, 25, 23]; a direct method via software such as NetFlow supported by Cisco routers
is described in [23, 40]. Both approaches need the cooperation of the routers in the network,
but this is not problematic for privately-owned networks. The link traffic counts at routers
are much easier to collect relative to the direct approach via NetFlow and lead to a linear
inverse problem. There are noticeable features about this particular inverse problem worthy
of elaboration. Firstly, the OD traffic vector to be estimated is not a fixed parameter vector,
but a random vector, denoted by «; secondly, the linear equation (1) is used without the error
term € (stochastic variability is captured in @); thirdly, even though A is singular as in other
cases discussed, these techniques use statistical means to induce a regularization enabling the
recovery of the whole @ (or the traffic intensities underlying x). Moreover, the most recent work
[23| on this also deals with the time-varying aspect of the data.

Vardi was the first to investigate this problem. In [11] he studies a network with a general
topology, using an iid Poisson model for the OD traffic byte counts. He specifies identifiability
conditions under the Poisson model and develops a method that uses the EM algorithm on link
data to estimate Poisson parameters in both deterministic and Markov routing schemes. To
mitigate the difficulty in implementing the EM algorithm under the Poisson model, he proposes
a moment method for estimation and briefly discusses the normal model as an approximation
to the Poisson. Related work treated the special case involving a single set of link counts and
also employed an EM algorithm [25]. A Bayesian formulation and Markov Chain Monte Carlo
estimation technique has also been proposed [22].

Cao et al. [23] use real data to revise the Poisson model and to address the non-stationary
aspect of the problem. Their methodology is validated through comparison with direct (but
expensive) collection of OD traffic. Cao et al. represent link count measurements as summa-
tions of various OD counts that were modeled as independent random variables. (Even though
Traffic Control Protocol (TCP) feedback creates dependence, direct measurements of OD traffic
indicate that the dependence between traffic in opposite directions is weak. This renders the
independence assumption a reasonable approximation.) Time-varying traffic matrices estimated
from a sequence of link counts were validated on a small subnetwork with 4 origins/destinations
by comparing the estimates with actual OD counts that were collected by running Cisco’s Net-
Flow software on the routers. Such direct point-to-point measurements are often not available
because they require additional router CPU resources, can reduce packet forwarding efficiency,
and involve a significant administrative burden when used on a large scale.

Let ¥y = (y1,...,ym)" denote the observed column vector of incoming/outgoing byte counts
measured on each router link interface during a given time interval and let & = (x1,...,2,)7
denote the unobserved vector of corresponding byte counts for all OD pairs in the network.
Here 7 indicates transpose and @ is the ‘traffic matrix’ even though it is arranged as a column
vector for convenience. One element of x, for example, corresponds to the number of bytes
originating from a specified origin node to a specified destination node, whereas one element
of y corresponds to bytes sent from the origin node regardless of their destination. Thus each
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element of y is a sum of selected elements of «, so
y = Ax (12)

where A is a m X n routing matriz of 0’s and 1’s that is determined by the routing scheme of
the network. The work of [23]| only considers fized routing, i.e. there is only one route from an
origin to a destination. In [23| the unobserved OD byte counts are modeled as

x; ~ normal(\;, ¢)\;), independently (13)

and this implies
y ~ normal(A)\, AT A'), (14)

where
A= (A1,.., A\, and X = ¢ diag(\],...,\5).

Here A > 0 s the vector of OD mean rates and c is a fixed power constant (both ¢ = 1 and
2 work well with the Lucent network data as shown in [23, 24]). ¢ > 0 is a scale parameter
that relates the variance of the counts to their mean, since usually larger counts have larger
variance. The mean-variance relationship is necessary to ensure the identifiability of the para-
meters in the model. Heuristically, under this constraint, the covariances between the y’s give
the identifiability of the parameters up to the scale parameter ¢ which can be determined from
the expectation of a y.

Cao et al. [23] address the non-stationarity in the data using a local likelihood model
(cf. [41]); that is, for any given time ¢, analysis is based on a likelihood function derived
from the observations within a symmetric window of size w around t (e.g., in the experiments
described below, w = 11 corresponds to observations within about an hour in real time). Within
this window, an iid assumption is imposed (as a simplified and yet practical way to treat the
approximately stationary observations within the window). And maximum-likelihood estimation
is carried out for the parameter estimation via a combination of the EM algorithm and a
second-order global optimization routine. The component-wise conditional expectations of the
OD traffic, given the link traffic, estimated parameters, and the positivity constraints on the
OD traffic, are used as the initial estimates of the OD traffic. The linear equation y = Az is
enforced via the iterative proportional fitting algorithm (cf. [42, 43]) to obtain the final estimates
of the OD traffic. The positivity and the linear constraints are very important final steps to get
reliable estimates of the OD traffic, in addition to the implicit regularization introduced by the
iid statistical model. To smooth the parameter estimates, a random walk model is applied to
the logarithm of the parameters A’s and ¢ over the time windows.

4.1 Example: Time-varying OD Traffic Matrix Estimation

Figure 5 is a network at Lucent Technologies considered in [23, 24]. Figures 6 and 7 are taken
from [23]. They show the validation (via NetFlow) and estimated OD traffic based on the link
traffic for the subnetwork around Router 1 with 4 origins/destinations in Figure 5. Figure 6
gives the full scale and Figure 7 is the zoomed-in scale (20x). It is obvious that the estimated
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OD traffic agrees well with the NetFlow measured OD traffic for large measurements, but not so
well for small measurements where the Gaussian model is a poor approximation. From the point
of view of traffic engineering, it is adequate that the large traffic flows are inferred accurately.
Hence for some purposes such as planning and provisioning activities estimates of OD traffic
could be used as inexpensive substitutes for direct measurements.

Firewall

00 OO0
Figure 5: A network at Lucent Technologies

Even though the method described in [23] uses all available information to estimate parame-
ter values and the OD traffic vector «, it does not scale to networks with many nodes. In general,
if there are N, edge nodes, the number of floating point operations needed to compute the MLE
is at least proportional to N2. A scalable algorithm that relies on a divide-and-conquer strategy
to lower the computational cost without losing much of the estimation efficiency is proposed in
[24].

5 Conclusion and Future Directions

This paper has provided an overview of the emerging area of large scale inference and tomography
in communications networks. Statistical signal processing will continue to play an important
role in this area and here we attempt to stimulate the reader with an outline of some of the many
open issues. These issues can be divided into extensions of the theory and potential networking
applications areas.

The spatio-temporally stationary and independent traffic and network transport model has
limitations, especially in tomographic applications involving heavily loaded networks. Since one
of the principal applications of network tomography is to detect heavily loaded links and subnets
relaxation of these assumptions continues to be of great interest. Some recent work on relaxing
spatial dependence and temporal independence has appeared in unicast [20] and multicast [13]
settings. However, we are far from the point of being able to implement flexible yet tractable
models which simultaneously account for long time traffic dependence, latency, dynamic random
routing, and spatial dependence. As wireless links and ad hoc networks become more prevalent
spatial dependence and routing dynamics will become dominant.

Recently, there have been some preliminary attempts to deal with the time-varying, nonsta-
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tionary nature of network behavior. In addition to the estimation of time-varying OD traffic
matrices discussed in Section 4, others have adopted a dynamical systems approach to handle
nonstationary link-level tomography problems [36]. Sequential Monte Carlo inference techniques
are employed in [36] to track time-varying link delay distributions in nonstationary networks.
One common source of temporal variability in link-level performance is the nonstationary char-
acteristics of cross-traffic. Figure 8 illustrates this scenario and displays the estimated delay
distributions at different time instances (see [36] for further details).

There is also an accelerating trend toward network security will create a highly uncoopera-
tive environment for active probing — firewalls designed to protect information may not honor
requests for routing information, special packet handling (multicast, TTL, etc), and other net-
work transport protocols required by many current probing techniques. This has prompted
investigations into more passive traffic monitoring techniques, for example based on sampling
TCP traffic streams [37]. Furthermore, the ultimate goal of carrying out network tomography
on a massive scale poses a significant computational challenge. Decentralized processing and
data fusion will probably play an important role in reducing both the computational burden
and the high communications overhead of centralized data collection from edge-nodes.

The majority of work reported to date has focused on reconstruction of network parameters
which may only be indirectly related to the decision-making objectives of the end-user regard-
ing the existence of anomalous network conditions. An example of this is bottleneck detection
which has been considered in [31, 21| as an application of reconstructed delay or loss estimation.
However, systematic development of large scale hypothesis testing theory for networks would
undoubtedly lead to superior detection performance. Other important decision-oriented appli-
cations may be detection of coordinated attacks on network resources, network fault detection,
and verification of service.

Finally the impact of network monitoring, which is the subject of this article, on network
control and provisioning could become the application area of most practical importance. Admis-
sion control, flow control, service level verification, service discovery, and efficient routing could
all benefit from up-to-date and reliable information about link and router level performances.
The big question is: can signal processing methods be developed which ensure accurate, robust
and tractable monitoring for the development and administration of the Internet and future
networks?
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Figure 6: Full-scale time series plots of OD traffic on Feb. 22, 1999 for Router 1 sub-network
with 4 origins/destinations. In the lower-left 4 x4 matrix, the rows (from TOP down) correspond
to corp, local, switch and fddi and the columns (from RIGHT to LEFT) correspond to corp,
local, switch and fddi. These 4 x 4 main panels correspond to the 16 OD pairs. For example,
the (1,2) panel is corp — switch. The 8 marginal panels (above and to the right of the main
matrix) are the observed link traffic used to infer the 16 OD traffic pairs. The top-right corner

shows the total observed link traffic.

Xhat is the estimated OD traffic and X is the observed

OD traffic. At this time-scale it is impossible to differentiate between estimated and observed
OD traffic in most panels of the matrix.
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Figure 7: Zoomed-in time series plots of OD traffic on Feb. 22, 1999 for Router 1 sub-network
with 4 origins/destinations. In the lower-left 4 x 4matrix, the rows (from TOP down) correspond
to corp, local, switch and fddi and the columns (from RIGHT to LEFT) correspond to corp,
local, switch and fddi. These 4 x 4 main panels correspond to the 16 OD pairs. For example,
the (1,2) panel is corp — switch. The 8 marginal panels (above and to the right of the main
matrix) are the observed link traffic used to infer the 16 OD traffic pairs. The top-right corner
shows the total observed link traffic. Xhat is the estimated OD traffic and X is the observed OD
traffic. At this zoomed-in time-scale it is easier to differentiate between estimated and observed
OD traffic in most panels, particularly when there is a small traffic load.
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Figure 8: Performance of the sequential Monte Carlo tracking of time-varying link delays from
end-to-end measurements. (a) Single source, four receiver simulated network with nonstationary
cross-traffic. (b) True delay distributions (red) and estimates (blue) as a function of time.
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