
RANDOM LOGISTIC MAPS AND LYAPUNOV EXPONENTS

DAVID STEINSALTZ

Abstract. We prove that under certain basic regularity conditions, a random
iteration of logistic maps converges to a random point attractor when the
Lyapunov exponent is negative, and does not converge to a point when the
Lyapunov exponent is positive.

1. Introduction

One of the fundamental questions about a random dynamical system in general,
and an iterated function system in particular, is whether its path is absorbed into
a single random attracting point. Almost equivalent is the question of when the
iterates 
atten out to approach a constant function. This is clearly the case when
the individual functions are all contractions (discussed by J. Hutchinson [Hut81]),
and these results may be extended by similar methods to \average contractive"
systems | where the iterated maps do not shrink the distance between two points
at every step, but do so everywhere, in expectation | as realized by M. Barnsley
and J. Elton [BE88]. We have developed a somewhat new approach in [Ste99], which
is viable for systems whose contraction is spatially inhomogeneous as well. (For an
extensive review of other work on iterated function systems, see the survey paper
of P. Diaconis and D. Freedman [DF99].) There may be regions of the space which
are never contracted by the maps, and yet the iterates will converge if the orbit of
a point wanders suÆciently around the space to pick up an average contraction.
The earlier paper used a variant of Lyapunov drift functions to guarantee proper
mixing. This technique has the advantage of being fairly straightforward, when it
works, but it demands the hit-and-miss invention of a test function.

This average contraction is witnessed by a negative Lyapunov exponent. In this
paper we apply very di�erent methods to substantially resolve one class of examples,
the iteration of random logistic maps. \Resolve" must here be understood in a
conditional sense, to be sure, since we in fact only reduce it to the nontrivial
problem of computing or estimating the Lyapunov exponent. Our methods are also
incapable of dealing with distributions on the coeÆcients that are insuÆciently
spread out | those concentrated on two points, for instance | and a few other
unpalatable restrictions have needed to be swallowed as well.

The largest Lyapunov exponent of a system often gives information about the
overall expansion of the system. Negative Lyapunov exponents are associated with
the long-term contraction of the space under the random transformation, and hence
with the convergence to a random point attractor. This is unequivocal for random
aÆne maps (cf. [AC92]). On the other hand, the information embedded in the
Lyapunov exponents is purely local, so that arguments based on them may founder
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on more global structures. For instance, negative Lyapunov exponents make it
possible, but never certain, that a set will shrink to a point under the action of a
Brownian 
ow (cf. [BH86] and [SS02]). The interpretation of Lyapunov exponents
becomes particularly vexed when the transformations are not injective. Our goal
in this paper is to show that in a paradigm noninjective case | iterated logistic
maps of the unit interval | the Lyapunov exponent does arbitrate the existence
of a random point attractor. While some computations are speci�c to this case,
the methods are general enough that they could be applied to other discrete-time
random iterations.

The discrete logistic family of maps on the unit interval, given by x 7! ux(1�x),
have long been studied as a simple but illustrative case of nonlinear iteration. (Many
applications may be found in the book [Cvi84], and references therein.) As with
most such smooth families of interval maps, this logistic family exhibits a wide range
of behaviors, in this case as the parameter u rises from 0 to 4. (We will not consider
here u > 4, when the map leaves the unit interval.) For u � 1 the iterates simply
collapse to 0. Above 1, the �xed point at 0 becomes unstable, and a new �xed
point arises which attracts the entire open interval (0; 1). This behavior persists up
through u = 3, when the period-doubling described by Feigenbaum [Fei84] begins:
the �xed point splits into an attractive orbit of period 2, then period 4, and so on,
until at last, above the critical parameter 3.57 : : : we arive at the realm of \chaotic"
behavior, where there are aperiodic orbits. This is lucidly described in [May76],
and at greater length in the book by R. Devaney [Dev89].

The behavior of long-term iterates is famously sensitive to the choice of u. There
is a stable periodic orbit, but the period is often extremely long. It has been shown
(see section V.6 of [dMvS93]) by Jakobson that when the Lyapunov exponent |
de�ned as the single value taken on by

�(u; x) := lim
n!1

1

n
log
��Dfnu (x)��

for almost every x | is positive, the occupation measure of a generic orbit is
absolutely continuous with respect to Lebesgue measure. On the other hand, the
set of parameters in any neighborhood of the endpoint 4 for which the Lyapunov
exponent is negative has positive Lebesgue measure.

What happens when we mix various parameter values together into the iteration?
At �rst blush one might expect unbridled confusion, far more intractable than the
iteration with a �xed parameter value. And yet, it is often the case with such
problems that the individual peculiarities of di�erent parameter values will cancel
each other out, settling into characteristic behavior over a wide range of settings.
We might hope that this would be the case when we iterate with independent
randomly chosen parameter values, where the random choice is, in some sense,
suÆciently spread out.

When iterating with changing parameter values, we �nd ourselves with a new
ambiguity, which needs to be addressed at the outset. Suppose we have a sequence
u1; u2; : : : , and we de�ne

fi(x) = uix(1� x):(1)
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There are two ways that we may compose these functions:

Fn(x) := f1
�
f2
�� � �fn(x) � � ���(2) eFn(x) := fn

�
fn�1

�� � �f1(x) � � ���(3)

For many choices of the ui, the \backward iterate" Fn(x) converges as n ! 1,

to a constant independent of x. The \forward iterate" eFn(x), on the other hand,
cannot converge, even when it is becoming 
at, except in trivial cases.

In this paper we will be supposing the ui to be i.i.d. choices from a distribution
� on (0; 4). The forward iterate is then a Markov chain for any �xed x. The
backward iterates, though, despite having the same marginal distribution as the
forward, exhibit a more complicated joint structure. Under some circumstances,
this process has the property that we have elsewhere called \attractive", by which
we mean that limn!1Fn(x) exists and is independent of x almost surely. The
function Fn then converges to a constant function. The distribution of this random

constant is the unique stationary distribution of the Markov chain eFn. Further
discussion of these iterated function systems may be found in [Ste99], and in [BE88],
where an application of the attractivity property to image-encoding is presented.
Attractivity is another name for the existence of a one-point random attractor, in
the language of random dynamical systems [Arn98].

Until very recently, this particular problem had received little attention. R.
Bhattacharya and B. Rao [BR93] studied the interesting special case when the
parameter u is chosen with equal probability from just two possible values. G.
Letac and J.-F. Chamayou [CL91] have considered another special case, where ui=4
has a � distribution with parameters (a + 1

2 ; a � 1
2), for a � 1

2 . They showed
that �a;a is the stationary distribution for this system, but speculated that it is
not attractive; that is, the forward iterates converge in distribution to �a;a, but
the backward iterates do not converge pointwise. In our recent paper [Ste99], we
showed that the system is attractive for a � 2, but left the question open for smaller
values of a.

While completing the present paper we have received preprints of two new works
on related questions. K. B. Athreya and J. Dai have presented in [AD] have pre-
sented in a general form some basic results about the invariant measures of random
iterations of logistic maps. The other preprint [Kl�u00], by M. Kl�unger, examines
random logistic maps in the context of random-dynamical-system formalism. Some
results of that work overlap with section 4 of this paper, where the attractivity of
systems with negative Lyapunov exponents is considered. In one respect, Kl�unger's
work is more general than ours, since it allows the sequence ui to be an ergodic sta-
tionary sequence, not necessarily i.i.d.; the functions he considers are also slightly
broader than the logistic family. His � is also more general than ours, freed from
the irreducibility condition that we need to impose on the Markov chain eFn. On
the other hand, his results for attractivity are only valid when u is concentrated on
[0; 3]. It is hardly surprising that it should be easier to prove the existence of ran-
dom attractors in this case, when each fi has a deterministic attractor. We discuss
in section 2.2 why most of the heavy lifting of the present paper | in particular,
the only signi�cant use of the irreducibility and independence conditions | arises
precisely from the need to incorporate parameter values over 3. (Kl�unger's paper
also includes a di�erent kind of result when the parameters are all in the range
between 3 and (

p
5 + 1), where the logistic maps have attractive orbits of period
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2; and he proves attractivity when u is con�ned to a narrow interval straddling
3.) The assumption of independence, as opposed to stationarity which is assumed
by Kl�unger, is also required to keep the action within the domain of Markov-chain
theory.

One feature which is central to the current paper, but absent when �
�
(3; 4]

�
= 0,

is the Lyapunov exponent. When ui is constrained to be less than 3, the Lyapunov
exponent is always negative. The main result that we show here (Theorems 1 and
2) is that, under fairly general conditions, an iterated logistic function system is
attractive precisely when its Lyapunov exponent is negative | except that the case
in which the Lyapunov exponent is 0 remains undetermined. The precise results
are

Theorem 1. Suppose � is logarithmically continuous and the Lyapunov exponent
of the corresponding iterated function system is positive. Suppose, too, that the

Markov chain eFn(x) is  -irreducible and aperiodic. Then limn!1 Fn(x) exists
almost surely only if x is 0 or 1. In particular, the system is not attractive.

Theorem 2. Let � de�ne a random logistic system Fn with the following proper-
ties:

� The iterates of � are dense.
� The Lyapunov exponent of the system is negative.
� �

�
(0; 3]

�
> 0.

� For some �0 2 (0; 1),

��0 :=

Z
(4u� u2)��

0

�(du) <1:(4)

Then the system is attractive.

The Lyapunov exponent, and the terms \logarithmically continuous", \dense
iterates", and \ -irreducible", are de�ned in section 2. Throughout this paper, the
Lyapunov exponent will be, as given by (5) and (6), spatially averaged with respect
to the stationary distribution. This conforms to most standard usage, but the term
has also been applied in the context of iterated function systems (e.g., [Elt90])

to a spatial supremum: limn!1 n�1 log supx6=y �( eFn(x); eFn(y))=�(x; y): Except in
the trivial case, where

R
logu �(du) < 0 and the iterates converge almost surely

to the constant 0, the Lipschitz constant of the iterates will always go to 1, so
this supremum Lyapunov exponent is not very useful in the present setting. The
convergence to a 
at function can only be expected to occur uniformly on compact
subets of (0; 1).

A consequence is the following almost-complete resolution of the question posed
by Letac and Chamayou:

Corollary 3. When �(�=4) is the � distribution with parameters a + 1
2 ; a � 1

2 for

some a > 1
2 , the iterated logistic function system is attractive for a > 1, and is not

attractive for 1
2 < a < 1.

Proof. Since the distribution is absolutely continuous with respect to Lebesgue
measure, it is logarithmically continuous (a condition for Theorem 1, de�ned in
section 2) and since � is absolutely continuous with respect to Lebesgue mea-
sure, its iterates are a fortiori dense. The condition (4) is clearly satis�ed, andR
logu �(du) =  (a + 1

2 ) �  (2a) > 0 as well, where  is the digamma function.
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Attractivity is thus determined solely by the Lyapunov exponent. Since we know
the stationary distribution, we may compute this directly:Z 1

0

Z 1

0

log(4yj1� 2xj)d�a+ 1
2
;a� 1

2
(y)d�a;a(x):

This formula was evaluated, to a limited extent, in [Ste99]. D. Piau has pointed
out, in a private communication, that the complicated expression given there can
be simpli�ed to

� =
1

2

�
 (1) �  (a)

�
;

The Lyapunov exponent is thus positive precisely when a > 1, and negative when
a < 1.

2. Notation and preliminary facts

In what follows, u1; u2; : : : will be an i.i.d. sequence taking values in the open
interval (0; 4), with distribution �. We will always use Fn to denote the �-algebra
generated by fu1; : : : ; ung. The sequence de�nes an iterated function system asso-

ciated to �, comprising the sequences of random functions fi; Fn, and eFn de�ned
by (1){(3).

For �xed x, the sequence eFn(x) is a Markov chain. If this chain has a unique
invariant measure, we will denote it by �, and call � attractive if every initial
con�guration converges in distribution to �. The system will be called attractive if
Fn(x) converges almost surely to a limit point F1(x), the limit being independent of
x. If the system is attractive then the distribution of F1(x) is the unique invariant
measure � for the Markov chain, and � is attractive. We de�ne

��(x) := E log jf 0(x)j = log j1� 2xj+
Z 4

0

logu �(du);(5)

and the Lyapunov exponent of the iterated function system is

�� :=

Z 1

0

��(x)�(dx):(6)

A Markov chain on a state-space X is called  -irreducible if there is a nonzero
\irreducibility" measure � de�ned on X, such that if A � X is any set with �(A) > 0
and x 2 X, then there is an n such that

P
�
Xn 2 A

��X0 = x
	
> 0:(7)

From this the \maximal irreducibility measure"  may be de�ned. (Precise de�-
nitions may be found in [MT93].) The Markov chain is aperiodic if the set of n
satisfying (7) has greatest common divisor 1, for all x and A.

2.1. Special notation for Theorem 1. For x in the interval [0; 1], we de�ne
the measure �x(A) = P

�
f(x) 2 A

	
. A measure � on [0; 4] will be said to be

logarithmically continuous if the function

��(z) :=

Z 4

0

log j1� zuj�(du)(8)

is �nite and continuous for z 2 �
0; 12

�
. Note that �niteness and continuity are

automatic on [0; 14 ).
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For a given x 2 (0; 1), de�ne the sets

Ax :=
n
y 2 (0; 1) : lim inf

n!1

1

n

nX
i=1

�� eFi(x) � eFi(y)�� > 0 a. s.
o
;(9)

Bx :=
n
y 2 (0; 1) : lim inf

n!1

1

n

nX
i=1

E
�� eFi(x)� eFi(y)�� > 0

o
:(10)

Cn
x (�) :=

n
y 2 (0; 1) : P

���Fn(x)� Fn(y)
�� > �

	 � �
o
;(11)

Cx(�; Æ) :=
n
y 2 (0; 1) : lim inf

n!1

1

n
#
n
i � n : y 2 Ci

x(�)
o
� Æ

o
; and(12)

Lemma 4. For every x,

Ax � Bx �
[
�>0

Cx(�; �) :(13)

If the sequence Fn(x) converges almost surely, then �x(Ax) = �x(Bx) = 0.

Proof. If y 2 Ax then

E
�
lim inf
n!1

1

n

nX
i=1

�� eFi(x)� eFi(y)��� > 0:

Fatou's Lemma then implies that y 2 Bx; so Ax � Bx.
Suppose y is in Bx, and let

3� = lim inf
n!1

1

n

nX
i=1

E
��Fi(x)� Fi(y)

�� > 0:

Since Xi :=
��Fi(x)� Fi(y)

�� � 1,

E
��Fi(x)� Fi(y)

�� � 2�+ 1
�
P
�
Xi � �

	
> �

	
;

so that

3� = lim inf
n!1

1

n

nX
i=1

E
��Fi(x) � Fi(y)

�� � 2�+ lim inf
n!1

1

n

nX
i=1

1
�
P
�
Xi > �

	
> �

	
;

and y is in Cx(�; �).
If Fn(x) converges almost surely, the di�erences

��Fn(x) � Fn+1(x)
�� must go to

zero in probability, and P
�
fn+1(x) 2 Cn

x (�)
	
goes to 0 for any positive �, as n goes

to 1. De�ne the function �n(y) := n�1
Pn

i=1 1
�
y 2 Ci

x(�)
	
: ThenZ

�n(y)�x(dy) =
1

n

nX
i=1

�x
�
Cn
x (�)

� n!1�����! 0:(14)

But we also know that if y 2 Cx(�; �), then lim infn!1 �n(y) � �. Together with
(14) this shows that �x(Cx(�; �)) = 0. Since this is true for every positive �, it
follows that �x(Ax) = �x(Bx) = 0.
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2.2. Special notation for Theorem 2. Theorem 2 relies fundamentally on the
theory of general-state-space Markov chains, as expounded most thoroughly by S.
Meyn and R. Tweedie in [MT93]. We have already introduced  -irreducibility.
Another Markov-chain concept which will surface occasionally in this discussion is
that of \petite" sets. A set C � X is petite if a nontrivial Borel measure � on X
may be found, together with a sequence a1; a2; : : : , where

P
ai = 1, such that for

any Borel set A,

inf
x2C

1X
i=1

ai P
i
x(A) � �(A):(15)

A Markov chain is weakly Feller if, for every open set U , the function x 7! Px(U )

is lower semicontinuous. Our chain eFn(x) is weakly Feller. Proposition 6.2.8 of

[MT93] implies that if eFn(x) is  -irreducible, and the support of  has nonempty
interior, then all compact sets are petite.

We say the measure � has dense iterates if there is an interval I � (0; 1) such
that for all x 2 (0; 1),�

fun Æ fun�1 Æ � � � Æ fu1(x) : u1; u2; : : : ; un 2 supp �
	

(16)

is dense in I. It is shown in [BR93] that this can be the case if � is supported on
just two points, but it can also fail. One serviceable criterion is the following:

Proposition 5. If the support of � is dense in some interval and �
�
(0; 3]

�
> 0,

then � has dense iterates.

Proof. Let u0 be a point in (supp �) \ (0; 3], let [a; b] be an interval where � is
dense, and let I0 = �

fa(1 � 1=u0); fb(1 � 1=u0)
�
. Pick any x in (0; 1), y 2 I0,

and � > 0. The function fu0 has an attractive �xed point at 1 � 1=u0, so there is
some n such that

��fn�1u0
(x)� (1� 1=u0)

�� < �=8. Since the support of � is dense in
[a; b], and fu is continuous in the parameter u, there is some un 2 supp � such that
jfun(1� 1=u0) � yj � �=2. Taking ui = u0 for i � n� 1,��fun Æ � � � Æ fu1(x)� y

�� � ��fun�1� 1=u0
� � y

�� + ��fun Æ � � � Æ fu1(x)� fun
�
1� 1=u0

���
� �

2
+ 4

�

8
:

The signi�cance of this property derives from this further fact:

Proposition 6. If � has dense iterates and �
�
(0; 3]

�
> 0, the Markov chain eFn

is  -irreducible and aperiodic, with the support of  having nonempty interior.
Consequently, all compact sets are petite.

Proof. Let I be an interval where the iterates are dense, and we take the irre-
ducibility measure � to be Lebesgue measure on I. Then we need to show that for

any x 2 (0; 1), y 2 I, and � > 0, the set of n such that P
��� eFn(x) � y

�� � �
	
> 0

is nonempty, and has greatest common divisor 1. For u 2 (supp �) \ (0; 3] the
function fu has an attractive �xed point at 1 � 1=u, so for all n0 suÆciently large

P
��� eFn0(x) � (1 � 1=u)

�� � �=8
	
> 0. Since the iterates are dense, we may �nd n00

such that

P
��� eFn00�1� 1

u

� � y
�� � �

2

	
> 0:



8 DAVID STEINSALTZ

In both cases we are using the fact that the functions fu are continuous in the
parameter u. Putting these together, along with the trivial bound jfu(a)�fu(b)j �
4ja� bj, we get

P
��� eFn0+n00(x) � y

�� � �
��	 > 0:

Since n0 could be any number suÆciently large, the periodicity is 1.

These conditions guarantee that an iterated logistic function system converges
to a stationary measure.

Lemma 7. If
R
logu �(du) > 0 and

R
log(4 � u)�(du) < 1, and if the Markov

chain eFn(x) is  -irreducible and aperiodic with the support of  having nonempty
interior, then the Markov chain has a unique stationary probability �, and the chain
converges in probability to �.

Proof. This proof merely generalizes the one given for Letac and Chamayou's ex-

ample in [Ste99]. We consider the Markov chain Xn = log eFn(x). Theorem 9.2.2 of
Meyn and Tweedie [MT93] tells us that the chain is Harris recurrent, implying exis-
tence of a unique stationary distribution, if there is a compact subset A � (0; 1) to
which the chain returns in�nitely often, with probability 1. By their Theorem 10.0.1
the chain is positive Harris recurrent (that is, the stationary distribution is �nite)

if in addition supx2A Ex �A <1, where �A = minfn � 1 : eFn(x) 2 Ag, and A has
positive irreducibility measure. Let A = [x0; 1�x0], where x0 is chosen small enough
that Æ := E

�
logu(1�x0)

�
> 0. For x 2 (0; x0) then E

�
Xn+1�Xn

��Xn = logx
� � Æ,

and Yn := Xn^�A � Æ(n^ �a) is a bounded submartingale. By the optional stopping
theorem (Theorem II-2-13 of [Nev75]), this means that for any positive n,

logx � E
�
Y�A^n

��Y0 = logx
� � �Æ E��A ^ n ��Y0 = logx

�
:

By the monotone convergence theorem E
�
�A
��Y0 = logx

� � �(logx)=Æ. If x >

1� x0, then E
�
�A
��Y0 = logx

� � � log(1� x)=Æ: Consequently

Ex �A = 1 + Ex(�A � 1)1ff1(x) =2 Ag
� 1 + Æ�1

�
�E logu1 � log(x0 � x20) � E log

�
1� u1

4

��
;

which is �nite. The convergence in distribution follows then from Theorem 13.0.1
of Meyn and Tweedie.

Note that we have excluded distributions which put a positive probability on 0,
by restricting the domain of the functions to the open interval (0; 1). This makes
no signi�cant di�erence, but it is a technically convenient de�nition, since it allows
the Markov chain to be irreducible; otherwise, the point 0 is an absorbing set o�
on its own. Of course, if

R
logu �(du) � 0, the iterates converge almost surely to 0,

so there is a unique stationary distribution concentrated at f0g. Athreya and Dai
show in [AD] that a stationary probability always exists when

R
logu �(du) > 0

and
R
log(4� u)�(du) <1. But uniqueness, and convergence in distribution, still

require Harris recurrence.

2.3. A few words about the conditions and the strategy. When � is concen-
trated at a single point, the relationship between Lyapunov exponent and long-term
behavior of the iterates is far more complicated than our simple-minded theorems
would admit. (For more details, see section V.4 of [dMvS93].) The case of measures
supported on two points was itself already worth a paper by R. Bhattacharya and
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B. Rao [BR93]. Fortunately, as is often the case, adding more randomness smooths
out and simpli�es the problem. The conditions \logarithmically continuous" and
 -irreducible guarantee the necessary quantum of randomness for Theorems 1 and
2 respectively. They are clearly stronger than necessary, but they seem appropriate
to the methods that we are applying. Logarithmically continuous rules out atoms
between 2 and 4, and goes a bit further in requiring smoothness in the distribution.

For Theorem 2 we need to assume that � places nonzero mass on the subinter-
val (0; 3]. This may seem unduly restrictive; but in fact, some such condition is
required. These are the values of u for which the deterministic iteration has an
attractive �xed point. If this interval has nonzero mass, then there is a positive
probability of randomly picking a long run of functions with nearly the same �xed
point. This tells us that eventually there will be some kind of contraction, if we
wait long enough. This clearly need not be the case if � is supported away from this
region. For instance, suppose � were uniform on the interval [3:05; 3:051]. All u in
this interval give rise to maps with stable points of period 2. In the long run the
random iterates become 
at, re
ecting a negative Lyapunov exponent, but do not
converge to a constant function. Rather, the iterates converge to a (slightly) ran-
dom step function with two steps. This is merely to say that much of the intricate
range of behavior available to iterated logistic maps is maintained in the random
case, even when we move beyond the trivial case of Æ measures. What is perhaps
surprising is that even a small overlap with the stable-�xed-point region (0; 3], and
suÆcient randomness to make the Markov chain  -irreducible (with  adequately
spread out), suÆce to drive these systems into the very simple behavior of uniform
convergence to a random �xed point. We get  -irreducibility from Lemma 5 and
Lemma 6, under the assumption that � is dense on an interval.

Theorem 1 relies on the tastelessly high-level condition of  -irreducibility itself,
to avoid assuming that �

�
(0; 3]

�
> 0. There must be a more aesthetic way around

this problem, but I have not yet found it. There seemed little disadvantage, on the
other hand, in using the more easily checked conditions which imply -irreducibility
in Theorem 2, since �

�
(0; 3]

�
> 0 is required there for other reasons.

These conditions are not imposed in the paper of Kl�unger; that work contents
itself as well with conditions for

R
logu�(du) and

R
log(4 � u)�(du) instead of our

stronger versions, which involve (4u�u2)��0 for some positive �0. It is worth taking
a moment to re
ect on where these assumptions enter the proof of Theorem 2.

Why is the result not simply trivial? After all,��Fn+1(x)� Fn(x)
�� = ��Fn�fn+1(x)�� Fn(x)

��;
so that attractivity depends fundamentally on the range of Fn (restricted to a
compact interval) contracting suÆciently quickly to a point. This will follow if the

derivative at every point converges exponentially to 0. The Markov chain eFn(x)
is supposed to converge in distribution to �. It follows by the chain rule that the
derivative at a �xed point should satisfy

n�1 log
�� eF 0n(x)�� = n�1

nX
i=1

log
��f 0i� eFi�1(x)���

= n�1
nX
i=1

logui + n�1
n�1X
i=0

log
��2 eFi(x) � 1

�� n!1�����! �� ;
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as long as the Markov chain is ergodic. (To be sure, log j1� 2xj is not a bounded
function, but this is only a symptom of a larger problem.) Pointwise, the derivative
of the n-th iterate should be growing exponentially when the Lyapunov exponent
is positive, and shrinking exponentially when the Lyapunov exponent is negative.
In the positive case the usual arguments which settle the question for aÆne maps,
as in [AC92], must be augmented to allow for the noninjectivity: Even when the
derivative is blowing up locally at every point, the function could in principle just
happen to fold over to stay within an ever-shrinking span. On the other hand, this
folding should, if anything, only make the negative case easier.

What we need, though, is uniform exponential shrinking of the derivatives.
Pointwise exponential shrinking is useless without information about the size of
the exceptional sets where the derivative gets very large. We cannot infer anything
if, say, j eF 0n(x)j1=n converges always to a number r < 1, but there is a set of x
with measure about e�n=2 where the derivative is as large as en. The logarithms
of the derivatives are being added along a random Markov path, and each point
corresponds to a separate path. To clarify this, it will help to place the problem
in a more general context. Consider a general Rd-valued iterated function system,
with fi 2 C := C1(X;X), where X � Rd. De�ne a Markov chain with state space

C � X, de�ned by Yn :=
�
fn; eFn�1(x)�, where x is a �xed starting point. Then

logDx
eFn �Pn

i=1 g(Yi), where g(f; x) := Dxf , and Dxf is the local Lipschitz con-
stant of f at x. As we explained in [Ste99], the iterated function system is attractive
if for �xed paths 
 : (0; 1)! (0; 1),

1X
n=1

Z
D
(t)Fndt

is �nite almost surely. Ignoring for a moment the switch from Fn to eFn, which does
raise nontrivial problems, we expect that the integral will fall o� exponentially with
n, so satisfying the condition for attractivity, if

lim sup
n!1

sup
s

�
1

n
logLeb

�
x 2 
 : logDx

eFn � sn
	
+ s

�
< 0:(17)

Let I(s) be the large-deviation rate function for the partial sums of g along Yn:

lim
n!1

1

n
logP

� nX
i=1

g(Yi) � sn
	
= lim

n!1

1

n
logP

�
Dx

eFn � esn
	
= I(s):

In the worst case, these exceptionally bad (from the point of view of attractivity)
points would show up in every realization in proportional strength; that is, the
Lebesgue measure of the set of points where the derivative is at least esn is always
about the same as the probability for any individual point. The condition for
attractivity (17) then becomes

sup
s
I(s) + s < 0:

By the general theory of large deviations for Markov chains, (see [Din93] for I.
Dinwoodie's generalization of a theorem of S. Varadhan [Var84]) this is equivalent
to the condition that

E
�
DxFn

�
= Ex exp

� nX
i=1

g(Yi)
	� � �(x)rn(18)
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for some r < 1 and � : X! [1;1) which is bounded on compact subsets of X.
This has been a tenuous chain of speculation, but at the end of it we arrive on

solid ground: The condition (18) is the one that we called \locally contractive" in
the paper [Ste99], and we showed there that, under mild conditions (which would
always be satis�ed when X is bounded), it implies that the system is attractive.
It has the advantage of being easily checked in many cases, by means of a drift
criterion; we repeat this criterion, in an improved form, at the end of this section.
We used this criterion to show that the Chamayou-Letac logistic system is attractive
for a � 2.

The reason for rederiving local contractivity here is to show why, for all its ben-
e�ts, it imposes too strong a condition to be appropriate for random logistic maps.
Exceptional behavior of sample paths of these maps will tend not to be isolated.
Each iteration involves at most one folding; otherwise, nothing but monotonic map-
ping. We would expect the points with exceptionally large derivatives to arise en
masse in some realizations, and in others not at all. That is, the exponentially small
probability that the derivative at x is very large should be a result of exceptional re-
alizations of the system, not of x being an exceptional point in an otherwise typical
realization. Local contractivity ignores the coherence of these unimodal maps.

Our approach will be to ignore the derivatives at individual points, and instead
to follow the development of the endpoints of the image of an interval [x0; 1� x0],
where x0 is any number between 0 and 1

2 . We divide up the behavior of the forward

iteration eFn�[x0; 1�x0]� into three stages: Stage I, when x0 is very small; Stage II,
when x0 has reached an intermediate value, but the image is still not very small;
and stage III, when the image of [x0; 1� x0] has been squeezed into an interval of
size no more than a given �0. The idea is that the time of commencing stage III has
geometric tails, and once stage III has been reached, there is a nonzero chance that
the diameter of the image will fall exponentially without ever returning above �0.
An interval of size below �0 is close enough to being a point that its size will tend to
shrink exponentially, on average, just like the derivative at a point, with rate close
to the Lyapunov exponent. At any step, the image of the interval is expanded by
a factor whose logarithm is no more than

log
��1� 2 eFn(x) + �0

��� log
�
1� eFn(x)�;

where x stays constant during stage III. Note that this averages out to the Lyapunov
exponent (except for the disturbing term �0), sinceZ

log(1� x)�(dx) =

Z Z
log
�
ux(1� x)

�
�(dx)�(du)�

Z
logx�(dx)�

Z
logu�(du)

= �
Z

logu �(du);

by the invariance of �.
It is not enough to check that the process eventually enters stage III and remains

there. At the end, we will need to convert the result about eFn to one about Fn; for
this purpose we need reasonable tail bounds for the time when this last entry into
stage III occurs.

It is only here, in stage III, that we need the stronger conditions. We are summing
a function along a path of the Markov chain, and trying to estimate the probability
that it runs o� to in�nity without ever dropping below a certain value. We know
that the long-term average should be close to the integral with respect to the



12 DAVID STEINSALTZ

stationary distribution | the Lyapunov exponent | but we need suÆcient mixing
conditions to tell us that the short-term averages of log j1�2Xn+ �0j� log(1�Xn)
will reach the stationary value quickly enough. This is technically arduous because
the function log j1 � 2xj � log(1 � x) is unbounded, and because the chain is not
uniformly ergodic. We note here that this problem simply does not arise when � is
restricted to (0; 3). For any choice of x and u 2 (0; 3),��1� 2x

��
1� x

��1� 2ux(1� x)
��

1� ux(1� x)
< 1;

so any two steps in a row automatically give the desired contraction, regardless of
any mixing properties.

We conclude with an improved version | necessary and suÆcient, whereas the
previous version was merely suÆcient | of our earlier criterion for local contrac-
tivity:

Proposition 8. An iterated function system is locally contractive if and only if
there exists a drift function �� : X ! [1;1) which is bounded on bounded subsets
of X, and some r� < 1 such that for all x 2 X,

E
�
��
�
f(x)

�
Dxf

� � r���(x):(19)

Proof. Assume �rst that the system is locally contractive. Then there is a function
� : X ! [1;1) and r < 1 satisfying E

�
DxFn

� � rn�(x): Let Gn(x) := E
�
DxFn

�
,

let r� := (1 + r)=2, and de�ne

��(x) :=
1X
n=0

r�n� Gn(x):

We have

E
�
Gn

�
f(x)

�
Dxf

�
= E

h
E
�
Dfn+1 (x)Fn �Dxfn+1

��Fn�i � Gn+1(x):

Thus

E
�
��
�
f(x)

�
Dxf

� � 1X
n=0

r�n� Gn+1(x) � r���(x):

Now assume that (19) holds. Rede�ne

Gn(x) := E
�
��
� eFn(x)�Dx

eFn�:
Then, applying (19),

Gn(x) � E
h
��

�
fn
� eFn�1(x)��D eFn�1(x)

fn �Dx
eFn�1i

� E
�
r���

� eFn�1(x)�Dx
eFn�1�

= r�Gn�1(x);

So �nally, since �� � 1,

E
�
DxFn

�
= E

�
Dx

eFn� � Gn(x) � rn�G0(x) = rn���(x):
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3. Proof of Theorem 1

If the system were attractive, then the image of an interval would contract, until
eventually it started to behave like a single point. But single points expand locally,
in the long run, since the Lyapunov exponent is positive. It is this intuition that
underlies the proof.

Let x be any point in (0; 1), and y 2 (0; 1) a point distinct from x and from
1� x. De�ne

Yn :=
�� eFn(x)� eFn(y)��; and Xn := logYn:

Since y is neither x nor 1� x, and E logu1 is �nite, EX1 is also �nite. For each n,

Xn+1 = log
��fn+1� eFn(x)�� fn+1

� eFn(y)���
= log

h
un+1

�� eFn(x)� eFn(y)�� � ��1� eFn(x)� eFn(y)��i, and
E
�
Xn+1 �Xn

��Fn�1� = E
h
logun+1

��1� 2fn
� eFn�1(x)��� ���Fn�1i

+ E

"
log

��1� fn
� eFn�1(x)�� fn

� eFn�1(y)�����1� 2fn
� eFn�1(x)���

���Fn�1
#

= E
�
��
� eFn(x)� ��Fn�1�+ ��

� eFn�1(x)� eFn�1(x)2 + eFn�1(y) � eFn�1(y)2�
� ��

�
2
� eFn�1(x)� eFn�1(x)2��

� E
�
��
� eFn(x)� ��Fn�1�� �

�
Yn�1

�
;

where � is the modulus of continuity for �� . Note that �� is continuous on a
compact interval, so �(0) = 0; in addition, � is continuous, nondecreasing, sublinear,
and bounded by 1 (cf. page 101 of [Tim66]). A function with these properties has
a concave majorant ��, de�ned as the in�mum of all concave functions which are
� �, which is concave, continuous, and such that ��(0) = 0. Thus

�EX1 � E
�
Xn �X1

�
=

nX
i=2

E
�
Xi �Xi�1

�
�

nX
i=2

E��
� eFi�1(x)�� nX

i=1

E �
�
Yi�2

�
:

By assumption, eFn(x) converges in distribution to �, which implies that

E��
� eFi(x)� n!1�����!

Z 1

0

��(z)�(dz) = �� :

Since EX1 is �nite, this means that

lim inf
n!1

1

n

nX
i=1

E ��
�
Yi
� � lim inf

n!1

1

n

nX
i=1

E �
�
Yi
� � �� :

By an application of Jensen's inequality,

lim inf
n!1

1

n

nX
i=1

EYi � ��1� (��) > 0;

where �� is the concave majorant of � on [0; 1]. Thus y is in Bx. But this is true
for every y which is neither x nor 1� x, so Bx contains all but these two points. If
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Fn(x) converges then �x
�
x; 1� x

	
must be 1, by Lemma 4. This is impossible if

the chain is  -irreducible.

4. Proof of Theorem 2

Suppose �rst that
R
logu �(du) � 0. Since � is not a delta distribution at 1,

lim inf
n!1

log Lip Fn � lim inf
n!1

log u1 + � � �+ log un = �1:

The sequence supx Fn(x) is nonincreasing in n, and is bounded above by 1
2 Lip Fn,

so limn!1 supx Fn(x) = 0. This means that the system is attractive, with the
trivial limit 0.

Suppose now that
R
logu �(du) > 0. For any � 2 (0; �0), an application of the

elementary inequality ex � 1� x � x2

2 (e
x + e�x) with x = �� logu shows thatZ

u���(du) � 1 + �

Z
logu �(du)+

�2

2

Z �
log2 u

��
u� + u��

�
�(du):

Thus, for � suÆciently small but positive,Z
u���(du) > 1;(20)

and of course (4) still holds with � in place of �0. (This simple computation was
suggested by a similar one in [Wu00].)

It will be convenient to be able to treat the logistic functions as monotone, by
folding all the points back onto the interval (0; 12 ]. To this end we use the tent map

�(x) = minfx; 1� xg:
Let X0 2 (0; 12 ) be chosen, and let Z0 =

1
2 . We de�ne recursively

Xn+1 = min
x2[Xn;Zn]

�
�
fn+1(x)

�
Zn+1 = max

x2[Xn;Zn]
�
�
fn+1(x)

�
:

Thus �
� eFn([X0; 1 � X0])

�
= [Xn; Zn] for n � 1. We want to de�ne X�

n and Z�n
with simpler dynamics such that [Xn; Zn] � [X�

n; Z
�
n] � (0; 12 ]. There will also be

��n �
p
Z�n=X

�
n � 1. These de�nitions imply that

sup
X0�x�y�1�X0

�� eFn(x)� eFn(y)�� � 2��n
p
X�
n

�p
X�
n +

p
Z�n
� � 2��n:(21)

We claim that there are positive constants �0 and c, independent of n and X0

(but depending on the chain and the choice of �0 and x0), such that for every
positive integer p there is a positive constant Bp, with

P
�
log
�
��n=�0

� � ��0n	 � BpX
�c
0 n�p;(22)

We show �rst that the theorem follows from this claim.
By (21), the claim tells us that for all X0 2 (0; 12 ) and positive integers n,

P
�

sup
X0�x�y�1�X0

�� eFn(x)� eFn(y)�� � 2�0e
��0n

��F0	 � BpX
�c
0 n�p:

Since Fn and eFn have the same distribution, the same inequality holds when eFn is
replaced by Fn. The fact that the constants do not depend onX0 or n, furthermore,
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allows us to take X0 = n�r, where r > 1=� | recall that � was speci�ed to be a
positive constant such that (20) and (4) hold | obtaining for n � 2,

P
�

sup
n�r�x�y�1�n�r

��Fn(x) � Fn(y)
�� � 2�0e

��0n
	 � Bpn

�p+rc:(23)

Since p is arbitrary, we may take it to be larger than rc+ 1. Also,

P
�
fn(x) =2

�
n�r; 1� n�r

�	
= P

�
un � n�r(x� x2)�1 or un �

�
1� n�r

�
(x� x2)�1

	
� ��

�
4

x� x2

��

n�r�

By the Borel-Cantelli Lemma, it follows that for all �0 suÆciently small and x 2
(0; 1), since Fn+1(x) = Fn(fn+1(x)),

P
�9 in�nitely many n s.t.

��Fn+1(x)� Fn(x)
�� � �0e

��0n=4
	

� P
�91 many n s.t. sup

n�r�y�1�n�r

��Fn(x) � Fn(y)
�� � �0 or fn+1(x) =2 (n�r; 1� n�r)

	
;

which is 0. Thus
�
Fn(x)

�
is almost surely a Cauchy sequence, and jFn(x)�Fn(y)j !

0 for all x; y 2 (0; 1). Thus limn!1Fn(x) exists for every x 2 (0; 1), and is
independent of the choice of x.

We now need to prove the claim. Since
R
logu �(du) > 0 and

R
log(4�u)�(du) <

1, by the Monotone Convergence Theorem we may �nd an x0 2 (0; 12) and � > 0
such that Z

log
�
ux0(1� x0) ^ (1� u=4)

�
�(du) � logx0 + �:(24)

Also, since the Lyapunov exponent is negative,Z
logu �(du) +

Z
log j1� 2xj�(dx) < 0:

Since � is the stationary distribution for the Markov chain, it must be thatZ Z
logux(1� x)�(du)�(dx) =

Z
logx�(dx);

so thatZ
log j1� 2xj�(dx)�

Z
log(1�x)�(dx) =

Z
logu �(du)+

Z
log j1� 2xj�(dx)< 0:

This means that for all �0 > 0 suÆciently small, by the Monotone Convergence
Theorem,

��0 := 1

4
log(1 + �0) +

Z
log

� j1� 2xj+ �0
(1� x)(1� 2�0)

�
�(dx)(25)

is negative. We �x such an �0 2 (0; 1
64).

We de�ne a sequence of stopping times 0 = �0 < �1 < �1 < �2 < � � � , by the
following rules:

�i+1 := min
�
n > �i : �

�
n � r0�0 and X

�
n � x0

	
, and

�i := min
�
n > �i : �

�
n � �0

	
:

Here r0 is a parameter between 0 and 1, which will be speci�ed presently. We split
up the de�nition ofX�

n into three \stages": If �i � n < �i+1 for some i andX�
n < x0,

we say that the process is in Stage I at time n; it is in Stage II if �i � n < �i+1
and X�

n � x0. When �i � n < �i the process is in Stage III. Intuitively, the process
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is in Stage I as long as the left endpoint of the interval is still stuck in the corner,
close to 0. Once the interval has achieved suÆcient separation from 0, Stage II
commences, whereby we regard the width of the interval, waiting for it to shrink
below a small fraction of �0. That achieved, Stage III continues, unless the interval
swells up larger than a width of �0 again, at which time the process would revert
to Stage I or II (depending on the location of the left endpoint).

In Stage I, we de�ne X�
n+1 =

�
un+1X

�
n(1�X�

n)
� ^ (1� un+1=4) and Z

�
n+1 =

1
2 .

In Stage II it is

X�
n+1 = min

�
�
�
un+1X

�
n(1�X�

n)
�
; �
�
un+1Z

�
n(1� Z�n)

�	
, and

Z�n+1 = max
�
�
�
un+1X

�
n(1�X�

n)
�
; �
�
un+1Z

�
n(1� Z�n)

�	
:

In both of these stages ��n :=
p
X�
n=Y

�
n . Finally, in Stage III, we use an auxiliary

process Y
(i)
n to generate the others. the idea is that Y

(i)
n is a point in the middle of

the short interval, acting as a surrogate for the whole, while �� is the extension on

either side around Y
(i)
n :

Y (i)
�i =

q
X�
�iZ

�
�i ;

���i =
q
Z��i=X

�
�i � 1;

and for all n � �i; Y
(i)
n+1 = un+1Y

(i)
n (1 � Y (i)

n ):

Then for �i < n � �i we de�ne Y �n = �(Y
(i)
n ) and

��n+1 = ��n �
8<:

1+��n�2Y
�

n

(1�Y �

n )(1��
�

n)
if Y (i)

n+1 � 1
2 ;

un+1Y
�

n

�
1+��n�2Y

�

n

�
1�un+1Z�

n(1�Z
�

n)
if Y

(i)
n+1 >

1
2 ;

X�
n+1 =

Y �n+1
1 + ��n+1

; and

Z�n+1 = min

�
1

2
; Y �n+1

�
1 + ��n+1

��
:

We show in Lemma 11 that these de�nitions do indeed imply that

�
�
fn+1

�
[X�

n; Z
�
n]
�� � [X�

n+1; Z
�
n+1]:(26)

The di�erences �i� �i�1 have geometric tails, while the probability of �i��i being
�nite but larger than some n falls o� faster than any power of n. These and other
useful properties are given in Lemma 9. That lemma provides us with a value of
r0 which guarantees that P

�
�i =1 ��F�i	 is bounded away from 0.

Let I := minfi : �i =1g. By the tail bound (34), I is almost surely �nite, with

P
�
I � i

��F0	 � (1 � c4)
i�1 almost surely:

By (31) and (32), for all positive integers i, p, and n, on the event f�i�1 <1g,

P
�1 > �i � �i�1 � n

��F�i�1	 � P
�
�i � �i�1 � n

2

��F�i�1	 +P
�1 > �i � �i � n

��F�i�1	
� c1e

�c2n=2(X�
�i�1 )

�c5 + 2pbpn
�p;
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where the b's and c's are positive constants. By (33), we may �nd positive constants
b0p such that

P
�1 > �1 � n

��F0	 � b0pX
�c5
0 n�p for all n and p:(27)

For any i � 2, on the event f�i�1 <1g,
P
�1 > �i � �i�1 � n

��F0	 � E
h
E
�
c1e

�c2n=2(X�
�i�1

)�c5 + 2pbpn
�p
��F�i�1� ��F0i

� c1c3e
�c2n=2 + 2pbpn

�p;(28)

so we may choose the constants b0p to satisfy

P
�1 > �i � �i�1 � n

��F0	 � b0pn
�p for all i � 2:(29)

Then

P
�
�I � n

��F0	 � nX
i=1

P
�
I � i

��F0	P��i � n
�� I � i ; F0

	
�

nX
i=1

(1� c4)
i�1

iX
k=1

P
�1 > �k � �k�1 � n

i

��F0	
�

nX
i=2

(1� c4)
i�1b0pi

p(i +X�c5
0 )n�p

� B0pX
�c5
0 n�p;

where B0p and c5 are positive constants depending on the choice of �0 and x0, and
on the Markov chain, but not on the starting point X0.

Observe now that

P
�
log
�
��n=�0

� � ��0n	
� P

�
�I � n

2

	
+

n=2X
i=1

P
�
�i � n

2
; �i =1 and log

�
��n=�0

� � ��0n	
� 2pB0pX

�c5
0 n�p + 2pap+1n

�p;(30)

by (35).

5. Technical lemmata

Lemma 9. With the notation of the proof of Theorem 2, for �0 and x0 suÆciently
small there are positive constants c1, c2, c3, c4, c5 and b1; b2; b3; : : : such that for
all natural numbers i, n, and p,

P
�
�i+1 � �i � n

��F�i	 � c1e
�c2n

�
X�
�i

��c5 on f�i <1g;(31)

P
�1 > �i � �i � n

��F�i	 � bpn
�p on f�i�1 <1g;(32)

E
��
X�
�i

��c5
1f�i<1g

��F�i� � c3 on f�i <1g:(33)

almost surely.
For r0 suÆciently small (but still positive), there is a positive constant c4 such

that for all i, on the event f�i <1g,
P
�
�i =1

��F�i	 � c4 a.s.(34)
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There are also positive constants a1; a2; : : : , such that for every i and n,

P
�
�i � �i � n and log ���i+n � log �0 � �2�

0

n

��F�i	 � apn
�p on f�i <1g:(35)

Here �0 is the positive constant given in (25). The a's, b's, and c's are \constant"
in that they depend only on the distribution �, and on the choice of r0, �0 and x0,
not on the starting point X0.

Proof of (31). Let � = �i+1 and � = �i for some given i. Let n0 and q be given
as in Lemma 10. (The condition �

�
(1; 4)

�
> 0 is guaranteed by our assumption

E logu > 0.) On the event f� <1g we de�ne a new sequence of stopping times �j
which interpolate between � and �:

�0 := � � n0;

�1 := min
�
k � � : X�

k � x0
	
, and

�j := min
�
k � �j�1 + n0 : X�

k � x0
	
for j � 2:

We de�ne J = minfj : � � �j + n0g. Suppose that we can �nd a 
 2 (0; 2�=3]

such that
�
X�
(�j+n0+k)^�j+1

��

e


2k is a supermartingale, and in addition�
8
e


2

�


�
� (1� q)�1=2n0, and x�
0 � (1� q)�1:(36)

By the optional stopping theorem for positive supermartingales (Theorem II-2-13
of [Nev75]), it follows that for each j � 0, on the event fJ > jg,

E
�
e


2(�j+1��j�n0)
�
X�
�j+1

��
 ��F�j+n0� � (X�
�j+n0)

�
 :

For any k, on the event �j+1 � �j > k, using �
 de�ned in (4),

E
��
X�
�j+k+1

��
 ��F�j+k�
� E

�
u�
�j+k+1

�
X�
�j+k

��
�
1�X�

�j+k

��
 _ �
1� u�j+k+1

4

��
 ��F�j+k�
� 8
�


�
X�
�j+k

��

;

since X�
�j+k

� 1
2 . (Note: We have used the stage I de�nition of X�

�j+k+1
, but it

serves as well as a lower bound in stage II.) This yields

E
�
e


2(�j+1��j )
�
X�
�j+1

��

1f���j+1g

��F�j� � e

2n0 E

�
(X�

�j+n0)
�

��F�j�1f���jg

� (1 � q)�1=2
�
X�
�j

��

1f���jg:

Iterating this conditioning, we see that for all positive j,

E
�
e


2(�j��)1f���jg
��F�� � (1� q)�j=2

�
X�
�

��

:

By Lemma 10, we have always P
�
� � �j + n0

��F�j	 � q: (The de�nition of
� excludes the possibility that �j + n0 < � < �j+1, since for all k in that range
X�
k < x0.) Thus for all positive j,

P
�
� � �j

��F�	 � (1� q)j�1:
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We now see that J is almost surely �nite, and

E
�
exp

�
2
2
(� � � )

	 ��F�� � e

2n0=2 E

24 1X
j=1

1fJ=jg exp
�
2
2
(�j � � )

	 ��F�
35

� e

2n0=2

1X
j=1

P
�
J � j

��F�	1=2E�exp�
2(�j � � )
	 ��F��1=2

� e

2n0=2

�
X�
�

��
=2
(1 � q)�1

1X
j=1

(1� q)j=4:

This proves the claim (31) with c1 = e

2n0=2(1 � q)�1(1 � 4

p
1� q)�1, c2 = 
2=2,

and c5 = 
=2, once we have shown that the necessary constant 
 exists.
For all 1 � k � �j � �j�1 � n0, by (24), and the fact that X�

�+k�1 < x0,

0 < � � E
�
logX�

�+k � logX�
�+k�1

��F�+k�1�, and
E
h
exp

�
�
�� logX�

�+k � logX�
�+k�1

��	 ��F�+k�1i
� E

h�
X�
�+k

�� ��F�+k�1i�X�
�+k�1

���
+ E

h�
X�
�+k

��� ��F�+k�1i�X�
�+k�1

��
� E

�
u��+k

�
+ E

h
min

n
u�+k(1�X�

�+k�1);
�
1� u�+k=4

�o��i
� 4� + (1� x0)

�� E
�
u��

�
+ E

�
(1 � u=4)��

�
:

Under these conditions Lemma 2.6 of [SS02] provides a positive 
0, depending only

on the distribution �, such that
�
X�
(�j+n0+k)^�j�1

��

e


2k is a supermartingale for

all 
 2 [0; 
0]. The conditions (36) are satis�ed for all 
 suÆciently small.

Proof of (34), (32), and (35). We need to show �rst that Yn := Y
(i)
�i+n, stopped

when n = �i� �i, is a V -uniformly ergodic Markov chain, with V (x) = (x� x2)��.
By Lemma 15.2.8 and Theorem 16.1.2 of [MT93], we need to show that the sets
fV (x) � ag are petite sets and

PV � �V + L;(37)

where P is the Markov operator and � and L are positive constants, with � < 1.
The �rst we have already shown in Proposition 6, since the sets

�
x : V (x) � a

	
are compact subsets of (0; 1). The second condition isZ �

u(x� x2)
�
1� u(x� x2)

����
�(du) � �(x � x2)�� + L;

which becomes
Z
(u� yu2)���(du) � �+ Ly�

when we set y = x� x2. Using the convexity of the function y 7! (1 � yu)��, and
the fact that y � y�, we see thatZ

(u� yu2)���(du) �
Z
u��

�
1� 4y + 4y(1 � u=4)��

�
�(du)

� (1� 4y)

Z
u���(du) + 41+���y

�;

so that (37) holds with � =
R
u���(du) and L = 41+���.



20 DAVID STEINSALTZ

Theorem 1 from [Ste01] implies that if g : (0; 1)! Rwith jgj � c logV for some
constant c, then for every positive integer p there is a constant c�p, depending on
the distribution � and the function g, such that the normalized partial sums along
the Markov chain Y�i+n,

Sk(g) :=
k�1X
n=0

�
g
�
Y�i+n

� � �(g)
�
;

satisfy for every positive integer k,

E
���Sk(g)��p ��Y�i = y

� � c�pk
p=2V (y):(38)

We apply this to the function

g(y) = log
j1� 2yj + �0

(1� y)(1 � 2�0)
:(39)

The de�ning characteristic of �0 is (25), which tells us that log(1 + �0) + �(g) =:
��0 < 0.

Observe now that for �i � n < �i, since ��n < �0, and using the fact that

Y
(i)
n = 1� Y �n when Y (i)

n > 1
2 ,

log ��n+1 � log ��n � g
�
Y �n
�
+ 1fY (i)

n+1 >
1

2
g log u

(i)
n+1Y

(i)
n (1 � Y

(i)
n )

1� un+1Z�n(1� Z�n)

= g(Y (i)
n ) + 1fY (i)

n >
1

2
g log 1� Y

(i)
n

Y
(i)
n

+ 1fY (i)
n+1 >

1

2
g log Y

(i)
n+1

1� un+1Z�n(1� Z�n)

Consequently, for 0 < k � �i � �i,

log���i+k � log ���i

�
�i+k�1X
n=�i

"
g(Y (i)

n ) + 1fY (i)
n >

1

2
g log 1� Y

(i)
n

Y
(i)
n

+ 1fY (i)
n+1 >

1

2
g log Y

(i)
n+1

1� un+1Z�n(1� Z�n)

#

= S�i+k(g)� S�i (g) + k�(g) +

�i+k�1X
n=�i+1

1fY (i)
n >

1

2
g log 1� Y

(i)
n

1� unZ�n�1(1� Z�n�1)

+ 1fY (i)
�i

>
1

2
g log 1� Y

(i)
�i

Y
(i)
�i

+ 1fY (i)
�i+k

>
1

2
g log Y

(i)
�i+k

1� u�i+kZ
�
�i+k�1

(1� Z��i+k�1)
:

When Y
(i)
n > 1

2 and �i < n < �i, by (26) we know that 1�unZ�n�1(1�Z�n�1) � X�
n,

so

1� Y
(i)
n

1� unZ�n�1(1� Z�n�1)
� Y �n
X�
n

� 1 + �0:

Thus

log ���i+k � log ���i � S�i+k(g) � S�i (g) + 4�0k � log
�
1� uk+�i

4

�
:
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The event f�i = �i + kg occurs only when log ���i+k � log ���i � � log r0, so either

S�i+k(g) � S�i (g) �
1

2

�� log r0 � 4�0k
�
or

u�i+k � 4� 4
p
r0e

2�0k:

By (38), and V
�
Y�i

� � V (x0), the former event has probability bounded by

22p+2c�2p+2V (x0)
�� log r0 � 4�0k

��2p�2
kp+1;

while the latter has probability no more than ��4�r
�=2
0 e2�

0k�. (These probabilities
are almost sure, conditioned on F�i). Thus, on f�i <1g,

P
�1 > �i � �i � n

��F�i	 = 1X
k=n

P
�
�i � �i = k

��F�i	
� c�2p+2

1X
k=n

�� log r0 � 4�0k
��2p�2

kp+1 + 4�r
�=2
0 ��

1X
k=n

e4�
0k�=2

which is bounded by a constant times n�p for each p � 2. Furthermore, the right
side converges to 0 as r0 goes to 0, so we may choose r0 to make it smaller than 1.
When n = 1, this is a uniform upper bound on the conditional probability that �i
is �nite, so we have taken care of (34) as well as (32). The same bounds show as
well that

P
�
�i � �i � n and log ���i+n � log �0 � �2�0n ��F�i	
� P

�
Sn(g) � ��0n ��F�i	 +P

�un
4
� 1� e��

0n
��F�i	;

so we can apply the same argument to prove (35).

Proof of (33). For any �i � k � �i, we have, from the de�nition of ��k,

X�
k =

�
Y �k
��
1 + ��k

��1
�
�
Y
(i)
k

�
1� Y

(i)
k

���
1 + ��k�1 � 4(1 + �0)

�
(1 � Y �k�1) ^

�
1� uk

4

���1��1
� Y

(i)
k

�
1� Y

(i)
k

��
1 + 16(�0 + �20)

�
4� uk

��1��1
:

Because of the V -uniform ergodicity of the Markov chain Y
(i)
k , for any positive

�0 � � and any j � 0,

E
h�
Y
(i)
j+�i

�
1� Y

(i)
j+�i

����0 ���F�ii � E
�
V
�
Y
(i)
j+�i

� ��F�i��0=�
� �

cV
�
Y (i)
�i

���0=�
+ �(V )�

0=�

� �
cV (x0)

��0=�
+ �(V )�

0=� =: C(�0);

(40)
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almost surely, where c is a deterministic quantity depending on �0 and the Markov
chain, but not on j or i. If c5 = �=3, we may apply H�older's inequality to get

E
�
X�c5
�i 1f�i <1g

��F�i� = E

"
1X

k=�i+1

�
X�
k

��c5
1f�i = kg

���F�i
#

�
1X
j=1

E
h�
Y
(i)
�i+j

�
1� Y

(i)
�i+j

���� ��F�ii1=3
� E

h�
1 + 16(�0 + �20)

�
4� u�i+j

��1�� ���F�ii1=3
� P

�1 > �i � �i � j
��F�i	1=3

�
1X
j=1

C(�)1=3
�
1 + ��

�1=3 �
bpj

�p
�1=3

for any positive p. If p > 3, this sum is �nite, giving the desired bound.

Lemma 10. Let � be a probability on (0; 4) such that �
�
(0; 3]

�
> 0 and �

�
(1; 4)

�
>

0, and ui an i.i.d. sequence with distribution �. Then for any positive x0 and �0 suf-
�ciently small there is a positive integer n0, real q > 0, and y0 2 [x0 + �0; 1� x0 � �0],
such that

P
�8x 2 [x0; 1� x0];

�� eFn0(x) � y0
�� � �0

	 � q(41)

Proof. Suppose that �
�
(1; 2]

�
> 0. Then we may choose x0 to be small enough that

� puts positive mass on the interval J := [(1�x0)�1; 2]. If ui 2 J for all i � m, the

iterates up to m are monotonic on (0; 12 ]. This means that minx0�x�1�x0 eFm(x) =eFm(x0) � x0 and maxx0�x�1�x0 eFm(x) = eFm(1=2). If eFm(1=2) � eFm(x0) > �0,
then eFm+1(12 )eFm+1(x0) = 1� eFm(12)

1� eFm(x0) �
eFm�12�eFm(x0) � (1� �0) �

eFm�12�eFm(x0) :
Consequently, letting n0 = dlog(�0=2x0)= log(1 � �0)e, the image eFn0�[x0; 1 � x0]

�
falls into some subinterval of [x0; 1�x0] of length �0 with probability at least �(J)n0 .
Thus for some y0 it must have positive probability of lying in [y0 � �0; y0 + �0].

Suppose now that �
�
(2; 3]

�
> 0. Let u be a point in (2; 3] which is in the support

of �. The function fu has a stable �xed point zu = 1� 1
u 2 (12 ;

2
3 ). Consider x0 and

�0 such that x0+ �0 � zu � 1� x0� �0. The �xed point is a universal attractor, so
there is a number n0 such thateFn0�[x0; 1� x0]

� � �
zu � �0

2
; zu +

�0
2

�
:

Since fu(x) is uniformly continuous as a function of u, if J is a small enough interval
around u, and u1; : : : ; un 2 J , theneFn�(x0; 1� x0)

� � �
zu � �0; zu + �0

�
:

If neither of these intervals has positive measure, it must be that �
�
(0; 1]

�
and

�
�
(3; 4)

�
are both positive. We may �nd a u 2 (0; 1] such that �

�
[u; 1]

�
> 0. Let

J1 = [u; 1] and J2 = (3; 4). We de�ne f1; 2g-valued Fm�1-measurable random

variables �m by the rule: �m = 2 if eFm�1�1=2� � w0 := 1=2 � 1=
p
8; otherwise

�m = 1. We require that x0 + �0 � u=8.
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Suppose now that we have a sequence of ui's with ui 2 J�i . Whenever �m = 2,

eFm(1
2
) > 3(1� w0) eFm�1(1

2
):

When �m = 1 there is a drop, but eFm(12) never goes below u �w0(1 � w0) = u=8.
The wait between successive indices m with �m = 1 is never more than K :=�
log
�
8w0=u

�
= log 3(1�w0)

�
: As in the �rst part, eFm(x) � 1

2 for all m and x, so the

functions act monotonically, and eFm(12)= eFm(x0) is decreasing in m. If �m = 1 andeFm�1(12) � eFm�1(x0) > �0, theneFm(12)eFm(x0) = 1� eFm�1(12)
1� eFm�1(x0)

eFm�1(12)eFm�1(x0) < �
1� �0

� eFm�1(12)eFm�1(x0) :
If these conditions have been met k times before episode m, we have

(1� �0)
k 1

2x0
>

eFm(12 )eFm(x0) > 1:

If we take n = K � dlog(2x0)= log(1� �0)e + 1, then

P
�9n0 � n s.t. eFn0�[x0; 1� x0]

� � [x0; 1� x0] & diam eFn0�[x0; 1� x0]
� � �0

	
� P

�
ui 2 J�i for all i � n

	
� min

�
�(J1); �(J2)

	n
:(42)

Lemma 11. The process (X�
n; Z

�
n) satis�es

�
�
fn+1

�
[X�

n; Z
�
n]
�� � [X�

n+1; Z
�
n+1]:(43)

Proof. Stages I and II are obvious. Suppose now that the process is in Stage III,
so �i � n < �i. To simplify the notation, we de�ne u = un+1 and

x = X�
n; x0 = X�

n+1;

z = Z�n; z0 = Z�n+1;

� = ��n; �0 = ��n+1;

y = Y �n ; y0 = Y
(i)
n+1;

I = [x; z]; I0 = �
�
fn+1([x; z])

�
:

What we need to show is that, for all w 2 [x; z], letting w0 = uw(1�w),

�(y0)

1 + �0
� �(w0) � (1 + �0)�(y0):

This is equivalent to showing that

sup
x�w�z

max

�
�(w0)� �(y0)

�(y0)
;
�(y0)� �(w0)

�(w0)

�
� �0;

which will be a consequence of

�0 � ~�(w) := max

�
w0 � y0

y0
;
y0 � w0

w0
;
jy0 � w0j
1� y0

;
jy0 � w0j
1�w0

�
:(44)
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Since y0 � w0 = u(y � w)(1 � y � w) and y=(1 + �) � w � y(1 + �), and � � �0
(because the process is in stage III),

w0 � y0

y0
=

(w � y)(1 � y � w)

y(1 � y)
� �

�
1� y(2 + �)=(1 + �)

�
1� y

� �
1� 2y + �

1� y
� �0, and

y0 �w0

w0
=

(y � w)(1� y � w)

w(1�w)
� �

�
1� y(2 + �)=(1 + �)

�
1�w

� �
1� 2y + �

(1� y)(1 � �)
� �0:

This takes care of the cases when y0 or w0 is the smallest of fy0; w0; 1� y0; 1�w0g.
Now consider the case when y0 � 1

2 � w0. Since y and w are both in (0; 12 ], it must
be that y � w � (1 + �)y, which implies that 1�w0 � 2y0 �w0 � uy(1� y � �). It
follows that

w0 � y0

1�w0
� (w � y)(1 � y �w)

y(1 � y � �)
� �

1� 2y + �

(1� y)(1 � 2�)
� �0:

Finally, there is the case when y0 � 1
2 . The denominator denominator of ~�(w) is at

least 1� uz(1� z), and

~�(w) � jy0 �w0j
1� uz(1� z)

� u�y(1 � y � y=(1 + �))

1� uz(1� z)
� �0:
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